
UKRAINIAN CATHOLIC UNIVERSITY

BACHELOR THESIS

Concurrent benchmark system for
web-frameworks on Python

Author:
Andriy PANKIV

Supervisor:
Oles DOBOSEVYCH

A thesis submitted in fulfillment of the requirements
for the degree of Bachelor of Science

in the

Department of Computer Sciences
Faculty of Applied Sciences

Lviv 2019

http://www.ucu.edu.ua
http://www.johnsmith.com
http://www.jamessmith.com
http://researchgroup.university.com
http://department.university.com

ii

Declaration of Authorship
I, Andriy PANKIV, declare that this thesis titled, “Concurrent benchmark system for
web-frameworks on Python” and the work presented in it are my own. I confirm
that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

iii

UKRAINIAN CATHOLIC UNIVERSITY

Faculty of Applied Sciences

Bachelor of Science

Concurrent benchmark system for web-frameworks on Python

by Andriy PANKIV

Abstract

The frameworks have come a long way, and each new developer is faced not only
with learning the language but also with the choice of the first framework for him-
self. The current choice is the result of incredible innovations in a relatively short
period. As recently as 2004, Google released Gmail, which is considered the first
product to be an all-in-browser; Today, such products are called one-page applica-
tions. Have you ever tried to create a front-end web interface using only HTML,
CSS, and JavaScript? Well, nowadays it’s not so hard. If the requirements are not
too complicated, a small project can be completed relatively quickly. As for medium
and large projects, to cope with the complexity of user requirements, you will need
at least one framework.

Here you can find links to GitHub repositories for every part of my project:

• TestModuleExecutor

• FlaskTestModule

• DjangoTestModule

• PyramidTestModule

HTTP://WWW.UCU.EDU.UA
http://department.university.com
https://github.com/PankivAndrew/test-module-executor
https://github.com/PankivAndrew/flask-test-module
https://github.com/PankivAndrew/django-test-module
https://github.com/PankivAndrew/pyramid-test-module

iv

Acknowledgements
I would first like to thank my diploma supervisor Oles Dobosevych of the Faculty of
Applied Sciences at Ukrainian Catholic University. The door to the Oles office was
always open whenever I ran into a trouble spot or had a question about my research
or writing.

Also, I am thankful to the Ukrainian Catholic University for the possibility to
join very comfortable and maintainable atmosphere, which give me the appropriate
impulse to improve myself every day.

v

Contents

Declaration of Authorship ii

Abstract iii

Acknowledgements iv

1 Introduction 1

2 Related works 2
2.1 TechEmpower first steps and last results 2
2.2 How they build their tests . 2
2.3 How their machines are configured . 3

3 What are Docker and Docker-Compose 4
3.1 Docker . 4

3.1.1 How it works . 4
3.2 Docker-Compose . 5

4 What are Celery and Redis 7
4.1 Celery . 7
4.2 Redis . 8

5 Nginx 9

6 Project Structure 10
6.1 Microservice architecture . 10
6.2 Project parts . 10
6.3 Workflow . 11

7 Results 12
7.1 CRUD Testflow . 12

7.1.1 Flask CRUD results . 13
7.1.2 Django CRUD results . 14
7.1.3 Pyramid CRUD results . 15

7.2 JSON Testflow . 15
7.2.1 Frameworks JSON results . 16

8 Conclusion 17

Bibliography 18

vi

List of Tables

7.1 Flask CRUD results . 13
7.2 Django CRUD results . 14
7.3 Pyramid CRUD results . 15
7.4 JSON Serialization results . 16

vii

List of Abbreviations

JSON Java Script Object Notation
HTTP Hyper Text Transfer Protocol
PaaS Platform as a Service
Iaas Infrastructure as a Service
CaaS Containers as a Service
SQL Structured Query Language
IT Information Technology
AWS Amazon Web Services
IoT Internet of Things
ORM Object Relational Mapping
DB Data Base
CRUD Create Read Update Delete
CSS Cascading Style Sheets

1

Chapter 1

Introduction

In 2019, whatever your want to do, business or non-profit project, government or
your personal idea, you need to communicate with others. You can yell about your
thought on the street or attract customers with flyers or brochures. All this methods
can be quite effective, but percentage of the people who would see your work, can be
quite low comparing with world scales. So, how to attract those attention more ef-
fectively? How to yell all over the world? Answer is simple – build a website, where
you can talk to your customers in any point on earth, in any language you need. But
how to build effective and fast website? You can use popular website builder such
as WordPress or Wix, but such solution may be slow and not as customizable as
you want it to be. As a result, you need to develop your own web project to satisfy
all your and your customer needs. In modern world, there is no need to reinvent
the wheel, you or your employees need to use modern instruments to make work
done. Those instruments is called frameworks. Nowadays, it is hard to choose from
such wide variety of the ready-to-use solutions. With this diploma work I will try
to make this decision easier for you, not among all possible web-frameworks, but,
at least I will help to choose between popular Python projects, such as Flask, Django
and Pyramid.

2

Chapter 2

Related works

2.1 TechEmpower first steps and last results

The problem of choosing a web framework to create its new web server has ex-
isted since the growing popularity of the World Wide Web and, accordingly, the
widespread popularity of web browsers. With such rapid growth, programmers
from all over the world have demonstrated their options for designing and main-
taining sites of varying complexity and purpose. There are over 500 frames in more
than 30 languages, each with its disadvantages, pros, and its unique capabilities.
It can take a lot of time to make a choice, with such a wide assortment. For this,
TechEmpower programmers have developed their first benchmark since March 2013
and published the results of the testing of 24 web-based frameworks. After that,
for five years, they have released 16 more results of their achievements, the last
of which took place in October 2018. For such an extended period, the team from
TechEmpowers has developed 1774 tests for 431 frameworks in 26 languages.

2.2 How they build their tests

Even after the first tests, TechEmpower realized that among the many factors that
need to be taken into account when choosing a web-based framework, it’s easier to
evaluate performance objectively. Application performance can be directly reflected
in the final project cost, and for a young company hosting costs can be a pain point.
Weak performance can also lead to premature scaling, degradation of user experi-
ence and related issues.

The first tests were aimed at providing a "starting point" for various frameworks.
Under the "starting point" they mean the point from which the performance of any
real program can only worsen. They want to know the upper bound of the frame-
work on the unit of web equipment.

But they also want to implement some of the framework components, such as
JSON serialization and database connetion. Although, each test is limited to mea-
suring the number of requests per second that can be processed by one server, they
perform a selection of components provided by modern frameworks, so they con-
sider it a reasonable starting point.

For test-related data, they deliberately built tests to avoid any caching layer pro-
vided by the framework. They want this test to require repeated requests to external
services (for example, MySQL or MongoDB) to execute the data mapping code im-
plemented by the framework.

https://www.techempower.com/blog/2013/03/28/frameworks-round-1/
https://www.techempower.com/blog/2018/10/30/framework-benchmarks-round-17/

2.3. How their machines are configured 3

2.3 How their machines are configured

For all tests, they used two machines configured in the following roles:

• Application server. This machine is responsible for hosting web applications
only.

• Client and database server. This machine is responsible for client side, it gen-
erate HTTP traffic to the application server using WeigHTTP, as well as for
hosting the database server. In all their tests, the database server (MySQL
or MongoDB) used very little processor time; processor resource was not ex-
hausted. In the database tests, the network was used to provide the application
server sets of results and to return HTTP responses in the opposite direction.
However, even with the fastest frameworks, the use of networks was lower in
database tests than in the usual JSON tests, so it is unlikely to be anxious.

After completing Round 15, they took the challenge to rewrite all ~ 460 test im-
plementations from their home configuration to an enormous array of Docker con-
tainers. It took some time, but the Great Docking Certification gave significant ad-
vantages.

Due to the duplication, reproducibility, and consistency of their measurements
have become much better than in previous rounds. Coupled with their continuous
testing, they now see significantly less variation between each startup.

Indeed, what they do with this project is perfect for Docker. Or the Docker is
ideal for this.

4

Chapter 3

What are Docker and
Docker-Compose

3.1 Docker

Along the years, developers have been looking for the best solutions of their app de-
ployment. They discovered that PaaS models are too high-level for black box envi-
ronment style. Furthermore, IaaS proposals with their appropriate container are not
enough because they provide short-sightedness which is useful exclusively in this
structure. In looking for the best solution, companies are offering a CaaS solution to
provide agility for developers and cross-platform portability of their applications.

The Docker platform provides an integrated set of features for CaaS infrastruc-
ture models. Thanks to this solution, the IT team can provide and manage both in-
frastructures resources and content of the basic programs, and developers can create
and deploy their programs in a self-service way.

In 2013, Docker entered the landscape with app containers to build, ship and run
apps anywhere.(“Modern App Architecture for the Enterprise”) Docker was able
to take any application and its dependencies and put them into a slight container.
Similar to how shipping containers are today, software containers are simply a stan-
dard unit of software that looks the same on the outside regardless of what code
and dependencies are included on the inside. (“Modern App Architecture for the
Enterprise”) This simplifies application transportation across environments without
the need to modify anything. The Docker journey begins here. (“Modern App Ar-
chitecture for the Enterprise”)

3.1.1 How it works

Nowadays, IT-part of every company defines its success, whatever you are selling.
Software is how you attract customers, reach new users, understand their behav-
ior and their needs. To do this well, today’s software is custom-made for every
problem. Small parts of the code that are designed for a different task are called
microservices. The main goal of such project structure is to gain system with in-
dependent parts, which can be easily modified or changed in the future and re-
duce the delay between writing your application and running it on production.

3.2. Docker-Compose 5

In the diagram above, you can see a basic example of how Docker works. The devel-
oper chose a list of services he needs, daemon pull them from the registry and put
them in containers. In that way, there is no need to install libraries or follow long
installation process of services because all this work was done for you, so you work
with ready-to-use black-boxes.

3.2 Docker-Compose

Now you know what Docker is, but in real life projects, it can be hard and tedious
to define and run multi-container Docker application and establish correct commu-
nication among them. So, here begins the journey of a Docker-Compose. For better
understanding take a look at Docker-Compose configuration file below.

1 vers ion : ’3 ’
2 s e r v i c e s :
3 web :
4 build : .
5 command : python /code/app/app . py
6 ports :
7 − " 8 0 8 2 : 8 0 8 2 "
8 volumes :
9 − . : / code

10 depends_on :
11 − db
12 hostname : myappserver
13 db :
14 hostname : mysqlserver
15 image : mysql
16 environment :
17 MYSQL_ROOT_PASSWORD: p@ssw0rd123
18 MYSQL_DATABASE: wordpress

This file will create two Docker containers ’web’ and ‘db’.
’web’:

• will start with command ‘python code/app/app.py’

• map port 8082 to 8082 for World Wide Web

• map folder on your machine with docker container folder

6 Chapter 3. What are Docker and Docker-Compose

• make it depend on ‘db’ docker container, so if MySQL server will not start, it
aborts execution of web server

• set hostname to Docker container so that you can connect to it by name, not
just port on localhost

’db’:

• set hostname

• pull image from the registry(watch image above)

• set database password and name

If there where no such suitable instrument, you should set all those parameters every
time you need to rebuild your project Dockers. With Docker-Compose you need to
write it only once.

7

Chapter 4

What are Celery and Redis

4.1 Celery

We have an excellent system to build, deploy and improve stability of our test. Also,
we have a comfortable instrument to group and manage them together, but how
to simulate real-world user activity? If I will write a script with “for loop” which
will make an HTTP request to the server it may work, but is it close enough to real
stress-test of every test module? I don’t think so, because, in real life, the user will
never wait for other users to finish their staff, they want everything now, so I need
something which can work asynchronous and independent at the same moment.

Here the work of Celery begins. It is a reliable, flexible and straightforward sys-
tem to process a set of tasks from message broker(will be defined in next sections),
these tasks are executed concurrently with one or more workers using multiprocess-
ing.

The problem of running concurrent task can be easily shown by “Producer and
Consumer” model. Producers add jobs to the queue. Consumers than check for the
new tasks, pick the first one and start processing it.

8 Chapter 4. What are Celery and Redis

In the Celery context, Producers often the web nodes, Query as message broker
and Consumers as workers. The idea of a broker is a simple queue, but how to
implement a modern queue with IT? One of the straightforward solutions would
be a text file. On that way, we can hold an order of tasks, but the problem is that
text files were not developed to work through the network are maintain concurrent
access. So text files are not reasonable solutions for our problem. How about SQL
databases? They are capable of running in a network and can support concurrent
access, but now we are stumbled at speed limits. We may use NoSQL databases,
they are fast, but they can not prove the reliability we need. So, we need something
fast, reliable and concurrence tool such as Redis.

4.2 Redis

Redis (stands for Remote Dictionary Server) is a fast repository of key-value data in
open source memory for use as a database, cache, message broker or queue. (“AWS
Amazon”) Redis provides a fraction of a millisecond response time and allows real-
time applications to perform millions of requests per second. Such applications are
in demand in the field of games, advertising technologies, financial services, health
care, and IoT. Redis is widely used for caching, session management, game devel-
opment, creating leader boards, real-time analytics, working with geospatial data,
taxi service support, chat and messaging services, multimedia streaming and appli-
cations with sending messages using the Publisher and Subscriber model.

All data in Redis is stored in memory, not on disks or solid-state drives, as in
other databases. Redis, like other in-memory data storages, does not need disk ac-
cess, this excludes search delays. Due to this, the number of operations performed
increases many times and the response time is reduced. The result is extremely high
performance. On average, read or write operations take less than a millisecond; the
speed of operation reaches millions of operations per second. Redis features include
support for a variety of data structures, high availability, working with geospatial
data, creating Lua scripts, conducting transactions, permanently storing data on
disk, and supporting clusters. All this makes it easy to create real-time applications
for the entire Internet.

Unlike simplified storage based on key-value pairs that support a limited set of
data structures, Redis supports a vast variety of data structures to meet the needs of
diverse applications. Redis data types include:

• strings - text or binary data up to 512 MB in size

• arrays - a collection of rows, ordered in order of addition

• sets - an unordered collection of lines with the ability to intersect, combine and
compare with other types of sets

• sorted sets - sets ordered by value

• hash tables - data structures for storing lists of fields and values

• bit arrays - a data type that allows you to perform bit-level operations

• HyperLogLog structures - probabilistic data structures used to estimate the
number of unique elements in a data set

9

Chapter 5

Nginx

Before digging into how Nginx works, let’s see for what web server stands for. When
someone makes a request to open a web page, the browser contacts the server of that
website. The server then looking for the requested data for the page and returns it
to the web client. This is just the simplest example of a web scenario.

The above example is also considered as one stream. Web nodes create a separate
thread for each request, but not Nginx. It works with concurrency, event-driven
architecture. This means that a single workflow controls similar threads, and each
workflow contains smaller blocks, called workloads. This whole block is responsible
for processing the request flows. Work connections deliver requests to the work
process, which also sends it to the main process. Finally, the main process provides
the result of these queries.

This may look like a simple architecture, but Nginx can handle up to 1024 similar
requests. Thanks to this, Nginx can efficiently process thousands of requests. This
is also the reason Nginx is excellent for downloaded websites such as online stores,
search engines, and cloud storage.

So, what is Nginx? Nginx is a web server that also acts as a proxy email server,
reverse proxy server, and load balancer. The software structure is asynchronous and
event-driven, which allows you to process many requests at the same time. Nginx
also scales well, which means that its service grows with customer traffic.

10

Chapter 6

Project Structure

6.1 Microservice architecture

For this project, I choose microservice architecture, because of its list of benefits, such
as:

• Writing and maintaining small services is always easier than large ones. The
smaller the code, the easier it is to fit it in the head;

• Modularity. If you want to make an update - roll out the service. If you see by
the metrics that something is wrong - roll it back. At some point, you noticed
that no one else goes to the service - turn it off. Instead of refactoring, it is
easier to throw away the service and write it from scratch.

• Tracking the dependencies between the services is easy. If all services depend
on each other, probably something in the architecture of your system is wrong.
If the number of connections is not much higher than the number of nodes,
then you are in the right way. It is also easier to find a place and reason for
critical failure.

• Reliability. If one module raises an error, rest parts of the system, which don‘t
depend on it, will perform successfully, but with a monolithic architecture, if
one part is dead – the whole system is dead.

6.2 Project parts

My project contains from three parts:

• Stack of TestModules. Fully independent instances of different web-frameworks.
Due to the Docker, all of them are executed in the same environment, so all
benchmarks are honest. Moreover, every TestModule is configured to work
with Nginx, so it can handle asynchronous HTTP requests.

• Celery & Redis. Combination of two reliable systems to simulate client ac-
tivity. Celery is responsible for managing and executing tasks, while Redis is
responsible for stacking messages for Celery workers and storing its results.

• TestModuleExecutor – heart of the project, it is responsible for registering new
web-framework nodes, managing and collecting results from Redis.

6.3. Workflow 11

6.3 Workflow

Every TestModule is executed successively. So, project flow is next:

• TestModuleExecutor fill Redis message stack.

• Celery workers asynchronously take messages from Redis stack.

• Web-module receive a HTTP request, process it and return result to the source.

• Celery worker store result to the Redis and take another message from stack,
if there are some.

• TestModuleExecutor catch time of every bunch of tests and return results as
simple JSON response to your browser.

12

Chapter 7

Results

My benchmarks was based on three main tasks of back-end part of almost every
modern web-project, no matter if it is simple blog, mobile application or giant projects
like “YouTube”, “Instagram” or “Facebook”. This tasks are:

• Database connections

• JSON serialization

• JSON deserialization

7.1 CRUD Testflow

What is CRUD? You should know from abbreviation section, that CRUD is Create
Read Update Delete, but what does that mean? The term CRUD is also used in
conjunction with the user interface. For example, in an address book program, a base
object in contact with contact data. As a minimum, the application must provide the
next feature:

• Creating Records

• Reading records

• Updating records

• Deleting existing records

Without these basic operations, the program can not be considered suitable for use.
As I mentioned above, every of this group of tests was executed one after another
and TestModuleExecutor catch time of every group. Database connection can be
configured in different ways, but I choose three most popular ways – pure DB con-
nectors, SQLALchemy ORM and custom DB connection of every framework. So, it
was tested in next way:

• Each database of every TestModule have simple table “User” with name and
surname fields

• TestModuleExecutor fill Redis stack with proper messages to create, read, up-
date and delete users, count how much time every framework needs to do this
and return results as HTTP response.

• Benchmark was repeated with all three DB connections and with 5, 20, 50, 100,
200 and 500 users.

7.1. CRUD Testflow 13

7.1.1 Flask CRUD results

Framework Django
№ 5 20 50 200 500

Psycopg2 0.0797 0.2783 0.8939 2.5379 6.2167
User Creation SQLAlchemy 0.1521 0.3913 0.9321 3.0314 7.2550

Custom 0.1454 0.4367 0.9831 3.6727 8.4593
Psycopg2 0.0678 0.2414 0.6981 2.3283 5.5679

User Reading SQLAlchemy 0.0947 0.3258 0.7854 2.8802 7.1743
Custom 0.0803 0.3522 0.9319 3.4739 8.1361

Psycopg2 0.0781 0.2422 0.6750 2.3633 5.4689
User Updating SQLAlchemy 0.0928 0.3611 0.8733 3.1625 7.4355

Custom 0.1034 0.3373 0.9915 3.6847 8.5134
Psycopg2 0.0756 0.2426 0.6081 2.2454 5.4196

User Deleting SQLAlchemy 0.0831 0.3325 0.7903 2.8355 7.0950
Custom 0.0805 0.3127 0.8580 3.3514 7.8948

TABLE 7.1: Flask CRUD results

As it was expected, pure connectors is the fastest way to work with DB. Second
in speed is extremely popular among Python Developers library - SQLALchemy
and last is custom DB connection. It was very predictable that custom Flask DB
connection is the slowest one, because it is a framework over SQLALchemy ORM.
So, it would be extremely weird if it was better than its “father”.

14 Chapter 7. Results

7.1.2 Django CRUD results

Framework Django
№ 5 20 50 200 500

Psycopg2 0.5764 0.3625 0.9059 2.2865 6.6484
User Creation SQLAlchemy 0.1595 0.2666 0.5820 1.8108 4.3645

Custom 0.1759 0.3620 0.7822 2.7360 6.5580
Psycopg2 0.0720 0.2254 0.5238 2.0757 5.3576

User Reading SQLAlchemy 0.0561 0.1520 0.4443 1.6275 4.4521
Custom 0.0663 0.2410 0.8893 2.4468 5.8491

Psycopg2 0.0653 0.2176 0.5544 2.3731 7.0341
User Updating SQLAlchemy 0.0560 0.2112 0.5119 1.8259 6.3338

Custom 0.0785 0.2936 0.9441 3.7895 6.4006
Psycopg2 0.0627 0.2285 0.5233 2.0982 6.3888

User Deleting SQLAlchemy 0.0462 0.1747 0.4697 1.7086 4.9413
Custom 0.0740 0.2991 0.7433 2.6081 6.4164

TABLE 7.2: Django CRUD results

Among DB connector, Django results was quite similar to the Flask results, only
difference is with its custom connectors, because they are quite good written as
whole framework in general. To my mind, this is one of the main reasons why
"Instagram" developers choose this web-framework as it main back-end technology.

7.2. JSON Testflow 15

7.1.3 Pyramid CRUD results

Framework Pyramid
№ 5 20 50 200 500

Psycopg2 0.1395 0.3642 1.0159 2.2403 5.4904
User Creation SQLAlchemy 0.2033 0.3042 0.9170 3.4414 8.1742

Psycopg2 0.0821 0.3018 0.7299 2.0425 5.1531
User Reading SQLAlchemy 0.0777 0.2826 0.8620 3.0315 7.2312

Psycopg2 0.0940 0.2870 0.6932 2.1818 5.3345
User Updating SQLAlchemy 0.0976 0.3301 0.9613 3.3645 7.9776

Psycopg2 0.0841 0.2822 0.6395 2.0705 5.2240
User Deleting SQLAlchemy 0.0806 0.2937 0.8720 3.0396 7.4118

TABLE 7.3: Pyramid CRUD results

As you may notice there is no bar for custom connection on the Pyramid chart.
Why I exclude them? Answer is pretty simple – there is no such functionality in
Pyramid, if you will visit official Pyramid documentation about DB connection, you
will find explanation how to add SQLAlchemy to your project.

7.2 JSON Testflow

You should know what is JSON from abbreviation section, that JSON is Java Script
Object, but what does that mean? This is a text format for data exchange between
computers. JSON is based on text, can be read by a person. The format allows you
to describe objects and other data structures. This format is mainly used for the
transmission of structured information over a network (due to the processes called

16 Chapter 7. Results

serialization and deserialization).
JSON serialization and deserialization was tested in quite similar way as DB con-
nection. The same algorithm, but instead of user information it was working with
JSON as you might have already guessed. It was processed in this way:

• Every framework and TestModuleExecutor has it own copy of JSON files

• TestModuleExecutor fill Redis stack with proper messages to serialize or dese-
rialize JSON

• Benchmark was repeated with every JSON files, there are wide variety of big
and nested JSONs of every type you or your team will be using in your project.

7.2.1 Frameworks JSON results

Framework Flask Django Pyramid
№ 1 5 20 1 5 20 1 5 20

JSON Serialization 0,051 0,142 0,356 0,111 0,304 1,040 0,105 0,142 0,356
JSON Deserialization 0,069 0,125 0,386 - - - 0,069 0,125 0,386

TABLE 7.4: JSON Serialization results

You may asking, why there is no metrics for JSON deserialization in Django. It
was quite surprising for me, that so popular and huge framework dose not support
such basic functionality, but there is build-in python library which will do that for
you, so this will never make struggle while working with Django frameworks.

17

Chapter 8

Conclusion

You may decide that Django is the best choice for your project, as it is the fastest
among others and you can use built-in python JSON deserializer if there is a real
need, but it depends on the size and possible popularity of your web-module. If
you are as ambitious as Mark Zuckerberg and you want to create web-service with
millions of users per second – your choice should stop on the Django. If you’re
going to use microservice architecture where every module is responsible for small
tasks or a simple website, which may be not as popular as a child of Mark, you
should decide between two popular lightweight frameworks - Flask and Pyramid.
To my mind, you should choose Flask as it is more popular than the Pyramid so you
can find more solutions to your problems over the internet. Moreover, much more
popular web-based libraries are ready to combine with Flask.

18

Bibliography

Amazon.com, Inc. “AWS Amazon”. In: p. 1.
Docker, Inc. “Modern App Architecture for the Enterprise”. In: p. 3.

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Related works
	TechEmpower first steps and last results
	How they build their tests
	How their machines are configured

	What are Docker and Docker-Compose
	Docker
	How it works

	Docker-Compose

	What are Celery and Redis
	Celery
	Redis

	Nginx
	Project Structure
	Microservice architecture
	Project parts
	Workflow

	Results
	CRUD Testflow
	Flask CRUD results
	Django CRUD results
	Pyramid CRUD results

	JSON Testflow
	Frameworks JSON results

	Conclusion
	Bibliography

