
UKRAINIAN CATHOLIC UNIVERSITY

BACHELOR THESIS

Evolution of digital organisms in truly
two-dimensional memory space

Author:
Mykhailo POLIAKOV

Supervisor:
Oleg FARENYUK

A thesis submitted in fulfillment of the requirements
for the degree of Bachelor of Science

in the

Department of Computer Sciences
Faculty of Applied Sciences

Lviv 2020

https://ucu.edu.ua/en/
https://www.linkedin.com/in/mxpoliakov/
https://www.linkedin.com/in/oleg-farenyuk-9625951b/
https://apps.ucu.edu.ua/en/computer-science/
https://apps.ucu.edu.ua/en/

i

Declaration of Authorship
I, Mykhailo POLIAKOV, declare that this thesis titled, “Evolution of digital organisms
in truly two-dimensional memory space” and the work presented in it are my own.
I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

ii

UKRAINIAN CATHOLIC UNIVERSITY

Faculty of Applied Sciences

Bachelor of Science

Evolution of digital organisms in truly two-dimensional memory space

by Mykhailo POLIAKOV

Abstract

Artificial life is the field of study where researchers use simulations to understand
natural life. One of the notable simulations of artificial life is called Tierra. In Tierra,
self-replicating programs acting as organisms compete for CPU time and RAM un-
der the pressure of natural selection. In time, various types of organisms develop,
including parasites, hyperparasites, and even some form of social relationships. The
problem with this simulation is that informational complexity stalls after some initial
growth; evolution stops producing new types of organisms and is not open-ended.
Within the Tierra simulator, the memory address space is one-dimensional; no mat-
ter how far away the resource is located, the effort is the same. This thesis is focused
on replacing one-dimensional or pseudo-two-dimensional memory space of Tierra
and Tierra-like simulators, like Avida or Amoeba, with real two-dimensional space
and refining the concepts of the location and local access to achieve a more open-
ended evolution.

HTTPS://UCU.EDU.UA/EN/
https://apps.ucu.edu.ua/en/

iii

Acknowledgements
I want to thank Oleg Farenyuk for bringing me into the world of artificial life, pro-
viding wonderful ideas, and guiding me through the process of creating this work. I
am grateful to Dr. Thomas Ray and Dr. Bohdan Ostash for reviewing the thesis and
providing valuable suggestions on how to improve it.

iv

Contents

Declaration of Authorship i

Abstract ii

Acknowledgements iii

1 Introduction 1
1.1 Historical origins of artificial life . 1
1.2 First cellular automata . 1
1.3 Model of the evolution . 2

2 Related works 3
2.1 Tierra . 3

2.1.1 Simulation overview . 3
2.1.2 Operation system . 4
2.1.3 Evolutionary results . 6

2.2 Avida . 7
2.3 Amoeba . 9

3 Two-dimensional artificial life simulator 10
3.1 An idea to increase the complexity . 10
3.2 Befunge . 10
3.3 Organism structure . 11
3.4 Instruction set . 11
3.5 Memory . 13
3.6 Queue . 13
3.7 Ancestor . 13
3.8 Implementation . 15

4 Results 17
4.1 Micro-evolution . 17
4.2 Macro-evolution . 19
4.3 Complexity . 23

5 Conclusion 24
5.1 The behavior of the simulation . 24
5.2 Further work . 24
5.3 Afterword . 25

Bibliography 26

v

List of Figures

1.1 Cellular automata . 2

2.1 Normal addressing vs. template addressing 4
2.2 Tierran operation system model (Hickinbotham & Stepney, 2015, p. 2) 5
2.3 Tierran memory snapshots with organism types (Ray) 6
2.4 Phyletic gradualism vs. punctuated equilibrium (Jensen, 2015) 7
2.5 CPU and memory structure in Avida (Ofria, 2003, p. 74) 8
2.6 Memory space in Amoeba (Greenbaum & Pargellis, 2016, p. 4) 9

3.1 Tierra, Avida, Amoeba vs. Fungera memory design 13
3.2 An overview of the Fungeran ancestor algorithm 14
3.3 Fungeran TUI at the start of simulation (around 80000 cycles) 16
3.4 Fungeran TUI at the later stages simulation (around 360000 cycles) . . 16

4.1 Non-critical regions (A) and mutations in them (B) 17
4.2 The organism with mutation that allows faster reproduction 18
4.3 The [16, 23] organism allocates child memory block without rewriting it 18
4.4 Swarm of microvesicles and their host organism 19
4.5 [17, 23] organisms in the large scale simulation 20
4.6 [16, 23] & [17, 22] organisms in the large scale simulation 20
4.7 [5, 5] and [1, 2] microvesicles in the large scale simulation 21
4.8 [4, 4] and [1, 1] microvesicles in the large scale simulation 21
4.9 Simplified evolution tree for the simulation 22
4.10 Cycles per second in the simulation . 23
4.11 Total organism count in the simulation 23

vi

List of Tables

3.1 CPU structure in Fungera . 11
3.2 Instruction set in Fungera . 12

4.1 Top 10 size classes by organism count in Fungera 22

vii

List of Abbreviations

OS Operating System
CPU Central Processing Unit
RAM Random Access Memory
DNA DeoxyriboNucleic Acid
RNA RiboNucleic Acid
MIMD Multiple Instructions, Multiple Data
IP Instruction Pointer
TUI Text User Interface
GUI Graphical User Interface
API Application Programming Interface

1

Chapter 1

Introduction

1.1 Historical origins of artificial life

It is possible to trace humanity’s attempts to understand and replicate the nature
of life from antiquity (Langton, 1989). Notably, in Greek mythology, Talos is the
giant bronze robot created by the god Hephaestus that is guarding Crete against
invaders and pirates (Mazlish, 1995). In the middle ages, Al-Jazari created four au-
tomatic robot musicians, who were sitting in a boat and entertained guests at parties
(Sharkey, 2007). Famous Leonardo Da Vinci designed and built a mechanical knight
capable of humanistic movements during the Italian Renaissance (Panse, 2019). In
1739, French engineer Jacques de Vaucanson created a mechanical duck, which could
fake metabolism (Mazlish, 1995). Search for mentions of artificial life in the Google
books database, interestingly, not only shows a peak in 1997 but also in 1821. In this
period, was a time when Frankenstein or The Modern Prometheus by Mary Shelley
was published, and many subsequent works as well (Aguilar et al., 2014).

1.2 First cellular automata

John von Neumann, famous for his contribution to mathematics, physics, and com-
puting, created self-replication in cellular automation that he simulated with paper
and pencil in 1949. Two years later, he designed an elaborate two-dimensional cellu-
lar automaton that would automatically duplicate its original configuration of cells
(Wolfram, 2002, p. 1179) (Figure 1.1a). Interestingly, von Neumann created working
cellular automaton one year before DNA was discovered. Although he did not use
the term artificial life, this can be considered a first artificial life model.

John Conway created the Game of Life in 1970, which provided a new force for
research of cellular automata. It models the effects of reproduction, population, and
survival. Cells in an infinite two-dimensional orthogonal grid can be in one of two
states, populated or unpopulated. Each cell interacts with its eight neighboring cells
and, at each step, the following transitions happen (Marinescu, 2017) (Figure 1.1b):

• A populated cell with fewer than two populated neighbors dies. This transi-
tion is for under-population.

• A populated cell with more than three populated neighbors dies. This transi-
tion is for over-population.

Chapter 1. Introduction 2

• A populated cell with two or three populated neighbors lives. This transition
is for survival.

• An unpopulated cell with three populated live neighbors becomes a populated
cell. This transition is for reproduction.

(A) Neumann’s automata (Pesavento, 1995) (B) Game of Life (Bettilyon, 2018)

FIGURE 1.1: Cellular automata

1.3 Model of the evolution

Nevertheless, the branch of science named artificial life officially came into being at a
workshop only in 1987 at the Los Alamos National Laboratory organized by a com-
puter scientist Christopher Langton. The reason behind its creation was the need to
research complex topics in the global economy, natural processes, biology, and evo-
lution in particular (Wilson, 2001, p. 34). The idea was to create new instruments
based on computer science and mathematics of nonlinear systems to solve the prob-
lems in these subjects. At this workshop, scientists presented mathematical models
for the origin of life, self-reproducing automata, programs using the mechanisms of
Darwinian evolution, models of growth, and development of artificial plants. While
they worked together, it became obvious that all the participants shared a similar set
of visions in their prior research (Pfeifer, 2001, p. 4).

They proved that linear models could not describe many natural phenomena.
However, nonlinear models cannot be solved easily analytically. They are instead
better suited for investigation using bottom-up computer simulations with relatively
simple rules. Langton believed at the time that such systems would greatly ex-
pand our knowledge of life, nature, and evolution (Langton, 1989, p. 16). Biologist
Tom Ray developed a system of self-replicating computer programs competing and
evolving for CPU time and memory space in 1991, demonstrating the first instance
of artificial evolution by natural selection (Aguilar et al., 2014). Its successor, Avida,
by Chris Adami, is used frequently by researchers to conduct biological experiments
(Adami & Brown, 1994). Amoeba is the simulator that shows the evolution from the
primordial soup to biotic organisms (Pargellis, 2001).

3

Chapter 2

Related works

2.1 Tierra

2.1.1 Simulation overview

Tierra is one of the most successful and best known artificial life simulations, devel-
oped by biologist Tom Ray in the early 1990s. Natural life is using energy to arrange
matter. As such, artificial life can use CPU time to arrange memory space. Biological
evolution evolves through natural selection as individuals compete for resources.
Artificial life may evolve through the same process, as replicating algorithms com-
pete for CPU time and memory space, and organisms develop approaches to exploit
one another. CPU time is the analog of the energy resource. Memory is the analog of
the spatial resource. The memory, the CPU, and the OS are acting as elements of the
physical environment. In Tierra, memory is a line, so the space is one-dimensional.
An organism consists of a self-replicating machine code program that is directly exe-
cuted by the CPU. Machine codes can be represented as assembler language (Figure
2.1) to make it human-readable. When executed by the CPU, machine codes manip-
ulate bits, bytes, CPU registers, and the instruction pointer. In biology, the analogy
is RNA. It similarly has a structure that bears the genetic information and controls
the metabolism of organisms. A block of RAM is called a soup, reference to Primor-
dial soup, which contains all organisms. The genome of the organisms is a series of
machine instructions that construct the organism’s self-replicating code (Ray, 1991,
p. 5).

The simulation is working on a parallel MIMD virtual computer with a CPU for
each organism. There is no true parallelism because each CPU executes in a time
slice in turn. Each CPU of this virtual computer includes two address registers, two
numeric registers, a flags register to indicate error conditions, a stack, and an instruc-
tion pointer. The instruction set of a CPU does simple arithmetic operations, moves
data between the CPU registers and the RAM, and controls the IP. The organism’s
CPU is a simple version of the real CPUs. The classic Tierran instruction set contains
32 instructions. The instruction set contains a low number of instructions, and these
instructions do not contain numeric operands to significantly lower the number of
possible opcode combinations compared to the real CPUs. This unusual behavior
allows mimicking a number of codon combinations in the DNA. The instruction set
contains both typical instructions of most assembler languages (e.g., MOV, CALL, RET,
POP, PUSH) and some special instructions to allow easy self-replication and evolution.

Chapter 2. Related works 4

For example, these include the instruction to allocate memory for child organism
and to separate a child organism, thus allowing for the creation of a new organism
(Ray, 1991, p. 6).

Another vital feature is addressing by the template. In most assemblers, when a
JMP instruction is performed, the IP jumps to another address in memory specified
in the instruction. In the biological system, by contrast, one molecule presents a tem-
plate on its surface, which is complementary to some surface of another molecule.
Diffusion draws the pair together, and the complementary formations allow them
to communicate. Addressing by the template is done by the Tierran JMP instruction.
Each JMP instruction is followed by a sequence of two kinds of NOP operations: NOP0
and NOP1. This sequence is the Tierran template. The system will seek out in both
directions from the JMP instruction scanning for the next appearance of the comple-
mentary sequence. For example, if the template is NOP0 NOP1 NOP0, then its com-
plement is NOP1 NOP0 NOP1 (Figure 2.1). When the system finds the complementary
template, the IP will move to the end of the complementary template and continue
operation. Also, Tierra uses templates to denote the start and end of the organism’s
genome. For optimization reasons, the finding range is limited (Ray, 1991, p. 7).

FIGURE 2.1: Normal addressing vs. template addressing

2.1.2 Operation system

The Tierran simulation runs on a virtual computer, and the OS provides memory
allocation services. Each organism has exclusive write privileges inside its allocated
block. The size of an organism is just the size of its allocated block, which usually
matches the size of the genome. While write privileges are protected, read and ex-
ecute privileges are not. An organism can read the code of another organism and
also execute it, but it cannot rewrite the code of another organism. It means that
Tierran organisms have a digital analogy of a semipermeable membrane. Each or-
ganism may have exclusive write privileges in at most one or two blocks of memory:

Chapter 2. Related works 5

the original one, and a second block which it may create when executing the MAL
instruction. In the second block, the child organism builds gradually. When Tierran
organisms divide, the child organism in the second cell has its separate CPU with
IP, stack, and registers. It becomes a separate organism that can allocate its second
block of memory. The parent organism can also create its next children. The time
slicer executes the instructions for each organism CPU in turn and simulating par-
allelism. It is possible to configure the slicer in a way to give advantages to small
organisms, large organisms, or be size-neutral. (Ray, 1991, p. 9) (Figure 2.2).

FIGURE 2.2: Tierran operation system model (Hickinbotham & Step-
ney, 2015, p. 2)

Self-replicating organisms in a fixed size memory would quickly fill the memory.
It is reasonable to avoid this situation by creating mortality. The Tierran operating
system includes a reaper queue that starts killing organisms by removing them from
a queue when the memory fills to some specified level. Organisms at the top of the
queue deallocate their memory resource, and the queue removes them from the sim-
ulation. When an organism executes an instruction that generates errors, it moves
up the queue. The result of the reaper queue is causing organisms that generate er-
rors to die more quickly. Robust organisms, therefore, stay longer, but generally, the
probability of death grows with time (Ray, 1991, p. 9).

The evolution starts from a single self-replicating program, which is 80 instruc-
tions long. This program is the ancestor organism. Its task is only to self-replicate,
and it has no other unusual evolutional behaviors. In order for evolution to happen,
there must be some modification in the code of the organisms. The OS randomly
flips bits in the memory, and the instructions may sometimes produce unexpected
results. This randomness is similar to mutations made by cosmic rays and has the
effect of restricting any organism from living forever, as it will ultimately mutate to
death. Also, bits flip randomly at some rate while copying instructions during the

Chapter 2. Related works 6

replication of organisms. In addition to mutations, the execution of instructions is
sometimes flawed. For example, the increment instruction normally adds one to its
register, but it sometimes adds two or zero. (Ray, 1991, p. 10).

2.1.3 Evolutionary results

Once the memory is full of replicating organisms, individuals are initially short-
lived, generally reproducing only once before dying (Ray, 1991, p. 19). More slowly,
there appear new genotypes of the size of the ancestor, and then different sizes.
There are changes in the code of each size class, as new modifications appear, some
of which grow in number, eventually succeeding the ancestor. Over time, new size
classes appear, and the community becomes diverse, there is a greater variety in or-
ganism types. Several different behavior types of organisms appear which demon-
strate micro-evolutional results (Ray, 1991, pp. 12-14) (Figures 2.3a and 2.3b):

• Parasites cannot replicate in an isolated environment, and it needs the code of
another living organism to replicate. The first parasite has a length of 45 in-
structions and can replicate faster than the ancestor organism. They use other
organism replication code. However, the relationship is harmless for the host.

• Immunity to parasites develops in children of ancestor organisms. If too many
hosts become immune to parasites, parasites become extinct. Hosts and para-
sites organisms living together demonstrate the Lotka-Volterra population cy-
cling. Some parasites might circumvent this immunity.

• Hyper-parasites use the parasites to replicate their code, so the child of para-
site becomes another hyper-parasite. In some time, the social Hyper-parasites
appear, which drive parasites to extinction. They are smaller than the ancestor,
so they need to group up in order to reproduce.

• Cheaters are the evolution of hyper-parasites. They invade communities of
hyper-parasites and make hyper-parasites reproduce the cheaters. Cheaters
are on top of the simulation food chain.

(A) Hosts (red) are very common. Parasites (yel-
low) are starting to appear

(B) Immune hosts (blue) are increasing, driving
the parasites into groups

FIGURE 2.3: Tierran memory snapshots with organism types (Ray)

Chapter 2. Related works 7

When the simulator is running for hundreds of millions of instructions, various
organisms emerge. During this time, it is possible to look at macro-evolution. Tierra
appears to show two models of evolution depending on what organism size time
slicer favors: phyletic gradualism and punctuated equilibrium. If the simulation
favors large organisms, it usually leads to continuous incrementally increasing sizes
until the sizes stay the same for a long time so we can look at phyletic gradualism. If
the simulation is neutral, there is a pattern with periods of stagnation, which follow
periods of fast evolutionary change, this appears to be the model of punctuated
equilibrium (Ray, 1991, p. 15) (Figure 2.4).

FIGURE 2.4: Phyletic gradualism vs. punctuated equilibrium (Jensen,
2015)

2.2 Avida

Avida is a Tierra-inspired artificial life simulator by Chris Adami with further ex-
pansions and redevelopment by Charles Ofria. The critical difference between Tierra
and Avida is how they organize the memory. In Avida, each organism has its mem-
ory, and it is not available to other organisms even for read access. Thus, there is
no parasitism in Avida (Adami & Brown, 1994, p. 1). Authors call the system two-
dimensional, but it is also possible to interpret that the system has multiple, isolated
one-dimensional memories . The genome of the organism initializing in the program
memory. Execution starts with the first command in memory and proceeds sequen-
tially: Instructions execute one after another unless there is a jump. The memory
space is circular, and when the CPU executes the last command in memory, it will
loop and resume execution with the first command again. However, the memory
has a clear entry point, necessary for the creation of child organisms. The looped
memory makes the organism genomes simpler than in Tierra, but allow them to
achieve similar results. In Avida, there are only 24 instructions compared to Tierran
32 (Ofria, 2003, p. 11).

Chapter 2. Related works 8

Another new Avida feature is called labeled heads in the CPU. Heads are point-
ers to locations in the memory, like the IP. They eliminate the necessity of absolute
addressing of memory positions. There are four heads; one of them is the instruction
pointer. The other three heads are read head, write head, and flow control head. The
read and write heads are for the self-replication. The read head indicates the position
in memory from which to read commands, and the write head likewise indicates the
position to which write commands. The flow control head for jumps and loops. The
CPU also includes three registers and two stacks, with the ability to switch between
them, the visualization of the Avida CPU and memory in Figure 2.5 (Ofria, 2003, p.
12).

FIGURE 2.5: CPU and memory structure in Avida (Ofria, 2003, p. 74)

In Avida, the time slicer will give different organisms different amount of time to
execute one command (Ofria, 2003, p. 22). This amount depends on the organism’s
count of rewards. The organism receives the reward when it completes any success-
ful operation specified in the simulation configuration. So, better algorithms receive
more CPU time, and failing organisms might execute very slowly. The organism
also passes down the rewards to its children. Death occurs only when memory fills
up, at which time the system deletes the oldest organisms.

Avida is much more like a proper software package compared to Tierra. It is
highly configurable, and the reward system allows to control the evolution pri-
orities and perform user-specified tasks. Avida also has a GUI module, various
analytical and statistics tools, and well-written documentation (Ofria, 2003, p. 9).
Researchers use Avida to study evolutionary dynamics, monitor populations, and
introduce new additions; for example, introducing organisms of different sex and
these experiments raise general interest in biologists (Pollac & Bedau, 2004, p. 341).

Chapter 2. Related works 9

2.3 Amoeba

The main difference in Amoeba simulation from Tierra and Avida is that there is
no ancestor organism placed at the start of the simulation. Instead, replicators are
emerging from the memory full of random instructions. The memory can be one-
dimensional, like in Tierra or multi one-dimensional, like in Avida, depending on the
version of Amoeba. The Amoeba uses a simpler addressing scheme than that Tierra
and Avida use. Instead of having templates from NOP0 and NOP1, any instruction
has its randomly assigned label, and the label has its complement label; thus, it is
possible to use any instruction for template formation (Pargellis, 2001, pp. 4-5). The
replication process involves four main stages: register initiation, memory allocation,
copying, and division, the same as in Tierra. Register initiation involves determining
the cell’s size. Memory allocation, done with the MALL command, dynamically
allocates a virtual CPU to the child cell. The CPU is not activated, and mutations
do not happen until the parent organism has executed a divide command (Pargellis,
2001, p. 6).

From the random memory, firstly, emerge very inefficient ancestor organisms,
that are more prebiotic than biotic. They typically reproduce the code only once
before they are killed. These organisms might lose their instruction pointer after
copying its code to a child, or its copies only a portion of its code and child gets
killed. Afterward, more advanced organisms appear with a lot of unused code (pro-
biotic) (Pargellis, 2003, p. 5), and they evolve into a colony of organisms more similar
to Tierran organisms, which are biotic. Even some Tierran-like parasites appear as
well, but not frequently. So, we can see prebiotic organisms appear from random-
ness and their evolution to biotic organisms via probiotic organisms (Pargellis, 2001,
pp. 9-10).

In Figure 2.6, we can observe the state of memory during different evolution
stages in Amoeba. In Figure 2.6a, the memory only consists of random instructions.
In Figure 2.6b, the memory becomes more organized (horizontal lines are organ-
isms), and finally, in Figure 2.6c, we can see patterns of biotic replicators. The biotic
world is not as diverse as in Tierra; for example, hyperparasites never form, and the
parasite and host coexistence ecology never persists more than 1000 cycles (Pargellis,
2001, p. 12). Overall, the primary wonder of Amoeba is the appearance of replicators
from random code without the ancestor programmed by a human.

(A) Random memory (B) Prebiotic organisms (C) Biotic organisms

FIGURE 2.6: Memory space in Amoeba (Greenbaum & Pargellis, 2016,
p. 4)

10

Chapter 3

Two-dimensional artificial life
simulator

3.1 An idea to increase the complexity

Artificial life simulators such as Tierra and Avida produced a rich diversity of organ-
isms initially, but eventually complexity stalls (Standish, 2008, p. 1). There were mul-
tiple attempts to improve Tierra. For example, this might be exploring environmen-
tal biases in Tierra, like making the number of mutations not depending on organism
size (Hickinbotham & Stepney, 2015, p. 7), or replacing instructions with rule-sets
(Sugiura, 2003, p. 1). Nevertheless, there is no decisive evolutionary improvement
recorded in these works. There should be another issue that prevents evolution, and
the main suspect is the one-dimensional memory space of Tierra. It doesn’t matter
how far (in the memory address space) the resource is located, the effort to use it
is still the same. So, such memory space is close to infinite-dimensional space in a
physical sense. The instructions could operate with memory cells far away from the
organism, but the processing takes the same amount of CPU time as if these cells
are nearby. Authors of Avida and Amoeba recognize the problem, but only manage
to create a pseudo-two-dimensional solution. There are multiple one-dimensional
memory lines, but the code is executing only along these lines, and there is no abil-
ity to interact between them. The simulation in the real two-dimensional space could
be a solution. While it is reasonably suggested that enforcing real-world properties
on the computer model is inefficient and RAM topological properties could be ef-
ficiently used to simulate artificial life (Ray, 1993, p. 18), we still believe it could
be one of the key points to the breakthrough, provided one can develop the correct
approach to implement it.

3.2 Befunge

The two-dimensional programming languages are mostly created for fun and con-
sidered esoteric (i.e., not for software development). Firstly, it would not be practical
to use them in real applications. Secondly, they are hard to compile, and only a few
of them are Turing-complete. One of the canonical examples of such languages is
Befunge, which is stack-based. Chris Pressey created the language in 1993 as an at-
tempt to make a language that is as hard to compile as possible. However, several
compilers have appeared. The original Befunge has restricted grid and stack sizes.

Chapter 3. Two-dimensional artificial life simulator 11

The Befunge-98 removes these limitations and thus is Turing-complete. There are IP
direction change operations (<, >, v, ^), and most other Befunge operations are stack
manipulation. The most exciting operation is p, which allows changing any charac-
ter in the grid to another character, thus allowing for self-replicating code. The same
instruction could execute from every direction (Esolang, the esoteric programming
languages wiki, 2020). Here is the classic "Hello World!" written in Befunge:

> v
v ,,,,,"Hello"<
>48*, v
v,,,,,,"World!"<
>25*,@

Befunge’s self-replicating abilities are very similar to the ones provided by com-
mands from the Tierran instruction set. By combing the two-dimensional nature
of Befunge with the Tierran instruction set, we get an instruction set for a two-
dimensional artificial life simulator. The two-dimensional simulator we discuss in
this work is called Fungera (Befunge + Tierra).

3.3 Organism structure

Since Fungera is a two-dimensional simulation, the organism’s CPU should be changed
accordingly. It is very similar to the Tierran CPU, with the main exception is a new
element, the delta. The delta vector controls the direction, in which the IP goes. The
IP can go up, down, right, and left on Fungera’s memory grid. After the end of
each cycle, we add delta to the IP to make the IP go in the direction we specify. In
addition, the organism has two memory blocks (one for the organism itself and an
optional one for its child), four general-purpose registers, instruction pointer, and a
stack with configurable size. All CPU elements can only contain two-element vec-
tors, for simplicity. Complete CPU structure is in table 3.1.

CPU element Description
RA General-purpose register A
RB General-purpose register B
RC General-purpose register C
RD General-purpose register D
IP Instruction pointer
Delta IP direction
Stack Stack of configurable size (default 8)
Main memory block Allocated memory block for organism itself
Child memory block Optional memory block for child allocation

TABLE 3.1: CPU structure in Fungera

3.4 Instruction set

Instruction set in Fungera is a crossing between the Tierran instruction set and Be-
funge. The instruction set also includes various modifiers for registers or vector

Chapter 3. Two-dimensional artificial life simulator 12

elements. For example, to do subtraction between registers RA and RC and putting
the result in RA, in Tierra, we would call SUB_AC instruction, but in Fungera, we
write ~aca. The Fungeran subtract instruction needs three register modifiers to per-
form the operation. Modifiers allow flexibility since we do not need to create an
instruction for each operation we perform and make the two-dimensional genome
code more readable. Sometimes, we need to perform an operation only on the first
or second element of the vector. For example, -xa will decrement the first element
of the vector in RA or +yd will increment the second element of the vector in RD.
These modifiers are similar to modifiers in SALIS by Paul Oliver, a modern retake
on Tierra (Oliver, 2019). Also, we can call the instruction from all directions, *bac is
the same as cab*, if IP moves from right to left.

The Fungeran instruction set includes Befunge style IP direction modifiers, and
two no-operation template constructors. In Fungera, the usage of templates is re-
stricted to denoting the start and end of the organism. Therefore there is no jump
instruction present. Because IP can go in all directions, it is possible to move IP ev-
erywhere with direction modifiers, and the organism will consume CPU time with
each step it takes. Fungera contains fewer arithmetic operations than Tierra; there
is no shift, negation, division, or multiplication present. We do not need them to
replicate organisms. We can find the template by using find template instruction
(&.:. will find a template :.: address in the direction of IP). One of the most com-
plex instruction is for conditioning. It compares a vector or an element of the vector
to zero (zero vector). If it is zero, the IP skips the instruction after the condition
with modifiers. For example, ?xb^v will execute v if RB is [1, 2] and ^ if RB is [0,
2]. For replication, it is possible to allocate child organism memory, read and write
instructions to/from memory, and split the child to separate organisms. The full list
of instructions is in the table 3.2.

Code Sym Ops Description Type
[0, 0] . 0 Template constructor Template
[0, 1] : 0 Template constructor Template
[1, 0] a 0 Register modifier Register
[1, 1] b 0 Register modifier Register
[1, 2] c 0 Register modifier Register
[1, 3] d 0 Register modifier Register
[2, 0] ^ 0 Direction modifier (up) Direction
[2, 1] v 0 Direction modifier (down) Direction
[2, 2] > 0 Direction modifier (right) Direction
[2, 3] < 0 Direction modifier (left) Direction
[3, 0] x 0 Operation modifier Operation
[3, 1] y 0 Operation modifier Operation
[4, 0] & 2+ Find template, put its address in register Matching
[5, 0] ? 4 If not zero Conditional
[6, 0] 0 1 Put [0, 0] vector into the register Arithmetic
[6, 1] 1 1 Put [1, 1] vector into the register Arithmetic
[6, 2] - 2 Decrement value in register Arithmetic
[6, 3] + 2 Increment value in register Arithmetic
[6, 4] ∼ 3 Subtract registers and store result in register Arithmetic
[6, 5] * 3 Add registers and store result in register Arithmetic
[7, 0] W 2 Write instruction from register to address Replication
[7, 1] L 2 Load instruction from address to register Replication
[7, 2] @ 2 Allocate child memory of size Replication
[7, 3] $ 0 Split child organism Replication
[8, 0] S 1 Push value from register into the stack Stack
[8, 1] P 1 Pop value of register into the stack Stack

TABLE 3.2: Instruction set in Fungera

Chapter 3. Two-dimensional artificial life simulator 13

3.5 Memory

In Fungera, the memory has a two-dimensional grid design, which all organisms
share. As a result, the address of each memory cell is a two-element vector denoting
position on both the x-axis and y-axis. The memory does not have connected bound-
aries, like in Avida’s memory, so it is not circular. The comparison between Tierra,
Avida, Amoeba and Fungera memory designs is in Figure 3.1. There are no restric-
tions for the organism to read the memory, but a particular organism can write to the
memory only when it has the child’s memory allocated, and this write permission
is not restricted – it can write anywhere. The mutation occurs only by adding ran-
dom instructions to the memory at the configurable rate, and the instructions always
produce the expected result.

FIGURE 3.1: Tierra, Avida, Amoeba vs. Fungera memory design

3.6 Queue

The Queue contains each organism in the simulation. Each organism makes a cycle
with its CPU. When CPU cycles, the IP moves in delta direction and executes the
genome code. Due to mutation, some code will not make sense or break simulation
and therefore produce an error. The queue counts errors for each organism and
controls the organism population. The death occurs in three ways: the queue can kill
some percentage of organisms (typically 50%) when the allocated memory fills the
required amount (typically 85%); kill one organism that produces too many errors
(typically 1000); kill organisms after some cycles (typically 25000) without created
children. The queue provides time slicer services to simulate parallelism; however,
in Fungera, it is the same for all organisms and is not configurable like in Avida.

3.7 Ancestor

The ancestor in Fungera has a size of [17, 23] and can replicate in all directions one
by one, and it needs around 18000 cycles to replicate once. It uses templates to find
its start and end and thus determines its size by subtracting them. After that, it al-
locates the child of its size to the right, when it can find unallocated space for the
child’s memory block. In a loop, the organism copies itself to the child memory.

Chapter 3. Two-dimensional artificial life simulator 14

When copying is complete, the child becomes a separate organism. The organism
continues to create other children up, down, and to the left. The ancestor can be op-
timized, and we expect to see this optimization during evolution. Here is complete
genome of Fungeran ancestor organism:

v$<...vdc@<>..@cd>Sb.v.
>....v>Sbv^^b?bP<......
..b......>...........v.
va0aS<>....>..?d^>?avv.
>1d::.^a-a-a-ax-..a&<..
.v.<cS.dSaSbdWbaL<vc?<<
..^..a+aPc0d0<>..^>..v.
.>v.>..+yd?yc^^.>...v&.
v<..^ay+cy-.aPdP..cP<b.
@..^.bdWbaL....<^cx?<..
c.>.+xa+xd-xc.......^:.
d^<.vd0.....cab~b+bc+<.
>v.vb-b0bP<^b?b-..<.<..
d..S>PbSb?b^>-b?bv^.^..
c.^b.............<.....
@>...................:^
^..<...................

Algorithm of the Fungeran ancestor is shown on the Figure 3.2.

FIGURE 3.2: An overview of the Fungeran ancestor algorithm

The ancestor works as follows:

Chapter 3. Two-dimensional artificial life simulator 15

• In the region (A), we start executing the code from the top-left position of the
organism and save the direction of the organism’s replication. We determine
the organism size in the region (B) (arrow 1). For subsequent replications, we
can directly find the direction of the replication (we save the organism size into
the stack) and start the replication (arrow 10). When the replication process is
complete, we split the child organism and return to the initial starting position.

• In the region (B), we determine the size of the organism using templates. We
store the top-left position in register A (by finding the template address and
subtracting [4, 3] from the template address). We store the bottom-right posi-
tion in register B (by finding the template address and adding [1, 2] to the tem-
plate address). By subtracting two positions, we find the organism size and
store it in the register C. After that, we can determine the direction in which to
allocate in the region (C) (arrow 2).

• In the region (C), we determine the direction (vertical or horizontal) in which to
allocate the child organism. The CPU stack is actively used here. Afterward,
we can go to the regions that further determine the direction – left/right or
up/down (arrows 3, 12).

• In the region (D), we allocate the child’s memory left or right. When the child’s
memory is allocated, we can start the replication (arrow 4).

• In the region (E), we start the replication. This is the entry point to code that
copies the first instruction of the column; the other instructions in the column
are copied by the region (F) (arrow 5).

• The region (F) is the column replication loop. When the copy of the column is
completed, we change current column in the region (G) (arrow 6).

• In the region (G), we change the column from where to copy instructions and
start copying a new column in the region (E) (arrow 7), or if we finished copy-
ing all columns, we exit the replication loop in the region (H) (arrow 8), and
split the child in the region (A) (arrow 9).

• In the region (J), we can choose to replicate up or down. Regions (I) and (K)
are used as bypasses if we need to pass some regions. We use them to get to
the replication loop directly from the region (J) (arrows 13, 14).

3.8 Implementation

Fungera is a Python package with heavy NumPy usage for matrix-vector computa-
tion, and the TUI is curses-based. It has separate class modules for memory, organ-
ism CPU, and queue. There is also a debugger in the TUI, and it includes a mode for
running with TUI detached for maximum speed. In the TUI, it is possible to view
each organism’s CPU elements and surf the memory. The system can save its state
on-demand or at a configurable interval. The state saving is crucial for performing
further analysis since the TUI becomes slower with more organisms in simulation.
The true parallelism is not yet available, and the simulation only works on one core
of the CPU, and thus is quite slow on later simulation stages.

Chapter 3. Two-dimensional artificial life simulator 16

In Figure 3.3, we can see the Fungeran TUI at the beginning of the simulation.
The selected organism has the red notation, and its child has purple notation. Not
selected organisms are in blue, and their children are in light blue. We also denote
the IP address of each organism. We can also see that two organisms killed, because
of their mutation produced invalid code. In Figure 3.4, we can see the Fungeran
TUI in the later stages of the simulation. There are a lot of small organisms. These
organisms use ancestor code to create organisms similar to themselves in size, but
they do not self-replicate their code, and it rarely takes any role in this replication.
The implementation of Fungera is on the GitHub repository (Poliakov, 2020).

FIGURE 3.3: Fungeran TUI at the start of simulation (around 80000
cycles)

FIGURE 3.4: Fungeran TUI at the later stages simulation (around
360000 cycles)

17

Chapter 4

Results

4.1 Micro-evolution

Over 170 different size classes emerged as a result of constant mutations on the large
scale simulation (memory size [5000, 5000]), but only a few can continually repro-
duce and evolve. Others become extinct after one generation and do not produce
any child organisms. Different behaviors in size classes themselves occur as well,
but analyzing them all in detail is a complicated and time-consuming task, so it is
planned for future work. We can organize the size classes that continuously evolve
in Fungera in the list of notable species:

• Ancestor and its descendants with mutations in non-critical regions have the
same behavior as the ancestor. Non-critical region means that the mutation
in memory cells in the area does not change the overall outcome. Some non-
critical regions are highlighted in yellow in Figure 4.1a. An example of an or-
ganism with non-critical mutations is in Figure 4.1b. This species always have
an ancestor size [17, 23]. They can reproduce isolated in the empty memory.

(A) (B)

FIGURE 4.1: Non-critical regions (A) and mutations in them (B)

• Ancestor size organisms with different behavior have mutations in critical re-
gions of their genome. For example, this can include an organism that re-
produces only right and down, but faster (Figure 4.2). They are still able to
reproduce isolated in the empty memory.

Chapter 4. Results 18

FIGURE 4.2: The organism with mutation that allows faster reproduc-
tion

• Ancestor size organisms that produce organisms of different sizes, which, in
turn, lead to the creation of new species in Fungera. While, in theory, organ-
isms of different size classes than ancestors can reproduce isolated in empty
memory, none of the organisms analyzed in detail at the time of writing were
able to reproduce themselves. Typically, their descendants cannot reproduce
isolated in the empty memory.

• Organisms of close size to the ancestor, typically [16, 23] or [17, 22] with the
mutation that allows their IP to travel outside its allocated borders. We believe
that this mutation is critical for further evolution and the emergence of para-
sitism. These species allocate their child block at some dead code of ancestor-
like organisms and do not rewrite it, which could either lead to the creation of
parasites or even to the resurrection of an old organism. The example of resur-
rection by an organism of size [16, 23] is in Figure 4.3. The same organism also
produced one of the initial small size organisms in a particular simulation.

FIGURE 4.3: The [16, 23] organism allocates child memory block with-
out rewriting it

Chapter 4. Results 19

• Currently, Fungera simulations produce a high volume of small, aberrant crea-
tures. At first, we thought they were good candidates for parasites. But analy-
sis shows that these organisms do not replicate their code. It is rarely executed
at all. CPUs allocated for them execute ancestor code found in memory to pro-
duce similar-sized aberrant organisms. They cannot reproduce isolated. We
called those objects microvesicles, by analogy with extracellular vesicles pro-
duced by some biological cells. Microvesicles sizes can range from [5, 5] to [1,
1]. Because of their small size, those objects multiply in number a lot faster
than full-sized organisms. Depending on the configuration, they can use the
dead code of other organisms or only the code of currently living organisms.
Their behavior is similar to some extent to the behavior of the prions. Typi-
cally, a swarm of microvesicles of sizes [5, 5] and [1, 1] will form around the
host organism, like in Figure 4.4. A microvesicle of size [1, 1] is selected on the
Figure. Some small colonies of [7, 7] size also appear during the simulation’s
late stages.

FIGURE 4.4: Swarm of microvesicles and their host organism

We plan to perform a detailed analysis of further evolution in future research since it
is time-consuming. As of the time of writing, only a small part of evolved organisms
were analyzed in detail. All small organisms we analized are microvesicles. Organ-
isms with a full-sized replication loop also do not continually reproduce if they are
considerably larger than the ancestor. We suspect the reason behind it might be the
template searching logic, but we did not prove this hypothesis yet.

4.2 Macro-evolution

The typical large scale Fungeran simulation is running on the memory of size [5000,
5000]. It can contain more than a hundred thousand organisms with memory being
50% full. On large scale simulation, the memory does not fill up often, unlike in
Tierra. The run, which we describe below is still in progress at the time of writing.
We can take a look at how each simulation stage affects described organism species
and size classes:

Chapter 4. Results 20

• Ancestor size organisms gradually increase in quantity, reaching the maximum
count of 6000 organisms by cycle 300000, after which they decline, because
they should compete for memory space with first microvesicles, and contin-
ued mutation affects the number of healthy descendants. They decline to 1000
organisms by cycle 500000, and after that, they increase their number to 2500
by cycle 575000. They again decline afterward. However, they are not affected
as much as other organisms during the first killing due to memory overflow.
Their number is around 1000 after the first memory overflow at cycle 584700
(orange line), and they rise to 2000 afterward. (Figure 4.5).

FIGURE 4.5: [17, 23] organisms in the large scale simulation

• Organisms of close size to the ancestor do not have significant numbers, com-
pared to the ancestor sized organisms or microvesicles. [17, 22] organisms are
a first different size from the ancestor class to emerge at around cycle 100000.
Interestingly, its behavior mimics ancestor size behavior, but numbers are a lot
smaller. [16, 23] organisms are not numerous as well but can play a crucial role
in the simulation, by creating microvesicles and other aberrant forms (Figure
4.6).

FIGURE 4.6: [16, 23] & [17, 22] organisms in the large scale simulation

• Microvesicles have various sizes, but in the simulation, microvesicles of size
[5, 5] tend to be dominating species. They start appearing at cycle 430000 and

Chapter 4. Results 21

rapidly increase their numbers to around 135000 by cycle 580000. They can-
not survive without a living host, and we can see they start declining when
ancestor sized organisms numbers decreasing as well. The memory overflow
killings affect them the most, cutting the population in half at cycle 584700 (red
line). Another widespread microvesicle size is [1, 2]. It is older than [5, 5] (ap-
pears around cycle 300000), but the maximum number of them is 10000, and
they are second-most-populous organism size (Figure 4.7). Other sizes, for ex-
ample, [4, 4], do not achieve the same numbers as [5, 5] or [1, 2] microvesicles.
Microvesicles size can also go to [1, 1], a single memory cell pseudo-organism,
which appears later than other microvesicle types (Figure 4.8). Memory over-
flow killings affected microvesicles the most since they are numerous and tend
to produce many errors. However, the [5, 5] microvesicles start to grow again
fast afterward, partially recovering their pick numbers at cycle 650000.

FIGURE 4.7: [5, 5] and [1, 2] microvesicles in the large scale simulation

FIGURE 4.8: [4, 4] and [1, 1] microvesicles in the large scale simulation

In table 4.1, we can observe top size classes by organism count. This table includes
all organisms that were created at the simulation overall by cycle 600000. The share
of [5, 5] microvesicles is 85% and microvesicles overall more than 96%, with only
4% being ancestor size or may have own replication loops. This behavior is a clear

Chapter 4. Results 22

sign of evolutionary optimization (though undesirable for our simulations) since
microvesicles need only a fraction of resources (often less than 1000 cycles) to create
new similar-sized objects compared to ancestor size organisms (18000 cycles).

Size class Count Share
[5, 5] 743858 85.54%
[1, 2] 68935 7.92%
[17, 23] 29458 3.38%
[4, 4] 10617 1.22%
[5, 4] 3288 0.37%
[1, 1] 2810 0.32%
[2, 3] 1878 0.21%
[3, 4] 1252 0.12%

TABLE 4.1: Top 10 size classes by organism count in Fungera

We save each organism that was born in separate storage with the identification
of its parent organism so that we can identify the ancestors for each organism up
until the first organism in the simulation itself. In the Figure 4.9 we can see the sim-
plified evolution tree for the simulation. At cycle 120000, the first organism of differ-
ent size appears (size [17, 22]). At cycle 300000, there are multiple organisms close
to ancestor size, for example [16, 23], [16, 21], and [16, 22]. At that time, there also
appears the first microvesicle [1, 2], descendant from (produced by) [17, 23]. Later,
the [5, 5] microvesicle appears from [16, 23] size class. Though [5, 5] microvesicles
are mostly created by other [5, 5] microvesicles on their own1, most of them are de-
scendants of first [5, 5] microvesicles created by one particular organism of size [16,
23]. It is possible that the organism’s surrounding in the memory was favorable for
fast creation of those microvesicles. At later stages, microvesicles of various sizes
appear from both [5, 5] and [1, 2] size classes. It is also common for microvesicles to
change size classes of descendants in turn (for example [5, 5]→ [5, 5]→ [4, 4]→ [3,
3]→ [5, 5]). In Fungera, the model for evolution is the punctuated equilibrium since
we have a very sharp change from [16, 23] to [5, 5] or from [17, 23] to [1, 2]. After
these changes, there are long periods of stability in the population.

Ancestor

[17, 23]

[16, 23]

[5, 5]

[5, 4] [2, 3]

[1, 1]

[3, 4] [2, 2] Other microvesicles

[1, 2]

Other microvesicles

[16, 21] [16, 22]

[17, 22]

FIGURE 4.9: Simplified evolution tree for the simulation

1By using code found nearby in memory. Let us reiterate that their own code rarely takes any part
in this reproduction.

Chapter 4. Results 23

4.3 Complexity

The large [5000, 5000] simulation, which is still in progress during the time of writ-
ing, produced overall more than 1200000 organisms by cycle 650000. Compared to
standard Tierra simulation, in which the memory length 60000, described Fungeran
simulation has 416 times more cells. The run on the core of the 9th generation Intel
Core i7 CPU took more than 72 hours to reach cycle 650000. In Figure 4.10, we can
see how the simulation can do 8000 cycles per second on the start, and it decays to
only 2.5 cycles per second on the later stages of the simulation. The number of cycles
per second does not depend on organisms count (Figure 4.11). It means that more
massive simulations might not be possible, without utilizing true parallelism in the
simulation.

FIGURE 4.10: Cycles per second in the simulation

FIGURE 4.11: Total organism count in the simulation

24

Chapter 5

Conclusion

5.1 The behavior of the simulation

The two-dimensional evolution simulator is capable of showing different aspects of
evolution. Over 170 different size classes emerged as a result of constant mutations
on the large scale simulation, and more than 1200000 organisms were created by
cycle 650000. The evolution process is similar to the punctuated equilibrium model.
Different types of species appeared, including various types of aberrant forms we
called microvesicles with some signs of collective behavior. The simulation is still
running by the time of writing, and it bottlenecks reaching cycle 700000. We need
to introduce true parallelism and optimizations in order to continue the research
further. Simulations in small memory sizes are planned too in hope to spur faster
evolution of non-trivial new forms.

5.2 Further work

While we showed that evolution in two-dimensional memory space is possible, there
is still much work ahead to make it open-ended. Some of the steps for further re-
search include:

• Analyzing organisms for different behaviors within the same size class and
search for possible parasitism, symbiosis, or even sociality/multicellularity.
Further research all behaviors of different species.

• Rewriting the core backend in a compiled language like C++. Python, even
with NumPy, does not provide fast enough processing speed for such a task.

• Conversion to C++ should make creating true parallelism easier. We could not
achieve it with Python, because of its global interpreter lock (GIL). Still, there
will be many issues with speed and consistency agreement. Also, the results
would be harder to reproduce.

• Creating a separate GUI package with Qt, the backend should serve only as
API for GUI.

• The world rules might need some adjustments to make it as natural as possible,
but not complicated at the same time.

Chapter 5. Conclusion 25

5.3 Afterword

After the thesis was already written, we discovered a paper that implements a sim-
ulation with a very similar idea about the memory by Florent de Dinechin in 1997.
The simulation is called Ziemia (Earth in Polish). The memory structure is a two-
dimensional grid, the same as we present in Fungera (De Dinechin, 1997, p. 2).
However, there are a few notable differences between Ziemia and Fungera. There is
no template matching in Ziemia, and it is replaced entirely by physical loops (same
as we presented in Fungera). The difference is that we still use templates to denote
the start and the end of the organism. While organisms in Ziemia are running in a
two-dimensional memory grid, they are still sequential (De Dinechin, 1997, p. 3).
Each cell of the organism stores a pointer to the next cell. The ancestor is much more
straightforward compared to Fungera (50 instructions compared to 17 * 23 = 391, re-
spectively). Because of this, it is relatively easy to break the sequential ancestor with
mutations in a two-dimensional memory. The organism’s memory space is private
because there is no clear way to define the organism’s location. Therefore, no para-
sitism is possible. The descendants of ancestors quickly die, and the simulation halts
(De Dinechin, 1997, p. 5). Another work that could be related is a master’s thesis
called A model of early evolution in two dimensions by Carlo Maley (1993). We could
not find the digital copy of this work, and we did not receive an answer to the email
regarding access to the work from the author.

It seems that one of the main reasons why microvesicles (described in the thesis)
are appearing, is that the template matching range is limited to the maximum value
in organism size vector. When the microvesicle is created, its IP travels outside of
its boundaries. There is a chance that it will go to the start of some ancestor-like
organism. So, these microvesicles rely entirely on the ancestor-like code because its
IP behaves precisely like an ancestor’s IP normally would. Because we limited the
template matching range, we incidentally leaked information about the organism
size available only to the simulator to the organism. The evolution efficiently found
and exploited this bug similar to Meltdown bug of modern microprocessors. The
microvesicles have a small size, and in the region B of the ancestor (Figure 3.2), the
microvesicles would not find the template it needs and register A will stay [0, 0]
(because of the limitation). After subtraction, register A will become [-4, -3]. In
analogy, register B will become [1, 2], and the size that the microvesicle will self-
examine is [1, 2] - [-4, -3] = [5, 5]. Because of this small self-examined size, it will exit
the reproduction loop faster and reproduce faster as well. Other sizes behave the
same (including microvesicles of size [1, 1]). Because of the organism size leakage
problem and the fact that microvesicles do not use any of its code, this behavior can
be considered as a bug, and we should tackle this issue in future work.

26

Bibliography

Langton, C. (1989). Artificial Life: Proceedings of an Interdisciplinary Workshop on
the Synthesis and Simulation of Living Systems. Addison-Wesley Longman
Publishing. https://archive.org/details/artificiallifepr00inte

Mazlish, B. (1995). The man-machine and artificial intelligence. Stanford Humanities
Review, 4(2). http://www2.psych.utoronto.ca/users/reingold/courses/ai/
cache/mazlish.html

Sharkey, N. (2007). A 13th Century Programmable Robot. https://web.archive.org/
web/20070629182810/http://www.shef.ac.uk/marcoms/eview/articles58/
robot.html

Panse, S. (2019). Leonardo’s Robot: Leonardo da Vinci’s Mechanical Knight and Other
Robots. https://www.ststworld.com/leonardos-robot

Aguilar, W., Froese, T., & Gershenson, C. (2014). The past, present, and future of
artificial life. Frontiers in Robotics and AI. https : / / www. frontiersin . org /
articles/10.3389/frobt.2014.00008

Wolfram, S. (2002). A new kind of science. Wolfram Media. https://archive.org/
details/newkindofscience00wolf

Marinescu, D. (2017). Nature-Inspired Algorithms and Systems. Science Direct. https:
//www.sciencedirect.com/topics/computer-science/cellular-automata

Pesavento, U. (1995). An implementation of von neumann’s self-reproducing ma-
chine. https://web.archive.org/web/20070621164824/http://dragonfly.
tam.cornell.edu/~pesavent/pesavento_self_reproducing_machine.pdf

Bettilyon, T. (2018). How i optimized conway’s game of life. https://medium.com/
tebs-lab/optimizing-conways-game-of-life-12f1b7f2f54c

Wilson, R. (2001). The MIT Encyclopedia of the Cognitive Sciences. The MIT Press.
https://books.google.com.ua/books?id=-wt1aZrGXLYC

Pfeifer, R. (2001). Artificial Life. University of Zurich Department of Informatics.
https://www.ais.uni-bonn.de/SS09/skript_artif_life_pfeifer_unizh.pdf

Adami, C., & Brown, T. (1994). Evolutionary Learning in the 2D Artificial Life System
Avida. https://arxiv.org/pdf/adap-org/9405003.pdf

Pargellis, A. (2001). Digital Life Behavior in the Amoeba World. https : / / www.
researchgate . net / publication / 11879815 _ Digital _ Life _ Behavior _ in _ the _
Amoeba_World

Ray, T. (1991). Evolution, Ecology and Optimization of Digital Organisms. https :
//www.cc.gatech.edu/~turk/bio_sim/articles/tierra_thomas_ray.pdf

Hickinbotham, S., & Stepney, S. (2015). Environmental bias forces parasitism in Tierra.
https://www.mitpressjournals.org/doi/pdf/10.1162/978-0-262-33027-5-
ch055

Ray, T. Tierra Photoessay. https://web.mat.upc.edu/francesc.comellas/old-files/
buran/Tierra_Photoessay.html

Jensen, R. (2015). Punctuated Equilibrium. https://www.artofreasoning.com/?p=655

https://archive.org/details/artificiallifepr00inte
http://www2.psych.utoronto.ca/users/reingold/courses/ai/cache/mazlish.html
http://www2.psych.utoronto.ca/users/reingold/courses/ai/cache/mazlish.html
https://web.archive.org/web/20070629182810/http://www.shef.ac.uk/marcoms/eview/articles58/robot.html
https://web.archive.org/web/20070629182810/http://www.shef.ac.uk/marcoms/eview/articles58/robot.html
https://web.archive.org/web/20070629182810/http://www.shef.ac.uk/marcoms/eview/articles58/robot.html
https://www.ststworld.com/leonardos-robot
https://www.frontiersin.org/articles/10.3389/frobt.2014.00008
https://www.frontiersin.org/articles/10.3389/frobt.2014.00008
https://archive.org/details/newkindofscience00wolf
https://archive.org/details/newkindofscience00wolf
https://www.sciencedirect.com/topics/computer-science/cellular-automata
https://www.sciencedirect.com/topics/computer-science/cellular-automata
https://web.archive.org/web/20070621164824/http://dragonfly.tam.cornell.edu/~pesavent/pesavento_self_reproducing_machine.pdf
https://web.archive.org/web/20070621164824/http://dragonfly.tam.cornell.edu/~pesavent/pesavento_self_reproducing_machine.pdf
https://medium.com/tebs-lab/optimizing-conways-game-of-life-12f1b7f2f54c
https://medium.com/tebs-lab/optimizing-conways-game-of-life-12f1b7f2f54c
https://books.google.com.ua/books?id=-wt1aZrGXLYC
https://www.ais.uni-bonn.de/SS09/skript_artif_life_pfeifer_unizh.pdf
https://arxiv.org/pdf/adap-org/9405003.pdf
https://www.researchgate.net/publication/11879815_Digital_Life_Behavior_in_the_Amoeba_World
https://www.researchgate.net/publication/11879815_Digital_Life_Behavior_in_the_Amoeba_World
https://www.researchgate.net/publication/11879815_Digital_Life_Behavior_in_the_Amoeba_World
https://www.cc.gatech.edu/~turk/bio_sim/articles/tierra_thomas_ray.pdf
https://www.cc.gatech.edu/~turk/bio_sim/articles/tierra_thomas_ray.pdf
https://www.mitpressjournals.org/doi/pdf/10.1162/978-0-262-33027-5-ch055
https://www.mitpressjournals.org/doi/pdf/10.1162/978-0-262-33027-5-ch055
https://web.mat.upc.edu/francesc.comellas/old-files/buran/Tierra_Photoessay.html
https://web.mat.upc.edu/francesc.comellas/old-files/buran/Tierra_Photoessay.html
https://www.artofreasoning.com/?p=655

Bibliography 27

Ofria, C. (2003). Avida: A software platform for research in computational evolution-
ary biology. http://www.cs.cas.cz/~petra/EA/AvidaIntro-ALife.pdf

Pollac, J., & Bedau, M. (2004). Artificial Life IX: Proceedings of the Ninth Interna-
tional Conference on the Simulation and Synthesis of Living Systems. The
MIT Press. https://books.google.com.ua/books?id=cMFQ3qfzEW4C

Pargellis, A. (2003). Self-organizing Genetic Codes and the Emergence of Digital Life.
https://www.researchgate.net/publication/220657508_Self- organizing_
genetic_codes_and_the_emergence_of_digital_life

Greenbaum, B., & Pargellis, A. (2016). Digital Replicators Emerge from a Self-Organizing
Prebiotic World. https://www.mitpressjournals.org/doi/abs/10.1162/978-
0-262-33936-0-ch016

Standish, R. (2008). Open-ended artificial evolution. https://arxiv.org/pdf/nlin/
0210027.pdf

Sugiura, K. (2003). Evolution of Rewriting Rule Sets Using String-Based Tierra. https:
//www.researchgate.net/publication/221531303_Evolution_of_Rewriting_
Rule_Sets_Using_String-Based_Tierra

Ray, T. (1993). An evolutionary approach to synthetic biology: Zen and the art of
creating life. http://www.sci .brooklyn.cuny.edu/~sklar/teaching/f05/
alife/papers/ray-zen.pdf

Esolang, the esoteric programming languages wiki. (2020). Befunge. https://esolangs.
org/wiki/Befunge

Oliver, P. (2019). Salis 2.0. https://github.com/PaulTOliver/salis-2.0
Poliakov, M. (2020). Fungera. https://github.com/mxpoliakov/fungera
De Dinechin, F. (1997). Self-replication in a 2d von neumann architecture. https://

pdfs.semanticscholar.org/646a/c824275a688228dc06d2144e25b7b9b00b97.
pdf

http://www.cs.cas.cz/~petra/EA/AvidaIntro-ALife.pdf
https://books.google.com.ua/books?id=cMFQ3qfzEW4C
https://www.researchgate.net/publication/220657508_Self-organizing_genetic_codes_and_the_emergence_of_digital_life
https://www.researchgate.net/publication/220657508_Self-organizing_genetic_codes_and_the_emergence_of_digital_life
https://www.mitpressjournals.org/doi/abs/10.1162/978-0-262-33936-0-ch016
https://www.mitpressjournals.org/doi/abs/10.1162/978-0-262-33936-0-ch016
https://arxiv.org/pdf/nlin/0210027.pdf
https://arxiv.org/pdf/nlin/0210027.pdf
https://www.researchgate.net/publication/221531303_Evolution_of_Rewriting_Rule_Sets_Using_String-Based_Tierra
https://www.researchgate.net/publication/221531303_Evolution_of_Rewriting_Rule_Sets_Using_String-Based_Tierra
https://www.researchgate.net/publication/221531303_Evolution_of_Rewriting_Rule_Sets_Using_String-Based_Tierra
http://www.sci.brooklyn.cuny.edu/~sklar/teaching/f05/alife/papers/ray-zen.pdf
http://www.sci.brooklyn.cuny.edu/~sklar/teaching/f05/alife/papers/ray-zen.pdf
https://esolangs.org/wiki/Befunge
https://esolangs.org/wiki/Befunge
https://github.com/PaulTOliver/salis-2.0
https://github.com/mxpoliakov/fungera
https://pdfs.semanticscholar.org/646a/c824275a688228dc06d2144e25b7b9b00b97.pdf
https://pdfs.semanticscholar.org/646a/c824275a688228dc06d2144e25b7b9b00b97.pdf
https://pdfs.semanticscholar.org/646a/c824275a688228dc06d2144e25b7b9b00b97.pdf

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Historical origins of artificial life
	First cellular automata
	Model of the evolution

	Related works
	Tierra
	Simulation overview
	Operation system
	Evolutionary results

	Avida
	Amoeba

	Two-dimensional artificial life simulator
	An idea to increase the complexity
	Befunge
	Organism structure
	Instruction set
	Memory
	Queue
	Ancestor
	Implementation

	Results
	Micro-evolution
	Macro-evolution
	Complexity

	Conclusion
	The behavior of the simulation
	Further work
	Afterword

	Bibliography

