
UKRAINIAN CATHOLIC UNIVERSITY

BACHELOR THESIS

Team of multiple autonomous UAVs
interacting with static objects

Author:
Yurii STASINCHUK

Supervisor:
Dr. rer. nat Martin SASKA

A thesis submitted in fulfillment of the requirements
for the degree of Bachelor of Science

in the

Faculty of Applied Sciences
Department of Computer Sciences

Lviv 2020

https://ucu.edu.ua
http://mrs.felk.cvut.cz/people/yurii-stasinchuk
http://mrs.felk.cvut.cz/people/martin-saska
https://apps.ucu.edu.ua/computer-science/
https://apps.ucu.edu.ua

iii

Declaration of Authorship
I, Yurii STASINCHUK, declare that this thesis titled, Team of multiple autonomous
UAVs interacting with static objects and the work presented in it are my own. I
confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

v

UKRAINIAN CATHOLIC UNIVERSITY

Faculty of Applied Sciences
Department of Computer Sciences

Bachelor of Science

Team of multiple autonomous UAVs interacting with static objects

by Yurii STASINCHUK

Abstract

The Mohamed Bin Zayed International Robotics Challenge (MBZIRC) is a presti-
gious competition, aimed at furthering the state-of-the-art in the field of autonomous
robotics. This thesis presents my part of the solution to one of the tasks in the
MBZIRC 2020 competition, which landed us a second place in Challenge 1 and a
first place in the Grand Challenge of the competition.

Specifically, this thesis focuses on the balloon popping task, which had to be
solved quickly and robustly in order to compete with systems from other expert
robotic teams from the whole world.

In this task, a team of cooperating Unmanned Aerial Vehicles (UAVs) had to au-
tonomously search and destroy balloons, placed in a designated arena, as fast as
possible. A software and hardware overview of the used UAV platform is presented
and the detection, estimation and planning algorithms of our winning solution are
described in detail. Evaluation of the described methods on data from the competi-
tion is presented.

HTTPS://UCU.EDU.UA
https://apps.ucu.edu.ua
https://apps.ucu.edu.ua

vii

Acknowledgements
I would like to thank my supervisor Martin Saska for the patience and sharing his knowledge.
Tomas Bača and Matouš Vrba for sharing their expertise and helping me to go through the
challenge. Furthermore, I want to thank all members of the Multi-Robot Systems group that
believed in me and gave me a chance to participate in the MBZIRC2020 challenge. This
also would not be possible without support from the Faculty of Applied Sciences, who gave
me a chance to change my studies. My final thanks go to my mother and my friends, who
supported me throughout all my studies.

ix

Contents

Declaration of Authorship iii

Abstract v

Acknowledgements vii

1 Introduction 1
1.1 Related Works . 2
1.2 Preliminaries . 3
1.3 MRS Control pipeline . 4

2 Hardware setup 7
2.1 UAV platform . 7
2.2 Target elimination tools . 8
2.3 Camera . 10

3 High level state machine 11
3.1 State machine pipeline . 11
3.2 Communication between UAVs . 12
3.3 State Machine Parameters . 12
3.4 State Machine Flowchart . 14

3.4.1 IDLE state . 14
3.4.2 GOING AROUND state . 15
3.4.3 CHECKING BALLOON state . 16
3.4.4 GOING TO THE BALLOON state 17
3.4.5 DESTROYING state . 18

3.5 Job manager . 18
3.5.1 State timer . 18
3.5.2 Forbidden zones . 18
3.5.3 Abort system . 19
3.5.4 Multi-Robot Scenario . 19

3.6 Automatic start . 21

4 Target detection and Estimation 23
4.1 Object Detect . 23
4.2 Balloon Filter . 25
4.3 Balloon Color Picker . 25

4.3.1 GUI . 26
Color selection . 27
Managing the color range . 28

4.3.2 Computation . 29

x

5 Trajectory generation 33
5.1 Approaching trajectory . 33

5.1.1 Deadband . 33
5.1.2 Planning . 34

5.2 Attack trajectory . 36
5.3 Scan trajectory planning . 37

6 Evaluation 41
6.1 Simulation . 41
6.2 Color Picker . 42
6.3 Deadband . 43
6.4 Target approach and attack . 43
6.5 Arena scanning . 47
6.6 State machine performance . 48

7 Conclusion 51
7.1 Competition result . 51

xi

List of Figures

1.1 The target balloons are tethered to the poles in the Challenge 1 arena.
The targets are highlighted using red rectangles. 2

1.2 A top-view layout of the MBZIRC 2020 Challenge 1 operation arena
as it was manually measured using a GPS (a photo of the arena is
in Figure 1.1). Edges of the arena are represented by a red line, the
arena has 18 vertices, each one is numbered, the K,L,M,N blue dots
represent corners of the arena rectangle. 3

1.3 Top-view of the MBZIRC 2020 Challenge 1 operation arena 3D model
as it was scanned using a Leica 3D scanner1 4

1.4 Taken from [2], where translation r = [x, y, z]T, and an orienta-
tion R (φ, θ, ψ) is the orientation, they represent relation between the
world frame ! = {e1, e2, e3} and the body frame b = {b1, b2, b3}. Cour-
tesy of [16]. 5

1.5 MRS control pipeline taken from [2] . 6

2.1 The UAV platform developed and used by the Multi Robot Systems
group at MBZIRC 2020 . 8

2.2 Drone is falling due to the balloon shred parts got stuck in the motor. . 9
2.3 3D model of needle holder for the legs (A), and for the poles (B) 9
2.4 A photo from the drone onboard camera, when the balloon got entan-

gled around the pole with needles. 10

3.1 State machine pipeline. 11
3.2 IDLE state diagram. 14
3.3 GOING AROUND state diagram. 15
3.4 CHECKING BALLOON state diagram. 16
3.5 GOING TO BALLOON state diagram. 17
3.6 DESTROYING state diagram. 18
3.7 The top view on the arena 3D model. Working area for UAV1 is high-

lighted by a red polygon and working area for UAV2 is highlighted
by a yellow polygon. 19

3.8 UAV status message processing. 20
3.9 A top view of the arena. The big working area is highlighted by poly-

gon of green color. 21

4.1 A Green balloon that served as the target for the balloon sub-task of
the first Challenge of MBZIRC 2020. 23

4.2 (A) Representation of the HSV model in a cylindrical shape2. (B) Rep-
resentation of L*a*b space in 3D. The L axis is from 1 to 99, and a*.b*
are from -100 to 100, taken from [19]. 24

4.3 Result of Object Detect image processing. 25
4.4 Balloon color picker plugin GUI. 26

xii

4.5 The balloon color picker plugin GUI. Process of selecting the color
data. The current selection is highlighted by a red rectangle. 28

4.6 Balloon Color Picker plugin different GUI views. 29
4.7 Histograms of green color for H, S, V ((A), (B), (C)) and for L, a*, b*

((C),(E),(D)) channels. 30
4.8 A 2D histogram of hue and saturation of a green colored object. The

green rectangle represents selected region. 31

5.1 Illustration of the proposed deadband implementation. 34
5.2 Approach trajectory planning to a waiting point (red dot) at a distance

db to the target. Descent to the height of the target starts at Dp from the
height H. The solid black line is the generated trajectory; the dashed
red one is the actual UAV trajectory, after processing by the MPC tracker. 35

5.3 Attack trajectory planning. Solid black line is the planned trajectory,
and the red dashed line is the resulting trajectory after reshaping by
the MPC. The red dot is the point of interaction with the target, it has
oh offset from the center. oo is an overshoot offset added to the last
point of the trajectory. do is the overshoot distance parameter from
Table 3.1. 37

5.4 The UAV crashes into the metal pole because of a wrong estimated
height. 37

5.5 Illustration of the proposed scanning plan, the red dot is starting point
and green one is the finish. The arrows represent heading of the UAV
on the move. 38

5.6 Illustration of scanning area drawn over 3D model of the arena. 38

6.1 An UAV in the Gazebo robotic simulator. The targets(balloons) are
highlighted using red rectangles. 41

6.2 A debug image from onboard camera processed by Object Detect. The
tracked object is highlighted by red circle. 42

6.3 Stabilization of reference obtained from bad calibrated Object Detect. 43
6.4 Photos of the tests done throughout summer 2019 - winter 2020. 44
6.5 Approaching and attacking the target in simulation. 45
6.6 Approaching and attacking the target on Grand Challenge. 46
6.7 A series of pictures showing drone approaching the balloon (from the

left side) and popping it (on the right). 47
6.8 Scanning of the MBZIRC 2020 arena during the Grand Challenge. . . . 48
6.9 Scanning of the MBZIRC 2020 arena with two UAVs during First Chal-

lenge. 48
6.10 Full cycle of state machine during the Grand Challenge of MBZIRC

2020. 49

7.1 Team of CTU in Prague, UPENN and NYU secured the first place
in the Grand and Second Challenges, and second place in the First
challenge. 52

xiii

List of Tables

1.1 The dynamic constraints used by the MPC Tracker. 6

3.1 Parameters of the state machine. 13
3.2 Core variables of the state machine. 13

6.1 State machine timings. Time is calculated only when drone was in the
air and until the last balloon was popped. 49

7.1 MBZIRC resulting scores. 52

1

Chapter 1

Introduction

The Mohamed Bin Zayed International Robotics Challenge (MBZIRC) is a presti-
gious competition, aimed at furthering the state-of-the-art in the field of autonomous
robotics. The competition contains three separate challenges and the grand chal-
lenge as a combination of all three of the challenges done simultaneously. This thesis
mainly focuses on solving the planning and color calibration for the balloon hunting
task of Challenge 1 of the MBZIRC 2020.

Unmanned aerial vehicles (UAVs) recently saw a rise in usage across different
fields. The utility of UAVs is rising, and lots of industrial applications done and
planned [5] in the future.

The first challenge was motivated by intruder drone attacks that were devastat-
ing for middle east oil refineries, which couldn’t be overcome with missiles since
the drone targets are very small, and can surpass the defenses. The attacks caused
losses of oil and economic issues for the region1. The challenge is meant to enhance
research of defending from small UAVs.

Challenge 1 had two tasks that were solved simultaneously by three UAVs. The
first part was to catch a ball that was attached to the intruder UAV. The second
task was to locate and destroy static targets, represented by balloons, while actively
avoiding obstacles in the area. Each target was tethered to the ground via a metal
pole (see Figure 1.1). This thesis focuses on solving the balloon hunting task using
an autonomous multi-robotic approach with two UAVs.

The length of the metal poles is undefined and may vary from 1 to 5 meters. The
poles were placed inside an area (later referred to as arena) 100 meters long and 60
meters wide, and had a ceiling 20 meters high. The arena itself was shaped as a non-
convex polygon (see Figure 1.2), whose edges were covered with a net to protect the
viewers in case UAV goes out of control.

The goal of the thesis was to develop the necessary methods and algorithms for
autonomous searching and elimination of the balloon targets, which would solve
the task as fast as possible. The challenge rules state that overall up to 3 UAVs can
be used to complete the whole task. In this thesis a solution for 2 UAVs is developed.

Chapter 1 provides a detailed overview of the problem and related state of the
art methods and research. Details of the hardware platform are provided in Chapter
2. Chapter 3 provides overview of the high level state machine that was used to
solve the MBZIRC balloon hunting task. Chapter 4 describes the balloon detection
algorithm. In Chapter 5 generation of trajectories for arena scanning and target ap-
proach is explained. Experimental evaluation of the solution is described in Chapter
6.

1 https://www.cnbc.com/2019/09/15/saudi-stock-market-dives-crude-to-jump-after-attack-on-
oil-plants.html

https://www.cnbc.com/2019/09/15/saudi-stock-market-dives-crude-to-jump-after-attack-on-oil-plants.html
https://www.cnbc.com/2019/09/15/saudi-stock-market-dives-crude-to-jump-after-attack-on-oil-plants.html

2 Chapter 1. Introduction

FIGURE 1.1: The target balloons are tethered to the poles in the Chal-
lenge 1 arena. The targets are highlighted using red rectangles.

1.1 Related Works

Although the task of the MBZIRC 2020 first Challenge is very specific, it is similar to
the "Treasure Hunt" task that was introduced at the previous competition that was
held in 2017. There are different solutions to that problem, for example [20] and
[4]. They have one thing in common - mapping of the objects and then proceed to
interact with them. This can be done with the current task, but there are only five
targets, so in this thesis, the greedy approach was selected to search and destroy
without mapping.

The search and target tracking scenarios are also studied using UAVs [9] and [10],
but most of the work is aiming to solve the task cooperatively, with the dynamic
interaction of the UAVs, which is not crucial for the thesis task. The task can be
distributed via the team of UAVs, and they will perform them faster, using more
straightforward and faster methods and not relying on heavy communication.

The task is mainly motivated by the problems of small intruder UAVs, which can
surpass the defenses. This has also been known in the area, and there are different
researches done to help to solve this issue like in [21].

For robust and accurate detection of the objects HSV [11] and La*b* [7] models
are used. Using these models color together with color segmentation provided accu-
rate and fast target detection. Though there are multiple solutions to this problem,
for example, using the neural networks like in [6] or [8], the neural networks can be
specifically trained for the balloons, and give satisfactory results. Though, the neural
networks require a high amount of computational power or a Graphical Processing
Unit (GPU) for these purposes. As described in chapter 2, UAV does not have such
capabilities, so the color segmentation solution was chosen.

1.2. Preliminaries 3

1.2 Preliminaries

The algorithms presented in this thesis were deployed using a software system,
which is described in this section. Notably, usage of the Robot Operation System
(ROS) [17], was used to implement the MRS system to control the drone. The MPC
tracker [3] and the SO(3) controller [14] is provided.

Robot Operating System

ROS is an open-source robotics middleware (collection of software frameworks for
robot software development). ROS serves as a structured communication layer above
the host operating system. The system is released under BSD license and is opened
to contributors.

In this thesis, the described algorithm was developed using ROS melodic version
installed on the Ubuntu 18.04 operating system. This framework provides a system
for communication between nodes (which represent different packages). ROS is an
open-source system, so using this framework, it easy to connect different hardware
to it because someone has adapted it for that, like a camera, for example (details in
section 2.3). Each node can stream and listen to data from other nodes. This gives
the distribution of work that is done and increases the flexibility of the system.

ROS integrates an API to represent various coordinate systems (frames) in the
world (see Figure 1.4 for visualization of the frame). The API may be used to easily
transform data between the frames e.g. from a sensor frame to a static world frame.
Relevant frames for the purpose of this thesis are:

• GPS frame - GPS fixed frame. Usually the origin of this frame is placed inside
of the area where UAV will operate, in our case near the center of the MBZIRC
arena. This frame is the core of the flight for this thesis, because GPS navigation
was used to perform all the tasks.

• Arena frame - The arena origin is very close to the GPS origin, but it’s frame
is rotated so the axis is parallel to borders of the arena itself. This frame was
used to plan all the trajectories for the balloon hunting scenarios.

FIGURE 1.2: A top-view layout of the MBZIRC 2020 Challenge 1 op-
eration arena as it was manually measured using a GPS (a photo of
the arena is in Figure 1.1). Edges of the arena are represented by a
red line, the arena has 18 vertices, each one is numbered, the K,L,M,N

blue dots represent corners of the arena rectangle.

4 Chapter 1. Introduction

FIGURE 1.3: Top-view of the MBZIRC 2020 Challenge 1 operation
arena 3D model as it was scanned using a Leica 3D scanner2

• UAV frame - The origin of this frame is located in the center of the flight control
unit (FCU) of the UAV, and it is oriented with respect to the current orientation
of the UAV.

• Camera frame - The detections of the balloons, obtained from a camera sensor
are expressed in this frame.

1.3 MRS Control pipeline

In this thesis, the MRS control system [2] was used to control the drone. The system
is released and available on GitHub 3. In the system UAV pose is represented by
translation r = [x, y, z]T, and an orientation R (φ, θ, ψ). These represent the relation
between the world frame ω = {e1, e2, e3} and the body frame b = {b1, b2, b3} (see
Figure 1.4).

2https://leica-geosystems.com/products/laser-scanners/scanners/blk360
3https://github.com/ctu-mrs/uav_core

https://github.com/ctu-mrs/uav_core
https://leica-geosystems.com/products/laser-scanners/scanners/blk360
https://github.com/ctu-mrs/uav_core

1.3. MRS Control pipeline 5

b2

b1

b3

φ

θ

ψ

e2

e1

e3

r,R

FIGURE 1.4: Taken from [2], where translation r = [x, y, z]T , and
an orientation R (φ, θ, ψ) is the orientation, they represent relation
between the world frame ! = {e1, e2, e3} and the body frame b =

{b1, b2, b3}. Courtesy of [16].

Following this UAV state vector is as follows

x = (r, R) (1.1)

The MRS control system provides an API for positioning and commanding the
drone via ROS services. The main module with which the user interacts is the Mis-
sion planner. It receives trajectories or UAV desired position. It will reshape the
trajectory and execute it with current constraints. Constraints are limitations for
UAV speed and acceleration in horizontal, vertical planes, as well as for limitation
for how fast the heading can change. In Table 1.1, the constraints that are used in
this thesis are shown.

The sweeping constraints are meant for fast change of heading on the turns (see
φ in Figure 1.4), but without significant acceleration to avoid tilt (see ψ in Figure 1.4)
of the UAV. This is done to ensure that the camera of the drone is always looking
forward and searching for targets.

The attack constraints have less limitation in speed and acceleration, to ensure
fast approaching and destroying of the target.

6 Chapter 1. Introduction

Name Sweeping Attack

Horizontal

speed 5.0 m/s 8.3 m/s
acceleration 1.5 m/s2 3.0 m/s2

Vertical

Ascend
speed 2.0 m/s 2 m/s
acceleration 3.0 m/s2 3.0 m/s2

Descend
speed 2.0 m/s 2 m/s
acceleration 3.0 m/s2 3.0 m/s2

Heading

speed 3.14 rad/s 3.14 rad/s
acceleration 5.0 rad/s2 5.0 rad/s2

TABLE 1.1: The dynamic constraints used by the MPC Tracker.

Mission
planner

MPC
Tracker

SO(3)
Controller Pixhawk UAV plant

State
observer

Reference state
vector

XD
100 Hz

Attitude
rate

reference

Motor Speed
commands
≈ 1 kHz

Onboard sensor
data
≈ 100Hz

Odometry

Trajectory
rD, φD

Constraints

FIGURE 1.5: MRS control pipeline taken from [2]

The result of MPC tracker is the control signals which are required to be sup-
plied at ≈ 100Hz, and send to the SO(3) as shown in Figure 1.5. For controlling
the Electronic Speed Controllers (ESC) of the UAV a open-source hardware platform
Pixhawk [15] was used.

Feedback from the Pixhawk onboard sensors such like Global Position System
(GPS), as well as Inertial measurement unit (IMU) are received and processed to get
accurate odometry [16], for localization purposes, the data is also send back to the
mission planner, so it can correct the UAV position.

7

Chapter 2

Hardware setup

This chapter provides an overview of the hardware configuration that was used for
MBZIRC 2020.

2.1 UAV platform

The MRS CTU group has spend years in development of their own base design for
UAV platform. This includes the hardware (frames, motors, sensors, computers and
else), and the software (control pipeline, drivers for the sensors).

Most of the hardware that was used on the UAV platform consists of off-the-
shelf components that are mounted together using 3D printed parts. The base of the
drone is its frame, in this case a Tarot T650 quadrocopter frame, with Tarot motors
that are connected to Pixhawk 4 flight controller unit 1 and an Intel NUC 2 onboard
computer (see Figure 2.1).

1https://docs.px4.io/v1.9.0/en/flight_controller/pixhawk4.html
2https://www.intel.com/content/www/us/en/products/boards-kits/nuc/kits/nuc8i7beh.

html

https://docs.px4.io/v1.9.0/en/flight_controller/pixhawk4.html
https://www.intel.com/content/www/us/en/products/boards-kits/nuc/kits/nuc8i7beh.html
https://www.intel.com/content/www/us/en/products/boards-kits/nuc/kits/nuc8i7beh.html

8 Chapter 2. Hardware setup

GPS receiver

Intel NUC PixHawk 4

Needles

RGBD camera

FIGURE 2.1: The UAV platform developed and used by the Multi
Robot Systems group at MBZIRC 2020

The Pixhawk 4 itself contains several basic sensors, such as a GPS with magne-
tometer, gyroscope,an IMU, and a barometer which are used to stabilize and navi-
gate the vehicle. Pixhawk is connected to the motors through ESCs, and driving the
brushless motors according to received attitude commands from the control pipeline
which runs running on onboard computer.

The computer that was used is an Intel NUC8i7BEH with an Intel i7-8559U CPU,
8 GB of RAM and an onboard integrated GPU Intel Iris Plus Graphics 655. The
computer was running the Ubuntu 18.04 LTS operating system.

2.2 Target elimination tools

The specified target for the challenge is a balloon filled with air with diameter of
60cm (see Figure 1.1). The task of the challenge was to destroy all the balloons in
the defined arena. Balloon is a soft target and is easily shred with using propellers.
However, this elimination method is problematic due to the possibility of the balloon
remains getting entangled in the UAV causing a crash. During testing of the popping
method we have encountered this situation several times (see Figure 2.2).

2.2. Target elimination tools 9

FIGURE 2.2: Drone is falling due to the balloon shred parts got stuck
in the motor.

After experiencing a couple of crashes, two wooden poles were added to the
drone , and 3D printed holders (see figure 2.3b) with attached needles on them (see
Figure 2.1). Due to a restriction of the maximal size of the drone (it must fit into
1.2m wide, 1.2m long and 0.5m box),3 the poles were 100cm long and the needles
were ≈ 3.5cm. Because the poles were going through the whole drone, the point
of interaction was moved 30cm forward from the drone props. Besides the poles,
needles were also added on the front legs of the drone (figure 2.3a), to ensure that
even if the of the target height was estimated wrong, the drone will destroy the target
anyway.

(A) (B)

FIGURE 2.3: 3D model of needle holder for the legs (A), and for the
poles (B)

This helped a lot in target elimination, but in rare occasions crash was still pos-
sible. For example when the needles got stuck in the balloon surface (see Figure 2.4
and video of the fall https://youtu.be/keHxKxgUdtA).

3 https://www.mbzirc.com/challenge/2020

https://youtu.be/keHxKxgUdtA
https://www.mbzirc.com/challenge/2020
https://www.mbzirc.com/challenge/2020

10 Chapter 2. Hardware setup

FIGURE 2.4: A photo from the drone onboard camera, when the bal-
loon got entangled around the pole with needles.

2.3 Camera

Intel RealSense D4354 (see Figure 2.1) camera was used to provide color and depth
images for detection of the targets. It provides image with 1920x1080 resolution (ex-
pressed in pixels) with 69.4◦ x 42.5◦ x as Horizontal x Vertical correspondingly field
of view (FOV). The color image has 1920x1080 (in pixels) resolution and is supplied
at maximum of 30 frames per second (FPS) in this configuration. This stereo cam-
era also supplies depth image with 87.4◦ x 58◦ FOV which is supplied in 848x480
resolution at 30 FPS.

This camera was extensively used in different environments, especially in desert
areas. All the tests were done a month before the competition in an area near Abu-
Dhabi, and the camera has shown good resistance against the heat and sand, but it
has proven to have reliability issues, due to which the camera could turn off in the
middle of the flight. Due to that, an abort system was built into the state machine to
track if it is working and abort the mission in case of camera failure (subsection 3.5.3).

4https://www.intelrealsense.com/depth-camera-d435/

https://www.intelrealsense.com/depth-camera-d435/
https://www.intelrealsense.com/depth-camera-d435/

11

Chapter 3

High level state machine

This chapter provides a detailed description of the state machine. The state machine
controlled the balloon popping mission based on data from various modules of the
system (see Figure 3.1). Output of the state machine is a setpoint trajectory for the
UAV control pipeline (described in section 1.3).

3.1 State machine pipeline

State
machine

UAV
control

pipeline

Object
Detection

Balloon
Color
Picker

Balloon
Filter

State
Estimator

Odometry
≈ 100Hz

Trajectory

Detected
objects

Detected
objects

Stabilized KF
position

Color info

FIGURE 3.1: State machine pipeline.

• Object Detect - is a computer vision package developed at MRS1 to perform
detection of circular objects for MBZIRC 2020 competition. It is described in
chapter 4.

• Balloon Filter - is an implementation of a linear Kalman filter, which is used to
track selected target acquired from data given from Object Detect and estimate
its position. Its basic algorithm is described in chapter 4.

• Balloon Color Picker - this module is used for assistive selection valid color
range of the target for the competition. Its implementation is described in more
chapter 4.

The state machine also receives data from the partner UAV and how the mission
is going. If the partner drone stopped transmitting information, the state machine

1http://mrs.felk.cvut.cz/

http://mrs.felk.cvut.cz/

12 Chapter 3. High level state machine

will adapt to the changes and expand the mission (see subsection 3.5.4). The state
machine decides whether to proceed with mission or abort because of sensor failure
(see subsection 3.5.3). However, the primary motivation of the state machine is to
execute the balloon popping without getting stuck in one of the states. For this
matter, the state machine also controls the time of each state. If it is too long, the
state machine will restart the mission and mark the selected target as a forbidden
zone (see subsection 3.5.2).

The state machine is started right after takeoff by automatic start. Automatic
start is a module that checks UAV state before takeoff and triggers the takeoff if all
sensors are working, and the drone is ready (see section 3.6).

3.2 Communication between UAVs

To manage tasks between UAVs, reliable communication is required. The rules of the
MBZIRC competition specified that all teams are given a separate powerful 5GHz
dedicated Wi-Fi network. Thus, we could rely on a communication channel between
several UAVs. However, it also adds a vulnerable point into the solution—a method
to deal with a situation when a drone loses the communication link needed to be
implemented. The proposed solution is described in subsection 3.5.4.

The software solution responsible for managing the communication between
UAVs is NimBro communication solution [18]. It is a ROS package that allows to
transport specified messages with data over IP between computers with different
instances of the ROS.

To reduce the load of the communication in the given network, only selected
topics were exchanged between the UAVs:

Odometry - actual position of the UAV in the gps origin frame to enable collision
avoidance [2] (see [2] for a description of the collision avoidance mechanism).

UAV status - this message contains information about UAV flight status, if it is flying
normally. This message is the most important for the state machine. The logic of
processing this message is described in subsection 3.5.4.

3.3 State Machine Parameters

All parameters of the state machine are in Table 3.1, and core variables in Table 3.2.

3.3. State Machine Parameters 13

Symbol Value Meaning

H 5 m Searching height.

v 3 m Default velocity for trajectory generation.
va 4 m Velocity for attack trajectory generation .
vs 3 m Velocity for searching trajectory generation .
amax 2 m Maximal acceleration.

db 4 m Distance to the balloon, where the UAV should wait.
do 5 m Overshoot distance after popping the balloon.
de 3 m Detection error distance threshold, in meters.
da 3 m Accuracy threshold of position when the drone should

be waiting.

D f 0.5 m Dead band factor for dealing with positive feedback
from detections.

Dp 11 m Distance when the UAV start descending to target
height.

Dk 5.5 m Distance when the UAV should switch from tracking
the target from PCL to output from balloon filter.

oh 0.3 m Height offset when executing the attack trajectory.
oo 0.15 m Height offset at the end of the overshoot after popping.

t f 15 s Time of existence of a forbidden area, after it will be
deleted, and the drone will be able to try destroy target
again.

tm 3 s Maximal time of not detecting a selected target.
tw 4 s Maximal waiting time for receiving data from the bal-

loon filter.
ts 15 s Maximal time for waiting to receive message from an-

other UAV.

Tc 30 s Maximal time of being in the CHECKING BALLOON
state.

Tg 30 s Maximal time of being in the GOING TO BALLOON
state.

Td 20 s Maximal time of being in the DESTROYING state.

r f 4.5 m Radius of a forbidden area.
n f 2 m Number of tries to approach a target before adding it

to the forbidden list.

TABLE 3.1: Parameters of the state machine.

Name Dimension Meaning

bc R3×1 Closest target position.
bp R3×1 Current target position obtained from the ebject detec-

tor.
bk R3×1 Current target position obtained from the balloon po-

sition filter.

TABLE 3.2: Core variables of the state machine.

14 Chapter 3. High level state machine

3.4 State Machine Flowchart

There are 5 states:

• IDLE - This is the initial state of the state machine.

• GOING AROUND - in this state the arena is scanned for suitable targets.

• CHECKING BALLOON - after finding a target, this is the next state. Its pur-
pose is to check whether the detection is a false-positive. This state may be
actiavted during every other state of the algorithm. It is made to avoiding
switching to the DESTROYING state, when the target is a false detection.

• GOING TO BALLOON - after passing the checks in the CHECKING BAL-
LOON state, trajectory is passed to Mission planner [2], to get close to the
balloon at a given distance in the parameters.

• DESTROYING - this state controls to last step of the algorithm, destroying the
target.

3.4.1 IDLE state

This state is triggered on by Autostart (see section 3.6) once the UAV is in the air.

Wait for start

Switch state to IDLE

Detection
available

Switch state to
GOING AROUND

Switch state to
CHECKING BALLOON

Set time of activation of the
CHECKING BALLOON state

succeeded

No Yes

FIGURE 3.2: IDLE state diagram.

In Figure 3.2, flowchart of the IDLE state is visualized. Once the state machine is
started, there is one choice that is made in the state - which state should be triggered
next. If there are some detections from Object Detect that are in drone’s opera-
tional zone (described in subsection 3.5.4), then the CHECKING BALLOON state is
activated, and an activation timer for the Jobs manager (section 3.5) is enabled. Oth-
erwise the GOING AROUND state is triggered to perform a search of the arena.

3.4. State Machine Flowchart 15

3.4.2 GOING AROUND state

This state performs scan of the arena. Its workflow is shown in Figure 3.3. The
scanning is described in section 5.3. Before starting the scan, Sweeping constraints
are activated. This ensures, that the drone camera won’t be looking downwards,
because of aggressive pitching of the UAV. At the same time the turns should be
performed with aggressive yawing, since the turns are at the end of the arena and
there is no reason to look at the net.

If a target is detected during this state a stopping manoeuvre commanded. The
stopping procedure is here due to the possible false-detections that may occur with
sudden change of light. After the drone is stopped, the state is changed to CHECK-
ING BALLOON. After switching to the CHECKING BALLOON state, a state timer
is set, (its usage is described in section 3.5).

Sweeping
constraints

active

Switch constraints
to "Sweeping"

Detections
available

Drone in
motion

Stop the
drone

Switch constraints
to "Aggressive"

Switch state to
CHECKING
BALLOON

Set time of activation of the
CHECKING BALLOON state

In Search-
ing height

Ascend
Scan

Arena

No Yes

No Yes

No Yes

No Yes

FIGURE 3.3: GOING AROUND state diagram.

Otherwise, if there is no available detection, before performing the scan, the UAV
moves to be above the searching height H . This is to avoid the poles to which the
targets are tethered, (see in Figure 1.1). The height of the poles is unknown and
according to the description of the challenge it can vary up to 5 meters (since target
maximal height is 5 meters). H was set to 5.5 meters to avoid the possibility of
collisions. The ascend command is send to the mission planner. Once the UAV
altitude is higher than H , the scan procedure is activated, and a scanning trajectory
is sent to the mission planner. The scan trajectory is sent repeatedly every time it is
finished, to ensure continuous scanning of the arena.

16 Chapter 3. High level state machine

3.4.3 CHECKING BALLOON state

In search-
ing height

Ascend
Detections
available

Switch state to IDLE Find closest target bc

bc in the
FOV

within tm

Switch state to IDLE Activate Balloon Filter at bc

Switch state to
GOING TO BALLOON

Set time of activation of the
GOING TO BALLOON

state

No Yes

No Yes

No Yes

FIGURE 3.4: CHECKING BALLOON state diagram.

If the height is correct, a check for available detections is made. This is done to
avoid any false-positive detections, artifacts in the camera, etc. If there are detections
available , the closest target to the drone’s current position is selected.

Since the UAV is a non-stationary vehicle, its stopping movement can cause a
great tilt, which may cause that in one moment the target is in the camera FOV and
next frame it is completely out. The stat is reset to IDLE only if the target is not
detected for a tm duration. This added flexibility to the system, in situation when
drone has seen the target, but stopped couple meters ahead of it. It is shown in
chapter 6.

Procedure of activation of the Balloon Filter module is described in section 4.2.
This state does not check whether the filter is working or not, it is done later in the
GOING TO THE BALLOON (subsection 3.4.4) state. After activating the GOING
TO THE BALLOON state the corresponding execution timer is started for the Job
manager (see section 3.5).

3.4. State Machine Flowchart 17

3.4.4 GOING TO THE BALLOON state

This state to commands the drone to approach the balloon. Its workflow is described
in Figure 3.5.

Detections
available

Switch to
IDLE state.

Filter
active
and

Balloon KF
position in

...
Distance
to target
< Dk

Target is
visible and

in safety
zone

Switch to state
DESTROYING

Activate Balloon
Filter at bc

Distance
to the

target > db

Target
visible

Load approaching
trajectory to the target

KF Target
visible

Switch to state
DESTROYING

Switch to
CHECKING

BALLOON state.

Set time of
activation of the

CHECKING BALLOON state

Switch to
IDLE state.

Set time of
activation of the

DESTROYING state

Set time of
activation of the

DESTROYING state

No Yes

No

No

No Yes

Yes

No Yes

Yes

YesNo

No Yes

FIGURE 3.5: GOING TO BALLOON state diagram.

If there are any detections, the next step is to check whether the Balloon Filter is
working, and if it is publishing the stabilized position of the selected target. If this
is satisfied, next step is made for faster switch to destroying state, if the distance to
target is less then Dk (Table 3.1). This part makes the transition between two states
more smooth, since destroying state has very aggressive constraints.

If the filter is not working, or the distance is still bigger then Dk, the activation
procedure of the filter is repeated. The approaching trajectory is loaded only if the
target is visible (within tm). If the target is visible the selected target is updated, and
an approaching trajectory is loaded.

If the target is close enough, the visibility check is executed again. The difference
is that it will check whether the target position obtained from Balloon Filter is visible
or not. If the target is visible, the DESTROYING state is turned on. If not, the
CHECKING BALLOON state is turned on to select the target again. After activating
the DESTROYING or CHECKING BALLOON state the corresponding execution
timer is started for the Job manager (see section 3.5).

18 Chapter 3. High level state machine

3.4.5 DESTROYING state

This state is visualized in Figure 3.6. When this state is active, the trajectories are
generated with the reference obtained from Balloon Filter. Before sending attacking
trajectories, the target position is checked if it is in the list of targets from Object
Detect for a tm time, then the attacking maneuver is sent.

KF target
visible

Generate attack trajectory

Load the trajectory

KF
position in
within tw

Stop the drone

Switch state
to IDLE

YesNo

No

FIGURE 3.6: DESTROYING state diagram.

The detections are incoming at approximately 30 Hz, the same is for the stabi-
lized position, so the trajectories are sent nearly at the same rate. The continuous
loading of the trajectory and attack constraints ensure that the drone is able to adapt
to a sudden change of the target position, but only if UAV is more than 0.5 meters
away from the target, else the Balloon Filter won’t have enough number of detec-
tions and the position won’t be updated.

3.5 Job manager

This part describes parts of the algorithm which were running beside the state ma-
chine in parallel. These routines may interrupt the state machine and change its
procedures.

3.5.1 State timer

It is important that UAV does not get stuck in one of the states, to prevent deadlocks
and improve robustness. Every state has a maximal time of execution - Tc, Tg, Td .
Every time one of the states is switched on, timer is set (as is shown in Figure 3.2,
Figure 3.3, Figure 3.4, Figure 3.5), and if the timer exceeds its limit, the current se-
lected target bc is marked as a forbidden zone, and state is switched to IDLE.

3.5.2 Forbidden zones

Every detection that comes from the Object Detect module goes through a filter.
Detections that are out of the drone designated work area are filtered out, as well as

3.5. Job manager 19

detections that are in a forbidden zone. The forbidden area is a sphere characterized
by a position vector [x, y, z], a radius r f and a time of life t f . Once the execution
timer of the state exceeds its limit it creates a forbidden zone, and after the t f is
exceeded it is deleted. This gives flexibility to the state machine, so the UAV can
skip the problematic target (because it took too much time to eliminate it, or it was a
false-positive) and search and focus on other ones.

3.5.3 Abort system

The state machine is strongly dependent on the computer vision part, since without
a camera stream it is literally blind. Due to this fact and because during experiments
RealSense proved to have reliability issues an abort system was designed. If, there
was no data incoming from the camera for 1 second (in normal mode the camera
produced images at ≈ 30Hz), the Jobs manager initiated for emergency land of the
UAV.

3.5.4 Multi-Robot Scenario

MBZIRC 2020 arena has the shape of a non-convex polygon 100 meters long and 60
meters wide. For solving the whole challenge, 3 UAVs can be used at most. To solve
the balloon hunting task, two drones were selected. There are different ways how
a multi robot scenario could be addressed in this situation: mapping the area and
splitting the targets between UAVs like the MRS team did in previous MBZIRC 2017
treasure hunt challenge [20], dynamic TSP, etc. Since there are only 5-6 targets for
the whole challenge a greedy solution was chosen.

The solution that was used in this thesis is to split the arena in two equal parts.
In Figure 3.7 these two areas are visualized. The red polygon is the working area for
UAV1 and the yellow one is the working area for UAV2. All detections coming from
Object Detect are filtered out if they are outside of the current working area for the
respective of the UAV.

FIGURE 3.7: The top view on the arena 3D model. Working area for
UAV1 is highlighted by a red polygon and working area for UAV2 is

highlighted by a yellow polygon.

20 Chapter 3. High level state machine

There is a continuous communication link between the drones, as described in
section 3.2. The UAV status is checked by the Jobs manager and processed as shown
in Figure 3.8.

Message
from

UAV2

Is flying
normally?

Have I
received

"Yes"
before?

Initiating
Revenge

mode

Have I
received

"Yes"
before?

Set
received
to True

No

Yes

Yes

No

FIGURE 3.8: UAV status message processing.

Initially the parameter "flying normally" is False, only after UAV takeoff the pa-
rameter is changed to True. So, a drone failure situation is detected after the takeoff
succeeded.

The Revenge mode is a situation when another drone has landed due to some
reason (can be a camera failure or a safety reason done by the MRS control pipeline),
and the drone that received the message needs to expand its working area to the
whole arena as shown in Figure 3.9. This mode can also be triggered if one of the
drones is not communicating. Due to the reliability of Wi-Fi communication in the
arena, the drones were able to communicate with each other through the whole area.
Taking this fact into consideration, we can assume that if a drone isn’t communicat-
ing, it crashed, and the computer turned off. There is a waiting period before acti-
vating this mode if no message has been received for ts, the Jobs manager changes
the working is to the whole arena.

3.6. Automatic start 21

FIGURE 3.9: A top view of the arena. The big working area is high-
lighted by polygon of green color.

3.6 Automatic start

The state machine can only be started when the UAV is in the air, and it does not
control takeoff and landing. To manage this, the Automatic Start ROS package from
the MRS group was used. The control of takeoff and landing is done in the control
pipeline [2], and the Automatic start triggers the start of takeoff and landing in the
control pipeline which then proceeds. Once the takeoff is done, and the drone is in
the air, Automatic start starts the state machine, which continues with the task.

After the takeoff, Automatic start launches a timer, and when this time expires,
it will call for a landing. Using this, there was no need to implement a timer or a
finishing procedure in the state machine itself. Usually, the timer was set for 4-5
minutes, but almost every time it was not used since the drones finished the task
faster (this is shown in chapter 6).

23

Chapter 4

Target detection and Estimation

This chapter provides an overview of Object Detect, Balloon Filter, and description
of the Balloon Color Picker, which are modules of the system that are related to
target detection and estimation of its position.

4.1 Object Detect

The Object Detect is a package developed at the MRS group1 for detection colorful
round objects, like the one that was used as a target for the MBZIRC 2020 Challenge
one.

FIGURE 4.1: A Green balloon that served as the target for the balloon
sub-task of the first Challenge of MBZIRC 2020.

In the MBZIRC 2020 Challenge one target was a green balloon 60cm in diameter
as seen in Figure 4.1.

The first stage of the Object Detect algorithm is color segmentation. Image taken
by onboard camera (section 2.3) is 1920x1080 pixels size, and each pixel is described
by combination of red, green, blue colors - RGB color model. This color model does

1http://mrs.felk.cvut.cz/

http://mrs.felk.cvut.cz/

24 Chapter 4. Target detection and Estimation

not separate hue information from the intensity (lighting), which is a problem for
color segmentation, since the hue is one of the main features of the object, and in the
case of RGB model it changes together with light. On the other hand there are other
color representation models, which are more suitable such as HSV or L*a*b.

The HSV color space [11] represents the color as hue, saturation and value. This
model is based on a cylindrical representation of the color (see in figure 4.2a), where
hue is the angular dimension, saturation starts from the center with a value 0 and
in the edges ends with 1, value is a representation of lightness, so in the bottom the
cylinder it is darker. The color goes lighter towards the top.

(A) (B)

FIGURE 4.2: (A) Representation of the HSV model in a cylindrical
shape2. (B) Representation of L*a*b space in 3D. The L axis is from 1

to 99, and a*.b* are from -100 to 100, taken from [19].

CIELab [7] (CIE La*b referred to as LAB further) is a color space that is specified
by the International Commission on Illumination (from french name Commission
internationale de l’eclairage, (CIE)). The motivation behind its creation was to make
a model that represents the colors as a human eye perceives them. There are three
coordinates in LAB (see figure 4.2b):

• L - Lightness of the color, it starts with black at 0, and goes lighter up to 100
where it is white.

• a* - represents a transition from red to green, with negative values as green,
and positive as red.

• b* - represents a transition from blue to yellow, where negative values repre-
sent blue, and positive represent yellow.

Using these color spaces Object Detect generates Look Up Table (LUT) from the
color ranges obtained from the color picker section 4.3. Incoming image is filtered
using the LUT and as a result binary image is created (see Figure 4.3). The next step
is circle detection from resulting binary image, after this step knowing size of the
object distance is estimated using methods from [21].

2https://commons.wikimedia.org/wiki/File:HSV_color_solid_cylinder_saturation_gray.

png#filehistory

https://commons.wikimedia.org/wiki/File:HSV_color_solid_cylinder_saturation_gray.png##filehistory
https://commons.wikimedia.org/wiki/File:HSV_color_solid_cylinder_saturation_gray.png##filehistory

4.2. Balloon Filter 25

(A) RGB image before
segmentation.

(B) Binary image as
result of segmenting
image by HSV thresh-

olds.

(C) Binary image as
result of segmenting
image by LAB thresh-

olds.

(D) Debug image
from Object Detect,
the detected object is
highlighted by a red

circle.

FIGURE 4.3: Result of Object Detect image processing.

4.2 Balloon Filter

Balloon Filter is a ROS package developed at the MRS CTU group. It features the
implementation of a linear Kalman filter [13] with a mode of a static object in three
dimensions. The state machine uses this package to obtain a stabilized position of
the target when destroying the balloon.

The output of the filter is the filtered position of one target. Input is a set of 3D
positions of detected balloons. Once the state machine has initiated the filter, it uses
the closest detection to the initial position, which is within da distance.

4.3 Balloon Color Picker

Often desired colors for color segmentation are selected manually by the user. This
takes much time and must be done whenever the light conditions are different from
the previous tuning. Balloon Color Picker (later referred to as the plugin) serves as
a semi-automatic tool to select an object and pick its color accurately. The output of
the tool is a lookup table (LUT) of valid colors for color segmentation of the object,
which may be directly used by the Object Detect package (see section 4.1).

The plugin consists of two separate parts - a graphical user interface (GUI) based
on RosQt3 and a computational package, which performs the color calculations.

3http://wiki.ros.org/rqt

http://wiki.ros.org/rqt

26 Chapter 4. Target detection and Estimation

4.3.1 GUI

Motivation for the design of the plugin is to provide a fast and convenient way of
picking the color of a desired object. It should be able to use a video stream from any
camera that is running using ROS and output a representation of the picked color.
The GUI is shown in Figure 4.4.

FIGURE 4.4: Balloon color picker plugin GUI.

The GUI interface these elements:

1. Video stream - a live video stream from a camera topic and the segmentation
result using the selected color values.

2. Clear colors(N) - a button for deleting the current color data. Can also be trig-
gered by pressing "N" on the keyboard.

3. HSV(1) - a button that changes current video stream from colorful image to the
segmented image by the HSV color space. Can also be triggered by pressing
"1" on the keyboard.

4. Lab(2) - a button that changes current video stream from colorful image to
the segmented image by LAB. Can also be triggered by pressing "2" on the
keyboard.

5. Object Detect(3) - a button that changes current video stream from colorful im-
age to the debug image from Object Detect. Can also be triggered by pressing
"3" on the keyboard.

6. Freeze(F) - a button that freezes the video stream. Can also be triggered by
pressing "F" on the keyboard.

7. Update Object Detect(U) - a button that sends the picked color LUT to the
Object Detect package. Can also be triggered by pressing "U" on the keyboard.

8. The current number of taken samples of the color.

4.3. Balloon Color Picker 27

9. Save(S) - a button that saves the current picked color LUT to a file. Can also be
triggered by pressing "S" on the keyboard..

10. A group of sliders for the H, S, V channels respectively. These sliders serve to
change the allowed color range in the respective dimensions of the HSV color
space..

11. A group of sliders for L,A,B channels correspondingly. These sliders serve to
change the allowed color range in the respective dimensions of the LAB color
space.

12. Input bar for the destination of the file that will contain the resulting color data.

13. Input bar for the diameter of the tracked object (expressed in centimeters).

14. A list of predefined color naming buttons. By pressing them, user can change
the name of the resulting file. Can by also triggered by a combination of
"Ctrl"+number of the desired color.

15. Buttons that change the current color space view (Figure 4.6).

16. The load method - buttons that specify what type of color data is send to Object
Detect.

17. The histogram block - a group of three histograms charts for each channel - H,
S, V for HSV view and L, A, B for LAB view.

18. 2D histogram of H,S channels in case of HSV view and A,B channels for LAB
view. This area is used to select the color ranges for the LUT.

19. A log message - verbose output of the last action.

Color selection

Main feature of the plugin is the color selection functionality. The desired color is
pciked by selecting an area on the image, like it is shown Figure 4.5. The user can
draw a rectangle over the image (item 1), using the mouse. The selected region is
then send to the computation to calculate the color data.

28 Chapter 4. Target detection and Estimation

FIGURE 4.5: The balloon color picker plugin GUI. Process of selecting
the color data. The current selection is highlighted by a red rectangle.

Once the user starts selecting the video stream is frozen and the image does not
change until end of the cropping (user releases the mouse). User can also trigger the
freeze manually by using the "Freeze(F)" button (item 6).

Managing the color range

Once the color data has been selected (section 4.3.1), histogram of each channel (H,
S, V or L, A, B) is displayed as bar charts on the plots tab item 17. The user can
change the range of the computed thresholds using sliders for each channel (item 10,
item 10). The effect of changing the value range on the sliders is displayed in the his-
togram plots (item 17) - green vertical line as the lower range and a red vertical line
as the upper level. Users can also switch to HSV, or LAB view (item 3, item 4) that
will show how the image can be segmented using the currently selected thresholds.
To display how the target detection and position estimation will work, the user can
send the color thresholds to the Object Detect package (item 7) and switch to Object
Detect view (item 5) that will show a debug image with selected thresholds. All the
views are displayed in Figure 4.6

Besides changing the thresholds with sliders, the user can directly select an area
on the LUT (item 17). LUT, in this case, is displayed as a 2D histogram of two chan-
nels (H, S for HSV and A, B for LAB), the description of its generation is in subsec-
tion 4.3.2. Users can select a rectangle region on the histogram and deselect rectangle
region, so only the needed part of the histogram is selected. User can change the way
the color threshold data is sent to Object Detect, by thresholds or sending directly
the generated LUT histogram by using the button "Load Method" (see item 16).

The histogram selection method is used when there is a need for a very accurate
color segmentation. Especially when the surroundings may have the same color, but
a different shade than the object.

4.3. Balloon Color Picker 29

(A) HSV view (B) LAB view

(C) Object Detect view

FIGURE 4.6: Balloon Color Picker plugin different GUI views.

4.3.2 Computation

Once the user has selected an area of the input image, that part is sent to the com-
putation node. The resulting portion of the image is converted to two color spaces -
HSV and LAB. The image data is split into channels. The result is six distributions
of the channel data.

Limits of the valid color ranges are calculated using mean and standard devia-
tion estimation of the data. The mean is obtained as

x =

(
n

∑
i=1

xi

)
1
n

, (4.1)

where x: is one sample of the channels data, n is size of the data. The standard
deviation is obtained as

σx =

√
∑n

i=1(xi − x)2

n− 1
. (4.2)

For the purpose of the limits calculation, a normal distribution of the color data is
assumed.

A slightly different approach has to be to calculate the hue channel since it is
distributed circularly, as shown in figure 4.2a. Values of the hue have to be treated
as angles on a circle. One way to calculate a circular mean is to calculate mean of the
cosines and sines of the angles, and then calculate the angle of the resulting vector,
using arcus tangens:

x = atan2

(
(

n

∑
i=1

sin xi)
1
n

, (
n

∑
i=1

cos xi)
1
n

)
. (4.3)

The standard deviation of a circlular quantity is obtained by:

30 Chapter 4. Target detection and Estimation

s =
n

∑
i=1

sin xi, (4.4)

c =
n

∑
i=1

cos xi, (4.5)

σ =

√
−2 log

√
s2 + c2. (4.6)

The histogram charts for every channel of two color spaces are shown in Fig-
ure 4.7. The probability density curves drawn over histograms to show the resulting
mean and standard deviation. Every histogram was obtained on a green color, the
same object that is in Figure 4.6, Figure 4.4, it is clearly seen how the data can be
different depending what region of the object you select.

0 100
Hue

0.00

0.05

0.10

%

H
PDF
Hue channel

(A)
0 100 200

Hue

0.00

0.01

0.02

%

S
PDF
Saturation
 channel

(B)

0 100
Hue

0.00

0.05

0.10

%

H
PDF
Hue channel

0 100 200
0.00

0.01

0.02

%

S
PDF
Saturation
 channel

0 100 200
0.00

0.02

0.04
V

PDF
Value channel

(C)

0 100 200
0.00

0.02

0.04

%

L
PDF
L* channel

(D)
0 100 200

0.00

0.05

0.10

%

A
PDF
a* channel

0 100 200
0.00

0.05

0.10

B
(E)

0 100 200
0.00

0.05

0.10

%

B
PDF
b* channel

(F)

FIGURE 4.7: Histograms of green color for H, S, V ((A), (B), (C)) and
for L, a*, b* ((C),(E),(D)) channels.

To get a more accurate representation of color regions,the user can accumulate
the selected regions by selecting the object multiple times from different angles.

The accumulated mean is calculated as:

mn =
mo + m

n
(4.7)

where mo is the mean for the previous selected area and the m for the newly selected
area. The accumulated standard deviation is obtained as

σn = σ2
o + σ2 + mo + m− 2 ·mn (4.8)

where σ is the standard deviation for the newly selected area and o for the old one,
and mn is the accumulated one. Only for the Hue channel the mean and standard
deviation are calculated the same way as previously.

The thresholds for color segmentation are obtained by subtracting and adding a
scaled standard deviation to the mean for each channel

lowerc = mc − σc ·multiplierc (4.9)

4.3. Balloon Color Picker 31

upperc = mc + σc ·multiplierc (4.10)

where multiplierc is the value on the slider for channel c that the user uses to increase
or decrease the range, see section 4.3.1.

This kind of thresholding creates a rectangular selection in the respective color
space (or a cylindrical sector in the case of HSV). In Figure 4.8 it may be observed
that the spread of the color data (white dots) is not rectangular. The green rectangle
represents the region that was selected by calculating the thresholds and increasing
the value of the multiplier. The detection of the object is still very good, but in this
case there is not much green color in the surroundings.

0 50 100 150 200 250
Saturation

0

25

50

75

100

125

150

175

H
ue

FIGURE 4.8: A 2D histogram of hue and saturation of a green colored
object. The green rectangle represents selected region.

For more challenging surroundings (like detecting a yellow ball in a desert), the
area on Figure 4.8 can be selected directly to have more accurate representation of
the object’s color. This is implemented by selecting area on the histogram see item 17.

In this case, the result is a binary mask of the histogram, where the selected color
range will be marked as 1, and not used area a 0, this is the proposed version of the
LUT. Using this approach, an object may be selected from different angles, resulting
in accurate color thresholds.

33

Chapter 5

Trajectory generation

This chapter describes the generation of approach, attack, and scanning trajectories.
These methods are essential for the state machine. At first, the approach trajectory
generation, described in section section 5.1, since this is the most complex trajectory
in terms of coping with oscillation of the target, and followed by the description
of the attack trajectory section 5.2 — finally, the scanning trajectory generation de-
scribed in section 5.3.

5.1 Approaching trajectory

TheeObject Detect package produces estimates of target positions, which one fil-
tered and primary target is selected by the state machine (described in subsection 3.4.3).
The resulting reference position

bp =

xp
yp
zp

 (5.1)

is not the final destination of the approach trajectory. The UAV should idle at db
distance from the balloon. The UAV keeps the target in center of the camera, so the
heading is calculated as

φ = atan2 (yp − yd, xp − xd), (5.2)

where the xd and yd are coordinates the UAV’s position in the world frame.

5.1.1 Deadband

The detection from the Object Detect comes at ≈30 Hz, and the resulting reference
has ≈ 10 cm jumps due to detection noise in position of the target. This leads to an
unstable reference being sent to the vehicle, which escalates into a positive-feedback
and oscillation of the vehicle together with the reference. To prevent the UAV from
oscillating a solution called deadband [12] is used.

A basic idea of deadband is to define a neutral zone where UAV does not respond
to changes of the reference. In our case, we want to penalize the distance to the
balloon but restrict moves around the target.

If the new reference~r is in range of D f the reference is updated and projected to
a plane, defined by UAV’s position and the D f . The reference projection is obtained
using Equation 5.4, where~t is a result of Equation 5.3, and ~xd is UAV position.

~t =
∣∣∣~xd − ~bp

∣∣∣ (5.3)

34 Chapter 5. Trajectory generation

~p = (~t ·~t T) · (~r − ~xd) (5.4)

If ||~p || is smaller than the D f , the reference needs to be moved to prevent oscilla-
tion. The updated reference ~rn is obtained in Equation 5.6 by projecting it onto the
deadband plane via projector ~pn (Equation 5.5, where I3 is an identity matrix of size
3 and~t is normalized vector to the target), the result is shown in Figure 5.1.

~pn = I3 − (~t ·~t T) (5.5)

~rn = ~pn · (~r − ~xd) + ~xd (5.6)

0 2 4 6 8 10
0

2

4

6

8

10

x[m]

y
[m

]

Target

UAV position

New UAV position

Projection of the new UAV position

Updated new UAV position

Deadband neutral zone

FIGURE 5.1: Illustration of the proposed deadband implementation.

5.1.2 Planning

Since the target is stationary, the approach trajectory can be a straight line. But, the
metal poles that hold the balloons may differ in height. The distance between the
UAV and the target determines the height of the UAV to the target. If the UAV is
further from the goal than Dp, the height is the current one. Otherwise, the height is
the target one. There is no need to plan the descend, since we can send the trajectory
to the MPC tracker in the UAV control pipeline and it will modify the trajectory to be
feasible. The UAV approaches the balloon at distance db and wait for next command
from state machine. To find this position and plan trajectory to it, algorithm 1 is
used. The resulting approach trajectory is visualized in Figure 5.2.

5.1. Approaching trajectory 35

UAV

Target

Waiting
point

Dp

db

z

x

FIGURE 5.2: Approach trajectory planning to a waiting point (red dot)
at a distance db to the target. Descent to the height of the target starts
at Dp from the height H. The solid black line is the generated trajec-
tory; the dashed red one is the actual UAV trajectory, after processing

by the MPC tracker.

36 Chapter 5. Trajectory generation

input : ~bp =

xp
yp
zp

 - position of the target

~p =

xd
yd
zd

 - UAV position

db - distance from the target where vehicle should be stationary
v - desired velocity of the resulting trajectory
vd - desired velocity of the vehicle
amax - maximal acceleration of the vehicle
φ - heading to the target

output: traj - trajectory to approach the target

1 begin
2 ~dir := ~bp − ~p

3 dist :=
∣∣∣∣∣∣ ~dir

∣∣∣∣∣∣
4 dist := (dist−db)

dist
5 ~g := dist · ~dir + ~p
6 ~g := deadBand(~g , ~bp)

7 ~dir := |~g − ~p |
8 traj.append(xd, yd, zd, φ)
9 ~cur := ~p

10 vel := vd
11 while ~cur 6= ~g do
12 vel := vel + amax ∗ dt
13 if vel > v then
14 vel ← v
15 end
16 ~cur_dir := vel ∗ ~dir
17 ~cur := ~cur + ~cur_dir
18 ~cur [2] := zp
19 if dist ≥ Dp then
20 cur[2] := zd
21 end
22 traj.append(~cur [0], ~cur [1], ~cur [2], φ)

23 end
24 end
Algorithm 1: Approach trajectory generation algorithm. Parameters are de-
scribed in Table 3.1

5.2 Attack trajectory

The attack trajectory planning is similar to the approach trajectory planning (sec-
tion 5.1). The difference is in speed, distance where the new reference is set and two
height offsets. The algorithm 1 is used, but the distance parameter is passed neg-
ative do, so that the new reference will appear behind the target, and the speed is
changed to va. The biggest difference are the height offsets. The first one is added to
the height of the target - oh, the second one is added to the last point of the trajectory
oo. The result of this modification is shown in Figure 5.3.

5.3. Scan trajectory planning 37

UAV

Point of
contact

oh oo

do

Target

z

x

FIGURE 5.3: Attack trajectory planning. Solid black line is the
planned trajectory, and the red dashed line is the resulting trajectory
after reshaping by the MPC. The red dot is the point of interaction
with the target, it has oh offset from the center. oo is an overshoot
offset added to the last point of the trajectory. do is the overshoot

distance parameter from Table 3.1.

Those two offsets are serving as a safety precaution since if the height estimation
is wrong, the UAV will crash into the metal pole, as shown in Figure 5.4.

FIGURE 5.4: The UAV crashes into the metal pole because of a wrong
estimated height.

5.3 Scan trajectory planning

The arena is shaped as a non-convex polygon (see Figure 1.2). The aim of the scan-
ning trajectory is to go through the whole arena and give the camera as good view
coverage as possible. According to this goal, a planning algorithm was designed:

1. Go to one edge of the arena.

2. Move sscan distance the along X-axis.

3. Go to the other edge of the arena.

4. Move sscan distance along the X-axis.

38 Chapter 5. Trajectory generation

5. Go to step 1 unless the end of the arena is reached.

An illustration of this plan is shown in Figure 5.5. The arrows represent the heading
of the UAV in the current step of the plan—almost all the way through the arena, the
UAV faces the direction of the flight, except the short turns. During the turns, UAV
is heading to the inner part of the arena. This is made to give the camera a view on
the inner part of the arena.

y

x

FIGURE 5.5: Illustration of the proposed scanning plan, the red dot
is starting point and green one is the finish. The arrows represent

heading of the UAV on the move.

Since the arena is a non-convex polygon, its width differs in each point. To over-
come this issue and not complicate the algorithm scanning is performed in a rectan-
gular shape area inside of the working arena, as shown in Figure 5.6.

(A) Illustration of a big
working area Figure 3.9.
The scanning area is high-
lighted by red rectangle.

(B) Working areas il-
lustration from the
Figure 3.7 scanning area
is highlighted by green
rectangle for UAV1, and
scanning area for UAV2

by blue rectangle.

FIGURE 5.6: Illustration of scanning area drawn over 3D model of the
arena.

The scan trajectory consists of straight lines, with constant heading and constant
speed. The generation of such lines is described in algorithm 2. This algorithm
mentions the function pointInArena, which checks whether the point is inside the
scanning area so that the trajectory does not get out from the scanning rectangle.
The algorithm also works when If the starting or finishing point is outside of the

5.3. Scan trajectory planning 39

scanning area, the result will contain only part of the trajectory that fits into the
rectangle.

The scan planning algorithm is shown in algorithm 3. The resulting trajectory
is an offset from the rectangle, so that if the Global Position System (GPS) drifts the
UAV does not hit the net. The algorithm will produces trajectory from the current
UAV’s position to the furthest side of the arena. To reduce i the tilt of the vehicle
while turning on the corners the speed is decreased by c f . The algorithm also uses
getHeading(~a ,~b) function, which calculates the angle between two points according
to Equation 5.7.

φ = atan2 (yb − ya, xb − x), (5.7)

where xa, ya and xb, yb are coordinates of the starting and finishing positions respec-
tively. The result of algorithm 3 is shown in Figure 5.5

input : ~a - starting point of the trajectory
~b - finishing point of the trajectory
v - velocity of the trajectory
φ - heading of the trajectory

output: traj - trajectory from~a to~b

1 begin
2 ~d :=

∣∣∣~b −~a ∣∣∣ ∗ v

3 ~c :=~a
4 if pointInArena(~c) then
5 traj.append(~c , φ)
6 end
7 while ~c 6=~b do
8 ~c := ~c + ~d
9 if pointInArena(~c) then

10 traj.append(~c , φ)
11 end
12 end
13 end

Algorithm 2: Basic trajectory generation.

40 Chapter 5. Trajectory generation

input : xmin, xmax, ymin, ymax - limits of the arena
f - detection range of the camera
vs - velocity of scanning trajectory
H - scanning height
do f f set - offset from the borders of the arena
xd - UAV position

c f - arena corner speed decrease factor ~p =

xd
yd
zd

 - UAV position

output: traj - scanning trajectory

1 begin
2 le f t := xmax − do f f set

3 right := xmin − do f f set

4 top := ymax − do f f set

5 bot := ymin + do f f set

6 ~c = ~p

7 steps := (xmax−xmin−do f f set)

f

8 if |~xd [0]− le f t| < |~xd [0]− right| then
9 f := − f

10 end
11 for i := 0; i < steps; i := i + 1 do

12 ~n ←

~c [0]top
H

13 traj.append(goToPoint(~c ,~n , vs, getHeading(~c ,~n)))
14 ~c [1] := top
15 ~n [0] := f +~n [0]

16 traj.append(goToPoint(~c ,~n , vs/c f , getHeading(~c ,
[
~n [0]
bot

]
)))

17 ~c [0] := f +~c [0]
18 ~n [1] := bot
19 traj.append(goToPoint(~c ,~n , vs, getHeading(~c ,~n)))
20 ~c [1] := bot
21 ~n [0] := f +~n [0]

22 traj.append(goToPoint(~c ,~n , vs/c f , getHeading(~c ,
[
~n [0]
bot

]
)))

23 ~c [0] := f +~c [0]
24 end
25 return traj
26 end

Algorithm 3: Scanning trajectory planning algorithm.

41

Chapter 6

Evaluation

This chapter summarizes the experimental evaluation of the presented algorithms.

6.1 Simulation

An essential part of the evaluation and testing of the solution was done using the
Gazebo [1] robotic simulator. Gazebo can simulate multiple robots in a 3D environ-
ment, with extensive dynamic interaction between them and the objects. It has an
integration with a Pixhawk autopilot simulator which makes the setup very similar
to the real-world platform. There is a minimal difference in software that is running
on the UAV and in the simulation. This fact enables a good understanding of what
is going to happen in real-life experiments.

FIGURE 6.1: An UAV in the Gazebo robotic simulator. The tar-
gets(balloons) are highlighted using red rectangles.

The simulated UAV has the same set of sensors as in the real-world. Their param-
eters are similar to the real ones in the real world, which is very useful for evaluation
and testing of different approaches in simulation and verifying them before flying
in real-world experiments. The platform is also designed to be physically the same
as in real-world (compare the real-world appearance Figure 2.1 and the simulation
equivalent Figure 6.1).

42 Chapter 6. Evaluation

The UAV balloon targets are also simulated using the Gazebo engine (see Fig-
ure 6.1). Using the Gazebo’s interface, physical interaction is tracked, and once a
collision is detected between the object and an UAV, the target balloon is deleted.
The physical engine also enables wind simulation via applying a force to the object,
so the targets behaved similarly to the real-world.

The biggest problem with simulation is the vision part. In the simulation, vi-
sion worked perfectly, and there were no problems with height offsets or wrong dis-
tance estimation. However, in real-world scenarios with different light conditions
problems occurred, distance jumped, sudden height offset appeared. This will be
discussed further.

6.2 Color Picker

The balloon target that was specified by organizers has been initially red-colored.
But before the competition, the rules have been changed, and the color was changed
to green. Using the Color Picker, the Object Detect was robust to change of color. The
resulting color segmentation is shown in Figure 6.2. It just required calibration be-
fore use, and that’s all. The color picking took around 40 seconds on the competition
and could be done from long distance.

One of the main features of the developed plugin is its distribution - GUI is sep-
arate from the computation part. Using this user can run the computation on the
UAV and see the output on the computer without any wired connection using the
ROS Wi-Fi connection. Though, the communication has limits in transporting im-
ages through the network, so only one drone could be used to pick colors at the same
time.

The resulting plugin can be used with any ROS compatible camera plugin or
with recorded data via RosBag1 (ROS plugin that records topic data).

FIGURE 6.2: A debug image from onboard camera processed by Ob-
ject Detect. The tracked object is highlighted by red circle.

1http://wiki.ros.org/rosbag

http://wiki.ros.org/rosbag

6.3. Deadband 43

6.3 Deadband

As stated in section 6.1, the targets are simulated in Gazebo, so the approaching and
attacking trajectory was first tested there. Because of ideal conditions for the vision
solution, the simulated wind was used to oscillate the target to test the deadband.
However, even with oscillation, there were no issues. The real problem occurred
when testing the target approach without attacking. The oscillation was significant,
and the drone behaved aggressively. This was due to a bad calibrated vision. That is
when the deadband solution was introduced. In Figure 6.3, the position of the target
jumped, and how drastically deadband stabilized the reference. In this situation,
the deadband control zone was set to 3 meters, since the target position jumped so
much. This was only at a certain angle but was very risky for the drone.

35 40 45 50 55
Time [s] +1.5795247e9

3.25

3.50

3.75

4.00

4.25

4.50

X
co
or
di
na

te
 [m

]

X
X with deadband

(A) Stabilization of X co-
ordinate using deadband

with D f 3 m.

35 40 45 50 55
Time [s] +1.5795247e9

2

3

4

5

6

Y
co
or
di
na

te
 [m

]

Y
Y with deadband

(B) Stabilization of Y co-
ordinate using deadband

with D f 3 m.

FIGURE 6.3: Stabilization of reference obtained from bad calibrated
Object Detect.

6.4 Target approach and attack

Before the competition, multiple experiments were concieved in different and chal-
lenging environments, see Figure 6.4. In this section, a comparison of the simulation
data and results from the competition will be provided.

44 Chapter 6. Evaluation

(A) First preliminary
tests, executed with
an old UAV plat-

form.

(B) First preliminary
tests with a new
MAV platform, ded-
icated for solving

this task.

(C) Deadband test in desert.

FIGURE 6.4: Photos of the tests done throughout summer 2019 - win-
ter 2020.

On the Figure 6.5 are shown target approach and attack trajectory executed by
the drone in simulation. The trajectories are shown in XZ, YZ coordinate planes to
visualize the approach scheme as here Figure 5.2 and the attack scheme in Figure 5.3.
The MPC reshaped the trajectory and made it more smooth, though the transition
was fast, and the drone went through the target with height offset 0.3 m.

In comparison to simulation the Figure 6.6 shows target approach and destroying
performed during Grand Challenge of the MBZIRC 2020. The trajectory in real-
world performed even better and smoother then in simulation. Execution of this
trajectory is shown in Figure 6.7.

6.4. Target approach and attack 45

4 5 6 7 8 9 10 11 12
X position [m]

4.5

5.0

5.5

6.0
Z
po
si
tio

n
[m

]

Target approach and attack - simulation

Odometry
Approach trajectory
Trajectory when distance < 7m
Attack Trajectory
Target
Start

(A) Approach and attack plot in XZ plane in simulation

−5.0 −2.5 0.0 2.5 5.0 7.5 10.0 12.5
Y osition [m]

4.50

4.75

5.00

5.25

5.50

5.75

6.00

Z
 o
si
tio

n
[m

]

Target a roach and attack - simulation

Odometry
A roach trajectory
Trajectory when distance < 7m
Attack Trajectory
Target
Start

(B) Approach and attack plot in YZ plane in simulation

FIGURE 6.5: Approaching and attacking the target in simulation.

46 Chapter 6. Evaluation

−10 −5 0 5 10
X osition [m]

3.0

3.2

3.4

3.6

3.8

4.0

4.2

4.4

4.6

Z
 o
si
tio

n
[m

]

Target a roach and attack - com etition

Odometry
A roach trajectory
Trajectory when distance < 11m
Attack Trajectory
Target
Start

(A) Approach and attack plot in XZ plane

−7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0 12.5
Y p siti n [m]

3.0

3.2

3.4

3.6

3.8

4.0

4.2

4.4

4.6

Z
p

si
ti

n
[m

]

Target appr ach and attack - c mpetiti n

Od metry
Appr ach traject ry
Traject ry when distance < 11m
Attack Traject ry
Target
Start

(B) Approach and attack plot in YZ plane

FIGURE 6.6: Approaching and attacking the target on Grand Chal-
lenge.

6.5. Arena scanning 47

FIGURE 6.7: A series of pictures showing drone approaching the bal-
loon (from the left side) and popping it (on the right).

6.5 Arena scanning

The arena layout was given only on the rehearsal days and the solution proved itself
robust by executing the whole pipeline smoothly and without problems. In Fig-
ure 6.8 is shown scan performed by UAV during grand challenge. The scanning
area is shown as green rectangle, and working area as red non-convex polygon (safe
zone). Though the trajectory itself is rectangular, the MPC reshaped the trajectory
and made it smooth as it is shown in the figure.

48 Chapter 6. Evaluation

−40 −20 0 20 40
X posi ion [m]

−15

−10

−5

0

5

10

15
Y

po
si

 io
n

[m
]

Arena scanning - whole arena

Odome ry
Trajec ory
Scanning zone
Safe zone
S ar ing pose
Finish

FIGURE 6.8: Scanning of the MBZIRC 2020 arena during the Grand
Challenge.

In Figure 6.9 is shown scan performed by a team of two UAVs during second
trial of the first challenge. It is clearly seen that the arenas are split so there won’t be
any possible collisions.

−40 −20 0 20 40
X po ition [m]

−15

−10

−5

0

5

10

15

Y
po

 i
tio

n
[m

]

Arena canning - two drone

Odometry UAV1
Trajectory UAV1
Odometry UAV2
Trajectory UAV2
Scanning zone UAV1
Scanning zone UAV2
Safe zone UAV1
Safe zone UAV2
Fini h UAV1
Fini h UAV2
Start UAV1
Start UAV2

FIGURE 6.9: Scanning of the MBZIRC 2020 arena with two UAVs dur-
ing First Challenge.

6.6 State machine performance

One of the major issues that can happen with state machine is that it can get stuck
in one state or get focused only on one target. During the competition there was no

6.6. State machine performance 49

such case, and the resulting algorithm has worked as planned state by state thanks
to the robust design and builtin failsafe mechanisms.

Video of the state machine performance is published on YouTube2.
An example of full cycle, going through IDLE state to state DESTROYING

through state GOING AROUND is shown in Figure 6.10 for one UAV during the
Grand Challenge of MBZIRC 2020. The plot shows the process of scanning the area,
then spotting the target, executing approaching trajectory and then destroying the
target.

−40 −20 0 20 40
X po ition [m]

−15

−10

−5

0

5

10

15

Y
po

 i
tio

n
[m

]

Search and de troy - 2D view

Odometry
Scanning trajectory
Approach Trajectory
Attack Trajectory
Scanning zone
Safe zone
Starting po e
Target
Fini h

FIGURE 6.10: Full cycle of state machine during the Grand Challenge
of MBZIRC 2020.

It is hard to calculate the resulting speed of the proposed algorithm because of
resets during the trial. During the trial each team may call for a reset, after it they
can enter the arena and change the drone’s position, change batteries, reboot the
onboard computer.

Trial Drones Time Note

Rehearsal 3 1(2) 154 s One UAV crashed due to disarm + reset
Trial 1 1(2) 255 s One UAV crashed due to disarm + reset
Trial 2 2 315 s Two UAVs, one drone with mechanical is-

sue caused a height offset + reset
Grand Chal-
lenge

1 181 s One reset due to emergency landing of an-
other UAV

Desert 2 109 s Test on self-made arena with 4 balloons.

TABLE 6.1: State machine timings. Time is calculated only when
drone was in the air and until the last balloon was popped.

Video from the first run can be seen here: https://www.youtube.com/watch?v=
39q0irwiYoE

In Table 6.1 time3 is shown that state machine needed to destroy all the balloons
in the designated arena. During the rehearsals, one drone had a hardware issue that
resulted in its crash. The crash also happened during the first trial, so only one drone

2https://www.youtube.com/watch?v=2-cLSjRCKDg
3The time data was obtained by reviewing videos from the competition.

https://www.youtube.com/watch?v=2-cLSjRCKDg
https://www.youtube.com/watch?v=39q0irwiYoE
https://www.youtube.com/watch?v=39q0irwiYoE

50 Chapter 6. Evaluation

was used. The data clearly shows that one drone was more efficient in destroying
the balloons in the competition, but not in the desert.

Although during the second trial (see ??), the two drones destroyed the first four
balloons (out of 5) just in 72 s, the last one took 183 s. This was because of the height
offset, which we could not investigate, whether it was due to hardware or software
issues. The drone performed four tries to pop the balloon, and the resulting fifth was
a success. This shows that the state machine was able to find a place where it could
destroy the target and got it, which is a success.

Since the positions of the targets changed after each trial we could not test how
consistent the state machine is. Although we can state that proposed algorithm ful-
filled fulfilled its task successfully.

FIGURE 6.11: Team of UAVs during second trial of the MBZIRC 2020
First Challenge.

51

Chapter 7

Conclusion

In this work, a system for autonomous balloon popping by a team of cooperating
UAVs for solving Challenge 1 of the MBZIRC 2020 competition was presented. The
developed system consists of a high-level state machine which controls the target
searching and destroying the targets, a semi-automatic tool for efficient and fast
color picking, a trajectory generation scheme for approaching, and attacking the tar-
get and the multi robotic scenario for multiple UAVs. Every part of the system was
extensively tested in Gazebo robotic simulator as well as real-world outdoor exper-
iments in different environments. Furthermore, as the resulting test was conducted
at the MBZIRC 2020 competition, the results are described in section 7.1.

The resulting system consists of:

• High-level state machine that controlled the search and destroy mission de-
scribed in chapter 3.

• Object Detection color based computer vision system was integrated into the
system for target localization purposes in chapter 4.

• Color picking plugin was designed and implemented in chapter 4. Further-
more, the plugin is published and available at https://github.com/ctu-mrs.

• An approaching and attacking strategy, as well as strategy for searching the
targets, were designed and implemented in chapter 5.

• The system was tested in simulation and in the real world in different condi-
tions. The results of the tests are described in chapter 6. The whole solution
was used on the MBZIRC 2020 challenge, and the results are in section 7.1.

7.1 Competition result

The final scores of the MBZIRC 2020 are published on the official page1 of the com-
petition. List of participants is full of top rated technical universities from all the
world2, although not everybody scored the highest rank. Top teams are shown in
Table 7.1.

1https://www.mbzirc.com/winning-teams/2020
2https://www.mbzirc.com/qualified-teams/2020

https://github.com/ctu-mrs
https://www.mbzirc.com/winning-teams/2020
https://www.mbzirc.com/winning-teams/2020
https://www.mbzirc.com/qualified-teams/2020

52 Chapter 7. Conclusion

Team Challenge 1 Grand challenge
Beijing Institute of Technology 100 -

CTU in Prague, UPENN and NYU 72 72
University of Tokyo 42 0
University of Bonn 30 30

UPM, UPO, PUT and CNRS 18 40.5

TABLE 7.1: MBZIRC resulting scores.

The maximum points that the team could obtain for balloon popping were 30
points from 100 overall for the whole challenge.

As part of team of CTU in Prague, UPENN and NYU we scored second in First
challenge and first place in Grand challenge (see Figure 7.1). For the first and the
grand challenges we scored equal amount of points 72 , where 30 points are for the
balloon hunting.

(A) (B)

FIGURE 7.1: Team of CTU in Prague, UPENN and NYU secured the
first place in the Grand and Second Challenges, and second place in

the First challenge.

53

Bibliography

[1] Gazebo - a dynamic multi-robot simulator. Available: https://github.com/

osrf/gazebo.

[2] Tomas Baca, Daniel Hert, Giuseppe Loianno, Martin Saska, and Vijay Kumar.
Model predictive trajectory tracking and collision avoidance for reliable out-
door deployment of unmanned aerial vehicles. In 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2018.

[3] Tomas Baca., G. Loianno, and M. Saska. Embedded model predictive control of
unmanned micro aerial vehicles. In 21st International Conference on Methods and
Models in Automation and Robotics (MMAR), 2016.

[4] Marius Beul, Matthias Nieuwenhuisen, Jan Quenzel, Radu Alexandru Rosu,
Jannis Horn, Dmytro Pavlichenko, Sebastian Houben, and Sven Behnke. Team
nimbro at mbzirc 2017: Fast landing on a moving target and treasure hunting
with a team of micro aerial vehicles. Journal of Field Robotics, 36(1):204–229, 2019.

[5] Bill Canis. Unmanned aircraft systems UAS: Commercial outlook for a new
industry, 2015.

[6] Oscar Chang, Patricia Constante, Andrés Gordon, and Marco Singana. A novel
deep neural network that uses space-time features for tracking and recognizing
a moving object. Journal of Artificial Intelligence and Soft Computing Research,
7(2):125–136, 2017.

[7] International Color Consortium et al. Image technology colour management-
architecture, profile format, and data structure. Specification ICC. 1: 2004-10
(Profile version 4.2. 0.0), 2004.

[8] Kaiwen Duan, Song Bai, Lingxi Xie, Honggang Qi, Qingming Huang, and
Qi Tian. Centernet: Keypoint triplets for object detection. In Proceedings of
the IEEE International Conference on Computer Vision, pages 6569–6578, 2019.

[9] Jan Faigl, Petr Váňa, Robert Pěnička, and Martin Saska. Unsupervised learning-
based flexible framework for surveillance planning with aerial vehicles. Journal
of Field Robotics, 36(1):270–301, 2019.

[10] M. Flint, M. Polycarpou, and E. Fernandez-Gaucherand. Cooperative control
for multiple autonomous uav’s searching for targets. In Proceedings of the 41st
IEEE Conference on Decision and Control, 2002., volume 3, pages 2823–2828 vol.3,
2002.

[11] George H Joblove and Donald Greenberg. Color spaces for computer graph-
ics. In Proceedings of the 5th annual conference on Computer graphics and interactive
techniques, pages 20–25, 1978.

[12] Curtis D Johnson. Process control instrumentation technology. Prentice Hall PTR,
1999.

https://github.com/osrf/gazebo
https://github.com/osrf/gazebo

54 BIBLIOGRAPHY

[13] R. E. Kalman. A new approach to linear filtering and prediction problems"
transaction of the asme journal of basic. 1960.

[14] Taeyoung Lee, Melvin Leok, and N Harris McClamroch. Geometric tracking
control of a quadrotor UAV on se (3). In 49th IEEE conference on decision and
control (CDC), pages 5420–5425. IEEE, 2010.

[15] Lorenz Meier, Petri Tanskanen, Friedrich Fraundorfer, and Marc Pollefeys. Pix-
hawk: A system for autonomous flight using onboard computer vision. In 2011
IEEE International Conference on Robotics and Automation, pages 2992–2997. IEEE,
2011.

[16] M. Petrlík, T. Báča, D. Heřt, M. Vrba, T. Krajník, and M. Saska. A robust uav sys-
tem for operations in a constrained environment. IEEE Robotics and Automation
Letters (RAL), 2020.

[17] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy
Leibs, Rob Wheeler, and Andrew Y Ng. Ros: an open-source robot operating
system. In ICRA workshop on open source software, volume 3, page 5. Kobe, Japan,
2009.

[18] Max Schwarz. nimbro_network - ROS transport for high-latency, low-quality
networks, Robot Operating System (ROS), 2015. Available: https://github.
com/AIS-Bonn/nimbro_network.

[19] CIE Color Space. Gernot hoffmann.

[20] V. Spurny, Tomas Baca, M. Saska, R. Penicka, T. Krajnik, J. Thomas, D. Thakur,
G. Loianno, and V. Kumar. Cooperative Autonomous Search, Grasping and
Delivering in a Treasure Hunt Scenario by a Team of UAVs. Journal of Field
Robotics, 36(1):125–148, 2019.

[21] M. Vrba, D. Heřt, and M. Saska. Onboard marker-less detection and localization
of non-cooperating drones for their safe interception by an autonomous aerial
system. RA-L, 4(4):3402–3409, Oct 2019.

https://github.com/AIS-Bonn/nimbro_network
https://github.com/AIS-Bonn/nimbro_network

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Related Works
	Preliminaries
	MRS Control pipeline

	Hardware setup
	UAV platform
	Target elimination tools
	Camera

	High level state machine
	State machine pipeline
	Communication between UAVs
	State Machine Parameters
	State Machine Flowchart
	IDLE state
	GOING AROUND state
	CHECKING BALLOON state
	GOING TO THE BALLOON state
	DESTROYING state

	Job manager
	State timer
	Forbidden zones
	Abort system
	Multi-Robot Scenario

	Automatic start

	Target detection and Estimation
	Object Detect
	Balloon Filter
	Balloon Color Picker
	GUI
	Color selection
	Managing the color range

	Computation

	Trajectory generation
	Approaching trajectory
	Deadband
	Planning

	Attack trajectory
	Scan trajectory planning

	Evaluation
	Simulation
	Color Picker
	Deadband
	Target approach and attack
	Arena scanning
	State machine performance

	Conclusion
	Competition result

