
UKRAINIAN CATHOLIC UNIVERSITY

BACHELOR THESIS

Landscape generation using procedural
generation techniques

Author:
Vladyslav MELNYCHUK

Supervisor:
Oles DOBOSEVYCH

A thesis submitted in fulfillment of the requirements
for the degree of Bachelor of Science

in the

Department of Computer Sciences
Faculty of Applied Sciences

Lviv 2020

http://www.ucu.edu.ua
https://apps.ucu.edu.ua/en/
https://apps.ucu.edu.ua/en/

i

Declaration of Authorship
I, Vladyslav MELNYCHUK, declare that this thesis titled, “Landscape generation us-
ing procedural generation techniques” and the work presented in it are my own. I
confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

ii

“The trees and the grasses and all things growing or living in the land belong each to them-
selves.”

J.R.R. Tolkien

iii

UKRAINIAN CATHOLIC UNIVERSITY

Faculty of Applied Sciences

Bachelor of Science

Landscape generation using procedural generation techniques

by Vladyslav MELNYCHUK

Abstract

This work is about procedural content generation and its applications in video games.
Generating a landscape is one of the ways to use procedural generation in games.
The goal of this work is to test different techniques and approaches to develop a
foundation for a game that is capable of creating beautiful, realistically looking land-
scapes. The predefined rules must fully control the generation process. The user
input for the generation will be limited to the seed that defines the initial state of the
generation, the parameters that control the generation, textures and 3d models. The
rest of the work is automated and requires no human interaction. The results of this
work can be used as a foundation for different types of games.

HTTP://WWW.UCU.EDU.UA
https://apps.ucu.edu.ua/en/

iv

Acknowledgements
I want to say thank you to my family, university staff and teachers, and everyone
who helped me along this long way.

v

Contents

Declaration of Authorship i

Abstract iii

Acknowledgements iv

1 Introduction 1
1.1 Procedural generation in game development. 1
1.2 Relevance . 1
1.3 Project goal . 2

2 Background information 3
2.1 Procedural Content Generation . 3
2.2 Unity3d . 3
2.3 Random number generation . 4
2.4 Noise in PCG . 4

3 Implementation 7
3.1 Generating Noise . 7
3.2 Generating a Mesh . 9
3.3 Terrain shader . 11
3.4 Improving the realism of the mesh . 14
3.5 Forest Generation . 15
3.6 Instantiating the trees . 18

4 Combining the Generations 20

5 Results 21

6 Conclusion 23

Bibliography 24

vi

List of Figures

2.1 Noise visualisations . 5
2.2 The impact of noise scaling . 5
2.3 Gradient vectors . 6

3.1 Generated noises . 9
3.2 A mesh formed with triangles . 10
3.3 Wireframe view of the created mesh . 11
3.4 The impact of texture blending . 13
3.5 Aerial view of the textured mesh . 13
3.6 Generated noise. 14
3.7 Terrain with the new layer applied. 15
3.8 Cellular automata . 16
3.9 Poisson disk sampling . 18
3.10 Examples of the collections . 19
3.11 View of the generated forest . 19

5.1 Final results produced by different seeds 21
5.2 A beautiful mountain at the center of an island 21
5.3 An unsuccessful attempt to use simplex noise 22
5.4 Experimenting with textures, to make the landscape look like an alien

planet. Textures from Yughues Free Nature Materials 22

https://assetstore.unity.com/packages/2d/textures-materials/yughues-free-nature-materials-13237

vii

List of Abbreviations

PCG Procedural Content Generation
SIGGRAPH Special Interest Group on Computer GRAPHics and Interactive Techniques
LERP Liner Interpolation
2D 2 Ddimentional
3D 3 Ddimentional
VFX Virtual Effects
LOD Level Of Detail
GPU Graphics Processing Unit
CA Cellular Automata

1

Chapter 1

Introduction

1.1 Procedural generation in game development.

Procedural generation is a powerful tool that is widely used in video game develop-
ment. PCG can be used for small-scale endless level generation in 2d hyper-casual
mobile games, and in complex 3d open-world games. It allows developers to cre-
ate unique and realistic worlds by defining a set of rules that generate landscapes,
textures, characters, buildings, etc. This type of generation also allows games to
have infinitely large worlds, as there is no need to store all the data. When the user
turns the game on again, everything can just be regenerated. But random generation
does not necessarily mean that it is procedural, as there is a difference between ran-
dom and procedural generation. Random generation uses randomness to generate
content from already created materials. It could be textures, 3d models, or simply
characteristics of an in-game item. But they are always picked from a predefined
set of values. Procedural generation, however, uses preset rules to generate unique,
new content. In this work, procedural generation will be used.

1.2 Relevance

One of the most popular games in history is Minecraft, with over 180 million copies
sold [2011’s Minecraft becomes the second best-selling game of August 2019]. The game
uses advanced procedural generation algorithms to create entire infinite worlds with
landscapes, oceans, caves, towns, and wildlife. It uses seeds to control the rules of
generation, allowing users to create 264 unique 3d worlds, that are incredibly real-
istic, despite being made entirely of blocks and having pixelated graphics. Another
popular video game called No Man’s Sky also uses PCG, but its developers take the
generation on another level. It uses a unique seed to generate an entire galaxy with
264 planets in it to explore. But unlike Minecraft, not only the terrain is procedurally
generated, but plants and animals too. Each planet is unique, just like in real life.

PCG can also be a great way to make your game stand out. Video game industry
generates US$134.9 billion worldwide [2018 Global Games Market Report]. A lot of that
money comes from the games developed by big companies [Top 25 Public Companies
by Game Revenues]. Using PCG in your video game can make players have more
interest in it, as generated content is not bound by human imagination or creativity.
If fact, the first versions of Minecraft were developed by just one person, and one of
the reasons that the game became so popular is that the content was not repeatable
and unique.

Chapter 1. Introduction 2

1.3 Project goal

The goal of this project is to create a realistic landscape with mountains, valleys,
lakes, and then fill it up with trees, to make it look like a real mountain range.

To achieve this, a 3d mesh will be generated and reshaped, so it looks like terrain.
Next, this mesh will be coloured and textured. The textures will give it realistic
looks, adding elements like water, sand, gravel, rocks, and grass.

Then the textured landscape will be filled with trees, rocks, and other decorations
that exist in real forests.

For all these steps, different algorithms, techniques and approaches will be used.The
entire process of creating the landscape will be procedural and it will follow preset
rules. However, the trees and other plants or decorations used for this project will
be picked from a preset collection, so they will not be generated, but their placement
will be procedural.

3

Chapter 2

Background information

2.1 Procedural Content Generation

Procedural content generation (PCG) is an automated algorithmic creation of content
with limited, or no user input [Julian Togelius, 2016]. PCG can be used to generate
data, art, video game content, textures, 3d models, etc. This work focuses on using
PCG in video games. In the context of video games, the word content means every-
thing that makes up the game: levels, graphics, in-game items, game rules, music,
or maps. [Julian Togelius, 2016] Game developers started using PCG in video games
early in the history of video games. Back in the 1980s memory was a huge issue,
as computers and game consoles had very little memory. This meant that making
larger, or more complex games was challenging as developers had to reuse all game
assets continuously, and optimise memory usage. Instead of saving assets to mem-
ory, some games started using PCG. This allowed defining rules that generate the
game contents, so not everything had to be directly saved to the memory. One of
the most famous early games that used PCG is called Rogue [DAHLSKOG, 2016].
It was developed for UNIX systems (later ported for other platforms and consoles)
and generated a maze-like dungeon. It allowed to have a lot of levels, with big dun-
geons, left for the players to explore. The game even gave birth to an entirely new
genre of video games.

Nowadays, memory is not a big issue for computers, and their computational
power has increased. But the need for PCG in video games has not decreased. De-
velopers use more advanced PCG techniques and algorithms to generate more ex-
ceptional content. PCG is also great for player retention and the replayability of the
game. Diablo III uses generation to create different dungeons. Having this feature
ensures that players will play the game more, as there is always something new
to explore. The game Spore is capable of generating planets, structures, and even
animated creatures, who have their own cultures and technologies [DAHLSKOG,
2016]. The list of games that use PCG is getting bigger and bigger, and developers
find new ways to use PCG for their games.

2.2 Unity3d

Unity3d is a cross-platform game engine [Unity User Manual]. It offers a lot of useful
tools and assets for game development. It takes care of rendering and provides a
high-level API for video games development. The engine also offers libraries with
optimised implementations of popular algorithms, tools for development, and an
extremely intuitive graphical user interface. Unity3d also provides functionality to
create and modify meshes, which will be useful for this work. A mesh data structure
is a representation that organises the vertex, edge, and face data so that these queries

https://eu.diablo3.com/en/
https://www.spore.com/

Chapter 2. Background information 4

can be done easily [Gortler, 2012a]. In Unity, a mesh consists of triangles. It also
offers a Mesh component that can create meshes. It is done by passing it an array of
vertices, UV’s and triangles. After this, the engine takes care of creating the mesh,
drawing it to the screen and calculating its normals.

Using Unity3d also makes it is possible to create custom shaders. Shaders are a
special-purpose program that is written in C-like special language [Gortler, 2012b].
Unity’s shader program uses a variant of High-Level Shading Language (HLSL).
HLSL is sometimes called CG (C for Graphics), but they are different languages, and
Unity does not use CG. [Writing Shaders]. The game engine also has its asset store
that contains a lot of free assets and 3d models. They can be used for the visual part
of this work.

Unity also has a large online community, thousands of forum posts, and several
subreddits, where people ask questions, and share their knowledge of the engine.
All these factors make Unity a great choice for implementing this task. It is also
important to note that both Unity3d and Unity refer to the same game engine.

2.3 Random number generation

Random numbers are an essential part of PCG. They are the key to generating the
content, as they serve as the input to the rules of the generation. Modern computers
are not capable of generating truly random numbers. An inefficient way to solve this
is to use some external source like an atomic decay time in nature, as it is random
[JamesE.Gentle, 2002]. Although this will work, it is incredibly inefficient. It is also
possible to use physical processes on the computer to obtain random values.

This is where deterministic pseudo-random generators come useful. They can
produce random numbers that have uniform distribution and appear to be com-
pletely random. Before starting, the generator needs to have an initial state. Defin-
ing it is done with a seed. A seed is a number or a set of numbers, depending on the
type of generator. A common technique that most generators use is to take the cur-
rent time of the device as its seed. In general, this technique works well. However,
in some cases, when a function that uses a random number generator is called mul-
tiple times, the time values produced by each call of the function will be the same.
In Unity3d a seed is an integer value. It serves as the point in the sequence where
a particular run of pseudo-random values begins [Unity Documentation].To be able
to generate different terrains, we can use different seeds, that will produce different
results.

2.4 Noise in PCG

Noise is a powerful tool for PCG. It can be used to generate textures, simulate hand-
writing, clouds, and visual effects (VFX). It also is a great technique to use for terrain
generation.

There are different types and algorithms that generate noise. Random value
noise is the simplest one. It creates a grid (2d in this case), where each point has
random float value between 0 and 1. The problem with using random value noise
is that unlike nature, it has no consistency, meaning each point is independent of
others. In order to achieve a more natural-looking terrain, the random grid must be
smoothed out. This effect can be achieved using linear interpolation. The results,

Chapter 2. Background information 5

however, still usually look jagged.

Perlin noise is a type of noise that was developed in 1983 by Ken Perlin [Per-
lin, 1985]. At that time, he was working on an animated sci-fi movie “Tron”. He
later published his work in a SIGGRAPH paper. This type of noise is also some-
times called the gradient noise. It uses gradients and pseudo number generation to
create a smoother and more realistic noise. In 2001 Ken Perlin made an improved
implementation of the gradient noise and called it Simplex noise [Noise Hardware].
Simplex noise is more optimised, has lower computational complexity, can scale to
higher dimensions, and it has no noticeable directional artifacts. In this work, I will
try to use both the original Perlin noise, and the improved Simplex noise. Unity3d
has Perlin noise implemented in its Mathf library. It only works in two dimensions,
but this is not a problem for generating landscape.

(A) Random value noise (B) Perlin noise (C) Simplex noise [Source]

FIGURE 2.1: Noise visualisations

The process of generating Perlin noise:

1. To generate a 2d noise with size width * height, we first need to create a grid
with the same size. For this example, let us assume that width and height are
equal, so the generated noise grid has a shape of a square. Each value in a grid
has coordinates y and y. It is a common practice to use u and v instead of x and
y, when working with noise or textures, so we will use this type of notation.

2. Now the grid can be divided into smaller subgrids to scale the noise. The
division factor will be called the scale factor of the noise.

(A) scale = 20 (B) scale = 50

FIGURE 2.2: The impact of noise scaling

https://catlikecoding.com/unity/tutorials/simplex-noise/

Chapter 2. Background information 6

3. Use pseudo generation to generate gradient vectors, that face away from grid
unit square.

(A) Random gradient vectors
[Understanding Perlin Noise]

(B) Distance from cell to the
point [Understanding Perlin

Noise]

FIGURE 2.3: Gradient vectors

4. Calculate dot product between gradient vector, and the vector pointing to the
point, at which noise value is calculated.

5. Do this for all four vertices. The result is four dot products d1, d2, d3, d4

6. Now to calculate the noise value at that pixel with coordinates u and v:

// lerp = linear interpolation
float x1 = lerp(d1, d2, u)
float x2 = lerp(d3, d4, u)
float noiseValue = lerp(x1, x2, v)

7. Linear interpolation is cheap, however, it is unnatural, and the results will look
tiled. To make the newly generated noise to look better, we can apply an ease
function. It will make the transition between tiles smoother and more natural.
The preferred ease curve for this type of noise is 6t5 - 15t4 + 10t3, as defined by
Ken Perlin. The curve is applied to the coordinates u and v.

https://flafla2.github.io/2014/08/09/perlinnoise.html
https://flafla2.github.io/2014/08/09/perlinnoise.html
https://flafla2.github.io/2014/08/09/perlinnoise.html

7

Chapter 3

Implementation

3.1 Generating Noise

The first step is to generate noise that will be used to form the terrain. But before
generating the noise, it is important to initialise the parameters that will control the
rules of the generation.

• Seed (int) - a number that will initialise the state of the random number generator.
For this work, we will set it to 1928371289.

• Size (int) - the size of the terrain that will be generated. Since for this work we
set the width and height to be the same, the landscape will have a shape of a
square.

• Scale (float) - a parameter that controls the scale of the generated noise.

• Offset (Vector2) - x and y offset of generated Perlin noise.

• Height multiplier (int) - the generated noise will always be in the range [0, 1]. In
a mesh, a height difference between 0 and 1 will be hard to notice so that each
noise value will be multiplied by this number.

• Octaves (int) - the number of octaves determines how many layers of noise we
will generate. If we use just one layer of noise to generate terrain, it will not
look realistic. One layered noise will look too smooth. To solve this problem,
we need to stack multiple layers of noise together. Because Perlin noise uses a
pseudo number generation, inputting the same values for multiple times will
always return the same results. This means that each octave will be the same,
and despite adding the noise, its final form will not change. This is where
we have to introduce some random offset, that we will add to the sampling
variables. However, picking a random offset every time we get the noise value
at a point will not work either. Random offsets must be the same for every
octave. An easy way to solve this problem is to generate random offsets before
we start sampling the noise. This will ensure that every octave always uses the
same offsets.

Another problem is that simply adding the noise together is not enough. The
next two parameters will help handle this.

• Persistence (float) - a number in the range [0, 1] that indicates how much each
octave contributes to the final noise value. With every iteration, it adjusts the
amplitude of the noise. At the start, the amplitude will be set equal to 1, and
with every iteration, it will be multiplied by persistence value. Unless persis-
tence value is set to 1, with each octave, the impact of the generated noise will

Chapter 3. Implementation 8

be decreasing, as amplitude decreases. For this work let us set the persistence
value to 0.5.

• Lacunarity (float) - a number that measures how data fills space. This number
determines how much detail each octave adds to the final noise value. This
number adjusts the frequency of the noise. Just like with amplitude, frequency
during each iteration it is multiplied by lacunarity. Setting lacunarity to 1.6 has
shown the best results.

In order to comfortably pass the parameters between different components of
the application, we will create a struct TerrainParameters that will store all the data.
Now that we have the parameters that will define generation rules, we can start
generating terrain. The first step is to generate the noise. The result is a 2d array
where each value is in the range [0, 1].

Noise generation code:

noise = new float[size, size];

for (var y = 0; y < size; y++) {
for (var x = 0; x < size; x++) {

float amplitude = 1;
float frequency = 1;

float noiseValue = 0;

for (int i = 0; i < octaves; i++) {
// adding randomly generated offsets is important
float sampleX = x / scale * frequency + offsets[i].x;
float sampleY = y / scale * frequency + offsets[i].y;

float rawNoise = Mathf.PerlinNoise (sampleX, sampleY);

noiseValue += rawNoise * amplitude;

amplitude *= persistance;
frequency *= lacunarity;

}

noise[x, y] = noiseValue;
}

}

The value of noise returned by the Mathf.PerlinNoise function is modified dur-
ing the process of adding extra layers of noise, so the values are not guaranteed to
be in the range [0, 1]. To later use the noise for generation, all values must be within
that range. This means that the noise has to be normalised. This can be done using
Mathf.InverseLerp. To do that highest and lowest noise values are needed. They can
be obtained using C#’s LINQ Max and Min queries.

Chapter 3. Implementation 9

float[] castNoise = noise.Cast<float> ();
float max = castNoise.Max ();
float min = castNoise.Min ();

for (var y = 0; y < size; y++) {
for (var x = 0; x < size; x++) {

noise[x, y] = Mathf.InverseLerp (min, max, noise[x, y]);;
}

}

Another way to generate noise, as mentioned above, is by using Simplex noise.
The noise has an optimised implementation Simplex noise demystified. This approach
was ported to C# in an open-source Simplex Noise implementation. To change the noise
type, we must simply replace the call to Mathf library with the new noise function.
However, the results turned out to be too sharp, even with extra layers of noise. So
for this work, the original Perlin noise type will be used.

(A) Perlin Noise (B) Simplex noise

FIGURE 3.1: Generated noises

3.2 Generating a Mesh

Next step is to transform the 2d noise into a 3d mesh. The mesh must look like a
ground in real landscapes. The generated noise already contains x and y values (the
coordinates of the grid), so now we need to add another dimension for height. As
we now work in 3d space, we will interpret the y coordinate of the noise as its z
coordinate in 3d space. And the new y value will be calculated using the noise value
at that point. To calculate this value, we must multiply the noise value by the height
multiplier – a parameter that was defined earlier.

To create a mesh in Unity3d, we need to define its vertices, texture coordinates
(also referred to as UV’s), and the coordinates of the triangles that will form a mesh
[Creating a Quad]

To display the mesh, we must create an empty GameObject in our scene, and add
two components to it: MeshFilter, and MeshRenderer. As their names suggest, the
mesh filter stores the mesh and its data, while the mesh renderer is responsible for
drawing the mesh to the screen. Mesh renderer also allows to assign a material to
the mesh, and control its shadows. We will leave the shadows parameters at default
values. Now we need to define the mesh data.

Chapter 3. Implementation 10

• Vertices - The first step is to set up vertices that the terrain uses. All vertices will
be stored in an array of type Vector3. The number of vertices in a mesh is equal
to size * size. Each vertex will be in a form:

Vector3 (x, noise[x, y] * heightMultiplier, y)

• UV’s - Next, we have to define UV’s of the mesh. In Unity, UV’s are repre-
sented as an array of type Vector2. UV’s show how the mesh should be
textured. This part is not very important, as we will not directly apply
a texture to the terrain mesh.
Using the same approach as with vertices, we need to divide each co-
ordinate by the size of the grid. It is also important to cast the size to a
float, so that the result doesn’t get round up to integer value. We will
store all UV’s in an array. Its size is also size * size. Every UV will be in
a form:

Vector2(x / float (size), y / float (size))

• Triangles - this step is the most important. We must define the vertices of
the triangles that will make up the mesh. In Unity3d this data is stored
in an integer array. In this array, each value is an index of a vertex that
makes up the triangle. The number of triangles that a mesh with the
size width * height can be calculated with the formula:

int numberOfTriangles = (size - 1) * (size - 1) * 6

The order in which points are described is also essential and must re-
main the same for every triangle so that the engine can properly ras-
terise the mesh. Vertices must be defined in a clockwise direction.

FIGURE 3.2: A mesh formed with triangles

Figure 3.2 shows a simple flat square mesh, that consists of eight tri-
angles. The size of the mesh is 3 by 3, and it has nine vertices. Let us
define the first two triangles of this mesh. Their coordinates are:
t1 : {0, 4, 3} and t2 : {4, 0, 1}.
As you can see from the figure, the same pattern repeats for all other
vertices except for the vertices on the right side of the mesh. We must
include an if statement to handle this case. We will add vertices to the

Chapter 3. Implementation 11

triangles array only if the coordinates (marked in parentheses in the
format (x coordinate, y coordinate) are smaller than size - 1. For every
vertex that satisfies this condition, the triangles that it makes can be cal-
culated with the formula:

// i is an index of the vertex in a mesh
t1 = {i, i + size + 1, i + size}
t2 = {i + size + 1, i, i + 1}

The process will be repeated for every vertex which x and y coordinate
is less the size - 1, because vertices on the edge of the mesh do not have
triangles to their right (as seen on figure).

After everything that is needed to create the mesh is ready, we can use Unity’s
mesh component, and pass the vertices, UV’s, and triangles to it. After that, we
recalculate the mesh’s normals and tangents, so that the mesh is lit up and displayed
properly. The created mesh object can now be assigned to the Mesh filter component
in the scene. Now Unity will render it to the screen.

var mesh = new Mesh { vertices = Vertices, triangles = Triangles, uv = UVs
};

mesh.RecalculateNormals ();
mesh.RecalculateTangents ();

FIGURE 3.3: Wireframe view of the created mesh

3.3 Terrain shader

The newly generated mesh looks excellent. It has hills, valleys and plains, but it
has no colours, and for the terrain to look realistic, it must have colours. We will
achieve this by creating a custom surface shader. This type of shader uses “surface
function” takes any UVs or data you need as input, and fills in output structure
SurfaceOutput. SurfaceOutput describes properties of the surface (it’s albedo colour,

Chapter 3. Implementation 12

normal, emission, specularity, etc.) [Surface shader manual]. In our case, we only need
the albedo, as we will use to set the texture. Albedo is a parameter that controls the
base colour of the surface. To texture the mesh, we will use free textures from Unity’s
Asset Store or other copyright-free sources.

First we will divide the landscape into 5 separate layers:

1. Water

2. Gravel/Sand

3. Grass

4. Rocks

5. Snow

Now we assign each layer a height value and a texture that will be used to bring
colours to the created terrain. Unity allows accessing the coordinates of a point that
she shader is currently shading. We can use this to access the height of each point.
To do this, we must include a float3 variable named worldPos in the shader’s Input
struct. Now the engine will automatically fill this variable.

struct Input {
...
// Now to access the height we can use worldPos.y
float3 worldPos;
}

We are going to have several textures on one mesh. For this to look good, we
need to have some blending between all the textures. The blending effect will add
smoother transitions between heights and their textures. We can control the inten-
sity of blending with a float parameter. To properly blend the textures, we will use
the approach suggested on the Unity Forum. It uses a custom struct called blend-
ingData. It will store the data about the height that we are currently sampling, and
the resulting data that we will later pass into the albedo. First, we will need to get
the data of the texture that we have assigned earlier. This can be done with the
function UNITY_SAMPLE_TEX2D. As an input, it takes in the texture, and its UV
float2 values. After all the textures are initialised, we have to blend them, using the
height parameters that we have defined. Each texture is treated as a separate layer.
For each layer, we assign a new height value to our struct. Next, we calculate the
colour value using the blend intensity parameter, and then we use linear interpola-
tion of the calculated result with the currently stored result, and the result value of
the layer that we are currently blending. This process has to be repeated for every
texture. This approach allows us to add or reduce layers.

To make sure that our mesh looks nice even when its size gets big, we will add
texture tiling. Unity’s materials have support for this feature. Instead of projecting
an entire texture on the mesh, it will tile in on both axes. The number of tiles is
determined by user input. Having it set to 10 for both axes gives good results. But
since we have a lot of water around the edges, let us set the tiling number to 30 for
the water texture, so it does not look too stretched.

Blending function:

https://forum.unity.com/threads/blend-between-textures-based-on-height.210221/

Chapter 3. Implementation 13

blendingData BlendLayer(float4 layer, float layerHeight, blendingData bd)
{

bd.height = max(0, bd.height - layerHeight);
float t = min(1, bd.height * _BlendSharpness);
bd.result = lerp(bd.result, layer, t);

return bd;
}

(A) Blending disabled (B) Blending enabled

FIGURE 3.4: The impact of texture blending

To make Unity use our newly created shader, we must create a new Material
[Unity Manual, Materials], and then in the shader dropdown menu, choose the
shader that we have just created. Next step is to apply this material to the MeshRen-
derer component, and now Unity will use our shader to render this mesh.

FIGURE 3.5: Aerial view of the textured mesh

https://docs.unity3d.com/Manual/class-Material.html

Chapter 3. Implementation 14

3.4 Improving the realism of the mesh

Terrain now has colours and looks realistic. However, its edges end with sliced
mountains. Right now, the landscape consists of just one tile. To fix this, we can
generate more tiles on each side of the terrain. Having many tiles stacked side by
side will make the landscape look massive. This widespread implementation allows
developers to create infinite worlds, as we can add more and more tiles for players
to walk on. However, it is a very computationally heavy task that requires a lot of
optimisation. Having so many tiles would mean that the GPU would have to do a
lot of extra work. 3d games with large maps use a technique called "level of detail"
(LOD) switching [Computer Graphics, ISY, LiTH]. It allows reducing the number of
triangles of the meshes that are far away from the player so that the GPU load is
smaller. LOD switching can be done dynamically [GPU based dynamic geometry
LOD]. But for this work, let us choose a different approach - turn this landscape into
an island using another level of artificial noise. This technique is similar to falloff
map - a tool used in game development, computer graphics and textures. The most
common use case for the falloff map is reflections.

For this work, we will generate a new layer of noise, and use it to turn the gen-
erated terrain tile into an island. To achieve this, we can subtract the values of the
extra layer of noise from the values of the generated Perlin noise and re-generate a
mesh. The noise must significantly decrease the values on the edges of the created
terrain, resembling an island.

I have picked three types of noise to modify the mesh.

(A) Distance to the right edge (B) Distance to the closest edge (C) Distance to the centre

FIGURE 3.6: Generated noise.

The first falloff map [Figure 3.3 A] can be used to create an effect of an edge. It
will transform the noise to have low values (darker) at the right side, and higher
values on the left side (brighter). Visually the terrain will be textured as water on
its left side, making the terrain look like a real edge of the continent. However, this
type of noise only generates high values on one of the sides.

The next two noises are much better for creating islands, as they both have high
values close to all four edges. The square shape of the second noise [Figure 3.6 (B)]
does not look as realistic as the round shaped noise of the third type [Figure 3.6 (C)].
Also, it is not as smooth as the third noise type. The third noise type allows the
terrain to have higher values closer to the edges and fills up more space with the
land. For this work let us choose the circular noise to serve as an extra layer.

http://computer-graphics.se/TSBK07-files/pdf/PDF09/10%20LOD.pdf
http://rastergrid.com/blog/2010/10/gpu-based-dynamic-geometry-lod/
http://rastergrid.com/blog/2010/10/gpu-based-dynamic-geometry-lod/

Chapter 3. Implementation 15

(A) (B) (C)

FIGURE 3.7: Terrain with the new layer applied.

3.5 Forest Generation

To generate a realistically looking forest, placing trees at random is not enough.
There must be consistency, and trees can’t overlap. Also, the y coordinate that repre-
sents the height of a tree in a 3d scene must match the y coordinate of the previously
generated mesh, so that trees do not float in the air, or grow underground.
Cellular automata – a discrete abstract computational system [Cellular Automata,
Stanford Encyclopedia of Philosophy], also famous for Conway’s Game of Life [Con-
way’s Game of Life FAQ] can be an excellent way to solve this. This system (let us
interpret it as 2d grid, where each cell has coordinates x and y) consists of cells that
can have two states: active or inactive. By defining rules, we can change the state of
the system. To change the state, we must iterate through every cell in the grid, and
check how many neighbours it has (let us call the number of neighbours n). If n is
smaller than some threshold integer value (t), then we turn off the cell. Otherwise,
when n is larger then the threshold value the cell gets turned on. This process can be
repeated multiple times to achieve the best results.

To change the state of the system, we must define some initial state, because if
all points have equal states, then no changes will occur. For this work, we can ran-
domly set the states of each cell. Let us introduce another variable p in the range [0,
1] that will represent the probability that a cell’s state will be active when the system
starts.

After the initial state of each cell has been set, we can start to change the state
of the system. The goal is to turn the system into a value noise grid that will define
where a tree can be placed. We will interpret active cells as cells that have trees
and inactive cells as cells that do not have trees or other objects inside. The process
of changing the state of the grid can be repeated multiple times to achieve better
results. A variable k represents the number of iterations that changed the state of
the system.

int[,] grid = new int[size, size];

// set the initial state
for (var y = 0; y < size; y++) {

for (var x = 0; x < size; x++) {
float chance = Random.value;
if (chance < p) {

https://plato.stanford.edu/entries/cellular-automata/
https://plato.stanford.edu/entries/cellular-automata/
http://cafaq.com/lifefaq/index.php
http://cafaq.com/lifefaq/index.php

Chapter 3. Implementation 16

grid[x, y] = 0;
} else {

grid[x, y] = 1;
}

}
}

// change the state k times
for (var i = 0; i < k; k++) {

for (var y = 0; y < size; y++) {
for (var x = 0; x < size; x++) {

int n = GetNeighbours (x, y);
if (n > t) {

grid[x, y] = 1;
} else {

grid[x, y] = 0;
}

}
}

}

FIGURE 3.8: Cellular automata

The results [Figure 3.8] look beautiful and realistic. Each green point is a tree,
and each white point is an empty space. The trees are connected, and there are for-
est openings, which make it look realistic. However, there is a problem with this
approach. Every tree is represented by a cell in a generated grid, rather than a coor-
dinate. Being bound to a cell means that the distance between every tree in the grid
will always be the same, and that is not how trees in real life forests grow. Of course,
each tree’s position can be altered by some random offset, but as with the case of
random noise for terrain, the results do not look realistic, and it can potentially cre-
ate a lot of problems.

Another way to place trees is by using Poisson Disk sampling. This algorithm al-
lows placing points on a grid, with any dimensionality procedurally. It also ensures
that all points are at least r units away from all other points, meaning that no 2 points
can overlap, and unlike in the previous implementation with Cellular Automata, the
positions are not bound to a fixed grid.
In this work, we will use Fast Poisson Disk Sampling in Arbitrary Dimensions [Robert
Bridson, University of British Columbia]. It is an optimised implementation of this

https://www.cs.ubc.ca/~rbridson/docs/bridson-siggraph07-poissondisk.pdf
https://www.cs.ubc.ca/~rbridson/docs/bridson-siggraph07-poissondisk.pdf

Chapter 3. Implementation 17

algorithm, that is guaranteed to take O(n) time to generate N Poisson disk samples.

For this task, we need to introduce new parameters:

• Radius r (float) - the minimal distance between each point.

• The number of dimensions n (int) - in this case, it is 2, as we need to place trees
on a 2d grid. The height value of each point is determined by the terrain noise
generated earlier.

• The number of attempts k (int) - this number determines how many times an al-
gorithm will attempt to generate a new neighbour for a given point before
discarding it.

Generation process:

1. Calculate cell size c, using the formula

float c = r / sqrt(n) = r / sqrt(2)

2. Initialize a 2d grid using the cell size and the size of the terrain

float gridSize = Mathf.CeilToInt(size / c);
int[,] grid = new int[gridSize, gridSize];

3. Create two lists: one to keep track of created points, and another one to keep
track of active points. A point is active if it can still have neighbours.

4. Place the first point at the centre of the grid and add it to the active list. The
coordinates for this point can be calculated by dividing the grid size by 2.

Vector2 centerPoint = new Vector2 (size, size) / 2;

5. While the active list is not empty, for each iteration pick a random point i from
active points list

(a) For k times attempt to spawn a random point. Pick a random angle to
calculate a random direction:

float angle = random value * Mathf.PI * 2
Vector2 direction = Vector(sin(angle), cos(angle))

Now initiate a point at the position:

Vector2 newPoint = i + direction * Random.value (radius, radius *
2)

This means that the new point will be from r to 2r units away from the
currently active point.

(b) Check if a point can exist at those coordinates. If it overlaps with other
points at that cell in the grid, discard this point and attempt to spawn a
new point. Otherwise, spawn a point, and add it to the list.

(c) If a point was spawned, break the loop, and pick a new random point.

Chapter 3. Implementation 18

(d) If after k tries no point was spawned, this means that the point i cannot
have new neighbours, so we must remove it from the active list, and pick
a new point i, if any are available.

(e) If no points are available, then the generation is completed.

We now have a list of points where a tree can be placed. Now we need to add
height to all these points. The height of each tree is obtained using the same Perlin
noise that was used to generate the terrain.

FIGURE 3.9: Poisson disk sampling

3.6 Instantiating the trees

Now that we know where a tree can be placed let us instantiate a 3d mesh of a tree
at that point. For the visual part of this work, I will use the free low polygon tree
models from the Unity3d asset store [LowPoly Trees and Rocks] [Low-Poly Simple
Nature Pack]. Both packages contain textures, materials, and 3d models of different
types of trees and other natural objects. To optimise the performance of the game, let
us spawn a preset collection of trees at each point, instead of generating a single tree.
The rotation on the Y-axis of each collection will be randomised. This change will
ensure that the forest looks more like real-life forests. The rotation will be a random
float number in the range [0, 360]. Another improvement is to create multiple col-
lections, that will be picked randomly during the generation process. As we use the
same seed for initialising the state of the randomiser that places trees, the generated
forest will always look the same, as long as the seed remains unchanged.

https://assetstore.unity.com/packages/3d/vegetation/lowpoly-trees-and-rocks-88376
https://assetstore.unity.com/packages/3d/environments/landscapes/low-poly-simple-nature-pack-162153
https://assetstore.unity.com/packages/3d/environments/landscapes/low-poly-simple-nature-pack-162153

Chapter 3. Implementation 19

FIGURE 3.10: Examples of the collections

For the next step, we will need to introduce two new variables: lowerBound and
upperBound. They will represent the lowest and the highest points at which a tree
can be instantiated. Without them, the entire terrain (including the lower parts that
are textured as water) will be covered with trees and other objects. Since we do not
want that, a tree will only be spawned when its Y-axis coordinate falls within the
given range. Through experimenting, I have found that setting the lower bound to
0.37 and the upper bound to 0.8 produces the best results. The water and the rocky,
snowy mountains do not have any trees growing now.

(A) Aerial view (B) Forest zoomed in

FIGURE 3.11: View of the generated forest

20

Chapter 4

Combining the Generations

To combine the two parts of this work (mesh and forest generation), we will need
to create a controller that will call the generation functions of each component. The
controller will also store the generated noise, as both components use it. Now we
will create controllers for the Mesh Generator and the Forest Generator. They will
both have a Generate method that accepts noise and other parameters as an input.
The function that calls the Generate method for other components can be set to exe-
cute at the start of the application, or assigned to a button. For debugging purposes,
we can also add a boolean variable to turn one of the components on or off. This is
useful for choosing the best generation parameters.

TerrainGenerator’s fields

1. MeshRenderer

2. MeshFilter

3. TerrainParameters (serialized field that we can set from the editor).

4. bool generateMesh - used to turn the generation on or off

ForestGenerator’s fields

1. float lowerBound

2. float lowerBound

3. GameObject[] treeCollections - an array of preset tree collections

4. bool generateForest - used to turn the generation on or off

21

Chapter 5

Results

Now that everything is finished and the components work well together, we can
experiment with the parameters of the generation, to see what kind of results will
the generation produce. Here are the examples of the landscapes generated with
approaches and techniques suggested in this work.

(A) seed = 2 (B) seed = 16 (C) seed = 128

FIGURE 5.1: Final results produced by different seeds

FIGURE 5.2: A beautiful mountain at the center of an island

Chapter 5. Results 22

FIGURE 5.3: An unsuccessful attempt to use simplex noise

FIGURE 5.4: Experimenting with textures, to make the landscape look
like an alien planet. Textures from Yughues Free Nature Materials

https://assetstore.unity.com/packages/2d/textures-materials/yughues-free-nature-materials-13237

23

Chapter 6

Conclusion

The goal of this work was to generate a realistically looking 3d landscape that con-
sists of mountains, lakes, plains and is populated with different trees, that make up
forests. To achieve this, we split the work into two parts: generating and texturing
terrain and then generating a forest. Both parts required us to generate noise or a
layout and then transform it into a 3d scene. For the terrain we used Perlin gradient
noise, that was later transformed into a 3d mesh. Next step was applying a material
with a custom surface shader that brought colours to the terrain. Having textures
allowed the ground to look realistic. The forest was generated by procedurally plac-
ing trees using Poisson disk sampling. The algorithm ensures that no two points
overlap. Later the points were projected onto the terrain mesh, and at each coordi-
nate, trees were placed. A falloff map was used to turn the terrain into an island.
It subtracted the noise values at the edges of the grid. The result is a realistically
looking island that has lakes, grass, sand, mountains with snow on top, and a lot of
different trees that form forests.

This work shows a few ways of using procedural generation algorithms and tools
for video games. It shows that using PCG for creating in-game content can be very
useful and can generate creative results. PCG can also save a lot of time for develop-
ers, artists, and game designers, and saved time usually means saved money. Now
the generated landscape can be used for different types of video games. It could be
modified to create an infinite world for a survival game like Minecraft, or we can
stick with single or multiple islands, for a survival game like Stranded Deep. An-
other great application is using this landscape for a flight simulator game.

Procedural content generation is truly a fantastic tool for game development. Al-
though the primary goal of this work was achieved, it can be further expanded with
additional features like an extra layer of noise to indicate the weather (similar to
biomes in Minecraft). We can use fractals to generate the plans and trees, instead of
using preset 3d models. The possibilities are endless, and this is what is excellent
about PCG.

https://www.minecraft.net/en-us/
https://store.steampowered.com/app/313120/Stranded_Deep/

24

Bibliography

Perlin, Ken (1985). “An Image Synthesizer . Courant Institute of Mathematical Sci-
ences New York University”. In: 19.3, pp. 1–10. DOI: https://dl.acm.org/doi/
pdf/10.1145/325334.325247.

JamesE.Gentle (2002). “RANDOM NUMBER GENERATION AND MONTE CARLO
METHODS”. In: George Mason University. Chap. 1.1.

Gortler, Steven J. (2012a). “Foundations of 3D Computer Graphics”. In: MIT Press.
Chap. 22.2.

— (2012b). “Foundations of 3D Computer Graphics”. In: MIT Press. Chap. 1.1.
DAHLSKOG, STEVE (2016). “PATTERNS AND PROCEDURAL CONTENT GEN-

ERATION IN DIGITAL GAMES”. In: Malmo Univercity. Chap. 2.2.
Julian Togelius Mark J. Nelson, Noor Shaker (2016). “Procedural Content Generation

in Games”. In: Springer. Chap. 1.9.
Benjamin, Ward. Simplex Noise implementation. URL: https://github.com/WardBenjamin/

SimplexNoise.
Gustavson, Stefan. Simplex noise demystified. URL: http://staffwww.itn.liu.se/

~stegu/simplexnoise/simplexnoise.pdf.
Newzoo. 2018 Global Games Market Report. URL: https://web.archive.org/web/

20191102122939/https://newzoo.com/wp-content/uploads/2016/03/Newzoo_
2018_Global_Games_Market_per_Device_Segment.png.

— Top 25 Public Companies by Game Revenues. URL: https://newzoo.com/insights/
rankings/top-25-companies-game-revenues.

Perlin, Ken. Noise Hardware. URL: https://www.csee.umbc.edu/~olano/s2002c36/
ch02.pdf.

Talbot, Carrie. 2011’s Minecraft becomes the second best-selling game of August 2019. URL:
https://www.pcgamesn.com/minecraft/sales.

Unity. Creating a Quad. URL: https : / / docs . unity3d . com / Manual / Example -
CreatingaBillboardPlane.html.

— Surface shader manual. URL: https://docs.unity3d.com/Manual/SL-SurfaceShaders.
html.

— Unity Documentation. URL: https : / / docs . unity3d . com / ScriptReference /
Random.InitState.html.

— Unity User Manual. URL: https://docs.unity3d.com/Manual/index.html.
— Writing Shaders. URL: https://docs.unity3d.com/Manual/ShadersOverview.

html.

https://doi.org/https://dl.acm.org/doi/pdf/10.1145/325334.325247
https://doi.org/https://dl.acm.org/doi/pdf/10.1145/325334.325247
https://github.com/WardBenjamin/SimplexNoise
https://github.com/WardBenjamin/SimplexNoise
http://staffwww.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf
http://staffwww.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf
https://web.archive.org/web/20191102122939/https://newzoo.com/wp-content/uploads/2016/03/Newzoo_2018_Global_Games_Market_per_Device_Segment.png
https://web.archive.org/web/20191102122939/https://newzoo.com/wp-content/uploads/2016/03/Newzoo_2018_Global_Games_Market_per_Device_Segment.png
https://web.archive.org/web/20191102122939/https://newzoo.com/wp-content/uploads/2016/03/Newzoo_2018_Global_Games_Market_per_Device_Segment.png
https://newzoo.com/insights/rankings/top-25-companies-game-revenues
https://newzoo.com/insights/rankings/top-25-companies-game-revenues
https://www.csee.umbc.edu/~olano/s2002c36/ch02.pdf
https://www.csee.umbc.edu/~olano/s2002c36/ch02.pdf
https://www.pcgamesn.com/minecraft/sales
https://docs.unity3d.com/Manual/Example-CreatingaBillboardPlane.html
https://docs.unity3d.com/Manual/Example-CreatingaBillboardPlane.html
https://docs.unity3d.com/Manual/SL-SurfaceShaders.html
https://docs.unity3d.com/Manual/SL-SurfaceShaders.html
https://docs.unity3d.com/ScriptReference/Random.InitState.html
https://docs.unity3d.com/ScriptReference/Random.InitState.html
https://docs.unity3d.com/Manual/index.html
https://docs.unity3d.com/Manual/ShadersOverview.html
https://docs.unity3d.com/Manual/ShadersOverview.html

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Procedural generation in game development.
	Relevance
	Project goal

	Background information
	Procedural Content Generation
	Unity3d
	Random number generation
	Noise in PCG

	Implementation
	Generating Noise
	Generating a Mesh
	Terrain shader
	Improving the realism of the mesh
	Forest Generation
	Instantiating the trees

	Combining the Generations
	Results
	Conclusion
	Bibliography

