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Abstract

Music Transcription is a task of converting a musical recording into sheet music for
further reproduction. The problem is still unsolved and requires a high level of
expertise. Most of the works split the task into several subproblems. First of them
is called frame-level transcription, which predicts the set of fundamental frequencies
in the original recording for every frame. This subproblem is the main focus of this
work.

The solution to frame-level transcription is called a piano-roll representation - a bi-
nary matrix which represents whether the given note has been played in the frame
or not. However, most of the approaches do not produce a piano-roll representation
in an end-to-end fashion. They rather output a posteriogram - real matrix with the
same dimensions, which represents the level of uncertainty of whether note has been
played during the frame. Ycart and Benetos, 2018 shows that Long Short Term mem-
ory network can be trained to post-process the posteriograms and improve the piano-roll
representation instead of simply cropping the posteriogram at some value.

In this work, we train more robust LSTM network and experiment with different
types of posteriograms.
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http://department.university.com


iii

Acknowledgements
I would like to thank my beloved parents, friends and colleagues who supported
me through all the difficulties. Special gratitude goes to the Faculty of Applied Sci-
ences and personally to Oles Dobosevych for interesting ideas, computing power
and valuable pieces of advice.



iv

Contents

Declaration of Authorship i

Abstract ii

Acknowledgements iii

1 Introduction 1
1.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 AMT Subproblems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.4 Raw Audio Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4.1 Fourier Transform Related Methods . . . . . . . . . . . . . . . . 3
1.4.2 Harmonics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Related Works 5
2.1 Spectrogram Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Mixed Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Posteriogram Posprocessing 7

4 Model 9
4.1 Classification Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Model Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.3 Posteriogram Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5 Dataset 11

6 Metrics 12
6.1 Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
6.2 Recall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
6.3 F-score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6.4 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

7 Experiments 14
7.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
7.2 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
7.3 Loss Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
7.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
7.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

7.5.1 Comparison Table . . . . . . . . . . . . . . . . . . . . . . . . . . 16
7.5.2 Experiment 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
7.5.3 Experiment 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
7.5.4 Experiment 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18



v

8 Results 19
8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

8.1.1 CQT Posteriograms Results . . . . . . . . . . . . . . . . . . . . . 19
8.1.2 Low Recall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

8.2 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
8.2.1 Fading and Sustain Pedal . . . . . . . . . . . . . . . . . . . . . . 20

Bibliography 21



vi

List of Figures

1.1 AMT subproblems possible results illustrated on an extract from J.S.
Bach: Prelude and Fugue in C major, Well Tempered Clavier, book 1 . 2

1.2 Comparing different instruments spectrum playing the same pitch
(A4). On the left: piano. On the right: ukulele. Ukulele spectrum
is scaled in order for the peaks to match in amplitude. . . . . . . . . . 3

1.3 Aliasing illustration. 4500-hz and 5500-hz cosine signals are indistin-
guishable when sampled at 10000 fps. The figure is an adaptation
from Downey, 2016 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 NMF with R = 5 performed on an extract from J.S. Bach: Prelude and
Fugue in B-flat major, Well Tempered Clavier, book 1. Performed by
Andras Schiff. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.1 Analyzing an extract from J.S. Bach: Prelude and Fugue in C major,
Well Tempered Clavier, book 1 . . . . . . . . . . . . . . . . . . . . . . . 8

4.1 RNN cell. Prediction for time stamp t is based on previous hidden
state ht−1 and current input xt . . . . . . . . . . . . . . . . . . . . . . . . 9

4.2 LSTM cell. Prediction for time stamp t is based on previous hidden
state ht−1, previous cell state ct−1 and current input xt. Cell state is
changed via "update" and "forget" gates. The image is an adaptation
from wikipedia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

7.1 BCE and focal loss comparison. . . . . . . . . . . . . . . . . . . . . . . . 15
7.2 Experiment 1. From top to bottom: input posteriogram, LSTM activa-

tions, prediction piano-roll, actual piano-roll . . . . . . . . . . . . . . . 16
7.3 Experiment 2. From top to bottom: input posteriogram, LSTM activa-

tions, prediction piano-roll, actual piano-roll . . . . . . . . . . . . . . . 17
7.4 Experiment 3. From top to bottom: input posteriogram, LSTM activa-

tions, prediction piano-roll, actual piano-roll . . . . . . . . . . . . . . . 18

8.1 Recall curve for Experiment 3. . . . . . . . . . . . . . . . . . . . . . . . . 19

https://commons.wikimedia.org/wiki/File:The_LSTM_cell.png


vii

List of Tables

7.1 Experiments configurations . . . . . . . . . . . . . . . . . . . . . . . . . 15
7.2 Experiments best train/test framewise metrics . . . . . . . . . . . . . . 16



viii

List of Abbreviations

AMT Automatic Music Transcription
MIR Music Information Retrieval
MPE Multi-Pitch Estimation
FT Fourier Transform
STFT Short Time Fourier Transform
CQT Constant Q Transform
NMF Non-Negative Matrix Factorization
PLCA Probabilistic Latent Component Analysis
RNN Recurrent Neural Network
CNN Convolutional Neural Network
RCNN Recurrent Convolutional Neural Network
CTC loss Connectionist Temporal Classification loss
HCQT Harmonic Constant Q Transform
LSTM network Long Short Term Memory network
FL Focal Loss



1

Chapter 1

Introduction

1.1 Problem Description

Automatic Music Transcription (AMT) is a task of converting music signals into a no-
tation that can be used to reproduce the original signal. It is considered to be one of
the most important tasks in the field of Music Information Retrieval (MIR). It is still un-
solved, with human experts outperforming any solution in the field. However, this
task is considered to be of high interest, with lots of approaches and novel methods
applications.

1.2 Motivation

Although humans outperform computers in AMT task, it still requires a high level of
expertise. Not even all musicians are capable of it. So, even imperfect or incomplete
solutions to AMT can be useful for the people as a tooltip or a guideline. The main
motivation for solving this task is improvisation capturing, as there are no musical
scores for it.

1.3 AMT Subproblems

Despite some works trying to tackle AMT in an end-to-end fashion (Román, Pertusa,
and Calvo-Zaragoza, 2019), most of the works split the tasks into several subprob-
lems (Benetos et al., 2019, see 1.1):

• Frame-level Transcription
• Note-level Transcription
• Stream-level Transcription
• Notation-level Transcription

Frame-level Transcription (also known as Multi-Pitch Estimation or MPE) is a task
of detecting a set of fundamental frequencies at each time-stamp of the input signal
(see 1.1a).

Note-level Transcription goes one step beyond the previous one and detects onset
and offset time of each note (see 1.1b).

Apart from the onset and offset time, Stream-level Transcription associates each
note with a stream. It could be responsible for a particular instrument or voice in the
original recording (see 1.1c).

Finally, Notation-level Transcription solves AMT task by producing a musical no-
tation from the original recording using notes onsets, offsets and stream information
(see 1.1d).

It is worth noting that despite MPE seeming the most straightforward task at
first, it has lots of peculiarities, such as:
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• limited annotated datasets (especially with instrument labels)
• choosing the right audio representation

The problem is also of high importance, because the bad solution to frame-level
transcription may lead to the error accumulation in the other AMT subproblems.

This work is mostly focused on investigating Multi-Pitch Estimation for a single
piano instrument.

(A) Frame-level Transcription

(B) Note-level Transcription. Blue dots indicate note offset

(C) Stream-level Transcription. Each color represents a separate stream. In this particular example blue
stream corresponds to the left hand and orange stream to the right hand respectively.

(D) Notation-level Transcription

FIGURE 1.1: AMT subproblems possible results illustrated on an ex-
tract from J.S. Bach: Prelude and Fugue in C major, Well Tempered

Clavier, book 1
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1.4 Raw Audio Preprocessing

1.4.1 Fourier Transform Related Methods

As raw audio is used to represent the sound wave itself (by recording the wave am-
plitudes at discrete points in time), it is clear, that some data preprocessing should be
done as a first step. Most of the works incorporate Fourier Transform (FT) technique
that decomposes the input signal into a sum of sinusoids with different frequencies
thus transforming the input signal from time to frequency domain. Since one FT on
the whole audio snippet is not a good representation, the input signal is split into
pieces, and FT is performed on each piece alone. This is known as Short Time Fourier
Transform (STFT). The image obtained by horizontally stacking the Fourier Transforms
obtained at each timestamp is called a spectrogram.

However, there are limitations to this approach: denote δt to be a length of the
piece (time resolution), δ f to be a difference between adjacent FT frequency bins (fre-
quency resolution). According to the Heisenberg Uncertainty Principle, δt · δ f > 1/4π.
Meaning that δt and δ f cannot be arbitrarily small at the same time.

On the other hand, STFT does not consider the fact that piano key frequen-
cies are logarithmically distributed: given that midi pitch pi has frequency fi, fre-
quency of the successive pitch pi+1 can be calculated by the following formula:
fi+1 = fi · (21/12), meaning that the frequency doubles with each octave. Hence, we
are interested in logarithmically spaced frequencies with smaller time resolution for
high frequencies and bigger time resolution for low frequencies respectively. This is-
sue is resolved in constant-Q transform, a variation of STFT which maintains constant
(δ f /δt) ratio.

1.4.2 Harmonics

When it comes to practice and investigating a spectrogram, some of the amplitude
coefficients that do not correspond to any of the fundamental frequencies are present
in the spectrum. These are called harmonics.

Because each instrument has unique sounding, the spectrum of 2 different instru-
ments should vary even if the same note is being played. Fundamental frequency
will not be affected, whereas two pieces will have different harmonics, which should
be responsible for uniqueness of the instrument timbre.

FIGURE 1.2: Comparing different instruments spectrum playing the
same pitch (A4). On the left: piano. On the right: ukulele. Ukulele

spectrum is scaled in order for the peaks to match in amplitude.

The frequencies of harmonics are often some multiples of the fundamental. Sadly,
it is not always true. According to Nyquist-Shannon theorem, for an input signal with
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sample rate 2 · x the maximal frequency, that can be restored from the signal is x.
It means that if some of the harmonics have a frequency greater than x, it will be
indistinguishable from some other low-frequency component. This phenomenon is
known as aliasing.

FIGURE 1.3: Aliasing illustration. 4500-hz and 5500-hz cosine signals
are indistinguishable when sampled at 10000 fps. The figure is an

adaptation from Downey, 2016

Things get even more complicated when there is more than one fundamental
frequency. Because of harmonics overlapping, it is even harder to identify the set of
fundamental ones.
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Chapter 2

Related Works

There are two main directions for tackling MPE: spectrogram factorization and neu-
ral networks.

2.1 Spectrogram Factorization

Most of the works that rely on factorization techniques use Non-Negative Matrix Fac-
torization (NMF, see Smaragdis and Brown, 2003). It takes a non-negative M × N
spectrogram as input and approximates it as a product of two non-negative matri-
ces: W ∈ RM×R

+ and H ∈ RR×N
+ by minimizing a reconstruction error. By setting

reasonable R, we can treat this method as a feature extractor, with rows of H be-
ing activation coefficients and columns of W being spectral templates, each of which
corresponds to a particular note.

(A) Activation coefficients of rows of H. Different color represents a different row.

(B) Corresponding sheet music

FIGURE 2.1: NMF with R = 5 performed on an extract from J.S. Bach:
Prelude and Fugue in B-flat major, Well Tempered Clavier, book 1.

Performed by Andras Schiff.

Another approach used for MPE is Probabilistic Latent Component Analysis (PLCA,
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see Smaragdis, Raj, and Shashanka, 2006). It is a statistical approach that also factor-
izes spectrogram matrix by modeling it as a mixture of marginal distribution prod-
ucts.

2.2 Neural Networks

With the growth in computing power, more data science methods are being ap-
plied to solve the problem of music transcription, such as Recurrent Neural Networks
(RNN) and Convolutional Neural Networks (CNN). For example, in Román, Pertusa,
and Calvo-Zaragoza, 2019 Convolutional Recurrent Neural Network (CRNN) with Con-
nectionist Temporal Classification (CTC) loss is used on a spectrogram to obtain a musi-
cal score and solve AMT in an end-to-end fashion. In Liu, Guo, Wiggins, et al., 2018
CNN is used for onset/offset and pitch prediction. In Wu, Chen, and Su, 2019 the
problem is treated as semantic segmentation, and a U-net like model is used to solve
MPE task.

2.3 Mixed Approaches

However, there are quite a few works that combine some of the approaches or incor-
porate knowledge from a musical or audio domain. For example, physical instru-
ment playing limitations are incorporated into PLCA to achieve convergence while
solving MPE for harmonica recordings (Lins et al., 2019). In Bittner et al., 2017 Har-
monic Constant Q Transform (HCQT) is used as an input representation, which is a
several CQTs, starting at different multiples of f0, which correspond to the harmon-
ics. In Ycart and Benetos, 2018 Long Short Term Memory (LSTM) network is used to
process NMF output and improve results of solving MPE task. Problems, described
in Ycart and Benetos, 2018 will be the main focus of this work.
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Chapter 3

Posteriogram Posprocessing

Most of the approaches for tackling MPE that were described in the previous chapter
have some preprocessing and postprocessing steps. In this work, postprocessing
steps are being investigated.

The result of solving the MPE problem is a binary matrix N ×M which is called
a Piano-Roll Representation (see 3.1b), where N is number of notes in the piano (most
often 88 keys). M is a number of frames, where each frame is responsible for some
short extract of the original recording (also called resolution of the track). However,
many of the popular approaches do not produce a Piano-Roll but rather a Posteri-
ogram - a matrix with the same dimensions and real numbers, which represent the
level of uncertainty of whether the note has been played in the frame or not (see
3.1a). For example, a posteriogram for a neural-network model might be a matrix of
real values from 0 to 1, which represent a probability of the note being played.

The most common approach for converting a posteriogram to a piano-roll is crop-
ping at some value. The value 0.5 is naturally chosen for neural-network models.
Ycart and Benetos, 2018 shows that LSTM can be trained on the posteriogram to im-
prove the resulting piano-roll representation. This work investigates the its results
and trains more elaborate LSTM network.
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(A) Posteriogram used in Ycart and Benetos, 2018

(B) Corresponding piano-roll representation

(C) CQT visualization

(D) Corresponding sheet music

FIGURE 3.1: Analyzing an extract from J.S. Bach: Prelude and Fugue
in C major, Well Tempered Clavier, book 1
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Chapter 4

Model

This section describes a model used for converting a posteriogram into the piano-roll
representation on a frame level.

4.1 Classification Task

The problem outlined in the previous chapter is an example of a multi-label classifi-
cation task. For each frame x in the posteriogram, a corresponding piano-roll vector ŷ
should be predicted. Because several notes can be played at the time, ŷ can belong
to multiple classes simultaneously (there are 88 classes, each of which is responsible
for a particular note). It is worth mentioning that the problem cannot be treated as a
one-class classification task because the possible number of piano keys combinations
(288) is tremendously high.

4.2 Model Architecture

Same as in Ycart and Benetos, 2018, Long Short Term Memory (LTSM) network is
be used to solve this task (Hochreiter and Schmidhuber, 1997). It is a variation of
Recurrent Neural Networks (RNN) which have proven themselves to perform well on
variable-length input data. This is achieved by combining an input vector with a
state vector to produce a new state vector that will be used for the next input.

FIGURE 4.1: RNN cell. Prediction for time stamp t is based on previ-
ous hidden state ht−1 and current input xt
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Because basic RNN was bad at capturing long-term dependencies within the
data, LSTM network was proposed. Its peculiarity is the additional cell state, which
is responsible for the long term dependencies. It can be updated or left unchanged
by “forget” and “update” gates and a prediction is composed of the cell state, hidden
state and current input vector.

FIGURE 4.2: LSTM cell. Prediction for time stamp t is based on pre-
vious hidden state ht−1, previous cell state ct−1 and current input xt.
Cell state is changed via "update" and "forget" gates. The image is an

adaptation from wikipedia
.

The output of the LSTM is then passed through several fully-connected layers
with RELU activation function. As the last activation function, sigmoid is used. It
transforms the activations into [0; 1] range, which are treated as probabilities of the
notes being played during the frame.

4.3 Posteriogram Types

As an experiment, CQT is used as a posteriogram to see whether LSTM can learn
piano harmonics directly. As the main posteriogram, results from Benetos, Weyde,
et al., 2015 are used. They present a PLCA based approach, which is trained on
the isolated notes from MAPS dataset (Emiya, Badeau, and David, 2009, for sample
posteriogram, see 3.1a).

https://commons.wikimedia.org/wiki/File:The_LSTM_cell.png
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Chapter 5

Dataset

For model training and evaluation MAPS dataset is used (Emiya, Badeau, and David,
2009). It is de facto primary resource for MIR tasks evaluations. It is an annotated
dataset, which provides CD-quality recordings and ground truth midi files for over
65 hours of piano recordings on various instruments and conditions. These include
both high-quality software synthesised sounds and recordings of real disklavier pi-
anos (instruments that are capable of reproducing midi files without a human pi-
anist).

The dataset consists of 4 main parts:

• ISOL - isolated notes (for monophonic pitch estimation)

• UCHO - recordings of common Western music chords (for works that incorpo-
rate prior harmonic knowledge)

• RAND - recordings of random chords

• MUS - 238 pieces of classical music performed on different instruments

For every composition, 3 files are provided:

• wav file - the actual recording or synthesis

• midi file - original midi file, that was played/synthesised

• txt file - original midi file representation, that contains onset/offset and pitch
information of every note event of the original file

In this work only MUS part of the dataset is used for training and evaluation
purposes.
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Chapter 6

Metrics

In order to see the model’s progress and weak spots, standard multi-label classifica-
tion metrics are calculated during the training process, namely precision, recall and
f-score. All of the metrics are calculated for each frame of the dataset and mean is
taken to summarize the value over the dataset/batch.

For a single frame, let’s define ŷ ∈ {0, 1}88 to be a prediction vector and y ∈
{0, 1}88 to be a corresponding target taken from the piano-roll representation (88
stands for the number of piano keys).

Metrics that are not defined for some frame (i.e. no positive samples in case of
precision, etc.) are replaced with 0.

6.1 Precision

Precision is defined as percentage of true positives out of all positive predictions:

precision =
TP

TP + FP
where TP stands for true positives and FP for false positives respectively.
In terms of ŷ and y it rewrites to:

precision =
∑88

i=1 ŷi · yi

∑88
i=1 ŷi

In other words, precision indicates, how often the model is correct when it pre-
dicts the positive sample.

6.2 Recall

Recall is defined as percentage of correctly predicted positive samples out of all target
positive samples:

recall =
TP

TP + FN
where TP stands for true positives and FN for false negatives respectively.
In terms of ŷ and y it rewrites to:

recall = ∑88
i=1 ŷi · yi

∑88
i=1 ŷi · yi + ∑88

i=1(1− ŷi) · yi
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6.3 F-score

F-score is defined as harmonic mean of precision and recall:

f score =
2 · precision · recall
precision + recall

It is a metric that summarizes precision and recall and gives a single number that
represents how the model is performing.

6.4 Accuracy

Accuracy is not being calculated because of its needlessness. It is defined as the
number of correctly classified samples over the total number of samples within 1
frame:

accuracy =
∑88

i=1(1− (ŷi ⊕ yi))

88
As a tiny amount of notes compared to the number of piano keys can be played

at the time due to physical constraints, even the meaningless model (i.e. the model
that predicts complete silence) can have very high accuracy because of the dataset
imbalance. Hence, this metric does not provide an insight into how good the model
is.
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Chapter 7

Experiments

7.1 Data

Posteriograms from Benetos, Weyde, et al., 2015 are available in the scope of Ycart
and Benetos, 2018. For each song from the MUS part of MAPS dataset, a correspond-
ing posteriogram matrix with 10 milliseconds resolution is provided.

As for CQT, MUS piano pieces were processed with hanning window with hop
length of 512, a minimal frequency that corresponds to "A0" pitch and 88 bins, which
resulted in ≈ 11 milliseconds resolution.

Piano-roll representation was extracted from the corresponding midi files from
MAPS dataset. Posteriogram matrix resolution was taken into account.

Because some classical pieces are duplicated (played on different instruments in
different conditions) train/test split cannot be performed by shuffling the dataset.
For this purpose, configuration 1 from Sigtia, Benetos, and Dixon, 2016 is used. It
provides four folds of train/test split, which ensures that no piece is in train and test
datasets simultaneously. For training and evaluation, the first fold is used.

Before training, all the pieces are sliced into 1-minute extracts and shuffled on
every epoch of the training.

7.2 Training

The model is optimized via gradient descent using Adam optimizer with adaptive
learning rate. Initial rate is set to 1× 10−3 with 0.99 decay after every five epochs.
LSTM hidden state size, number of fully connected layers and dropout vary in dif-
ferent experiments. Because the dataset is extremely unbalanced, class weights are
introduced in every experiment.

7.3 Loss Function

As a loss function, binary-cross-entropy (BCE) and focal are used in different experi-
ments.

For a particular frame, let’s denote ŷ ∈ [0; 1]88 to be a vector of real numbers that
represent probabilities of the frame belonging to each class and y ∈ {0, 1}88 to be a
target vector. Then binary cross-entropy loss will be calculated as follows (see 7.1a):

BCE(y, ŷ) = − 1
88

88

∑
i=1

(yi · log(ŷi) + (1− yi) · log(1− ŷi))

Because the dataset is imbalanced, well classified samples (with ŷ > 0.6) might
overcontribute to loss function, shadowing the samples, that are hard to predict.
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In order to tackle this issue, focal loss was proposed (Lin et al., 2017, see 7.1b). It
complements BCE with the additional multiplier (FL stands for Focal Loss):

FL(y, ŷ, γ) = − 1
88

88

∑
i=1

((1− ŷi)
γ · yi · log(ŷi) + ŷγ

i · (1− yi) · log(1− ŷi))

By doing so, it flattens the original BCE curve (see 7.1) by emphasizing poorly
predicted samples. In fact, BCE corresponds to FL with γ = 0.

(A) Binary Cross-Entropy loss (B) Focal loss with γ = 2

FIGURE 7.1: BCE and focal loss comparison.

7.4 Experiments

Experiments parameters are shown in the following table:

Experiment
Name

Posteriogram
Type

LSTM configuration Dropout
Fully-Connected

Layers
Loss

Function

Experiment 1 CQT
hidden state size: 176
layers: 2
bidirectional: true

0.0 352 ->176 ->88 BCE

Experiment 2 PLCA
hidden state size: 176
layers: 2
bidirectional: true

0.0 352 ->176 ->88 BCE

Experiment 3 PLCA
hidden state size: 250
layers: 2
bidirectional: true

0.1 500 ->250 ->88
FL

gamma = 2.0

TABLE 7.1: Experiments configurations

7.5 Results

In this section, the resulting metrics for each every experiment are presented. The
next subsections provide a visualization of the model performance on a single sam-
ple from test dataset.

As a test sample, an extract from J.S.Bach: Prelude and Fugue in C major, Well
Tempered Clavier, book 1 is used. See 3.1 for posteriograms, piano-roll representa-
tion and corresponding sheet music.
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7.5.1 Comparison Table

Experiment
Name

Precision
train/test

Recall
train/test

F-score
train/test

Experiment 1 0.83/0.79 0.91/0.86 0.86/0.81
Experiment 2 0.84/0.8 0.92/0.87 0.87/0.82
Experiment 3 0.87/0.82 0.92/0.86 0.89/0.83

TABLE 7.2: Experiments best train/test framewise metrics

7.5.2 Experiment 1

FIGURE 7.2: Experiment 1. From top to bottom: input posteriogram,
LSTM activations, prediction piano-roll, actual piano-roll
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7.5.3 Experiment 2

FIGURE 7.3: Experiment 2. From top to bottom: input posteriogram,
LSTM activations, prediction piano-roll, actual piano-roll
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7.5.4 Experiment 3

FIGURE 7.4: Experiment 3. From top to bottom: input posteriogram,
LSTM activations, prediction piano-roll, actual piano-roll
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Chapter 8

Results

8.1 Conclusions

8.1.1 CQT Posteriograms Results

From the first two experiments, we can see that CQT can be used as a posteriogram
without any preprocessing (at least in current experiment setup). There are several
ways to improve the posteriogram:

• downsample the signal

• try different windowing function

• incorporate HCQT as it is done in Bittner et al., 2017

In order to get more insights into whether this posteriogram is suitable for fur-
ther experiments, note-based metrics should be calculated during training.

8.1.2 Low Recall

From the metrics curve in all the experiments we can see that test recall is dropping
over the epochs:

FIGURE 8.1: Recall curve for Experiment 3.

There might be several reasons for this behaviour:

• dataset imbalance is still a problem (FL with bigger γ yields similar results)

• train and test class distributions differ

• overfitting the model

• fading during sustain pedal (see 8.2.1)



Chapter 8. Results 20

8.2 Further Work

8.2.1 Fading and Sustain Pedal

One of the most obvious places for improvement is fading and sustain pedal. The
piano mechanics imply that the sound arises as soon as the man presses the corre-
sponding key. The opposite is also true: the sound goes out as soon as the key is
released.

However, the second part is not true when sustain pedal comes into play. Namely,
when it is on, the sound does not go off as soon as the key is released, but until the
pedal is off. It means that the piano-roll representation can contain zeros, whereas
the posteriogram will have non-zero coefficients at the same time.

The same is true about fading: if you press the key and hold it for some time, the
sound dissolves and the reversed situation can take place: piano-roll representation
will contain ones whereas the posteriogram coefficients will be close to 0.

These issues are not covered in the dataset, so some methods for fading and
sustain pedal estimation should be applied.
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