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Abstract
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3D Hand Pose Estimation
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by Olha CHERNYTSKA

With the increase of popularity VR/AR applications, 3D hand pose estimation
task has become very popular. 3D hand pose estimation from single RGB camera
has great potential, because RGB cameras are cheap and already available on most
mobile devices. In this thesis we work on improving pipeline for 3D hand pose
estimation from RGB camera. We dealt with two challenges - sophisticated algo-
rithmic task and absence of good datasets. We trained several convolutional neural
networks and showed that direct heatmaps method is the best approach for 2D pose
estimation and vector representation - for 3D pose. We demonstrated that adding
data augmentations even for synthetic dataset increases performance on real data.
For 2D hand pose estimation, we proved that it is possible to train neural network
on large scale synthetic dataset and finetune it on small partly labeled real dataset to
receive adequate results, even when only small part of keypoint labels is available.
With no real 3D labels available, model trained on synthetic data still could correctly
predict 3D keypoint locations for simple poses. All code and pre-trained models will
be publicly available.
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Chapter 1

Indroduction

With the increase of popularity of Virtual Reality and Augmented Reality, 3D hand
pose estimation task has become very popular. Having algorithm that can predict
hand pose with high accuracy will eliminate need of highly expensive and cumber-
some wired gloves and make VR/AR experience more natural and affordable. 3D
Hand pose estimation can also become a part of pipeline for such important tasks as
gesture recognition and sign language recognition.

3D Hand Pose Estimation refers to set of approaches that return 3D locations
of hand keypoints, from which hand pose can be correctly understood. Hand pose
estimation is a challenging task, because of huge variety of possible hand poses,
severe self-occlusion, and nearly identical finger appearance.

Hand Pose Estimation as a problem can be approached from different view-
points, depending on data available, financial status of the project, required predic-
tion accuracy or any other limitations. These viewpoints are - wired gloves, depth
camera, stereo camera, mono RGB camera.

3D Hand pose estimation from depth image is the most popular approach as of
now, because of its high accuracy and existence of non-expensive depth cameras.
However, depth cameras have limitations. Depth sensors are not applicable for out-
door environment, because they are very sensitive to active light sources; depth cam-
eras require relatively high power consumption, so they cannot be used on mobile
devices.

The least researched approach in 3D hand pose estimation is using single RGB
camera. This approach shows relatively lower performance comparing to depth-
based algorithms. However, in recent years neural networks are proved to be highly
accurate for most of the machine learning tasks and 3D hand pose estimation is not
an exception. 3D hand pose estimation from single RGB camera could significantly
increase its performance by introducing recent neural network best practices. RGB
camera is also preferable because it can be used in many applications without any
special setup required, including usage on mobile devices, outdoor usage and hand
pose estimation from community videos (such as Youtube). RGB cameras are more
widespread than depth cameras; relatively good quality RGB cameras are available
on most mobile devices and laptops. So there is a large field for application of RGB
methods.

3D hand pose estimation from single RGB camera is a complicated task not only
because sophisticated algorithms are needed, but also because good quality large-
scale datasets are not available open-source and are extremely expensive to create.

In this works we will focus on improving pipeline for 3D hand pose estimation
from single RGB camera. Whole pipeline includes hand localization, left-right hand
classification, normalized 3D hand pose estimation, absolute 3D pose hand pose
restoration and tracking steps. Hand localization and left-right hand classification
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are already solved tasks in Computer Vision, restoring absolute 3D pose requires in-
troduction of prior assumptions and cannot be restored with high accuracy any way,
and tracking is more an algorithmic task. So we are going to restrict our attention to
normalized 3D hand pose estimation, because it is main part of the pipeline and the
least researched topic at the same time. And improving normalized 3D hand pose
estimation will result in boost of performance for 3D hand pose estimation from RGB
image in general.

We are going to try several neural network architectures and provide recom-
mendations of what architecture to use in case good dataset is available. We will go
further and investigate possible solutions to use, when no good dataset is available.
We will work a lot with synthetic large-scale datasets, extensive data augmentations
and partly labeled real datasets. All the code and pre-trained neural networks will
be available on GitHub.

https://github.com/OlgaChernytska/3D-Hand-Pose-Estimation
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Chapter 2

Background and Related Work

This chapter contains comprehensive review of the available datasets and latest ap-
proaches for 3D hand pose estimation from single RGB image. We will also review
relevant approaches for hand pose estimation from depth, stereo and RGB-D cam-
eras, as some ideas may be reused for our task. Additionally, we review papers
on 3D human pose estimation, as this task is similar and some techniques may be
reused as well.

All current state of the art approaches for 3D hand pose estimation, reviewed in
this chapter, use some modifications of convolutional neural network architectures.
We will go deeper on why this happened.

In 2012 AlexNet [1] won ImageNet challenge. Network was able to classify im-
ages into 1000 classes with 16.4% top-5 error rate, and significantly outperformed
previous winners – classic machine learning approaches [2]. This event proved that
deep learning is worth attention and raised interest in both academia and business
communities. The more people were involved in deep learning researches, the more
impressive results were achieved.

Today, in 2018, after 6 years passed, deep learning dominates classic machine
learning for most of the problem types in computer vision, natural language pro-
cessing and reinforcement learning. Deep learning approaches are more accurate,
generalize well to unseen data and easy to implement (using PyTorch and Tensor-
flow libraries).

Convolutional neural network (CNN) is the best technique for solving image and
video processing tasks; and for some tasks, image classification with 1000 classes in
particular, CNNs outperform humans – 5.1% top-5 error for human [3] and 3.5%
for residual neural network [2] on ImageNet Challenge. Researchers from Stanford
Vision Lab [3] compared human and CNN performance and concluded, that CNNs
fail more often than humans when object for classification is small/thin, image filters
were applied, object is represented in abstract form (3D rendered object, drawing,..)
and object photo is from atypical viewpoint; besides, three last fail reasons can be
easily solved by adding/augmenting training data. Human performance is worse
comparing to CNNs for fine-grained recognition (such as dog breeds) and because
of class unawareness; additionally, human training requires much more time than
that for CNN. As for hand pose estimation, human performance is expected to be
high for 2D keypoint localization, but obviously poor for 3D, comparing to CNNs,
because of problems with depth estimation.

Convolutional neural network (and deep learning in general) is a black-box algo-
rithm. During training millions of parameters are learnt; and it is impossible not to
understand but even to perceive such complicated architecture. But some attempts
were made, like visualization of the first layer weights [4], saliency maps [5], exper-
iments with occlusion [6] and intermediate feature visualization [6, 7]. Still it is not
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enough to fully understand how CNNs work. Nevertheless, this does not prevent
convolutional neural networks from being so widely used in image processing tasks
and in 3D hand pose estimation, in particular.

Now we will explain how 3D hand pose estimation task can be solved, because
single RGB image processing is not the only option.

3D hand pose estimation refers to set of problems that estimate 3D locations of
hand joints. Hand pose can be accurately represented by locations of 21 joints - 4
joints per finger and location of wrist (sometimes hand center or palm). 3D locations
are estimated in absolute coordinates - in the camera coordinate system, or relative
(normalized). Hand pose normalization can be performed in different ways, one
approach is to put middle finger metacarpophalangeal (MCP) joint in the center of
the coordinate system and make distance between wrist and middle finger MCP
joint to be of length 1, as in [8].

Hand pose estimation is a challenging problem, because of huge variety of pos-
sible hand poses, severe self-occlusion, and nearly identical finger appearance.

3D hand pose estimation task can be approached from different perspectives,
such as:

- wired gloves;
- color gloves;
- depth camera;
- RGB-D camera;
- stereo RGB cameras;
- mono RGB camera.

Engineering solution, that does not require any machine learning algorithms, is
wired gloves. Dozens of different sensors are used to track global hand position as
well as hand pose [9]. Wired gloves are accurate, however, expensive and cumber-
some to use, so they did not become widely used.

Color gloves approach combines commodity (ordinary cloth glove) with ma-
chine learning algorithms. Glove is imprinted with color pattern which significantly
simplifies hand pose estimation problem. Approach described in [10] estimates 3D
hand pose from single RGB frame using nearest-neighbor algorithm. Input image is
transformed into normalized tiny image and compared to the same tiny normalized
images in the database using Hausdorff-like distance; after nearest-neighbor image
is found, using 2D constraints associated with this image and inverse kinematics,
3D pose is estimated. Color gloves are less expensive, comparing to wired gloves,
but still far from natural interaction with objects. Color gloves approach has poten-
tial when combined with deep learning techniques, because standardized gloves (in
terms of color and size) will make it possible to produce accurate estimates both for
normalized 3D hand pose and scale. Unfortunately, no such research was found.

Hand pose estimation from depth image is the most popular approach as of now.
Hand pose is estimated from single depth image which is one-channel image where
every pixel contains depth value. Depth images has all the required data for 3D hand
pose estimation – both 2D joint locations on the image plane and depth values, so es-
timation from depth image is an accurate approach. Paper [11] contains comprehen-
sive summary and comparison of existing approaches. Based on [11] the best result
for single frame 3D pose estimation is shown by V2V-PoseNet [12], which was able
to estimate pose with error somewhere between 6.2mm per frame (averaged among
joints here and later) for seen visible hand poses (best case) and 14.6mm per frame
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for unseen occluded hand poses (worst case) on average on BigHand2.2M and First-
Person Hand Action datasets. V2V-PoseNet uses encoder-decoder architecture, that
takes 3D voxelized depth map as an input and produces 3D heatmaps for each joint.
This network needs a lot of computations, so cannot be used for tracking. Among
approaches, suitable for tracking, [13] is the best one, which estimates 3D hand pose
with 29.2mm error per frame on average. Approach [13] divides hand pose estima-
tion problem into subtasks by joint type; for tracking, previous frame is used as a
guide to predict the hand pose in the current frame. However, depth sensors are not
applicable for outdoor environment, because they are very sensitive to active light
sources; depth cameras require relatively high power consumption, so they cannot
be used on mobile devices.

More recent approaches estimate 3D hand pose using RGB-D camera; these ap-
proaches use both RGB and depth data, so 3D estimations are assumed to be more
accurate comparing to depth-only approaches. Algorithm described in recent paper
[14] is able to estimate 3D hand pose with about 30mm error per frame on average
on EgoDexter dataset; this algorithm can be used in real time for hand tracking. This
algorithm uses two separate convolutional neural networks - for hand localization
and for hand pose estimation (which estimates 2D heatmaps and 3D coordinate vec-
tor); then kinematic pose fitting is applied to improve normalized 3D hand pose
prediction and produce absolute coordinates.

Stereo based hand pose estimation uses pair of images from cameras situated
on some known distance from one another. Idea of the algorithm is based on the
natural human ability to estimate distance using eyes. This approach is not as pop-
ular as depth-based approaches, because 3D hand pose estimation strongly rely on
depth values; and with stereo approach depth is estimated from a pair of images
and is noisy therefore. But with some recent researches, this method is proved to be
almost as accurate as depth-based. The typical pipeline for stereo-based method is
described in [15]; it starts with recovering disparity of image pair and performing
hand segmentation; combining hand segmentation and disparity map, depth map of
the hand is received; after that usual depth-based approaches are applied to estimate
hand pose. Stereo-based approach contains more estimation steps than depth-based,
so errors are higher. However, with accurate hand segmentation and disparity re-
covering, approach in [15] resulted in accuracy almost as high as for depth-based
approaches – 20-50mm per frame. And with even more recent approach [16], error
of only 30.8mm per frame was achieved. This approach is stable against errors in
depth estimation, because of simultaneous depth and hand pose optimization given
stereo image pair.

The last, least accurate and therefore least popular approach is 3D hand pose
estimation from single RGB image. These methods are preferable as they can be
used in many applications without any special setup required, including usage on
mobile devices, outdoor usage and hand pose estimation from community videos
(such as Youtube). However, this task is complicated because of scale and depth
ambiguities. The most recent approaches are [8] and [17]. These algorithms estimate
normalized 3D hand pose; and when transformed into absolute coordinates, prior
assumptions are made. Framework in [8] achieved 50mm error on Dexter+Object
dataset; such results were achieved by introducing projection layer to CNN archi-
tecture and extensive training data augmentation with synthetic images and images
turned to ‘real’ by generative adversarial network. This framework is suitable for
real-time tracking. Approach in [17] uses encoder-decoder CNN architecture with
skip-connections and 2.5D heatmaps; with 2.5D heatmaps not only 2D keypoint lo-
cations are predicted, but also depth maps are estimated from image, which makes
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3D recovery much easier than from usual 2D heatmaps. These improvements re-
sulted in 35mm error per frame on Stereo dataset and Rendered hand pose dataset.

To be mentioned, human pose estimation is very similar problem and in the
same time very popular research field. Hand pose estimation is more complicated
problem because of more ambiguities, much stronger articulation and heavier self-
occlusion, compared to human pose estimation. But still some general ideas and
minor tricks may be reused for hand pose estimation.

We restrict our discussion to 3D hand pose estimation from single RGB, but also
review depth, stereo, RGB-D hand pose estimation and human pose estimation ap-
proaches that can be successfully implemented for solving our task.

2.1 Approach

The pipeline for 3D hand pose estimation on videos from single RGB camera in-
cludes the following steps: hand localization, single frame hand pose estimation,
and tracking. At the first step hand has to be localized in the image and cropped. At
the second step from cropped hand image normalized 3D hand pose is estimated;
and absolute 3D hand pose is derived from normalized. And finally, tracking tech-
niques are applied to produce smooth hand pose estimation for consecutive image
frames. Additionally, tracking techniques help correct errors occurred during sin-
gle frame estimation, using information from previous and next frames. We will go
through these steps in details.

2.1.1 Hand Localization

Hand localization is the first step in hand pose estimation and cannot be avoided.
This step is crucial, as errors made during hand localization will be propagated
through the whole hand pose estimation pipeline.

Assuming that hand pose is estimated from single image and there is no previous
frame that may give us a clue where hand is located. The general idea is to train some
CNN that outputs bounding box, or some other information, that makes it possible
to crop original image and receive cropped hand image that will be used as an input
for hand pose estimation network. In paper [18] hand localization is approached
as segmentation problem, and they trained convolutional neural network to predict
hand mask. Based on the segmentation mask, cropped hand image is received. In
paper [14] hand localization is done using CNN and output is 2D heatmap where
each entry encodes probability of the hand root. In work [14] knuckle of the middle
finger was used as root. This approach was developed for RGB-D images, and uses
depth information to calculate size of bounding box. So this technique cannot be
applied for hand localization in RGB image, because hand may be of any size. One
good idea, as in [17], is to use standardized object detector, YOLO detector [19] in
particular, to get bounding box for the hand, and then crop image appropriately.

Right-left hand issue does not receive enough attention. In paper [18] this prob-
lem is not solved, but rather assumed that it is known whether is it right or left hand.
Hand pose estimation network is trained for left hand, so right hand image is flipped
before inputting in the network. Paper [8] simply ignores this problem and their ap-
proach works only for left hands. There may be two approaches to solve this issue.
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First one is to use data augmentations (horizontal flipping) and train hand pose es-
timation network to work for both hands. Second one is to add left/right hand clas-
sifier – introduce separate CNN for classification or combine left/right hand classi-
fication with hand localization to output both bounding box and 1/0 whether hand
is left/right. In this case, hand pose estimation network should be trained only for
left hand, for instance, and all the cropped images of right hand have to be flipped
horizontally before inputting into the network.

2.1.2 Normalized 3D Hand Pose Estimation

At the beginning of this step we have cropped hand image, which is an input for all
approaches described below. Additionally, there are 2D locations for N keypoints
(xy coordinates for each keypoint), cropped appropriately to the hand image, and
normalized 3D locations for N keypoints (xyz coordinates for each keypoint). Our
task is to estimate normalized 3D keypoint locations. For neural network it is easier
to predict normalized coordinated as they have less unknowns – no distance from
camera to hand and no actual hand size. As was mentioned earlier, normalization
can be performed by putting middle finger metacarpophalangeal (MCP) joint in the
center of the coordinate system and making distance between wrist and middle fin-
ger MCP joint to be of length 1 as in [8].

There exist two general ideas for 3D hand pose estimation. One idea is to esti-
mate 3D keypoints directly from neural network, another one – to estimate 2D key-
points first and then using optimization algorithms (or separate network) calculate
3D keypoints.

Pipeline explained in [18] includes two separate consecutive networks for hand
pose estimation. First network estimated N heatmaps for 2D locations from cropped
hand image. Second network has two parallel streams – separately for 3D hand
pose estimation in canonical frame and separately for viewpoint relative to this co-
ordinate system; both streams use 2D heatmaps as an input. Canonical coordinates
are calculated from normalized coordinates using rotation 3x3 matrix. After trans-
formation all hands are aligned in the same way, for instance, all hand poses are from
egocentric viewpoint and palms are up. Transformation to canonical frame makes
hand pose estimation even easier than that for normalized coordinates, as viewpoint
(another degree of freedom) is fixed. Canonical coordinates are estimated as vector
applying L2 loss, viewpoint is estimated as 3x3 rotation matrix (from normalized to
canonical) applying L2 loss as well. To calculate normalized coordinates, canonical
coordinates and rotation matrix are multiplied.

Approach in [17] includes two-stages as well, but with some modifications; as of
now, it is one of state-of-the-art approaches. On the first stage, CNN with encoder-
decoder architecture is trained to simultaneously produce N latent heatmaps and
N latent depth maps from cropped hand image. Latent heatmaps encode 2D loca-
tions for each keypoint and latent depth maps – scale normalized and root-relative
depth values for each keypoint; ‘latent’ means that model learns appropriate spread
representation for a heatmap, but not optimizes for hand-crafted Gaussian distri-
bution. Loss is constructed to be fully differentiable and consists of 2D location L2
loss and depth L2 loss. Differentiability is ensured using trick – latent heatmaps are
converted to probability maps applying softmax and actual locations are calculated
as weighted average of 2D pixel coordinates; and normalized depth values are cal-
culated by summing dot products of latent depth maps and probability maps. 3D
hand pose reconstruction is much easier from both depth values and 2D locations
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that are available for all keypoints. Approach does not recover scaled and root-
normalized hand pose, and directly jumps into recovering absolute 3D pose from
2.5D heatmaps; this idea will be explained in the next section.

Another state of the art approach, described in [8], estimates normalized 3D hand
pose directly from cropped hand image. Also network is trained to outputs 2D
heatmaps. Authors proposed to use ResNet architecture with additional convolu-
tional and projection modules. Projection module is used to better coalesce 2D and
3D predictions; ResNet part outputs vector of intermediate 3D positions from which
intermediate 2D heatmaps are created performing orthographic projection. Convo-
lution module is applied to produce final 2D heatmaps and vector of 3D locations
from intermediate 2D heatmaps. Loss that is used to train this network is sum of L2
loss for intermediate 3D estimates, L2 loss for final 2D heatmaps and L2 loss for final
3D estimates.

Second main difference among reviewed approaches is how to encode keypoint
locations – as heatmaps or as numeric vectors. Convolutional networks are invented
to work well with images, they find features and understand their spatial relations;
so it is more natural for convolutional networks to produce heatmaps.

Heatmap representation is widely used for 2D keypoint locations. Heatmap is a
one-channel image, the same size as hand image, where each pixel represents some
kind of “probability” that keypoint is present here. Ground truth heatmaps are con-
structed by putting 1 in the position of actual keypoint location and 0 otherwise,
and applying Gaussian blur to prevent neural network from overfitting. Softmax
function may be applied to original heatmap to produce new heatmap where each
pixel is true probability and all pixel values summed up to one. When recovering
2D location – x and y coordinates – we take position of the pixel with maximum
value; or calculate average for x and y coordinates separately, weighting all x and y
coordinates by heatmap pixel values. Here regression loss (L1 or L2) or intersection
over union loss may be used.

However, for 3D locations vector representations are usually used, because 3D
heatmaps are hard to construct and require a lot of computations. Vector is pro-
duced by concatenation all xyz coordinates for N keypoints and has 3N dimensions.
Regression loss (L1 or L2) is used when training network.

There are some other interesting ideas of how to represent locations when train-
ing network, which may be used for 3D hand pose. Vector representation minimizes
prediction error separately for each joint, and internal structure of the pose is ig-
nored. Techniques below (bone representation and volumetric representations) is
assumed to have higher performance over direct regression.

Approach from paper [20] uses regression representation with simple reparametriza-
tion, so pose structure is considered. Now bone locations are predicted, but not
joints; bones are calculated as difference between two nearest joints. Bone locations
are more stable than joint locations; and geometric constraints are expressed easier.
Loss is calculated as sum of L1 losses for all bones. Authors propose to use all pos-
sible pairs of joints as “bones” so whole pose structure is exploited. This approach
was not used in reviewed papers on hand pose estimation; but it has a potential in
3D hand pose estimation, when 3D locations are recovered directly from image.

Approach [21] uses volumetric representation for 3D pose. Such representation
considers spatial relations among keypoints, the same as 2D heatmaps do, and more
“natural” for convolutional networks to work with. Each joint location is repre-
sented as discretized volume of size w × h × d; there are N such volumes in to-
tal. Ground truth values are constructed by applying 3D Gaussian blur, the same
as for 2D heatmaps. Network architecture consists of consecutive encoder-decoder
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block, each of them inputs image concatenated with previous block output and pro-
duces 3D voxel. To decrease computations, authors propose to output voxel of size
w× d× 1 from first block and gradually increase depth resolution, so that final block
outputs voxel of size w × h × d. This approach is unlikely to be applied to real time
tracking as it requires a lot of computations.

2.1.3 Restoring Absolute 3D Hand Pose

Absolute 3D pose recovery is a hard task, because of both depth and scale ambigui-
ties; and scale and depth are interconnected parameters. It is impossible to recover
scale and depth from a single image: we cannot be sure whether is it a small ob-
ject just in front of the camera or a large object far away from camera. So most of
restoring techniques are highly dependant on prior assumptions.

In paper [8] absolute 3D hand pose is restored from normalized hand pose using
Kinematic hand model fitting. The idea of such approach is to introduce several
additional constraints that simultaneously make hand pose more natural (such as
bone and angle constraints) and restore absolute 3D pose (such as correspondence
between absolute 3D pose and its 2D projection, and user-specific characteristics).
Hand model fitting is represented by a function that sums up all the discrepancies
from constraints; optimization algorithms are used to find the optimal value.

Approach in [17] restores scale-normalized absolute 3D pose from 2.5D heatmaps
under assumption of perspective projection and that intrinsic camera parameters
are known. It uses perspective projection equation that interrelated 2D and 3D
locations and depth of root joint, recovered from 2.5D heatmaps. To denormalize
scale-normalized 3D pose and recover absolute 3D pose, scale prior assumptions are
introduced.

To be mentioned, when hand image is cropped from original image, additional
adjustments for absolute 3D hand pose have to be made, because, when cropping,
absolute keypoint positions in camera coordinate system changes.

2.1.4 Tracking

Brute-force approach for developing tracking system is to combine Hand Localiza-
tion, Normalized 3D Pose Estimation and Absolute 3D Pose Restoring steps into a
single pipeline and run them in series for each frame in a sequence. However, such
approach will two main disadvantages. It will require a lot of computations so it can-
not be applied for a real-time tracking; and there will be a significant jitter, because
predictions for consecutive image frames may differ.

Smartly constructed tracking techniques will not only deal with above men-
tioned disadvantages, but also are assumed to increase accuracy for a single frame
estimation by using information from previous frames.

Hand localization step is simplified, because there is no need to look for hand
location on the whole image; we know where hand was on the previous image frame
and we may assume that hand position is somewhere nearby on the current frame.
This idea was used in [17], where authors propose to generate bounding box from
previous frame estimated hand pose. This approach works well if hand location is
quite stable between consecutive image frames. During fast hand motions, Faster
RCNN [22] may be used for re-initialization, as explained in one of the approaches
in [11]. Probably, here can be used classic tracking techniques, such as Kernelized
Correlation Filter [23]; but papers where it was implemented for hand tracking were
not found.
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3D Hand Pose Estimation from cropped hand image is going to be rerun for each
frame. To prevent jitter and make tracking more stable to errors, authors in [8] and
in [14] propose to use temporal smoothing that constraints magnitude of location
changes that each keypoint can perform between consecutive frames.

Interesting idea described in paper [24] can be used for tracking either. Authors
propose a brand new approach for human pose estimation from a single frame. They
trained a convolutional neural networks that inputs image and pose estimated on
the previous step, and outputs corrections that have to be made for pose. Initial
pose on the first iteration is set to an average pose in the train dataset; magnitude
of corrections is limited above. This idea can be reused for hand pose tracking:
neural network may be trained in such way, that it takes as an input previous frame
hand pose and current frame hand image and predicts corrections to be made from
previous to current frame hand pose. This approach both uses information from
previous frames and prevents jitter.

2.2 Datasets

This section contains description of those datasets that can be used for 3D hand pose
estimation from RGB image. Perfect dataset should be large-scale dataset that con-
tains different people and backgrounds and has accurate labeling for 21 keypoints
per hand. Unfortunately, no such dataset exists, so 3D hand pose estimation prob-
lem includes not only algorithmical solution, but also approaches to train convolu-
tional networks with datasets available. Table 2.1 contains summary for all 7 existing
datasets; summary is similar to those in [25]; we will refer to this table several times
in this section.

There no real large scale dataset exists, and there is a reason for that. 2D label-
ing is expensive, because human annotation is required, but at least it is feasible.
Human annotator can label images with high accuracy for each of 21 joints when
they are visible. Problem arises with 3D keypoint locations. Human are not able to
accurately estimate neither absolute distance to camera, nor normalized hand pose
from image only; so complex multi-camera setups or semi-automated methods, like
one described in [26], are needed. Approach in paper [26] works for sequence of
depth images the following way: algorithmically most appropriate frames are se-
lected; human annotator is asked to annotate 2D keypoints and their relative depth
(closer/farther) for only these frames; optimization problem is solved to find 3D
hand poses. This approach can be used for RGB data annotations - by producing
pairs of depth and RGB images from calibrated cameras; and estimating 3D annota-
tions from depth images; 3D annotations for RGB images can be calculated knowing
relative positions of depth and RGB cameras. However, automated annotating leads
to an error, which is propagated while training network.

There exist only 4 real datasets and none of them can be used for training con-
volutional neural network from scratch (refer to Table 2.1 for details). The largest
dataset, Stereo Tracking Benchmark [15], contains 18k images. These datasets are
video sequences, so a lot of poses are similar; there are only several people were
filmed and there are only several background available; this means that there is a
lack of variety in these datasets. Another problem is with annotations. EgoDexter
[14] and Dexter+Object [27] have only 5 keypoints annotated - fingertips; Dexter1
[28] provides 6 keypoints - 5 fingertips + palm center; and only Stereo Tracking
Benchmark [15] has 21 keypoints, however, last keypoint is a palm center, which
is inconsistent with synthetic datasets where last keypoint is a wrist.
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To train neural network when large-scale datasets are absent, authors in [18] pro-
pose to pretrain network on large scale synthetic dataset and fine-tune it using real
dataset. There exist 3 synthetic large scale datasets. SynthHands [14] was gener-
ated using Unity Game Engine; Rendered Hand Pose Dataset [18] was created using
Mixamo (where 3D human models are available) and Blender (open source soft-
ware for rendering images); GANerated dataset [8] was created by changing images
from SynthHand to make them more realistic using Generative Adversarial Net-
work. These datasets provide accurate 2D and 3D annotations for all 21 keypoints;
while Rendered Hand Pose Dataset [18] additionally has hand segmentation mask,
left/right hand labeling and occlusion tickets. Refer to Table 2.1 for more details.

TABLE 2.1: Existing datasets for Hand pose estimation.

Dataset Name Real or
Synthetic

Dataset
Size

Number of
Keypoints

View
point

Comment

EgoDexter [14] R 1.5k anno-
tated, 1.7k
with no
annotations

5 fingertips ego 4 sequences, 4 actors, interaction
with objects, absolute 3d loca-
tions, camera data provided

Dexter+Object
[27]

R 3.1k 5 fingertips 3rd 6 sequences, 2 actors, interaction
with objects, absolute 3d loca-
tions, camera data provided

Dexter1 [28] R 3.2k * 5
cameras

6 (5 fingertips
+ palm center)

3rd 1 actor, 1 background, absolute
3d locations, camera data pro-
vided

Stereo Tracking
Benchmark [15]

R 18k 21 (last key-
points is palm
center)

3rd 1 actor, 6 backgrounds, absolute
3d locations, camera data pro-
vided

SynthHands
[14]

S 63.5k 21 (last key-
point is wrist)

ego large variety of hand types,
background augmentation sup-
ported, absolute 3d locations,
camera data provided

Rendered Hand
Pose Dataset
[18]

S 41k training
/ 2.7k test-
ing

42 (21 for each
hand, last key-
point is wrist)

3rd 20 characters, both hands on the
image, segmentation mask and
occlusion ticket provided, abso-
lute 3d locations, camera data
provided

GANerated
dataset [8]

S 330k 21 (las key-
point is wrist)

ego large variety of hand types,
only normalized 3D locations,
no camera calibration and no
denormalization coefficient pro-
vided

However, there is still a large domain gap between synthetic and real data, so
model trained on synthetic data does not generalize well to real data. One possi-
ble solution for this problem is domain adaptation techniques. Method explained in
[29] uses very simple idea that can be reused for almost any sequential architecture
of neural network. Two datasets are needed: source domain dataset with correct
labels (keypoint locations in our case) - synthetic dataset; and target domain dataset
with no labels - unlabeled real dataset. Model architecture consists of two networks
that have the same feature extractor (weights are shared); first network is being op-
timized to estimate keypoint locations for synthetic data; second network is being
trained to distinguish synthetic data from real. Whole network is trained to min-
imize loss for keypoint locations for synthetic data; and simultaneously trained so
that feature produced by feature extractor are the same for synthetic and real data, so
network is unable to distinguish between real and synthetic data, so domain classifi-
cation loss is maximized. Such approach decreases domain gap, by aligning features
generated by feature extractor for synthetic and real data. However, it is unknown
how this method will work for hand pose estimation, as no paper on hand pose
estimation from reviewed ones used this idea.
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This chapter covered state of the art approaches for 3D hand pose estimation
from single RGB image, their current results and future challenges. Additionally, we
outlined several interesting ideas from other fields that can be reused for our task.
We provided comprehensive description of the existing datasets and gave examples
of how data-related problems may be solved.
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Chapter 3

Approach and Implementation
Details

This chapter contains detailed description of proposed solution for 3D hand pose es-
timation, which includes data processing techniques, implementation details of sev-
eral convolutional network architectures and losses, and data augmentation tech-
niques. We developed several model architectures, that combine state of the art
techniques with interesting and promising ideas, to select the best model.

Proposed solution does not contain whole hand pose estimation pipeline - hand
localization, left-right hand classification, normalized 3D hand pose estimation, ab-
solute 3D pose hand pose restoration and tracking. We focus our attention only on
normalized 3D hand pose estimation from RGB hand image. Hand localization and
left-right hand classification are already solved tasks in Computer Vision, restoring
absolute 3D pose requires introduction of prior assumptions and cannot be restored
with high accuracy any way, and tracking is more algorithmic task. Normalized 3D
hand pose estimation is the main part of pipeline and the least researched topic in
the same time; pipeline performance highly depends on the performance of normal-
ized 3D hand pose estimation, so improving 3D hand pose estimation will result in
boost of 3D hand pose estimation from RGB image in general.

Proposed pipeline for Normalized 3D hand pose estimation is shown in Figure
3.1. Cropped image of the hand (left hand) is inputted into encoder-decoder con-
volutional neural network to produce both 2D heatmaps and intermediate image
features. Intermediate features and 2D heatmaps are concatenated, and after more
convolutions applied, output normalized 3D hand pose. There are two losses used
to train model - loss for 2D pose and loss for 3D pose.

3.1 Data Preprocessing and Preparation

To train a model, we need dataset that contains hand images with 2D and 3D co-
ordinates. Hand images as well as keypoint coordinates have to be appropriately
prepared before using for training and prediction.

The best option is to crop hand image as much as possible, so model will not
overfit to background. If there are 21 keypoints provided, we may crop image based
on them. As we need squared crop, we calculated pixel distance between most left
and most right keypoints and distance between lowest and highest keypoints; we
select maximum of them - that will be size of the crop; we add small intent in several
pixels to make sure keypoints are visible. Unfortunately, for most real datasets only
5 keypoints are provided (see section 2.2), which means cropping is impossible.

To prevent model from overfitting to background we apply background aug-
mentation when it is possible. For instance, SynthHands datasets [14] contains green
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FIGURE 3.1: Pipeline for Normalized 3D Hand Pose Estimation.

background, so when forming a batch, we randomly select background image from
ADE20K dataset [30] for each sample; the same hand images will have another back-
ground when taken second time. To perform background augmentation, for each
hand image mask M is created; it is an array of the same size as hand image, when
each entry contains 1 if this pixel belongs to hand and 0 otherwise. We crop / resize
background image to be the same size as hand image. We convert images and mask
to arrays and apply the following formula to created augmented image (multiplica-
tion is element wise here):

Iaugmented = Ioriginal ∗ M + Ibackground ∗ (1 − M)

After background multiplication is performed, new hand image is center cropped,
so its height and width are of the same size; and then resized to 128x128. For hand
pose estimation task such small image size is just fine, because hand and its pose
in this resolution is still human recognizable. And finally, image is color normal-
ized by subtracting channel means and dividing by channel standard deviations.
Because some of the model architectures are based on pyTorch models pretrained
on ImageNet, we use the same normalization coefficients:

mean = [0.485, 0.456, 0.406], std = [0.229, 0.224, 0.225]

When encoding keypoint locations as vectors it is crucially important to preserve
the same order and to use the same keypoints among different datasets. Keypoints
and their order that will be used in this work is the same as for SynthHands [14] and
GANerated [8] datasets. We will use 21 keypoints - 4 for each finger and wrist joint;
keypoints and their order are shown in the Figure 3.2. We assume that all keypoint
are present in the image; it is a strict assumption that forces algorithm to output
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locations somewhere in the image frame for all 21 keypoints, even for those that are
outside image frame.

FIGURE 3.2: Keypoint Map.

2D keypoint locations are predicted using heatmaps, so vector of 2D keypoint
coordinates is converted to heatmap set. Each keypoint location that initially was
represented as (x,y) coordinate is transformed to separate heatmap. Ar first, after
image cropped and resized, (x,y) coordinates are adjusted appropriately. To create
heatmap, zero array of size 128 × 128 is created (the same as final hand size); value
1 is placed in the position of keypoint - its (x,y) coordinate. To prevent model from
overfitting, heatmap is blurred using 2D Gaussian kernel with size 61 pixels and
standard deviation of 3 pixels. Actual Gaussian kernel parameters do not matter,
the only rule is not to make blurred keypoint neither too big nor too small. After
applying blurring, heatmap has to be normalized, using formula below, so actual
keypoint location is equal to 1 again:

H f inal = Hblurred/max(Hblurred)

There are 21 heatmaps in total; heatmap values are in the range [0,1]. Heatmap
visualization is in Figure 3.3.

FIGURE 3.3: Heatmaps for a Random Sample.

Additionally, vector of 2D coordinates is returned; this representation will be
used to train a model that outputs latent heatmaps. 2D pixel coordinates are nor-
malized to be in range [0,1] by dividing by image size of 128; and flattened into a
vector of size 2 × 21. Such normalization is needed to make loss scale independent
from input image size, and to shift 2D loss closer to 3D loss in scale.
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If sample does not have all 21 required keypoints, for those keypoints that are
absent, zero heatmaps and zero vector entries will be imputed; keypoint order is
preserved.

3D coordinates are predicted in normalized representation, because such repre-
sentation has less degrees of freedom, so it is easier for neural network to generalize.
Normalization is performed the same way as in [8]: middle finger metacarpopha-
langeal (MCP) joint (marked red in Figure 3.2) shifted to origin and distance be-
tween wrist and middle finger MCP set to 1. Normalization is performed in this
way because of two reason: middle finger MCP position and distance between wrist
and middle finger MCP are assumed to be the most stable in datasets; GANerated
dataset [8] uses such normalization and provides no absolute 3D coordinates, so
normalization cannot be performed any other way; and it is large scale dataset we
are going to use for model training. 3D coordinates and returned as a vector of size
3 × 21.

And finally, we need an indicator whether keypoint is labeled or not. We are
going to train model using real data as well, but real datasets do not contain all the
21 keypoints we are going to use. To make it possible to train a model, we for each
sample we will create boolean vector of size 21 that has entry 1 if keypoint location
is provided and 0 otherwise. Order of the keypoints is the same as in Figure 3.2.

3.2 Model Architectures

We are going to implement several approaches for predicting hand pose, and then
test which one of them shows the best result. Approaches differ in two key area:
2D keypoints coordinates to predict through direct heatmaps or latent differentiable
heatmaps; and 3D keypoints coordinates to predict through simple vector of size
3 × 21 or using tree representation of the hand. Approaches are built upon the same
Encoder-Decoder convolutional neural network, where encoder part is pretrained
ResNet feature extractor.

3.2.1 ResNet-based Encoder-Decoder network

For hand pose estimation we use encoder-decoder architecture, because such archi-
tectures are able to restore original image size, and that is exactly what we need as
network for hand pose estimation has to return 2D heatmaps that are of the same
size as input image - 128 × 128.

Among encoder-decoder architectures UNet [31] is very popular. It is widely
used for segmentation tasks; because it is able to transform image to some feature
space, process these features and then restore original image back from this feature
space, so spatial relation between features preserved. The main feature of UNet is
skip connections: when image is decoded from feature space, intermediate features
from earlier convolutions are used to make such decoding precise. We use simi-
lar skip connections while constructing encoder-decoder architecture for hand pose
estimation.

We use ResNet34 [32] feature extractor pretrained on ImageNet as an encoder in
proposed architecture. It is always faster to adjust existing network for a new task
than learn weights from scratch. It is also assumed that pretrained networks gener-
alize better, because they ‘saw’ more data when trained on large scale datasets. We
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selected ResNet34 because combination ‘number of parameters - accuracy on Ima-
genet’ is optimal and avalible in PyTorch deep learning library [33]. Feature extrac-
tor is created from ResNet by removing global average pooling layer and fully con-
nected layer from the network. Detailed architecture of feature extractor is shown
in Figure 3.4. When image is passed through feature extractor, we save intermediate
feature maps, because they will be used for decoder part.

Decoder part consists of four Upsampling Blocks and 2D Pose Regressor that
outputs 2D heatmaps. Figure 3.4 show architecture with direct heatmaps, architec-
ture with latent heatmap is implemented with slight modifications explained in next
section. Each Upsampling block doubles size of inputted feature map. Upsampling
block inputs feature map of depth f 1 from the previous step, upsamples it, con-
catenates with intermediate feature map of depth f 2 from feature extractor, applies
convolution and outputs new feature map of depth d that is twice large as initial (see
detailed Upsampling Block architecture in Figure 3.5a).

FIGURE 3.4: Encoder-Decoder Architecture.
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Output of forth Upsampling block is feature map of size 64. This feature map is
used as an input to 2D Pose Regressor, where feature map is upsampled and con-
volved; see Figure 3.5b for more details. 2D Pose Regressor outputs 2D heatmaps of
size 128 × 128 - a heatmap for each keypoint.

Heatmaps are going to be used for predicting normalized 3D hand pose. Heatmaps
are processed using Convolution Block (see its architecture in Figure 3.5c) and result
is used as an input to 3D Pose Regressor. 3D Pose Regressor concatenates processed
heatmaps and intermediate feature map from feature extractor and applied convo-
lutions; final features are flattened and fully connected layers are used; output is
vector of size 3 × 21. Detailed architecture for 3D Pose Regressor is shown in Figure
3.5d.

FIGURE 3.5: Block Architecture: a) Upsampling Block; b) 2D Pose
Regressor; c) Convolution Block; and d) 3D Pose Regressor
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Model is trained using two losses: for heatmaps and for vector of 3D coordinates
(see section 3.3 for more details). Explained architecture predicts 2D pose using
direct heatmaps and 3D pose using simple vector of coordinates. To predict 2D hand
pose using latent heatmaps or 3D pose using tree representation, some modifications
have to be introduced; modifications are explained in sections 3.2.2 and 3.2.3.

3.2.2 Direct vs Latent Heatmaps

2D keypoints are usually predicted using direct heatmap regression [8, 14, 18]. For
each hand image, convolution neural network outputs heatmap set - tensor of size
(N × image size × image size), where N - number of keypoints. Each entry of the
heatmap array is in the range [0,1], because sigmoid function was applied to the
heatmap. Network output is the same as ground truth heatmaps, created at the data
preparation step (see section 3.1).

Then estimated heatmaps are converted to vector of 2D coordinates. There are
two approaches to do it:

- Find (x,y) coordinates of the heatmap pixel that has the highest value. This is
the simplest approach, but is not accurate, because it is sensitive to outliers.

- Normalize heatmap, so all heatmap values sum up to 1. This can be done
using softmax function, but when values are in the range [0,1] softmax does not
work, because it requires larger scale to distinguish difference between values;
so we should divide each heatmap entry by the sum of all heatmap entries.
Then weighted average separately for x and y coordinates is calculated, where
weights are values in the normalized heatmap and x and y coordinates are in
the range [0, image size). This approach is more robust, so we are going to use
it.

Another option for 2D keypoints estimation is through latent heatmaps. This
approach was used in paper [17]. Authors are motivated by the fact, that it is un-
known what size of the kernel should be used when creating ground truth heatmaps,
whether kernel size is the same for all keypoints (for sure, not) and whether kernel
should be circular (for sure, not). Latent heatmaps approach lets neural network
estimate heatmaps by itself. Neural network outputs vector of 2D coordinates; con-
version from heatmaps to (x,y) coordinates is produced inside the network. Conver-
sion is done almost the same way as we do it for simple heatmaps - normalizing and
averaging all coordinates using normalized weights; but except sigmoid and then
division by sum of heatmaps values, we use 2D softmax function for latent heatmap
approach. Obviously, another big advantage of this approach is that ground truth
heatmaps are not needed to be created at all.

In both cases predicted 2D keypoint coordinates are normalized to be in range
[0,1] - this is done by dividing pixel coordinates by image size. As a result, predicted
coordinates are the same as ground truth, that were mentioned in section 3.1.

3.2.3 Simple vs Tree-based Vector Representation for 3D Pose

The most popular method for 3D hand pose estimation (when 3D pose is estimated
directly from image) is simply vector representation. There are N keypoints, each
has (x,y,z) coordinates, so vector of coordinates will be of size 3 × N, or 3 × 21as in
our case. Fully connected layers are used in the model architecture to output vector
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of needed size. Output vector already contains normalized 3D keyoint locations so
no additional processing needed.

However, this approach has a big disadvantage, each keypoint (even each key-
point coordinate) is predicted separately and independently from other keypoints.
To deal with this problem, authors in [20] propose to consider human (or hand as in
our case) as a tree and predict rather bones than joints, because bones are more sta-
ble. Bones are represented as geometric vectors of (x,y,z) coordinates and calculated
as difference between coordinates of joints that form this bone according to selected
tree structure. When coordinate of particular joint is calculated, all bones on the
path are summed up. Additionally, such approach exploits geometric structure of a
human/hand; simple vector representation does not do that.

3D Pose Regressor (see Figure 3.5d) is modified the way, that it outputs vector of
size 20 × 3 (number of bones), but not of size 21 × 3 (number of keypoints). Figure
3.6 shows 20 bones that are outputted by model; they are represented as red geo-
metric vectors and labeled with numbers. Bone representation is converted to key-
point representation; keypoint representation is simply vector of coordinates. We
can apply regression loss to keypoint representation, because transition from bone
representation to keypoint representation is fully differentiable.

Keypoint locations in the normalized 3D pose can be considered as geometric
vectors, pointing from the origin; origin is middle finger MCP (origin is keypoint 10
in Figure 3.6; and keypoint locations are shown as black geometric vector). Transi-
tion from bone to vector representation is done in the following way:

- Middle finger MCP joint has location of (0,0,0).

- To calculate location of some keypoint, all vectors are summed up that along
the path from middle finger MCP joint to this keypoint. For instance, location
of keypoint 4 is calculated as (-bone 9 + bone 1 + bone 2 + bone 3). Bone 9
is subtracted, because we are moving in opposite direction. See Figure 3.6 to
follow explanation.

FIGURE 3.6: Tree-based Hand Representation.
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3.3 Losses

There are two losses that will be used for training neural network: mean squared er-
ror loss for vectors of coordinates (when predicting 2D pose through latent heatmaps,
for 3D pose estimation both thought simple vector and ‘tree’ vector) and intersection
over union loss for heatmaps (direct heatmaps).

Mean squared error (MSE) loss is assumed to be best fit for regression tasks. One
of the state of the art approaches for 3D hand pose estimation [8] uses it for both
heatmaps and vectors of 3D coordinates. However, we will use MSE loss only for
vector of 3D coordinates and vector of 2D coordinates, when 2D coordinates are
predicted through latent heatmaps. MSE loss is calculated according to the formula:

LMSE =
1
n ∑

i
(yi − ti)

2

As was explained in section 3.1, 2D coordinates are represented as vector of di-
mension 2 × 21 and 3D coordinates - as vector of dimension 3 × 21. So here n is a
number of entries in vector of coordinates, y - predicted value of vector entry, and t
- true value of vector entry. MSE loss for an image may be considered as “average”
of all keypoint losses, however, it is not true average in mathematical sense.

Intersection over union loss (IoU) was not used in reviewed papers on hand pose
estimation. This measure is widely used in object detection and segmentation prob-
lems, where predictions are represented as regions - as bounding boxes or set of
pixels. IoU is defined as intersection of ground truth and prediction regions divided
by their union. When regions are perfectly coincide, IoU equals to 1; when there is
no intersection at all, IoU is 0; and when region intersection is close to region union,
prediction is good. IoU measure will be used when optimizing heatmap predictions.
We will calculate this measure using formulas from [34] with slight modifications for
heatmaps; here yi and ti are predicted and target values for pixel in a heatmap:

IoU =
I
U

I = ∑
i
(yi ∗ ti)

U = ∑
i
(yi ∗ yi) + ∑

i
(yi ∗ ti)− ∑

i
(yi ∗ ti)

IoU measure means the higher the better, so IoU loss is calculated the following
way:

LIoU = 1 − IoU

IoU loss for an image is calculated as an average for all keypoint heatmap losses.
Architectures described in the previous section have several losses outputted -

for 2D, for 3D and some intermediate losses if any. Final loss that is used for training
model is a weighted sum of all losses. Weighting is needed when loss scales are dif-
ferent, or one loss is more important than another. It is crucial, because those losses
that are larger in scale affects final loss more, so during training all model weights
will be optimized to decrease larger loss. This may lead to imbalanced training,
when for instance, 3D coordinates are predicted correctly, but 2D coordinates pre-
dictions are far from ground truth.
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Weighting coefficients are needed to equalize contribution of various losses to
final loss. There are several ways to set up these coefficients:

- Those losses that are more important should receive higher weights, even if
the scales are initially equal. This is usually done with intermediate (auxiliary)
losses. Losses that outputted early in the model, should have lower weights.
This idea was used when training GoogLeNet [35].

- When losses are equally important, their scales have to be equal as well. The
easiest way to do it is to set weights based on initial gap in scales and program-
matically or manually adjust weights when gap changes during training. That
is how loss weightning was implemented in our model.

3.4 Data Augmentation

Data augmentation is a widely used technique to prevent overfitting. The idea of
the data augmentation is to create additional data samples from existing ones and
use this data samples to train a neural network. This techniques is used since the
very beginning of the neural network training and was used to train AlexNet [1].
Collecting and labeling dataset is expensive and for some fields (including 3D hand
pose estimation) even complicated. So we are going to use data augmentation: 1)
to increase size of synthetic datasets even more, and 2) to increase size of small real
datasets and make learning on real data possible.

For both synthetic datasets - SythHands [14] and GANerated [8] datasets - the
following data augmentations are applied for each image:

- brightness is randomly changed by some percentage in the interval [−25%; 25%];
- contrast is randomly changed by some percentage in the interval [−25%; 25%];
- saturation is randomly changed by some percentage in the interval [−25%; 25%];
- image is blurred using Gaussian blur with some random radius in range [0, 0.8].

All these transformations are applied to each image in the same order. Gaussian
blur is applied to already resized image to size 128× 128. These augmentations only
change hand image and leave 2D and 3D labels unchanged.

Additionally, we apply scaling and rotation to SynthHand dataset. Scaling changes
both image and 2D pose; while rotation changes image, 2D and 3D pose. After ap-
plying scaling and rotation, we should be able to fix blank spaces that are created
by transformation, so image should have some hand-background mask. To perform
rotation of 3D pose, absolute coordinates of keypoints in camera system should be
available. SynthHands dataset includes both hand-background masks and absolute
3D keypoint locations, but GANerated dataset does not have neither masks, nor ab-
solute 3D locations (only normalized), that is the reason, why we perform scaling
and rotation augmentation only for SynthHands dataset.

When performing scaling transformation, image is scaled by some random per-
centage in range [−25%, 15%]. Upscaling range is smaller than downscaling, be-
cause we do not want keypoints to be outside the image. After scaling image is
centered-cropped to create image of the same size as original. 2D keypoint locations
are changes according the formulas (x and y here are pixel coordinates in range [0,
width] for x and [0, height] for y):

xnew = xold ∗ (1 + scale percent)− (wold ∗ scale percent)/2
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ynew = yold ∗ (1 + scale percent)− (hold ∗ scale percent)/2

Rotation is performed for image and absolute 3D keypoint locations. To create
new 2D keypoint locations, new 3D keypoint locations are projected onto the image
plane using provided intrinsic matrix. New normalized 3D keypoint locations are
created from new absolute 3D keypoint locations the same way as explained in sec-
tion 3.1. Image is rotates clockwise around the image center by some random angle
in range [−π; π] radians. 3D coordinate system is rotated around z axis in the same
clockwise direction using rotation matrix [36] (angle is with negative sign to make
coordinate system rotate clockwise):

Rz(θ) =

 cos(−θ) −sin(−θ) 0
sin(−θ) cos(−θ) 0

0 0 1


New absolute 3D location for a keypoint is calculated using formula: xnew

ynew
znew

 = Rz(θ) ∗

 xold
yold
zold


Scaling and rotation augmentations are applied before brightness, contrast, sat-

uration and blurring augmentations, however, order does not matter.
We do not use horizontal and vertical flipping, because it may creates images of

right hand, but we train neural network to work only for left hand. We do not use
random cropping either, because cropping may remove some of the keypoints from
the image hand, but according to our assumption all keypoint are present on the
image.

Augmentation for real datasets will be explained in section 3.5, because real
datasets have some issues.

All augmentation are performed ‘on fly’ using PyTorch library [33]: existing im-
age is loaded from the dataset, transformed and then used for training; it is not
stored on the drive. When the same sample will be used next time, different transfor-
mations will be applied because of randomness. This means that dataset on infinite
size will be created and used for training.

3.5 Adding Real Data

For model to perform well on real dataset, it has to be trained on the real data.
Distribution of training data should correspond or be close to distribution of the
data that model will be tested/ run on. For this reason we train convolutional neural
network for real dataset as well.

However, as were explained in section 2.2 existing real datasets are far from
perfect, so extensive preprocessing and data augmentations are needed for these
datasets to be usable for model training. We are going to use two datasets - Dex-
ter+Object [27] and Stereo Tracking Benchmark [15]. These datasets were chosen
because it was possible to get bounding boxes for hands.

Proposed solution for 3D hand pose estimation takes hand image as an input, so
whole image has to be cropped. Stereo Tracking Benchmark dataset contains loca-
tions for 21 keypoints, so hand was cropped based on these location with boundary
added. Dexter+Object dataset contains only 5 keypoints (or even less) per image,
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so cropping based on keypoint locations was impossible. So we decided to semi-
automatically create bounding boxes for hands using tracking techniques.

To create bounding boxes for a frame sequence, we used implementation of Ker-
nelized Correlation Filter [23] from OpenCV library [37]. We manually selected hand
bounding box for the first frame in the sequence and initialized tracker using this
bounding box. We saved all bounding boxes created by tracker, checked them and
manually changed bounding boxes if it does not correspond to hand position in the
image. Kernelized Correlation Filter Tracker performed well and amount of manual
labeling was very low.

As was mentioned in section 2.2, Dexter+Object and Stereo datasets do not con-
tain 21 keypoints that are needed. Dexter+Object contains only 5 keypoints (fin-
gertips), when keypoint is occluded, its location is not provided. Stereo Tracking
Benchmark does not contain wrist location, but palm center location instead. As was
explained in section 3.1, we are going to have a 1/0 vector of size 21 that indicates
whether required keypoints are provided. Each keypoint Loss (refer to section 3.3)
will be multiplied by indicator whether keypoint is present or not, for absent key-
point loss is going to be zero and no network weights updates are going to occur.
Convolutional neural network weights are going to be updates only for present key-
point locations and neural network will be trained to predict only these keypoints
correctly. Absence of all keypoints means that normalized 3D hand pose cannot be
derived for both Dexter+Object and Stereo datasets, so model will be trained only
for 2D locations. 3D Loss will not be calculated at all, so updates of model weights
for 3D locations will not occur.

We exploit augmentation techniques to increase dataset size of Dexter+Object
and Stereo Tracking Benchmark dataset. For both datasets the following data aug-
mentations are applied for each image (the same as for synthetic datasets):

- brightness is randomly changed by some percentage in the interval [−25%; 25%];
- contrast is randomly changed by some percentage in the interval [−25%; 25%];
- saturation is randomly changed by some percentage in the interval [−25%; 25%];
- image is blurred using Gaussian blur with some random radius in range [0, 0.8]

(applied after resizing of image to 128 × 128 pixels).

Additionally, we implemented random scaling and rotation for these datasets.
Scaling was implemented by randomly varying boundaries of the bounding boxes.
Rotation was implemented by rotating image around image center through some
random angle in range [−π; π] radians and rotating 2D locations through the same
angle. Rotation was performed using 2D rotation matrix [36] (angle has negative
sign to make rotation clockwise):

R(θ) =
[

cos(−θ) −sin(−θ)
sin(−θ) cos(−θ)

]
New 2D location for a keypoint is calculated using formula (subtraction and ad-

dition of half-width/ half-height are needed to make 2D locations rotate around
image center): [

xnew
ynew

]
= R(θ) ∗

[
xold − w/2
yold − h/2

]
+

[
w/2
h/2

]
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This chapter explained in details pipeline of proposed solution for Normalized
3D hand pose estimation from hand image, that consists of several data preprocess-
ing techniques, model architectures and data augmentations. We developed several
solution pipelines to evaluate and select the best one.
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Chapter 4

Results and Evaluation

This chapter contains comprehensive evaluation of proposed architectures as well as
evaluation of data augmentations and addition of partially labeled real data. We will
show what architecture is better when trained and evaluated on synthetic datasets -
with direct or latent heatmaps for 2D pose, or with vector or tree representation for
3D pose. Then we will further train best architecture adding synthetic data augmen-
tations and investigate its impact on performance for synthetic data (validation sets)
and for real data. We will fine-tune model on real partly labeled 2D data and analyze
its performance for 2D and 3D hand pose estimation on real data. And finally, we
will compare our results with state-of-the-art approaches for hand pose estimation
from single RGB image.

4.1 Architectures Evaluation

This section contains comparison and evaluation of 3 convolutional network archi-
tectures, so we can select best one to further work with. These architectures are:

- encoder-decoder model that estimates 2D locations though direct heatmaps
and 3D locations though simple vector representation (we will refer to this
model as Model 1);

- encoder-decoder model that estimates 2D locations though latent heatmaps
and 3D locations though simple vector representation (Model 2);

- encoder-decoder model that estimates 2D locations though direct heatmaps
and 3D locations though tree-based vector representation (Model 3).

See section 3.2 for actual architecture details.

4.1.1 Training details

Each model was trained on mixture of SynthHands [14] and GANerated [8] datasets
with no data augmentations. From both datasets 5000 images were selected for val-
uation and 5000 - for testing; selection was performed in random way. All other
images were used for training, which is 321k from GANerated dataset and 176k
from SynthHands dataset; they were randomly mixed while training. We trained
each model using two losses - one for 2D locations and one for 3D locations. Model
1 and Model 3 were trained with IoU loss for 2D locations and MSE loss for 3D lo-
cations. Model 2 was trained with MSE loss for both 2D and 3D locations. We used
weighting coefficients for losses in Model 2; MSE losses for 2D and 3D vector are
different in scales, so loss for 2D vector was multiplied by 10. Model 1 and 3 had no
loss weighting (coefficients are equal to 1).

Each model was trained separately during 1000 epochs, with 250 random batches
per epoch and batch size of 64. We used stochastic gradient descent optimization
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algorithm with learning rate of 0.005, momentum of 0.9 and ReduceLROnPlateau
scheduler from PyTorch [33], which decreases learning rate when loss reaches plateau
and does not decrease any more.

Training was performed only for decoder part; decoder weights were randomly
initialized. Weights in ResNet feature extractor were freezed during training for
all models; weights were initialized to be ResNet34 weights pretrained on ImageNet
from PyTorch. This is assumed to make models more generalizable for other datasets
including real data.

4.1.2 Direct vs Latent Heatmaps for 2D hand pose estimation

As 2D keypoint locations will be used for estimation of 3D locations, we want 2D es-
timates to be accurate. There are 2 ways to estimate 2D keypoint locations - through
direct heatmaps and through latent heatmaps (refer to 3.2.2 for more details on that).

We trained two models - Model 1 with direct heatmaps and Model 2 with latent
heatmaps. Models differ only in how 2D keypoint locations are estimated; architec-
ture of other parts and training details are the same. Such isolation makes it possible
to understand how each 2D hand pose estimation approach works and prevent us
from being distracted by other implementation details.

Table 4.1 contains comparison of Model 1 and Model 2 performances for 2D hand
pose estimation on SynthHands and GANerated datasets separately (valuation parts
of the datasets). Numeric values in table are roots of mean squared error, averaged
among validation set samples. 2D locations are estimated to be in range [0,1] for
both x and y coordinates, so roots of mean squared error is approximately a percent-
age for how predicted location is far away from ground truth. For instance, Model
1 makes on average 2% error for a keypoint on SynthHands dataset. We calculated
not only average error among all keypoints, but also investigated per keypoint per-
formance. In Table 4.1 we grouped per joint performance by finger and by joint type.
This means that we averaged all joint error in the finger when calculated per finger
performance, and averaged error among all fingers when calculated joint type per-
formance. For instance, thumb error means that we averaged errors for thumb MCP,
PIP, DIP joints and fingertip; when calculating MCP joint errors we averaged MCP
joint error for thumb, index, middle, ring and little fingers. Total error means aver-
aged error among all fingers and all joint types (among all keypoints); wrist error is
average error for wrist keypoint only.

Table 4.2 contains average keypoint error (total error as in Table 4.1) for hand
images with and without objects from SynthHands and GANerated datasets (valua-
tion parts). Both datasets contain approximately half of images with object and half
- without; so each entry in the table was calculated as average among 2500 images.
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TABLE 4.1: Keypoint Performance of Direct Heatmaps (Model 1) vs
Latent Heatmaps (Model 2) for 2D Hand Pose Estimation.

SynthHands Ganerated
Model 1 Model 2 Model 1 Model 2

wrist 0.008 0.018 0.027 0.036
joint MCP 0.009 0.017 0.022 0.029

PIP 0.017 0.024 0.029 0.037
DIP 0.024 0.031 0.036 0.042
fingertip 0.032 0.039 0.050 0.052

finger thumb 0.014 0.023 0.027 0.036
index 0.019 0.026 0.032 0.037
middle 0.021 0.027 0.035 0.040
ring 0.025 0.032 0.040 0.045
little 0.023 0.030 0.037 0.042

total 0.020 0.027 0.034 0.040

TABLE 4.2: General Performance of Direct Heatmaps (Model 1) vs
Latent Heatmaps (Model 2) for 2D Hand Pose Estimation for images

with object and without.

SynthHands Ganerated
Model 1 Model 2 Model 1 Model 2

no object 0.017 0.024 0.028 0.033
object 0.022 0.030 0.039 0.046

Analyzing performance of Model 1 and Model 2, we came up to the following
conclusions (refer to Tables 4.1 and 4.2 for details):

- Direct heatmaps approach (Model 1) has lower keypoint error for both datasets,
all keypoints and with/without object images.

- Error for GANerated dataset is higher than for SynthHands dataset, even though
training dataset contains twice as many images from GANerated dataset than
from SynthHands. This can be explained by the fact that GANerated dataset
contains much more images that look strange - unrealistic hand appearances
and unrealistic poses.

- For MCP joints error is the lowest and for fingertips - the highest.
- For hand images with no objects performance is higher. This conclusion is

obvious, because object may occlude several keypoints, so location estimates
cannot be accurate for these keypoints.

We are going to use direct heatmap approach for 2D hand pose estimation in
final model architecture, because it shows better performance.

4.1.3 Simple vector vs Tree-based vector for 3D hand pose estimation

We also evaluated two approaches for 3D hand pose estimation - simple vector rep-
resentation and tree-based vector representation. We trained two models - Model 1,
that estimates 3D pose through simple vector representation, and Model 3, that uses
tree-based hand representation (refer to section 3.2.3 for implementation details). All
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other architecture details are the same for Model 1 and Model 3. Both models pre-
dict 2D keypoint locations using direct approach heatmap method which is a better
option according to conclusions in section 4.1.2.

Tables 4.3 and 4.4 are similar to Tables 4.1 and 4.2. Numeric values in Tables 4.3
and 4.4 are roots of mean squared error for normalized 3D location. So these values
are approximately “distance” deviations of predicted locations from ground truth
in normalized coordinate system, where distance between wrist and middle finger
MCP joint is equal to 1.

TABLE 4.3: Keypoint Performance of Vector Representation (Model 1)
vs Tree-Based Representation (Model 3) for 3D Hand Pose Estimation.

SynthHands Ganerated
Model 1 Model 3 Model 1 Model 3

wrist 0.098 0.098 0.142 0.143
joint MCP 0.047 0.047 0.064 0.062

PIP 0.113 0.114 0.127 0.126
DIP 0.169 0.169 0.182 0.180
fingertip 0.229 0.230 0.243 0.240

finger thumb 0.133 0.140 0.182 0.181
index 0.134 0.136 0.141 0.141
middle 0.130 0.124 0.137 0.129
ring 0.149 0.151 0.150 0.150
little 0.151 0.150 0.160 0.159

total 0.137 0.138 0.153 0.151

TABLE 4.4: General Performance of Vector Representation (Model 1)
vs Tree-Based Representation (Model 3) for 3D Hand Pose Estimation

for images with object and without.

SynthHands Ganerated
Model 1 Model 3 Model 1 Model 3

no object 0.114 0.116 0.136 0.134
object 0.161 0.161 0.167 0.164

Based on data in Table 4.3 and Table 4.4 the following conclusions are made:

- Both vector (Model 1) and tree-based (Model 3) approaches have the same
performance on GANerated and SynthHands datasets.

- And the same as for 2D hand pose estimation, performance of models in higher
for SynthHands than for GANerated dataset; for hand images with no objects
performance is higher; and for MCP joints error is the lowest and for fingertips
- the highest.

Even though, performance of both methods is the same, we are going to use
vector approach for 3D hand pose estimation in final model, because it has simpler
implementation.
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4.1.4 Best Architecture Evaluation

Based on conclusions in sections 4.1.2 and 4.1.3, final model architecture (Model
1) estimates 2D hand pose using direct heatmaps and 3D hand pose using simple
vector representation.

As was mentioned before, Model 1 has 0.02 error on SynthHands dataset and
0.034 error on GANerated dataset for 2D hand pose; and 0.137 error on SynthHands
dataset and 0.153 error for GANerated dataset for normalized 3D hand pose.

We further qualitatively investigated cases for these dataset when Model per-
forms well and when fails. Figure 4.1 shows some of the images from SynthHands
and Ganerated dataset that have high and low error for both 2D and 3D hand pose.
For both datasets performance is good when hand has natural appearance and pose
and when keypoints are visible. Performance is poor for hands that are highly oc-
cluded by objects, and when hand and its pose are unnatural and indistinguishable
even for humans. So Model 1 performance would be even higher if all bad images
were removed from datasets.

FIGURE 4.1: Some images from SynthHands and GANerated dataset
with highest and lowest prediction errors.
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Model 1 was also evaluated on two real datasets - Stereo Tracking Benchmark
[15] and Dexter+Object [27]. As was explained in sections 2.2, Stereo dataset has
20 needed keypoints available, and Dexter+Object provides only 5 keypoints and
frame may have less than 5 keypoints available. Also, Stereo Tracking Benchmark
and Dexter+Object do not have enough data to derive normalize 3D hand pose,
so 3D locations are not available at all. To evaluate Model 1 performance for these
datasets, we provide numeric values for 2D estimation errors for available keypoints
and visual evaluation for 3D hand pose.

Table 4.5 is similar to Table 4.1 and contains percentage errors for available key-
points. Performance is poor, because there is a big domain gap between synthetic
data that were used for training and real data. Average error for Stereo Tracking
Benchmark (B1Counting and B1Random sequences) is 12% and for Dexter+Object
(Grasp2 sequence) is 32%.

TABLE 4.5: Keypoint Performance of Best Model for 2D Hand Pose
Estimation on Real Datasets.

Stereo Dexter+Object
(B1Counting, B1Random) (Grasp2)

wrist – –

joint MCP 0.088 –
PIP 0.102 –
DIP 0.120 –
fingertip 0.152 0.322

finger thumb 0.119 –
index 0.089 –
middle 0.109 –
ring 0.130 –
little 0.131 –

total 0.115 0.322

Stereo dataset has lower error because of large variety of hand poses, some of
them are easy to predict. Dexter+Object dataset (Grasp2 sequence) has similar hand
poses on all image frames, and these poses are not typical for synthetic training set
- in Dexter+Object hand is in inverted position (upside down), and there is no such
images in GANerated and SynthHands datasets.

FIGURE 4.2: Example of Success Case from Stereo Tracking Bench-
mark dataset (thumb, index, middle ring and little finger are shown

in green, light blue, blue, pink and red color, respectively).
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Based on the result of manual visual evaluation, for Stereo dataset model fails
to predict hand pose for almost all poses except simplest ones. We provided an
example of success case in Figure 4.2. For Dexted+Object dataset success cases were
not found. By manual evaluation we are not able to say whether model predicts
distances accurately, but rather we can tell whether model can "understand" general
hand pose.

It seems that model learned distribution from the synthetic datasets, so in most
cases it outputs realistic poses of left hand with correct finger order and natural
angles, even when these poses are not correct (see Figure 4.3 for these cases).

FIGURE 4.3: Failure Cases from Stereo and Dexter+Object Datasets
(thumb, index, middle ring and little finger are shown in green, light
blue, blue, pink and red color, respectively; 3D plots were arbitrarily

rotated to show hand pose better).
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4.2 Data Augmentations and Adding real data

Best model architecture, selected in section 4.1 is going to be trained further on aug-
mented synthetic data and with addition of real data in order to increase perfor-
mance.

4.2.1 Data Augmentations

Training Details

Model 1 was continued to train on mixture of SynthHands [14] and GANerated [8]
datasets with data augmentations explained in section 3.4. Datasets were mixed in
the way, that probability to get instance from SynthHands is 0.66 and from GAN-
erated dataset is 0.33. The reason, why model now is trained more on SynthHands
dataset is because this dataset has much more augmentations than GANerated.

Model was trained during additional 400 epochs, with 250 random batches per
epoch and batch size of 64. Weights in ResNet-based encoder were unfreezed and
fine-tuned, because model is unlikely to overfit with such extensive data augmenta-
tions.

We used stochastic gradient descent optimization algorithm with learning rate
of 0.003 (lower than in initial training), momentum of 0.9 and ReduceLROnPlateau
scheduler from PyTorch [33].

Evaluation

We compared this model with Model 1 from section 4.1, that was trained for 1000
epochs on non-augmented synthetic data and with feature extractor freezed. Such
comparison makes it possible to understand impact of data augmentations and fine-
tuned feature extractor.

Initially, we evaluated model on validation parts of SynthHands and GANerated
datasets. Surprisingly, 3D error for SynthHands increased (refer to Table 4.6a). To
further investigate reasons for that, model was evaluated on the same validation
parts of SynthHands and GANerated, but with random data augmentations added;
augmentations are the same as were used for model training. And now we see im-
provement in performance for both datasets - significant for SynthHands and slight
for GANerated (refer to Table 4.6b).

TABLE 4.6: Model Performance on validation sets before and after
trained with data augmentations.

Before Augmentation After Augmentation
2D error 3D error 2D error 3D error

dataset

a) non-augmented:
SynthHands 0.020 0.137 0.018 0.148
GANerated 0.034 0.153 0.026 0.144

b) augmented:
SynthHands 0.119 0.697 0.020 0.165
GANerated 0.035 0.156 0.027 0.145
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Below are possible explanations of evaluation results:

- Train/Validation/Test split for SynthHands and GANerated datasets was ran-
dom. However, these datasets contain similar images that slightly differ in
viewpoints. We were unable to correctly split datasets, because no informa-
tion on these similar images was provided in dataset description. So similar
images may be included both in train and validation part. As a result, model
overfitted for such cases and showed high performance on validation datasets.
But when augmentations for validation set were added, such overfit did not
influence model evaluation.

- SynthHands dataset was augmented more heavily than GANerated, because
it additionally includes rotation and scaling augmentations. So distribution
gap between SynthHands with augmentation and SynthHands without aug-
mentation is larger than between GANerated dataset with augmentation and
GANerated without augmentation. This explains why model trained with no
augmentation performed so much poorly on SynthHands dataset with aug-
mentations.

To be mentioned, evaluation on validation datasets with augmentation is not
fully correct, because of randomness in augmentations. So "before" and "after" mod-
els were evaluated on different image sets. We rerun evaluation several times to be
sure, that such tendencies were not received by chance. After each run, numbers
were slightly different, but general tendency is the same.

We evaluated model performance on real datasets - Stereo Dataset Benchmark
(B1Counting and B1Random sequences) and Dexter+Object (Grasp2 sequence) datasets.
We conducted the same comparison as in Table 4.6a - model performance before
training on augmented synthetic data and after training.

Table 4.7 shows that augmentations lead to slight improvement on Stereo dataset
and more significant improvement on Dexter+Object dataset. The reason, why aug-
mentations lead to such significant improvement for Dexter+Object dataset is that
initially synthetic datasets have no hand images in inverse position (upside down),
but data augmentations (rotation, in particular) changed it. Figure 4.4 show model
predictions before and after data augmentations applied. Initial model cannot pre-
dict that hand is inverted and tries to fit some pose with wrist at the bottom, but af-
ter augmentations added, at least position of wrist and hand direction are predicted
correctly.

TABLE 4.7: 2D errors on Real Datasets before and after trained with
Data Augmentations.

Before Augmentation After Augmentation

Stereo (B1Counting, B1Random) 0.115 0.099
Dexter+Object (Grasp2) 0.322 0.214

Performance of model for 3D hand pose estimation is still poor and visually looks
the same as before data augmentations applied - only simple poses are predicted
correctly.
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FIGURE 4.4: Visual comparison of model performance for 2D hand
pose estimation on Dexter+Object dataset before and after data aug-

mentations applied.

4.2.2 Adding Real Data

We fine-tuned model from section 4.2.1 separately for two real datasets - Stereo
Tracking Benchmark [15] and Dexter+Object [27]. We evaluated model performance
on these datasets.

Stereo Tracking Benchmark

We split Stereo Tracking Benchmark into train and validation sets. Train set includes
video sequences B2-B7 both Random and Counting (15k frames); validation set in-
cludes sequences B1Random and B1Counting (3k frames). Stereo Tracking Bench-
mark has 20 keypoints (no wrist location provided) and only 2D locations.

Model was fine-tuned for 100 epochs with 250 batches per epoch and batch size
of 32 (batch size was decreased from 64 because of technical reasons only - to fit
into computer memory). We used stochastic gradient descent optimization algo-
rithm with learning rate of 0.001 (lower than during training with augmentations),
momentum of 0.9 and ReduceLROnPlateau scheduler from PyTorch. Feature extrac-
tor was finetunes as well. Model was trained using augmented train part of Stereo
dataset (see section 3.5 for details on augmentations).

Average 2D error for Stereo dataset (validation part) is 0.028, which means 2.8%
deviation of predicted values from ground truth. And model now performs much
better than when trained only on synthetic data. See Table 4.8 for details.

2D labeling for Stereo dataset is different from SynthHands and GANerated
datasets - while synthetic datasets contain exact joint labels, Stereo dataset has la-
bels for the center of the bone. And model during training was able to learn new
labeling (see Figure 4.5).
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TABLE 4.8: Model Performance on Real Datasets (validation) for 2D
Hand Pose Estimation.

Synthetic Data Only Fine-tuning with Real Data

Stereo (B1Counting, B1Random) 0.099 0.028
Dexter (Grasp2) 0.214 0.058
Dexter (Rotate) – 0.043

FIGURE 4.5: Comparison of labeling for SynthHands and Stereo
datasets.

Prediction for 3D pose are still poor, and were not improved by correct 2D pose
estimation. For 3D hand pose, model trained only on synthetic data could not gen-
eralize to real data.

Dexter+Object dataset

We split Dexter+Object dataset into train and validation sets. Train set includes se-
quences Grasp1, Occlusion, Rigid, Pinch and Rotate (2500 frames); validation set in-
cludes sequence Grasp2 (650 frames). Dexter+Object dataset has at most 5 keypoints
per frame (fingertips locations if they are not occluded) and only 2D locations.

Model was fine-tuned for 40 epochs with 250 batches per epoch and batch size of
64. We used stochastic gradient descent optimization algorithm with learning rate
of 0.001 (lower than during training with augmentations), momentum of 0.9 and
ReduceLROnPlateau scheduler from PyTorch. Feature extractor was finetunes as
well. Model was trained using augmented train part of Dexter+Object dataset (see
section 3.5 for details on augmentations).

Performance for Dexter+Object (validation set) was improved with adding real
data - 2D error dropped from 0.214 to 0.058 (see Table 4.8). However, visually, 2D
predictions are not accurate (see Figure 4.6a). Such difference between quantitative
and qualitative evaluation is because there are only locations for non-occluded fin-
gertips and fingertips predictions on average are close to true locations.

We tested different train/validation splits. Now validations set contains Rotate
sequence (800 frames) and train set - all other sequences (2350 frames). Training
details are the same. For Rotate sequence 2D error is lower - 0.043, and visually
performance looks good (see Table 4.8 and Figure 4.6b).
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FIGURE 4.6: 2D Predictions for Dexter+Object on different Validation
Sequences.

Predictions for 3D pose are still poor for Grasp2 sequence and better for Rotate
sequence (see Figure 4.7). However, for these poses in Rotate sequence predictions
of model trained on augmented synthetics data were also good. So tuning 2D es-
timation on real data does not help. Model is unable to generalize and 3D ground
truth locations are required to improve model performance.

Interestingly, that model was trained on data with some (and even most) key-
poins are missing, but could correctly predict keypoints for which there is no ground
truth locations at all - wrist in Stereo dataset and mostly all keypoints (except finger-
tips) for Dexter+Object. This means, that model when trained on synthetic data
could learn spacial relations among hand joints. And when some keypoint locations
were adjusted because of training on real data, model was able to adjust keypoint
locations for which data is not provided as well.

FIGURE 4.7: Example of success cases of 3D Predictions for Rotate
sequence from Dexter+Object dataset (thumb, index, middle ring and
little finger are shown in green, light blue, blue, pink and red color,

respectively).
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4.3 Comparison with SOTA approaches

We compared performance of our model for 2D hand pose estimation with exist-
ing state-of-the-art approaches for the hand pose estimation from RGB image. 3D
comparison was not conducted, because our model produces normalized 3D hand
poses, but not absolute locations; besides, without having ground truth 3D locations
for training, model performance is poor.

For comparison we selected metric - mean squared error per keypoint in pixels.
Comparison is approximate, because authors used different datasets to train mod-
els, different train/validation set splits, as well as different assumptions to model
evaluation. We are providing numeric values (see Table 4.9) as well as authors’ ex-
planation, how these values were received.

SynthHands and GANerated datasests. Train/validation/test split was ran-
dom, and as a result, similar hand images belong to different train/validation/test,
which is not fully correct. Correct split could not be performed, because no infor-
mation on similar images was provided in dataset descriptions. Model was trained
on SynthHands and GANerated datasests with data augmentations applied. Model
performance was reported for test sets, because validation sets were used to select
best model architecture. Pixel error was calculated by multiplying percent error by
original image size, which is 256 pixels for GANerated dataset and 480 pixels for
SynthHands dataset (initially, image in SynthHands dataset was of rectangle size
640 × 480, it was centered cropped to be of size 480 × 480). Error for SynthHands
dataset is higher than for GANerated because image size in SynthHands dataset is
larger as well. No other authors reported performance on these datasets.

TABLE 4.9: Our Model Performance for 2D Hand Pose Estimation
comparing to State-of-the-art Approaches (metric - mean squared er-

ror per keypoint in pixels).

Our Model Zimmermann Mueller Iqbal
and Brox [18] and others [8] and others [17]

SynthHands [14] 8.760 – – –
GANerated [8] 6.708 – – –
Stereo TB [15] 6.078 5.522 – –
Dexter+Object [27] 11.360 25.160 19.263 16.660

Stereo Tracking Benchmark. We fine-tuned model using B2-B6 sequences and
evaluated using B1 seqs. Hand bounding boxes were provided. Pixel error is cal-
culated as percent error multiplied by bounding box size (bounding box sizes may
differ for different frames).

Pipeline by Zimmermann and Brox [18] has two stages - 1) localize hand on im-
age; and 2) predict hand pose from cropped hand image. Authors reported per-
formance of the second stage, providing cropped hand images with ground truth
bounding boxes as an input for hand pose estimation model. Model was trained on
15k images and evaluated on 3k; but what image sequences were used for training
and evaluation is unknown. Our model has higher performance.

Dexter+Object. We fine-tuned model using Grasp1, Grasp2, Occlusion, Rigid
and Pinch sequences; and evaluated on Rotate sequence. Bounding boxes are as-
sumed to be known. Pixel error is calculated as percent error multiplied by bound-
ing box size (bounding box sizes may differ for different frames).
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Zimmermann and Brox in [18] reported accuracy on the whole dataset; no data
from this dataset was used for training and no hand bounding boxes were provided.
Mueller and others in [8] did not train model on Dexter+Object, no bounding boxes
were used either. Pixel error was not reported by authors directly, we calculated it
using AUC ration between [18] and [8]; AUC metric was reported in both papers:

Pixel Errormodel 1 = Pixel Errormodel 2 ∗ AUCmodel 2/AUCmodel 1

Iqbal and others in [17] trained model with adding data from Dexter+Object;
train/validation split is unknown. Hand bounding boxes were not provided. Pixel
error was not reported by authors directly, we calculated it using AUC ratio between
[18] and [17] (the same as for [8]).

Unfortunately, experiment setups are very different between SOTA approaches
and our approach, so we cannot compare performance on Dexter+Object dataset.

In this chapter we conducted comprehensive evaluation of the experiments taken.
We evaluated several architectures and discovered what is the best way to predict 2D
pose and 3D pose, assuming that good dataset is available. We trained best model
on synthetic data with extensive data augmentations and evaluated its performance
on real datasets. We fine-tuned model on partially labeled 2D real data and reported,
whether we were able to increase model performance for 2D and 3D hand pose esti-
mation. Finally, we compared our results with state-of-the art approaches for hand
pose estimation from single RGB image.
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Chapter 5

Discussion and Conclusions

In this thesis we have worked on pipeline improvement for 3D hand pose estima-
tion from single RGB camera. Among pipeline steps - hand localization, left-right
hand classification, normalized 3D hand pose estimation, absolute 3D pose hand
pose restoration and tracking - we focused our attention to normalized 3D hand
pose estimation from cropped hand image, because improving this step will result
in performance boost for general pipeline.

We trained and evaluated two approaches for 2D pose estimation (latent and di-
rect heatmaps) and two approaches for 3D pose estimation (vector representation
and tree-based representations); and concluded that direct heatmap is the best ap-
proach for 2D pose and vector representation - for 3D.

We trained best model on augmented synthetic datasets and evaluated that model
mean keypoint error on synthetic datasets (validation part) is about 2% for 2D and
0.14 for normalized 3D. We assume that at least the same performance could be
achieved if good large-scale real dataset is available. This means that performance
of Hand pose estimation from RGB image is limited by absence of good datasets.

We tried to deal with this problem by pre-training model on synthetic datasets
and fine-tuning it using real datasets available. Real datasets do not have all re-
quired keypoints. Also, because of the absence of some keypoints, normalized pose
cannot be derived either. So among real data available we had 2D locations for some
keypoints and no 3D normalized locations at all.

With partly available 2D labeling we were able to train model that adequately
predicts whole 2D hand pose even when only 5 keypoint locations were available.
Model when pre-trained on synthetic data could learn spacial relations among hand
joints. And when some keypoint locations were adjusted because of training on real
data, model was able to adjust keypoint locations for which data is not provided. For
2D hand pose estimation, we could outperform state-of-the-act approach for Hand
pose estimation from RGB image.

With no real 3D data available, model performance is still unsatisfied. It cor-
rectly predicts only the simplest hand poses and even after 2D real data were added
it is unable to generalize. However, model learnt hand pose distribution from syn-
thetic datasets, so in most cases it outputs realistic poses of left hand with correct
finger order and natural angles, even when these poses are not correct. We assume,
that fine-tuning model with some real 3D data will result in significant performance
boost.

All code and pre-trained models will be opened to research community for eval-
uation and reuse for their own researches. See GitHub project page.

https://github.com/OlgaChernytska/3D-Hand-Pose-Estimation
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