
UKRAINIAN CATHOLIC UNIVERSITY

BACHELOR THESIS

Basic Counter-Strike: Global Offensive
demo viewer

Author:
Marc SOUMOUSSOU KODJOVI

Supervisor:
Matvii KOVTUN

A thesis submitted in fulfillment of the requirements
for the degree of Bachelor of Science

in the

Department of Computer Sciences
Faculty of Applied Sciences

Lviv 2020

https://www.ucu.edu.ua
https://www.linkedin.com/in/marc-soumoussou-318458194/
https://ua.linkedin.com/in/matvii-matt-kovtun-32a87b158/
https://apps.ucu.edu.ua/computer-science/
https://apps.ucu.edu.ua/

ii

Declaration of Authorship
I, Marc SOUMOUSSOU KODJOVI, declare that this thesis titled, “Basic Counter-Strike:
Global Offensive demo viewer” and the work presented in it are my own. I confirm
that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

iii

UKRAINIAN CATHOLIC UNIVERSITY

Faculty of Applied Sciences

Bachelor of Science

Basic Counter-Strike: Global Offensive demo viewer

by Marc SOUMOUSSOU KODJOVI

Abstract

The video game industry is growing fast our days. It has a lot of big companies
which have at least one game which is their signature product in some genre. Gam-
ing industry gives tons of working places as it created a lot of different types of job
and generates a big amount of sales annually worldwide. One of the biggest and
popular games played on different levels from amateur to pro is Counter-Strike:
Global Offensive. That’s what we are going to talk about.

Code for this project can be found here: Github repository

HTTPS://WWW.UCU.EDU.UA
https://apps.ucu.edu.ua/
https://github.com/themsoum7/csgo-positioning

iv

Acknowledgements
I want to thank my family and my friends especially Myroslav and Volodymyr who
supported me throughout these years of studying and gave me a lot of important
advices.

v

Contents

Declaration of Authorship ii

Abstract iii

Acknowledgements iv

1 Introduction 1
1.1 Weapons List and Equipment . 1
1.2 Round Types . 1

1.2.1 Full Buy . 1
1.2.2 Force Buy . 2
1.2.3 Anti-Eco . 2
1.2.4 Eco-Round . 2

1.3 Ranks . 2
1.4 Rules/Gameplay . 3
1.5 Pro Scene . 3
1.6 CS:GO demos . 4
1.7 Problem . 4
1.8 Motivation . 4
1.9 Approach . 4

2 Background Information 6
2.1 Valve Corporation – CS series creator . 6

2.1.1 Foundation and HL . 6
2.1.2 Re-incorporation, Source and Steam 7
2.1.3 Games . 7
2.1.4 Steam . 7
2.1.5 Pipeline Project . 7

2.2 Source (game engine) . 7
2.2.1 Source Name . 8
2.2.2 Modularity . 8
2.2.3 Source SDK . 8
2.2.4 Academic Papers . 8

2.3 CS:GO demo parser . 9
2.3.1 How does it work? . 9

3 Related Works 10
3.1 Moneyballing 32k rounds of Counter Strike by Mads Bønding 10

3.1.1 Weapon of choice . 10
3.1.2 Utility Usage . 10
3.1.3 Mechanichal Skill . 10
3.1.4 Map Insights . 11
3.1.5 Executes . 11

vi

3.1.6 Effective use of HE grenades . 11
3.1.7 Kills and Deaths . 12

3.2 Finding classic smokes by T-side on mirage 12
3.3 CS:GO stats trackers . 12
3.4 Leetify . 13

3.4.1 How it works? . 13

4 Solution 14
4.1 Where this project’s idea came from? . 14
4.2 Start . 14
4.3 Direction change and approach . 14
4.4 Basic demo viewer and economy research 14
4.5 Tools used . 15

4.5.1 Python . 15
4.5.2 Matplotlib . 16
4.5.3 Flask . 17

4.6 Structure . 18
4.7 Results . 21

4.7.1 Demo results . 21
4.7.2 Economy results . 23

4.8 Conclusion . 24
4.9 What are the problems and what to do next 24

Bibliography 25

vii

List of Figures

2.1 Valve Corporation logo . 6
2.2 Source engine logo . 8

4.1 Python code example (factorial function) 15
4.2 Matplotlib code example . 16
4.3 Flask app code example . 17
4.4 In-game to on-image coordinates converting functions 18
4.5 Function which plots demo round by round 19
4.6 Example of Flask server function . 19
4.7 Example of economy calculating function 20
4.8 Example of economy plotting function 20
4.9 Demo by rounds with select of any round of the game 21
4.10 CT side demo view . 21
4.11 T side demo view . 22
4.12 Team 1 demo view . 22
4.13 Team 2 demo view . 23
4.14 T buy levels example . 23
4.15 CT buy levels example . 24

viii

List of Abbreviations

CS:GO Counter-Strike: Global Offensive
CS Counter-Strike
HL Half-Life
CT Counter-Terrorists
T Terrorists

1

Chapter 1

Introduction

Today Counter-Strike: Global Offensive (successor of Counter-Strike 1.6 and Counter-
Strike: Source) is one of the most popular games in the world. It’s a multiplayer FPS
game which was developed and released by Valve in 2012.
In 2018 CS:GO became a F2P (free to play) game meaning that Valve are focusing
on revenue from cosmetic items (weapons skins) and selling of special system that
allows you to play competitive games with less cheaters thanks to Trust Factor.
There are a lot of maps that are played in CS:GO both casually by regular players
and professionally by pros. But on tournaments pros play only active duty maps
which at the moment are: Dust 2, Mirage, Inferno, Vertigo, Nuke, Train and Over-
pass. They can be seen here: CS:GO Maps. Sometimes the pool changes, for example
when some older maps get reworked they might replace other maps that need to be
reworked.

1.1 Weapons List and Equipment

Knives: Stock Knife (CT), Stock Knife (T)
Pistols: P2000 (CT), USP-S (CT), Glock-18 (T), P250, Five-Seven, Tec-9, CZ75-Auto,
Dual Berettas, Desert Eagle and R8 Revolver
SMGs: MP9 (CT), MAC-10 (T), PP-Bizon, MP7, UMP-45, P90, MP5-SD
Rifles: FAMAS (CT), Galil AR (T), M4A4 (CT), M4A1-S (CT), AK-47 (T), AUG (CT),
SG553 (T), SSG08, AWP, SCAR-20 (CT), G3SG1 (T)
Heavy (Shotguns + Machine guns): Nova, XM1014, MAG-7, Sawed-Off (T), M249,
Negev
Grenades: HE grenade, Flashbang, Smoke grenade, Decoy grenade, Molotov (T),
Incendiary Grenade (CT)
Gear: Kevlar Vest, Kevlar + Helmet, Zeus x27, Defuse Kit/Rescue Kit (CT)

More info about weapons can be found here: CS:GO Weapons and Equipment

1.2 Round Types

There are different round types in CS:GO. Let me tell about them.

1.2.1 Full Buy

Lets’ start with Full Buy round. It’s a round when the team has a good economy and
can afford to buy Helmet + Kevlar and good weapons, also defuse kit for CT and
grenades to maximize their chances to win a round.

https://liquipedia.net/counterstrike/Portal:Maps
https://counterstrike.fandom.com/wiki/Weapons

2 Chapter 1. Introduction

1.2.2 Force Buy

Force Buy also called Half Buy is a round when each player in the team spends
money on equipment so they can avoid Eco’ing next round. This is very risky be-
cause if the team loses the round their economy will be destroyed but on the other
hand if they win the round there is a potential for the Force Buying team to stabilize
the team’s economy.

1.2.3 Anti-Eco

Anti-Eco is the round idea behind which is to shut down the enemy while they can’t
buy good weapons and maximize the amount of money you can earn in the round
by purchasing high kill reward weapons like SMG’s.

1.2.4 Eco-Round

Eco-Round or simply Eco is a round when the team tries to save as much money as
possible for next rounds. On eco you want to buy some pistol but still have money
for next round knowing what will be the loss bonus and if you’re going to have
the money to buy good weapon. Also you should analyze the economy of your
teammates so that you don’t eco and someone’s in your team makes a full buy or
force.

1.3 Ranks

There are 18 ranks in game:

• Silver I

• Silver II

• Silver III

• Silver IV

• Silver Elite

• Silver Elite Master

• Gold Nova I

• Gold Nova II

• Gold Nova III

• Gold Nova Master

• Master Guardian I

• Master Guardian II

• Master Guardian Elite

• Distinguished Master Guardian

• Legendary Eagle

1.4. Rules/Gameplay 3

• Legendary Eagle Master

• Supreme Master First Class

• The Global Elite

There are a lot of factors that impact player’s rank. Detailed info can be found fol-
lowing this link: CS:GO Ranking System

1.4 Rules/Gameplay

There are 2 teams of 5 players in CS that are fighting each other: Ts or TTs (terrorists)
and CTs (counter-terrorists). There also are different competitive game modes. In
first one Ts should plant the bomb and CTs should prevent Ts from doing that or
defuse it and in the second one Ts have to defend the hostages and prevents CTs
from rescuing them.
Either team can win a round simply by eliminating the opposite team. All rounds
in the game are 1:55 long. The game starts with pistol round and every player has
800$ to spend. There are weapon kills awards: knife – 1500$, CZ75-Auto (automatic
pistol) – 100$, other pistols + assault rifles + auto-snipers – 300$, AWP – 100$, P90
SMG – 300$, other SMGs – 600$, machine guns – 300$, shotguns – 900$ and grenade
– 300$. There is also weapon called Zeus x27 which doesn’t give any reward at all.
Also there is loss streak value: 1 round – 1900$, 2 rounds – 2400$, 3 rounds – 2900$
and 4 rounds streak which is the max gets you 3400$ for the round. You don’t need
to spend all the money because it transfers to the next round if you have something
left. The pistol round win by elimination of opposite team will give you 3250$ +
300$ if the bomb was planted (only for Ts). If the round was won by bomb detona-
tion (for Ts) or bomb defusal (for CTs) you get 3500$ instead of 3250$. If the Ts run
out of time and don’t plant the bomb or eliminate CTs they don’t get any rewards
but if they plant the bomb they get 800$ bonus added to the current loss streak value.
Then teams need to build up their economy to be able to buy better weapons. The
game goes up to 30th round and the team that gets to 16 round wins the game. When
the game reaches 15th round it’s called halftime and the teams change sides. So each
team can win by taking 16 rounds first against the other one or they can tie the game
with 15:15 score. But if both teams get 15 rounds in pro match they might play over-
times (need to check tournaments rules). Overtime is another 6 rounds. Overtime
starts with teams staying on the same sides they finished the regular rounds and
with maximum bank you can have. Overtime composes of 3 rounds, there also is
side change after 3 rounds played. The first one to 19 wins unless they tie again at
18:18 where it goes into double overtime and so on.

More information about matchmaking rules can be found here: CS:GO MM Rules

1.5 Pro Scene

CS:GO has a professional scene which has a lot of big tournaments held by third-
party organizations and the biggest tournament (Major) played every season of the
year which is also sponsored by Valve where 24 teams fight for the title of world’s
best team and 1 000 000$ prize money which is distributed between 16 best of 24
teams on the tournament. There is HLTV top teams which is composed during the
year where teams are distributed by the points they earned on big tournaments.

https://www.metabomb.net/csgo/gameplay-guides/csgo-ranks-guide-how-to-rank-up-in-competitive-matchmaking
https://counterstrike.fandom.com/wiki/Matchmaking

4 Chapter 1. Introduction

Usually professional CS:GO game are being streamed on twitch.tv (gaming stream-
ing platform). But as professional CS started to grow up in popularity companies
started to televise the game in cinemas and theatres. First such tournament was
ELEAGUE Major 2017. It even was translated on US cable television.

1.6 CS:GO demos

When you play CS:GO your match is being recorded. After that you can watch
the demo in any way you want, for example you can watch it from your POV or
other player’s POV or you can fly around the map to see the general situation at any
moment. Also there is a demo ui that allows you to control the demo, for example
stop, speed up, slow down, fast forward etc.
CS:GO demos are games replays saved in .dem files. DEM is a short name for demo.
It is a demo file format used by Source Engine (was used to create CS:GO). DEM
file contains match events which you can replay in-game. You can find your replays
in CS:GO replays folder but if you want to replay pro team’s matches demos you
can get them on hltv.org site. To want to watch the demo that wasn’t originally
created on your PC (for example your friend’s demo or pro team demo) you have to
download the demo and put it into csgo/ folder and then open the game and write
viewdemo demoname, where demoname is your demo file name without the .dem
extension.

1.7 Problem

Sometimes the top 1 teams from HLTV top in certain periods of time are performing
at such high level of play that no one can beat them. Not long ago the Danish pro
team Astralis was ranked top 1 team in CS:GO and they had 30+ win streak on one
of the competitive maps in CS. Analysts in general couldn’t say why this team was
performing so good. There most likely are patterns how the team plays and that’s
exactly what will be checked and analyzed in this project.

1.8 Motivation

I’m playing CS myself so I’m very motivated to learn some new aspects of the it in-
game and outside it. I like to watch my demos and analyze them myself and improve
in my playstyle in every way I possibly can. So that’s why I want to make this project
to improve even more than now by just watching demos and pro matches. Another
reason for me to get this project done for player who likes CS:GO and everything
about it to analyze a lot of data and find possible patterns in it. This project might
help me and others to see something you can’t normally see with your eyes in the
replay.

1.9 Approach

So in this project I want to parse CS:GO demos and to analyze which positions the
players were playing and where were they dying or getting a lot of kills to try under-
stand why they were so dominant on the map for such a long period of time. In this
project I’m going to use csgo-demoparser and use it to get the position/coordinates
of killer and the victim, then apply the coordinates grid to the map’s top view and

1.9. Approach 5

mark the data I will get from parser. Then connect the two marks and analyze this
new data and compare with other regular and pro teams demos. As I already men-
tioned there are a lot of maps but the starting point will be analyzing one of the
matches played by regular players then analyze one match of pro team on the same
map and then analyze this team’s matches on the same map for last 2 years and see
what we get as a result and what conclusion can we make based on it.

6

Chapter 2

Background Information

2.1 Valve Corporation – CS series creator

Valve Corporation is an American video game developer, publisher and digital dis-
tribution company. Valve developed Steam and a lot of popular games including
Counter-Strike series.
Valve was founded in 1996 by Gabe Newell and Mike Harrington. When Valve’s
debut product Half-Life was released it claimed commercial success. In 2003 Valve
launched Steam which became popular and accounted for around half of digital PC
games sales by 2011. By 2012 Valve became most profitable company per employee
in United States.

FIGURE 2.1: Valve Corporation logo

2.1.1 Foundation and HL

Valve was founded by former Microsoft employees Gabe Newell and Mike Haring-
ton.

Interesting fact: the corporation was founded on Newell’s wedding day.

“Fruitfly Ensemble” and “Rhino Scar” were considered as alternatives names for
company. Valve modified Quake engine into their new one called GoldSrc. It was
used to develop and release their first product Half-Life in 1998. According to IGN
in 2014, the history of FPS genre “breaks down pretty cleanly into pre-Half-Life and
post-Half-Life eras.”
The company released software development kit (SDK) for GoldSrc engine. It was
used by regular users to be able to develop mods (games modifications). One of
them being Counter-Strike became one of the most popular. Valve decided to hire
developers to create standalone Counter-Strike game.

2.2. Source (game engine) 7

2.1.2 Re-incorporation, Source and Steam

In 2003 Valve was re-incorporated in Bellevue, Washington. Then in 2010 the office
moved to larger location and then in 2016 Valve started renting nine-floor Lincoln
Square Complex, doubling the size of their offices.
After Half-Life’s success Valve worked on mods using their new Source engine and
started working on Half-Life 2 using this same engine. Source engine was also used
to create Team Fortress 2 from Team Fortress Classic. Team Fortress 2 and Portal
were developed by student teams hired by Valve.
Besides developing games Valve developed Steam which is a video game distri-
bution service. The idea behind creation of Steam was that Valve had to maintain
patches for games like Counter-Strike so that all players were up-to-date. Steam was
introduced in 2002 and was created by Valve themselves as other developers didn’t
won’t to help them. Originally you could only get Valve’s games on Steam but later
on they allowed third-party companies to sell their products and they would be tak-
ing cut of their revenues for content delivery. Steam became the most popular way
gamers use to acquire digital games. Steam is accounting up to 70% of all digital
sales.

2.1.3 Games

Valve is a developer and publisher of popular single-player games such as Half-
Life and Portal and multiplayer games like Counter-Strike, Team Fortress 2, Dota 2,
Artifact, Left 4 Dead and Left 4 Dead 2. Valve also released VR (virtual reality) game
Half-Life: Alyx on March 23, 2020 which is a spin-off of Half-Life series.

2.1.4 Steam

Valve announced Steam at the 2002 GDC (Game Developer Conference). It was
launched in 2003 and was used for patches and updates for Valve’s online games.
By July 2014 there were 3400 games available on Steam. And by January 2018 there
were over 150 million registered accounts. Valve announced that Steam had reached
over 67 million monthly and 33 million daily active users on the platform in August
2017.

2.1.5 Pipeline Project

Pipeline Project was announced as an intern project in July 2013 by Valve to teach
a group of 10 high school students how to create video game content and see if it’s
possible to train them with as they have minimal work experience. It was stated that
the company is not good at “teaching people straight out of school”.

2.2 Source (game engine)

Source is a 3D game engine developed by Valve and written in C++ programming
language. It is being developed since June 2004. One of Source’s main features is
its modular base and flexibility. Also Source engine is known for its lip sync speech,
technology of emotion expression and physics system. Source engine is constantly
incrementally updated instead of having a version numbering scheme.

8 Chapter 2. Background Information

FIGURE 2.2: Source engine logo

2.2.1 Source Name

Source’s engine predecessor is GoldSrc engine (also developed by Valve) which was
a modified version of Quake Engine. One of Valve’s employees explained that when
Valve were releasing the Half-Life game they forked off the code to be both /$Gld-
src and /$src because they didn’t have time to check the code and make changes
and they couldn’t risk it. Then at E3 (Electronic Entertainment Expo) when Valve
showed Half-Life 2 for the first time they were referring to the “Source” engine in-
stead of “GoldSource” and that name stuck. Slowly Source started replacing GoldSrc
in Valve’s projects.

2.2.2 Modularity

Source has modular base. This allows different systems to be represented as sepa-
rate modules which can be updated independently. This opposes "version jumps" of
Source’s competitors. With use of Steam (a video game digital distribution service
by Valve) Valve can make updates automatically among a lot of users. There was
though a break in compatibility chain when 2 Valve’s projects introduced new ver-
sions of the engine that required from developers to upgrade the code and in some
cases the content because it couldn’t be used to run older game and mods. But still
these cases required less work to update its version than competing engines.

2.2.3 Source SDK

Source SDK is a software development kit to develop assets for games used by Valve.
It has command-line programs and GUI-based programs designed for special func-
tions within asset pipeline and handling complex functions.
Hammer Editor, Model Viewer, and Face Poser create a package of Source SDK.
Hammer Editor is used to create maps using SDK’s rendering and compiling tools
and the binary space partitioning method. The Model Viewer allows users to view
and develop models. And Face Poser is the tool which is used to edit facial expres-
sions, gestures, movements lip sync and preview how all these actions will look in
the game’s engine scene.

2.2.4 Academic Papers

Valve sometimes produce academic papers for events and publications explaining
aspects of development of Source engine.

2.3. CS:GO demo parser 9

2.3 CS:GO demo parser

CS:GO demo parser (csgo-demoparser) is a library for parsing Counter-Strike: Global
Offensive demo files.
It processes the file and events are emitted for which callbacks can be registered.
It’s written in Python.

2.3.1 How does it work?

It parses .dem files created in CS:GO and gets messages from game events. The list
of game events can be found here: CS:GO Events List

https://wiki.alliedmods.net/Counter-Strike:_Global_Offensive_Events

10

Chapter 3

Related Works

3.1 Moneyballing 32k rounds of Counter Strike by Mads Bønd-
ing

The author of this article didn’t post any github repository and I didn’t manage to
find the code to it. But what I can tell is that as he said he used the data collected by
skihikingkevin which can be found here: skihikingkevin’s CS:GO data. So what he
does in this work is analysis of such things:

3.1.1 Weapon of choice

Here Mads analyzes the data and visualizes which weapons do players from Gold
Nova 1 rank to Legendary Eagle Master. First he only shows weapon’s choices on
normal buy rounds. And in the end we can see that most used weapons are AK47,
M4A4 and AWP on all analyzed ranks. Then Mads investigates force rounds buys
and we can see that on lower ranks players use SMG’s like UMP, P90, MP7, AK-47
rifle and Desert Eagle as pistol. Higher ranks use AK-47, Desert Eagle, Five-Seven
and UMP.

3.1.2 Utility Usage

In this part Mads shows that higher ranks players starting with DMG are using
more grenades that lower ranks players. As he says and shows on the figure we
can see that higher ranks use approximately 1 more grenade of each type except
Molotov/Incendiary and Decoy than lower ranks players.
The next figure shows the round win percentage based on CTs and Ts nade amount
difference per round. As we can clearly see the team that uses 5 more grenades more
than the opposite team wins 75% of the rounds. But as Mads says this might not be a
good way to show the utility usage and gives an example when on of your teammate
or you throws 2 flashbangs and flashes his team twice and then the opponent would
throw just one incendiary to stop your team from pushing the bombsite and that
would count like a superior usage on your part (because the amount of flashes is
greater than amount of incendiary).

3.1.3 Mechanichal Skill

Coming to the hitting of shots. Headshots almost always result in instant kill. All
weapons can kill you with headshot if don’t have a helmet but if you do there are
some weapons that need 2 headshot hits to kill. After playing a bit of CS you would
probably think higher ranks are hitting the shots better than low ranks. But that’s

https://medium.com/@madsbnding/moneyballing-32-000-rounds-of-counter-strike-9cc4a9f493ef
https://www.kaggle.com/skihikingkevin

3.1. Moneyballing 32k rounds of Counter Strike by Mads Bønding 11

not really true. As we can see on Mads’s figure high ranks have only 4% more
headshot hits than low ranks. All other parts of body hits have pretty much the
same percentage on any of observed ranks.

3.1.4 Map Insights

In this part we can observe which positions on the map are likely to be smoked by
Ts for all those ranks which Mads is analyzing on Mirage map. So the common po-
sitions that are getting smoked are: Stairs, Jungle, CT, Window, Top mid, Short. We
can see that all the smokes are focused on mid and A bombsite areas of the map with
a very little amount of smokes on B bombsite (actual for all the ranks).

Next Mads shows where were the smokes thrown from and where they landed.
We can see that most common smokes on MGE ranks are:

• From T spawn to Window and Stairs for Ts

• From CT to T ramp, from Stairs to Palace on A and from Kitchen Window and
Car to B apps for CTs

3.1.5 Executes

Execute of bombsite is when the team decides to enter one of 2 bombsites with the
help of utility (smokes, flashes and molotovs, sometimes HEs).
Mads shows that execute with 3 smokes on A is the most common tactic for Ts on
mirage. The 3 smokes are Stairs, Jungle and CT. Just these 3 smokes cut off CTs
vision and the Ts can enter the bombsite under cover for 15 seconds. After that
time the smokes will fade and it will be very hard to enter the bombsite. From 146
instances of this triple smoke tactic that Mads analyzed 60% of the time the execute
results in A site bomplant.

3.1.6 Effective use of HE grenades

Here Mads analyzed in which spots on the map HE deal the most damage. So he
split 20k of HE nades into 25 clusters and then he checked which clusters have the
highest hitrate (nades that do damage). So here are the results.

Most hitrate spots:

• Default/Ninja – 49.2% hitrate

• Tetris/T ramp – 43.9% hitrate

• Top mid – 42.8% hitrate

• Firebox – 42.6% hitrate

• T spawn – 49.2% hitrate

Most average damage spots:

• Apps – 38 avg. damage

• Palace – 30 avg. damage

• Tetris/T ramp – 30 avg. damage

12 Chapter 3. Related Works

• T ramp stairs – 30 avg. damage

• T spawn/T ramp – 29 avg. damage

Mads also gave the timings at which you should use the HEs but that’s not really
relevant info because throwing HEs is a situational thing.

3.1.7 Kills and Deaths

And in the final part of this article Mads shows where people kill and die the most
on Mirage.
We can see on figures that on all ranks people kill and die on the same spots. Those
spots are: Connector, Palace, Apps, Stairs, Jungle, Ramp, CT, Tetris and Window.
And after that he gives more interesting ideas to explore.

3.2 Finding classic smokes by T-side on mirage

Here is the link for this project: billfreeman44’s project This project was done by Bill
Freeman in Python. He used K-means to find common nades on mirage.
He started by reading the data about grenades in matchmaking specifying smoke
grenade for T side on Mirage map. Then he used game to image coordinate con-
verter to get the positions of Ts and their smokes landing positions. Bill dropped old
(pre-converted) data and plotted the result on Mirage image. Then he used the K-
means algorithm to create 25 clusters of smoke throwers to show the most common
positions for Ts to throw smoke from.
And in the end as well as Mads he gave some ideas what to explore more.

3.3 CS:GO stats trackers

There are 3 most popular sites to check your CS:GO stats when you search for “csgo
stats” in Google:

• csgostats.gg

• csgo-stats.com

• tracekr.gg

They do pretty much the same. All 3 of these sites can tell:

• your K/D ratio

• actual hours in matches (not just in-game)

• HS

• deaths count

• winrate

• MVP count

• headshots count

• score (sum of points for all your games)

https://www.kaggle.com/billfreeman44/finding-classic-smokes-by-t-side-on-mirage
https://csgostats.gg/
https://csgo-stats.com/
https://tracker.gg/csgo

3.4. Leetify 13

• bombs planted and defused count

• shots accuracy

• wins and losses count and a lot more statistics of this kind

3.4 Leetify

But there is one site I discovered recently. It’s leetify.com.

3.4.1 How it works?

You give it match history sharing code, so it can analyze your matches. The good
thing is you don’t need to give a new code every time. After you played a new game
it will be uploaded on the site automatically and you will be able to see all the info.
After it loads and analyzes your matches it gives you the stats you actually need to
become better. So this site gives you the ability to check every match separately.

You can basically see everything. For example:

• when the match was played, which map, what was the score

• you can download the game from the site (no need to start CS and getting a
sharing code to do it)

• general stats like (KDA, HS kills count, HS%, players ranks, players steam
profiles)

• activity breakdown (shost fired, dmg done, dmg/shot, time alive, thrown grenades
count)

• aim group (HS accuracy, general accuracy (all shots), spray accuracy, counter-
strafing %, crosshair placement, time to damage)

• utility group (flash assists, enemies flashed, teammates flashed, dmg per HE,
unused utility on death, CT smokes that stopped rush %)

You can also check visualizations of your utility usage and aim for certain period
of time which you will choose. Also the site will show you your stats compared to
average stats on your rank so you can see the difference and know how to improve,
it will even tell you how to improve and offer video links so it will be easier for
you to understand. In the “Aim” tab the site will show you the spray patterns of
different weapons and how does your spray pattern look compared to the original
one. Here you will also find some stats related to aim, there will be the option to
check details of any of those stats for all weapons and how to improve them if you
have lower % compared to average for your rank. As a result it can be said that
this is the most advanced CS:GO tracker site which can help player improve their
gameplay for sure.

https://beta.leetify.com/app

14

Chapter 4

Solution

4.1 Where this project’s idea came from?

At the beginning of thesis I actually had a completely different idea for my project
which was declined by Dean’s Deputy and wasn’t related to CS:GO and Python, but
to web development. So it was quite hard time getting used to Python.

4.2 Start

First the goal was to collect from CS:GO demos and analyze it in the way that as
result I would get some kind of patterns, parameters or dependencies in this data.
How did I try to collect data? So I used csgo-demoparser which has a limited lists of
in-game events which return some messages/values. That means it is not possible
to get all the data that is needed for this goal. For example data like what was the
map played, start and end time, duration i.e. match metadata. Along with the demo
file there is .dem.info file saved which might contains this information. So why not
use it? Because if you want to analyze pro match which can be downloaded from
hltv.org as .zip file contains only .dem file and nothing more. Besides that it’s very
hard to think of some features/factors which could describe why one team plays
better than other that you wouldn’t see from demo. So the conclusion is that there is
not much point of moving in this direction.

4.3 Direction change and approach

Now as I showed what people did in Related Works I decided to not really analyze
data, but to use it to create some kind of basic demo viewer. What I did was taking
events which I could get use of and first analyzed what they return and how to work
with that data.
After figuring out the events I thought of what I want to get as result. And knowing
there are already a lot of different things done in CS:GO world I came to the idea of
basic demo viewer.

4.4 Basic demo viewer and economy research

This idea attracted me because I didn’t see anything like that on internet. Basic demo
viewer is a simple system which allows a user to upload demo to the server and get
round by round plots which user can change. Also there are some more plots which
show demo by team side (T or CT) and team number (Team 1 and Team 2).

4.5. Tools used 15

After that I thought it would be interesting to also research some every round econ-
omy and plot it to see round by round both sides money situation displaying it with
levels from 1 to 5.
Steps to see demo by rounds:

1. Run server

2. Upload demo to server

3. Wait until server works with demo

4. See the results on page

4.5 Tools used

For this project implementation I used Python as programming language and Flask
as web framework which is also written in Python. For plotting data Matplotlib
library was used.

4.5.1 Python

This is interpreted object-oriented programming language. It has dynamic typing
semantic and high-level data structures which makes it a good programming lan-
guage for fast software development. Python is modular and allows reusage of code.
As already mentioned it’s a interpreted language which means it has the interpreter
which executes code directly line by line and stops the script execution is case any
error occurs. Also Python shows only one error even if there are multiple which
allows easier debugging.

FIGURE 4.1: Python code example (factorial function)

Python advantages:

• Clear and easy syntax

• Portability

• Possibility of using a command line interpreter for solving easy tasks

• Very useful for solving mathematics tasks

16 Chapter 4. Solution

• Open source code which allows other users to modify it

Languages like ABC, Modula-3, C, C++, Smalltalk, Lisp, Fortran, Miranda, Java and
Icon had influence on Python which collected some of the key features which it has
now. Python is portable and works almost on every platform. Of course with the
flow of time some platform stop to support newer Python versions but they can still
use older versions. It has an interactive mode which allows even experienced pro-
grammers to test parts of code before using them in main program.

Python disadvantages:

• Slow code execution (compensates with general development time and more
compact code than same code on Java or C++)

• No possibility to modify built-in classes

• GIL (Global Interpreter Lock)

Overall Python is very popular language which is used in a big amount of projects
mostly for building extensions and apps integrations or as main language.

4.5.2 Matplotlib

It’s a library mostly used for 2D data visualizations which can be saved as images.
These images can be used in things like computer graphics, publications or web
applications. It’s built based on OOP principles.

FIGURE 4.2: Matplotlib code example

Possibilities of Matplotlib:

• Line plot

• Scatter plot

• Bar plot

• Histogram

User can add axes labels and title to plots. Matplotlib also allows to create animated
images.

Here are supported image formats:

4.5. Tools used 17

• EPS

• EMF

• JPEG

• PDF

• PNG

• PostScript

• RGBA

• SVG

• SVGZ

• TIFF

Pylab interface allows users which worked with MATLAB before to easily use Mat-
plotlib. This library has some advantages over MATLAB: SVG support, open source
software and it’s free.

4.5.3 Flask

Flask is a web framework written in Python as mentioned before. It’s based on
two components. First being Werkzeug (realization of software objects for request,
response and utility functions) and second being Jinja2 (web template engine).
Flask was created by group of Python enthusiasts in 2004 being originally just an
idea for April Fool’s which became popular and made into serious project.

FIGURE 4.3: Flask app code example

Flask’s main features:

• Development server and debugger

• Jinja templating

• Secure cookies support

• Unicode based

• Detailed documentation

• Extensions support for extending features

In Python Developers Survey 2018 Flask was voted the most popular web frame-
work.

18 Chapter 4. Solution

4.6 Structure

Some files might look strange. That’s because as I mentioned before I was writing it
for analyzing data and figuring out some features/factors that would tell why one
team plays better than another and as my time was limited I decided not to change
some functions or code fragments. For example I would read multiple demos and
collect data so I was reading the whole directory but now I have only one file at a
time but I still use the code for reading the directory and adding all its files to list.

get_coordinates.py – is a Python script where all needed event’s messages are added
to list including attackers and victims positions. This data then is converted to Pan-
das Dataframe and saved as .csv file. Almost all the data was created manually
meaning that for some crucial data there was no events so I had to think other ways
to get it. It is worth mentioning that demo in-game coordinates and coordinates on
image are different so there are two functions for converting X and Y coordinates for
certain map.

FIGURE 4.4: In-game to on-image coordinates converting functions

One problem here is that those startX, startY, endX and endY are unique to each map
in CS:GO. resX and resY are dimensions of image to which you want to convert the
coordinates.

4.6. Structure 19

split_demos_to_images.py – Python script which reads .csv data about demo
and plots it for different parameters.

FIGURE 4.5: Function which plots demo round by round

Example of function which plots every round of the game with lines connecting at-
tacker and victim respectively.
Right now it only works with Dust 2 map from CS:GO but in future I’m planning to
do map choice when uploading demo.

server.py – Flask server which contains code that is responsible for file uploads
and processing those files data in order to show the plots on server where you
can choose different rounds and different plots in general (for example for sides
or teams).

FIGURE 4.6: Example of Flask server function

20 Chapter 4. Solution

economy_research.py – Script which calculates buy level in each round for both
T and CT sides.

FIGURE 4.7: Example of economy calculating function

economy_to_plot.py – Script which reads .csv data about the demo and plots econ-
omy levels of both sides on separate plots.

FIGURE 4.8: Example of economy plotting function

4.7. Results 21

4.7 Results

4.7.1 Demo results

Results which I achieved can be seen on the following figures.

FIGURE 4.9: Demo by rounds with select of any round of the game

FIGURE 4.10: CT side demo view

22 Chapter 4. Solution

FIGURE 4.11: T side demo view

FIGURE 4.12: Team 1 demo view

4.7. Results 23

FIGURE 4.13: Team 2 demo view

4.7.2 Economy results

FIGURE 4.14: T buy levels example

24 Chapter 4. Solution

FIGURE 4.15: CT buy levels example

4.8 Conclusion

I would like to say that I got to my goal in this project. But I had to change direction
and it’s still a really interesting project for me as player and developer to improve
this project and find ways to collect more data about the matches and use it to create
something that might become popular in CS:GO pro scene and used by many pros
and team coaches.

4.9 What are the problems and what to do next

The main problem as I mentioned is that there is for example no CS:GO API or some-
thing like this to help with data collection.

What are my next steps:

• To try collect the data I needed for my original idea with CS:GO positioning
analysis

• Add map choice for demo

• Split map by spots and analyze K/D (kill/death) ratio on them

• Analyze demos with trade kills (it’s the situation when you “trade” your team-
mate when he is killed by enemy) and without to see % difference in winrate

• How good are the players throwing different nades (especially smokes and
flashes). See the impact. Do they land correctly?

There is for sure much more interesting stuff to do which I’m willing to realize with
my teammates.

25

Bibliography

[1] Introduction to CS:GO, https://dotesports.com/counter-strike/news/
beginners-in-depth-introduction-to-csgo-and-its-economy-system-7770

[2] Introduction to Python, https://www.python.org/about/gettingstarted/

[3] Flask documentation, https://flask.palletsprojects.com/en/1.1.x/

[4] Matplotlib documentation, https://matplotlib.org/3.2.1/contents.html

[5] Mads Bønding’s CS:GO project, https://medium.com/@madsbnding/
moneyballing-32-000-rounds-of-counter-strike-9cc4a9f493ef

[6] CS:GO positioning analysis by mdolr, https://www.kaggle.com/mdolres/
cs-go-positionning-analysis/data

[7] Billfreeman44’s finding classic smokes for T side on Mirage, https://www.
kaggle.com/billfreeman44/finding-classic-smokes-by-t-side-on-mirage

[8] CS:GO Events list and descriptions, https://wiki.alliedmods.net/
Counter-Strike:_Global_Offensive_Events

[9] CS:GO demoparser, https://github.com/ibm-dev-incubator/demoparser/
tree/5e04604f421a0378b8408e32b5ce36adc7776b37

[10] Valve Corporation, https://en.wikipedia.org/wiki/Valve_Corporation

[11] Source Engine, https://en.wikipedia.org/wiki/Source_(game_engine)

https://dotesports.com/counter-strike/news/beginners-in-depth-introduction-to-csgo-and-its-economy-system-7770
https://dotesports.com/counter-strike/news/beginners-in-depth-introduction-to-csgo-and-its-economy-system-7770
https://www.python.org/about/gettingstarted/
https://flask.palletsprojects.com/en/1.1.x/
https://matplotlib.org/3.2.1/contents.html
https://medium.com/@madsbnding/moneyballing-32-000-rounds-of-counter-strike-9cc4a9f493ef
https://medium.com/@madsbnding/moneyballing-32-000-rounds-of-counter-strike-9cc4a9f493ef
https://www.kaggle.com/mdolres/cs-go-positionning-analysis/data
https://www.kaggle.com/mdolres/cs-go-positionning-analysis/data
https://www.kaggle.com/billfreeman44/finding-classic-smokes-by-t-side-on-mirage
https://www.kaggle.com/billfreeman44/finding-classic-smokes-by-t-side-on-mirage
https://wiki.alliedmods.net/Counter-Strike:_Global_Offensive_Events
https://wiki.alliedmods.net/Counter-Strike:_Global_Offensive_Events
https://github.com/ibm-dev-incubator/demoparser/tree/5e04604f421a0378b8408e32b5ce36adc7776b37
https://github.com/ibm-dev-incubator/demoparser/tree/5e04604f421a0378b8408e32b5ce36adc7776b37
https://en.wikipedia.org/wiki/Valve_Corporation
https://en.wikipedia.org/wiki/Source_(game_engine)

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Weapons List and Equipment
	Round Types
	Full Buy
	Force Buy
	Anti-Eco
	Eco-Round

	Ranks
	Rules/Gameplay
	Pro Scene
	CS:GO demos
	Problem
	Motivation
	Approach

	Background Information
	Valve Corporation – CS series creator
	Foundation and HL
	Re-incorporation, Source and Steam
	Games
	Steam
	Pipeline Project

	Source (game engine)
	Source Name
	Modularity
	Source SDK
	Academic Papers

	CS:GO demo parser
	How does it work?

	Related Works
	Moneyballing 32k rounds of Counter Strike by Mads Bønding
	Weapon of choice
	Utility Usage
	Mechanichal Skill
	Map Insights
	Executes
	Effective use of HE grenades
	Kills and Deaths

	Finding classic smokes by T-side on mirage
	CS:GO stats trackers
	Leetify
	How it works?

	Solution
	Where this project’s idea came from?
	Start
	Direction change and approach
	Basic demo viewer and economy research
	Tools used
	Python
	Matplotlib
	Flask

	Structure
	Results
	Demo results
	Economy results

	Conclusion
	What are the problems and what to do next

	Bibliography

