
UKRAINIAN CATHOLIC UNIVERSITY

BACHELOR THESIS

Template-based color correction in
alternating lighting conditions

Author:
Yur TEPLIUKH

Supervisor:
Oles DOBOSEVYCH

A thesis submitted in fulfillment of the requirements
for the degree of Bachelor of Science

in the

Department of Computer Sciences
Faculty of Applied Sciences

Lviv 2019

http://www.ucu.edu.ua
http://www.johnsmith.com
http://www.jamessmith.com
http://researchgroup.university.com
http://department.university.com

i

Declaration of Authorship
I, Yur TEPLIUKH, declare that this thesis titled, “Template-based color correction in
alternating lighting conditions” and the work presented in it are my own. I confirm
that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

ii

UKRAINIAN CATHOLIC UNIVERSITY

Faculty of Applied Sciences

Bachelor of Science

Template-based color correction in alternating lighting conditions

by Yur TEPLIUKH

Abstract

Having the right colors is one of the best ways for picture to look good. But not
only humans’ eye will appreciate correctly colored image, but also a computer, es-
pecially when the task is to track object by its color. While this might not seem like a
difficult one, but when you have really long-term tracking, in an environment where
lightning conditions change over time, you want to be sure that your algorithm is
still able to find desired object. Or maybe you cannot or don’t want to manually ad-
just camera color settings, but still need to track same object during the day, sunset
and in the afternoon, when everything changes it colors to red and blue afterwards.

The main idea behind this work is to create an automatic pipeline which will
output either corrected image, or the mask, which should be applied to produce cor-
rected image, depending on selected method. This is achieved by using a template
with reference color values, which is then compared with the colors on the input im-
age and proceeded to color estimation algorithms. Different types of templates and
color estimation algorithms were compared to select the most effective to provide
color stability. We show that you don’t need a special templates to achieve good
results in color calibration.

Here is the link to the dataset images, as well as calibrated ones.

HTTP://WWW.UCU.EDU.UA
http://department.university.com
https://www.dropbox.com/sh/64qjblb4q9g6ief/AACR7KhmnJwCi_xrC31Q5E16a?dl=0

iii

Contents

Declaration of Authorship i

Abstract ii

1 Introduction 1
1.1 Motivation . 1
1.2 Goals . 1
1.3 Structure . 1

2 Background information 3
2.1 Object detection . 3
2.2 Neural Networks . 4
2.3 Convolutional Neural Networks . 5

2.3.1 Padding . 6
2.3.2 Batch normalization . 6

2.4 sRGB . 7
2.5 Partial least squares regression . 7
2.6 Color detection . 7

3 Related works 9
3.1 HardNet descriptor . 9
3.2 AffNet . 10
3.3 DEGENSAC . 10
3.4 TPS-3D . 10

4 Datasets 12

5 Proposed approach 14

6 Results 16
6.1 Visual representation . 18
6.2 Additional observation . 19

7 Conclusions 20

Bibliography 21

iv

List of Figures

2.1 Activation functions . 4
2.2 Schematic representation of simple one-layer neural network 5
2.3 Convolutional kernels . 6
2.4 Padding . 6
2.5 sRGB color spectre . 7

3.1 HardNet model architecture . 9
3.2 HardNet results of benchmark on HPatches 9
3.3 AffNet model architecture . 10
3.4 DEGENSAC performance comparison 11
3.5 TPS-3D performance comparison . 11

4.1 Triangle reference image . 12
4.2 Triangle dataset . 12
4.3 Stickers reference image . 13
4.4 Stickers dataset . 13

5.1 Proposed architecture . 14

6.1 Stickers correction results . 16
6.2 Triangle correction results . 17
6.3 Calibration results . 18
6.4 Black&white photo restoration . 19

v

List of Tables

6.1 Calibration results "stickers" . 16
6.2 Calibration results "triangles" . 17

1

Chapter 1

Introduction

1.1 Motivation

Everyone who has ever taken a photo, which is probably just everyone, might expe-
rienced situations when the photo had terrible colors. There can be a lot of reasons
for that, especially now, when before you get a photo taken, it comes a long way
through different algorithms that are supposed to make it look better. After that,
when an image is saved, the compression algorithm does his job to decrease the
photo’s size, making things even worse. There are different ways to post-process
an image and countless amount of software, where you can do whatever you want
with what you have filmed. But usually, to get the result you would be satisfied
with, you must do some tweaks be yourself. Adjust brightness, add some satura-
tion, increase temperature, maybe even play with channel curves. But how would
you know whether you are doing it correctly? What is the measurement of the prop-
erly corrected image? We think that this can be how accurate the colors on the image
are. And while for an average user, it might not always be the case, because natural
colors are not always the prettiest one, and there are many fields where having the
right colors is extremely important. For example, food sciences, where depending
on the color of foodstuff, one can tell whether they are fresh or not. Or in com-
puter vision, especially color detection. Imagine that your task is to track red objects
during the whole day, from early morning to late evening. During the day, light con-
ditions are changing: sunrise, afternoon, evening, sunset, night. Light is changing
all the time, and you should either implement some technique to compensate these
changes or manually change the color, which is tracked by your algorithm. Or you
can use the approach proposed in this thesis.

1.2 Goals

• Create a framework for automatic color detection, which (in general) does not
require manual adjustments.

• Describe and compare different color correction algorithms.

1.3 Structure

• Chapter 2. Background information

This chapter contains some main concepts in computer vision: object and color
detection, convolutional neural networks as well as color correction theory.

• Chapter 3. Related works

Chapter 1. Introduction 2

Here we analyze various research topics and available methods for object de-
tection and color correction, describe ones which are used in this thesis.

• Chapter 4. Test datasets description

In this this chapter, an overview of gathered datasets is being presented, as
well as comments about data selection with visual references.

• Chapter 5. The proposed approach

This chapter is a description of proposed pipeline, architecture details and de-
scription of result evaluation methods.

• Chapter 6. Achieved results

In this part achieved results are being presented, as well as comparison be-
tween different color correction approaches with visual examples.

3

Chapter 2

Background information

Beyond doubt, our eyes are incredibly important part of our life. According to [18],
we receive near 875 KB of information from our eyes every second. In a research [15]
by Fabian Hutmacher, where respondents were asked to select losing of which sense
scares them the most, the answer of the majority (73.63%) was vision.

Humans’ eye is a complex system which is the result of constant evolution for
nearly 550 million years (3) since the first image-forming eyes evolved with the ap-
pearance of the stem mollusk Clementechiton sonorensis [21]. Despite the fact that
studying computer vision began in the late 1960s, just about 50 years ago, due to ad-
vancements of computer technologies and growing interest to this field during the
last decades we already have impressive results in detecting, classifying and localis-
ing certain things on photos and videos in real time, which opens endless possibili-
ties to such things as image stitching, autonomous driving, facial authentication and
many others.

2.1 Object detection

Computer vision is a field of study focused on learning computer to extract mean-
ingful information form images or videos. From the 2015 ILSVRC paper [29], it can
be split into three tasks:

• Image classification: prediction of class of an object in an image. Results in
class labels.

• Object localization: locate on object in an image and draw a bounding box
indication its position. Results in coordinates of objects bounding box.

• Object detection: Basically, combination of two previous tasks. Results in
bounding boxes with labels for each recognized object.

While object detection is an effortless task for a human, to teach computer not only
to see things, but also be able to specify them was proven to be quite a challeng-
ing task. Back in 2000s the most popular technique was bag-of-visual-words, which
used hand crafted descriptors, such as David Lowe’s scale-invariant feature trans-
form (SIFT) [20] and histogram of oriented gradients (HOG) [11] by Dalal et. al. The
first deep convolutional neural network (CNN) has been introduced at ILSVRC 2012
by Krizhevsky et.al. [19], significantly outperforming all the other methods: classifi-
cation error was reduced from 25.2% to 15.3%, and localisation error was decreased
from 50% to 34.3%. Since then, error rate of convolutional networks decreased to
just 2.25% classification error [14] and 6.23% localisation error in 2017, while mean
average detection precision increases from 23% in 2013 to 73% [8] in the same 2017.

Chapter 2. Background information 4

2.2 Neural Networks

In computer science, artificial neural network (ANN) are algorithms which are in-
spired by humans brain. They consist of neurons, which are connected together into
several layers, where neurons have connection to some (or, in case of fully connected
layer, to all) neurons from previous layer, with a weight coefficient associated to each
connection (which works like brain synapses) to show how important its input data
is. Each neuron can have several input and out connections. Equation below shows
how single neuron works:

ok = φ

(
m

∑
i=0

wkjxj

)
(2.1)

For a given neuron, x0 to xm are input signals with associated weights wj and φ
is called activation function. The purpose of activation function is to map previously
calculated sum between 0 and 1, some examples of such functions are sigmoid (2.1a),
tanh (2.1b), ReLU (2.1c) [26], Leaky ReLU (2.1d).

(A) fθ(x) = 1
1+e−θT x

[source image]
(B) f (x) = tanh(x)

[source image]

(C) f (x) = max(0, x)
[source image]

(D) f (x, α) = max(α ∗ x, x)
[source image]

FIGURE 2.1: Example of activation functions (from left to right): sig-
moid, tanh, ReLU, Leaky ReLU

On Fig. 2.2 is shown what a simple neural network might look like. It has 2
inputs (x1 and x2), single hidden layer with 2 neurons (h1 and h2) and a single output
neuron o1. The layers between input and output are called hidden layers.

Neural network are capable of finding dependencies in complex data, and to
achieve this training process is being used. It is performed in two steps: first the
data with known ground-truth values is being forwarded to network, and the er-
ror between received and ground-truth values is calculated, and then this error is
used to update initial weights. Training is the form of loss function minimization,
and common methods for this are stochastic gradient descent-based [4] optimization

https://missinglink.ai/wp-content/uploads/2018/11/sigmoidlogisticgraph.png
https://missinglink.ai/wp-content/uploads/2018/11/tanhhyperbolic.png
https://missinglink.ai/wp-content/uploads/2018/11/relu.png
https://missinglink.ai/wp-content/uploads/2018/11/leakyrelu.png

Chapter 2. Background information 5

FIGURE 2.2: Schematic image of simple one-layer neural network
[source image]

methods, which take only part of data from each iteration and use them to optimize
learning. Despite the fact that part of the data is not always fully representative,
making a lot of smaller optimizations eventually converges to minimum of the loss
function [5].

To improve the learning process, input data is into several subsets according to
[28]:

• Training set: the biggest subset, used for training itself.

• Validation set: this part is used to evaluate model performance and calculate
error to tune hyperparameters and test model generalization capabilities. Hy-
perparametets are certain parameters which are used to control learning pro-
cess and they are set before learning begins.

• Test set: subset, which is not involved in training process at all, used for final
evaluation. It is used to check how accurate network performs on the new data
and to test whether it was not overfitted by weights calculated on validation
set.

2.3 Convolutional Neural Networks

Convolutional networks are special types of neural networks which are suited for
object detection and classification on images and videos. The problem of using tra-
ditional networks is that for a black&white image of size 1280x720 pixels each neu-
ron inside a fully-connected layer requires 1280 ∗ 720 = 921600 weights, and for
colored RGB image number of weights will increase by three times. Such high num-
ber of weights raises the problem of potential overfitting and reduced performance.
To decrease number of weights, convolutional networks search for relations in lo-
cal neighbourhood of points: there’s no need to consider the value of bottom-right
pixel if the object we are searching for is in the top-left corner. Searching for simple
structures such as edges and lines helps to derive complex objects from them.

The name convolutinal network cames form mathematical operation convolu-
tion: it is an operation between discrete functions f and g, which is defined as

(f ∗ g)(t) =
∞

∑
x=−∞

f (x) · (t − x) (2.2)

and applied to each image pixel.

https://miro.medium.com/max/1100/1*x6KWjKTOBhUYL0MRX4M3oQ.png

Chapter 2. Background information 6

Here, f is the intensity value of a given pixel and g is a 2-dimensional non-zero
square array called kernel of size k (usually 3 × 3, 5 × 5 or 7 × 7). Depending on ker-
nel values it can be used for different image manipulations: detecting of horizontal
edges (2.3a), vertical edges (2.3b), applying Gaussian blur to the image(2.3c). 1 2 1

0 0 0
−1 −2 −1


(A)

1 0 −1
2 0 −2
1 0 −1


(B)

1 2 1
2 4 2
1 2 1


(C)

FIGURE 2.3: Example of convolution kernels

CNN consists of several convolutional layers, where each layer is a set of neurons
where each neuron has its own region (also called receptive field) where convolutions
are applied. First layers are responsible for detecting such features as corners, edges,
gradient orientations, etc. The next ones are combining them into more complex
shape detectors.

2.3.1 Padding

The size of CNN layer output is calculated as inputSize − (kernelSize − 1), which
means that if kernel size is bigger that 1, output would be smaller than input. To
deal with this, zero-padding of size kernelSize−1

2 is introduced.

FIGURE 2.4: Example of convolution steps with kernelSize = 3 and
padding = 1 [source image]

2.3.2 Batch normalization

Batch normalization [16] is a method to improve stability and performance of ANN.
To increase the stability of a neural network, batch normalization normalizes the
output of a previous layer by subtracting the batch mean and dividing by the batch
standard deviation resulting in re-scaled data with zero mean value and standard
deviation of one, which results in decreased dependencies on previous layers. It
also helps to reduce sensitivity of initial weights and allows to use higher learning
rates (it is a hyperparameter which controls how much the model will be changed
in response to estimated error on each weights update iteration) - and get higher
overall learning speed. Too small learning rate means that learning process will take
longer, while choosing it too large may result in non-optimal weight updates.

https://missinglink.ai/wp-content/uploads/2019/03/Frame-2.png

Chapter 2. Background information 7

2.4 sRGB

FIGURE 2.5: sRGB, AdobeRGB and DCI-P3 color spec-
tre representation

RGB color model is the one
which represents color gamut
as a combination of tree main
chromaticities of red, green,
and blue, which are added to-
gether in different amounts to
produce any other chromatic-
ity.

sRGB stands for standard
Red Green Blue – it is an stan-
dardized RGB color space cre-
ated by HP and Microsoft in
1996 to use on consumer CRT
monitors, printers, and over the
internet [1] and it still the most
popular color standard. Having common standard for all devices is to be convenient
that the colors of the same image would look the always same, however common
measure for modern display is not only sRGB coverage percentage (which represents
how many of possible colors in sRGB color space the screen is capable of showing),
but also AdobeRGB and DCI-P3, which are newer and both have wider color gamut.
DCI-P3 standard was created by Digital Cinema Initiatives and it is meant to replace
sRGB for smartphones, cameras and monitors.

2.5 Partial least squares regression

PLS regression is a method of finding fundamental relations between two matrices
(A and B), that are also known as explanatory and response variables and predicting
B from A. It is commonly used in cases where number of variables to be estimated
is larger than number of known data points. Unlike regular least squares regression,
PLS can deal with situations when sample size is small or the data has noise or miss-
ing values. It is considered to provide more stable model that does not change in
case of added data than multiple linear regression and principle component analy-
sis regression methods. PLS regression searches for components (also called latent
vectors) that perform simultaneous decomposition of A and B, which maximize co-
variance between A and B, thats why alternative and more correct according to S.
Wold term for PLS is projection to latent structures.

2.6 Color detection

As simple as it is, the process of color detection is the process of detecting the name of
any color. But while humans brain learns to map color names and color values since
childhood under different lighting conditions, computer can only classify colors by
the values, set by human. But if the colors are set under certain light, and the test
image was taken in other conditions, there is a possibility that color values have
shifted towards for example red if it is sunset time or blue if it is evening. And while
in most cases we can still classify them correctly, because we can make parallels
between colors of object that we see, and color in which we are used to see this object,
and adjust out color perception, computer usually does not know, which values are

Chapter 2. Background information 8

"correct" and how to compare them to the other ones to get the right ones. Here, the
colors which were set as a reference ones are being classified as the right ones.

It means, that the easiest way for computer to be able to correctly classify colors
is to have constant lighting conditions, but that’s not always how it happens in real
life. In real life, especially outside, colors are altering during the day, and some
preprocessing should be done to an input to provide the best possible similarity
under any condition. This can be achieved by either color calibration of the input
image itself, or, if it is an option, by calibration the camera itself.

9

Chapter 3

Related works

3.1 HardNet descriptor

Recently there were a lot of efforts to replace hand crafted descriptors such as SIFT
[20], SURF [3] and detectors with learned ones: LIFT [31], DeepCompare [25], Deep-
Matching [27], however it was proven that different SIFT-based implementations
(RootSIFT-PCA[7], DSP-SIFT [12]) still outperform learned descriptors in image match-
ing, and the reason for this is lack of diversity in datasets which are used for training
which reduces applicability of such descriptors.

FIGURE 3.1: HardNet model architecture, /2 stands for stride 2

Hardnet [23] is a convolutional network for local image description, based on
modified L2NET [30] architecture: zero-padding with batch normalization and ReLU
non-lirearity are applied to all convolutinal layeys except the last one. Before the last
layer there is dropout regularization with 0.1 rate. Compared to traditional SIFT, it
uses triplets to calculate margin loss and distance loss, instead of pairs. The out-
put is 128-D descriptor. For model training, UBC Phototour Brown [6] dataset of
400000 64× 64 patches with test test of 100000 patches was used with DoG keypoint
detector.

FIGURE 3.2: Results of benchmark on HPatches, mAP

Chapter 3. Related works 10

Performance evaluation was made on HPatches dataset [2], which consists of 59
sequences of 6 images with viewpoint change and 57 sequences of 6 images with
illumination changes, and shows that HardNet outperforms both hand-crafted and
learned descriptors.

3.2 AffNet

The main idea behind AffNet [24] local feature affine shape estimator is that maxi-
mizing geometric repeatability does not lead to reliability in feature matching, and
this method should improve the quality of the affine shape estimation. In their re-
search they propose new a loss function and a method for learning affine shape.

Architecture for AffNet is similar to one in HardNet, but with reduced by 2 times
number of channels in layer, and the output is a 3-dimensional predictor of ellipse
shape, and dropout layer before last layer was increased to 0.25. Zero-padding, and
batch normalization followed by ReLU are also present.

FIGURE 3.3: AffdNet model architecture, /2 stands for stride 2

For training a batch of matching patches pairs was generated from UBC Photo-
tour dataset and then each patch was warped with randomly generated skew and
rotation matrix and cropped to the size of 32 × 32 and fed into descriptor network
(HardNet, SIFT).

3.3 DEGENSAC

DEGENSAC[10] is a RANSAC-based algorithm for estimation transformation be-
tween corresponding points. It is based on theorem, proven in the following paper,
which states that if e.g. in seven point sample there are at least five inliers lying
on a dominant plane that are related by homography, there always exists an epipo-
lar geometry consistent with all homography-related points. Recent study by Yin
et.al. [17] shows that this variation outperforms regular RANSAC and is capable of
showing state-of-the-art results. Performance comparison is shown on Figure 3.4

3.4 TPS-3D

TPS-3D is an approach proposed by Menesatti et.al. [22] for reconstruction of the
colors in sRGB colorspace. Main idea behind this method was to improve available

Chapter 3. Related works 11

FIGURE 3.4: Performance comparison between implementations of
RANSAC and DEGENSAC written in Python [source code]

methods of color correction, which did not have enough precision to applicable in
fields with high demand on color accuracy, such as food sciences and biologial disci-
plines. It uses common data-fitment method, thin-plate spline, which was modified
to work in a 3-dimensional space of RGB. The TPS algorithm estimates the random
data from two paring sets of data to construct the spline map for the linear distortion
and weighting factor for the non-linear distortion.

FIGURE 3.5: Performance comparison between TPS-3D, PROM and
PLS methods

On Figure 3.5 are shown test results and comparison between several popular
color estimation techniques, where NONE stands for non-corrected images, PROM
repsresents ProfileMaker Pro 5.0 commercial calibration system, and PLS stands for
partial least squares method of estimation. Color checker column represents which
color checker was used for estimation. Test pictures were taken using 2 differ-
ent cameras with different sensors and lenses under four different light conditions.
Three different color checkers were used: the GretagMacbeth ColorChecker SG with
140 color-patches, the GretagMacbeth ColorChecker with 24 color-patches and the
IFRAO Standard ColorChecker with 7 color-patches.

https://github.com/ducha-aiki/pydegensac

12

Chapter 4

Datasets

For this work a custom dataset was created containing two sets of images with a
specific object on each photo. All the photos were taken with Apple iPhone 7 Plus
camera and saved as JPG images of size 956 × 1276 in RGB colorspace.

FIGURE 4.1: Reference image for the first set of data

Figure 4.1 represents reference image used for first test set, which contains 132
photos taken under different perspective, scale and light conditions, shown on fig.
4.2. Figure 4.1 was made based on the GretagMacbeth ColorChecker 24, and uses
the same patch color values. It was observed that such pattern shows better results
during detection process and increased percentage of correct recognition.

FIGURE 4.2: Sample images from dataset containing image from fig. 4.1.

Chapter 4. Datasets 13

FIGURE 4.3: Reference image for the second set of data

The second test set was created using an object containing different bright colors
(Figure 4.3) to show that for the proposed method to work there is not need to have
special color checker. 31 test images were taken under different light conditions,
including extreme ones, as showed on Figure 4.4, where the exposure setting are set
to very high or very low and image taken in black&white mode.

FIGURE 4.4: Sample images from dataset containing image from fig. 4.3

14

Chapter 5

Proposed approach

FIGURE 5.1

The high-level architecture of our approach is shown in Figure 5.1. The process
of correcting colors on image contains of three steps:

• Detection: both reference and uploaded photo, that should be corrected, are
fed into detection algorithm which consists of HardNet descriptor (section 3.1)
and AffNet (section 3.2) which is used as a detector. After finding points of in-
terest, tentative correspondences are found and the homography is calculated
using DEGENSAC (section 3.3) algorithm.

• Patch color extraction: after the reference image was found on input photo, it is
cropped out, warped using homography matrix and split into square patches.
The mean value of each patches color is extracted. To get the values of the
same patches from reference image, it should be resized to the size of cropped
image, and split into patches of the same size.

Chapter 5. Proposed approach 15

• Color correction. There are several ways how it can be accomplished:

1. RGB mask: mean difference between output image and reference patches
are calculated, and form "mask" values, which are then extracted from
original image. This may be useful while the calibration of camera should
be done right now and high precision is not important. Mask values are
passed to camera and the output stream will already have the corrected
colors, without any need of post-processing.

2. PLS: uses partial squares regression (2.5) to calculate new values for each
pixel by calculating transformation from output image patches to refer-
ence patches.

3. TPS: uses 3D thin-plate spline approach (3.4). Overall the slowest one,
but the most precise compared to other tested methods, however some-
times can fail completely or show some artifacts such as distorted colors
in shadows and reflections.

4. Root-Polynomial Regression by Finlayson et. al. [13]

5. Polynomial techniques for color correction proposed by Cheung et. al. [9]

16

Chapter 6

Results

After testing different approaches to color correction, following results from the
"stickers" dataset were achieved:

(A) Pairwise difference between images (B) Difference with reference image

FIGURE 6.1: Test results on stickers dataset

X =
A − B

B
(6.1)

Difference was calculated using formula 6.1 between corresponding patches on test
images. Figure 6.1a represents pairwise difference between images. After the cal-
ibration, deviation between images colors dropped significantly, and is not only
much closer to zero than initial values, but also flatter. After the calibration, the
deviation between images colors dropped significantly, and is not only much closer
to zero than initial values but also flatter. Figure 6.1b represent deviation between
the reference colors and the ones from calibrated images. Zero values on TPS result
represent images that failed calibration. In both tests Cheung and Finlayson showed
almost the same results.

Original RGB PLS Cheung Finlayson TPS
Pairwise 1.69 0.58 0.34 0.4 0.4 0.11
Reference 1.14 1.05 0.22 0.31 0.31 0.13

TABLE 6.1: Calibration results table, showing mean difference be-
tween images

Table 6.1 shows mean difference values from experiments with different calibra-
tion methods on stickers dataset. It shows that TPS is, in fact, the most accurate

Chapter 6. Results 17

method to estimate colors. In terms of speed and accuracy combined, PLS produces
better results, however, loses to Cheung/Finlayson in stability: there are several
spikes on PLS line in Figure 6.1, while Cheung/Finlayson line remains flat most of
the time. Mean TPS calibration value was calculated excluding cases, in which it
fails to estimate values correctly, the other methods successfully finished with all
test photos.

Figure 6.2 shows same plots for "triangle" dataset. Again, we can see how the
variation between color values decreases after color correction.

(A) Pairwise difference between images (B) Difference with reference image

FIGURE 6.2: Test results on triangle dataset

Again, table 6.2 shows similar results as in the previous case. However, due to
the fact that the reference calibration image had a lot less details, there were a lot
more patches with one dominant colors, and the more such colors are, the easier for
machine learning algorithms is to estimate colors correctly. But still, the final values
are much closer to the reference ones, than they were before and the dominance
of TPS method is obvious. However, this time Finlayson/Cheung showed better
results compared to PLS.

Original RGB PLS Cheung Finlayson TPS
Pairwise 0.54 0.33 0.30 0.14 0.14 0.02
Reference 0.38 0.49 0.37 0.12 0.12 0.01

TABLE 6.2: Calibration results table, showing mean difference be-
tween images

To sum up, step-by-step algorithm would look like this:

• Select object with bright colors on it (ideally, with a flat non-reflective surface)

• Take a photo of selected object and save it as a reference one.

• Select whether you want to calibrate particular image or camera output stream.

• In case of single image calibration, TPS provides the best result of all tested
methods.

• In case of real-time video calibration, in most cases the most stable and ef-
fective correction can be achieved by using either Finlayson or Cheung tech-
niques.

Chapter 6. Results 18

6.1 Visual representation

In Figure 6.3 some examples of what the output image might look like are presented.
The first row represents the original non-corrected images. The following are rep-
resenting RGB mask corrected photo, PLS, TPS, and Finlayson/Cheung processed
images, respectively. From our observations, TPS methods fail to correct the image
if the overall colors on the image are dark. If the reference image has light reflections
on it (Figure 6.3, fourth row, third photo), TPS results in distorted colors or being
unable to process the image at all (Figure 6.3, fourth row, first photo from left). It
also tends to overexpose the image (Figure 6.3, last column, almost none details in
bottom left corner). Also the "cleaner" the patches are, the more chances it has to be
able to calculate values correctly. Here, by "cleaner," it is meant that ideally, there
would be only one color per patch. This might be the reason why the performance
on triangle dataset is much higher. Nonetheless, despite being the most unstable
and slow (average processing time of one 960 × 1280px image using TPS is 25 sec-
onds on i5-4260u with 8GB RAM, while all the other took about 0.5s to execute). The
speed is obviously dependent on implementation, in our case, it was Python NumPy
implementation of Matlab code, provided in the original paper. There were no such
limitations observed for other methods to work properly.

FIGURE 6.3: Calibration results

Chapter 6. Results 19

6.2 Additional observation

Unlike the other methods described in this thesis, TPS technique has one more ace
up his sleeve, which both its advantage and disadvantage. Because it is performing
pixel-wise correction, increasing variation of input values we also increase estima-
tion precision. It is a disadvantage because it causes this method to run slower than
the others, but if we can build any set of value pairs between reference and input
image, what if we try to do this with black&white image?

FIGURE 6.4: Black&white photo restoration. Top left - original image,
top middle - RGB calibrated, top right - PLS, bottom left - Finlayson,

bottom middle - Cheung, bottom right - TPS

Figure 6.4 shows that, obviously, while RGB and PLS completely failed this test,
TPS was able to partially restore colors from reference image, as well as from the
hand: blue colors in the shadow, hand itself has rosy shades, and the rest is yellow
(background is in fact wooden floor). Of course, the results are far from ideal, but
still, it was not meant to deal with such tasks, and main colors and even shades are
easily recognizable.

20

Chapter 7

Conclusions

In this study, different object detection techniques and color correction were studied
and compared to each other. Based on numerous tests, the best ones were selected
and described and defined which method best fits for which purposes. The custom
dataset was created, proving that there is no need for specialized color checkers for
the proposed approach to work. Basically, any object with bright colors can be used
and produce good results in color calibration.

21

Bibliography

[1] A Standard Default Color Space for the Internet - sRGB. https://www.w3.org/
Graphics/Color/sRGB.html.

[2] Vassileios Balntas et al. “HPatches: A benchmark and evaluation of hand-
crafted and learned local descriptors”. In: CoRR abs/1704.05939 (2017). arXiv:
1704.05939. URL: http://arxiv.org/abs/1704.05939.

[3] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. “SURF: Speeded Up Ro-
bust Features”. In: Computer Vision – ECCV 2006. Ed. by Aleš Leonardis, Horst
Bischof, and Axel Pinz. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006,
pp. 404–417. ISBN: 978-3-540-33833-8.

[4] F.M. Bianchi et al. Recurrent Neural Networks for Short-Term Load Forecasting:
An Overview and Comparative Analysis. SpringerBriefs in Computer Science.
Springer International Publishing, 2017. ISBN: 9783319703381. URL: https://
books.google.com.ua/books?id=wu09DwAAQBAJ.

[5] Léon Bottou. “Stochastic Gradient Descent Tricks”. In: Neural Networks: Tricks
of the Trade: Second Edition. Ed. by Grégoire Montavon, Geneviève B. Orr, and
Klaus-Robert Müller. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 421–
436. ISBN: 978-3-642-35289-8. DOI: 10.1007/978-3-642-35289-8_25. URL:
https://doi.org/10.1007/978-3-642-35289-8_25.

[6] Matthew Brown and David G. Lowe. “Automatic Panoramic Image Stitch-
ing using Invariant Features”. In: International Journal of Computer Vision 74.1
(2007), pp. 59–73. ISSN: 1573-1405. DOI: 10.1007/s11263-006-0002-3. URL:
https://doi.org/10.1007/s11263-006-0002-3.

[7] Andrei Bursuc, Giorgos Tolias, and Hervé Jégou. “Kernel Local Descriptors
with Implicit Rotation Matching”. In: Proceedings of the 5th ACM on Interna-
tional Conference on Multimedia Retrieval. ICMR ’15. Shanghai, China: Associa-
tion for Computing Machinery, 2015, 595–598. ISBN: 9781450332743. DOI: 10.
1145/2671188.2749379. URL: https://doi.org/10.1145/2671188.2749379.

[8] Yunpeng Chen et al. “Dual Path Networks”. In: CoRR abs/1707.01629 (2017).
arXiv: 1707.01629. URL: http://arxiv.org/abs/1707.01629.

[9] Vien Cheung et al. “A comparative study of the characterisation of colour cam-
eras by means of neural networks and polynomial transforms”. In: Coloration
Technology 120 (2004), pp. 19–25.

[10] O. Chum, T. Werner, and J. Matas. “Two-view geometry estimation unaffected
by a dominant plane”. In: 2005 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’05). Vol. 1. 2005, 772–779 vol. 1.

[11] N. Dalal and B. Triggs. “Histograms of oriented gradients for human detec-
tion”. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’05). Vol. 1. 2005, 886–893 vol. 1.

https://www.w3.org/Graphics/Color/sRGB.html
https://www.w3.org/Graphics/Color/sRGB.html
https://arxiv.org/abs/1704.05939
http://arxiv.org/abs/1704.05939
https://books.google.com.ua/books?id=wu09DwAAQBAJ
https://books.google.com.ua/books?id=wu09DwAAQBAJ
https://doi.org/10.1007/978-3-642-35289-8_25
https://doi.org/10.1007/978-3-642-35289-8_25
https://doi.org/10.1007/s11263-006-0002-3
https://doi.org/10.1007/s11263-006-0002-3
https://doi.org/10.1145/2671188.2749379
https://doi.org/10.1145/2671188.2749379
https://doi.org/10.1145/2671188.2749379
https://arxiv.org/abs/1707.01629
http://arxiv.org/abs/1707.01629

Bibliography 22

[12] Jingming Dong and Stefano Soatto. “Domain-Size Pooling in Local Descrip-
tors: DSP-SIFT”. In: CoRR abs/1412.8556 (2014). arXiv: 1412.8556. URL: http:
//arxiv.org/abs/1412.8556.

[13] G. D. Finlayson, M. Mackiewicz, and A. Hurlbert. “Color Correction Using
Root-Polynomial Regression”. In: IEEE Transactions on Image Processing 24.5
(2015), pp. 1460–1470.

[14] Jie Hu, Li Shen, and Gang Sun. “Squeeze-and-Excitation Networks”. In: CoRR
abs/1709.01507 (2017). arXiv: 1709.01507. URL: http://arxiv.org/abs/
1709.01507.

[15] Fabian Hutmacher. “Why Is There So Much More Research on Vision Than on
Any Other Sensory Modality?” In: Frontiers in Psychology 10 (2019), p. 2246.
ISSN: 1664-1078. DOI: 10 . 3389 / fpsyg . 2019 . 02246. URL: https : / / www .
frontiersin.org/article/10.3389/fpsyg.2019.02246.

[16] Sergey Ioffe and Christian Szegedy. “Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift”. In: CoRR abs/1502.03167
(2015). arXiv: 1502.03167. URL: http://arxiv.org/abs/1502.03167.

[17] Yuhe Jin et al. Image Matching across Wide Baselines: From Paper to Practice. 2020.
arXiv: 2003.01587 [cs.CV].

[18] Kristin Koch et al. “Report How Much the Eye Tells the Brain”. In: (2006).

[19] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet Classi-
fication with Deep Convolutional Neural Networks”. In: Commun. ACM 60.6
(May 2017), 84–90. ISSN: 0001-0782. DOI: 10.1145/3065386. URL: https://
doi.org/10.1145/3065386.

[20] D. G. Lowe. “Object recognition from local scale-invariant features”. In: Pro-
ceedings of the Seventh IEEE International Conference on Computer Vision. Vol. 2.
1999, 1150–1157 vol.2.

[21] M.A.S. McMenamin. Dynamic Paleontology: Using Quantification and Other Tools
to Decipher the History of Life. Springer Geology. Springer International Publish-
ing, 2016. ISBN: 9783319227771. URL: https://books.google.com.ua/books?
id=7wBkDAAAQBAJ.

[22] Paolo Menesatti et al. RGB Color Calibration for Quantitative Image Analysis: The
“3D Thin-Plate Spline ” Warping Approach. 2012.

[23] Anastasiya Mishchuk et al. “Working hard to know your neighbor’s margins:
Local descriptor learning loss”. In: CoRR abs/1705.10872 (2017). arXiv: 1705.
10872. URL: http://arxiv.org/abs/1705.10872.

[24] Dmytro Mishkin, Filip Radenovic, and Jiri Matas. “Learning Discriminative
Affine Regions via Discriminability”. In: CoRR abs/1711.06704 (2017). arXiv:
1711.06704. URL: http://arxiv.org/abs/1711.06704.

[25] S. Murugesan et al. “DeepCompare: Visual and Interactive Comparison of
Deep Learning Model Performance”. In: IEEE Computer Graphics and Appli-
cations 39.5 (2019), pp. 47–59.

[26] Vinod Nair and Geoffrey E. Hinton. “Rectified Linear Units Improve Restricted
Boltzmann Machines”. In: Proceedings of the 27th International Conference on In-
ternational Conference on Machine Learning. ICML’10. Haifa, Israel: Omnipress,
2010, 807–814. ISBN: 9781605589077.

[27] Jérôme Revaud et al. “Deep Convolutional Matching”. In: CoRR abs/1506.07656
(2015). arXiv: 1506.07656. URL: http://arxiv.org/abs/1506.07656.

https://arxiv.org/abs/1412.8556
http://arxiv.org/abs/1412.8556
http://arxiv.org/abs/1412.8556
https://arxiv.org/abs/1709.01507
http://arxiv.org/abs/1709.01507
http://arxiv.org/abs/1709.01507
https://doi.org/10.3389/fpsyg.2019.02246
https://www.frontiersin.org/article/10.3389/fpsyg.2019.02246
https://www.frontiersin.org/article/10.3389/fpsyg.2019.02246
https://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
https://arxiv.org/abs/2003.01587
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://books.google.com.ua/books?id=7wBkDAAAQBAJ
https://books.google.com.ua/books?id=7wBkDAAAQBAJ
https://arxiv.org/abs/1705.10872
https://arxiv.org/abs/1705.10872
http://arxiv.org/abs/1705.10872
https://arxiv.org/abs/1711.06704
http://arxiv.org/abs/1711.06704
https://arxiv.org/abs/1506.07656
http://arxiv.org/abs/1506.07656

Bibliography 23

[28] B.D. Ripley. Pattern Recognition and Neural Networks. Cambridge University
Press, 2007. ISBN: 9780521717700. URL: https : / / books . google . com . ua /
books?id=m12UR8QmLqoC.

[29] Olga Russakovsky et al. ImageNet Large Scale Visual Recognition Challenge. 2014.
arXiv: 1409.0575 [cs.CV].

[30] Y. Tian, B. Fan, and F. Wu. “L2-Net: Deep Learning of Discriminative Patch
Descriptor in Euclidean Space”. In: 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). 2017, pp. 6128–6136.

[31] Kwang Moo Yi et al. “LIFT: Learned Invariant Feature Transform”. In: CoRR
abs/1603.09114 (2016). arXiv: 1603.09114. URL: http://arxiv.org/abs/
1603.09114.

https://books.google.com.ua/books?id=m12UR8QmLqoC
https://books.google.com.ua/books?id=m12UR8QmLqoC
https://arxiv.org/abs/1409.0575
https://arxiv.org/abs/1603.09114
http://arxiv.org/abs/1603.09114
http://arxiv.org/abs/1603.09114

	Declaration of Authorship
	Abstract
	Introduction
	Motivation
	Goals
	Structure

	Background information
	Object detection
	Neural Networks
	Convolutional Neural Networks
	Padding
	Batch normalization

	sRGB
	Partial least squares regression
	Color detection

	Related works
	HardNet descriptor
	AffNet
	DEGENSAC
	TPS-3D

	Datasets
	Proposed approach
	Results
	Visual representation
	Additional observation

	Conclusions
	Bibliography

