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Abstract

Nowadays smart phones are playing major role in our everyday life. The computa-
tional power of flagman versions can be compared with some of the laptops. Having
all that power in our pockets gives us an opportunity to create apps with capabili-
ties to analyze large amount of data, perform computations for making predictions
and in the end, increase life comfort of the user.In this work i would like to describe
the process of creating Android application, which aims to detect anomalies in car
engine system.
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Chapter 1

Introduction

1.1 Overview

In modern world personal car is becoming essential attribute of all people in de-
veloped countries. Together with it, cars itself have evolved from simple IVS with
wheels to highly advanced vehicles with big variety of subsystems, sensors and abil-
ities. On the other hand, having all this advanced technology inside an engine,
makes is very hard to understand and check stability of work for people without
special education. So, I come up with an idea of a “pocket mechanic” app. If car is
able to give us in numeric form, all information about it, why just not to use com-
puter to perform analysis over this data ? Because analyzing numbers is the thing
which computers can do best, isn‘t it? What is more, all this big variety of sensorics
data could also allow us to be more preventive in case of problem. Having analogy
with human anatomy if our body would be armed with bunch of sensors which are
continuously controlling all vital systems, we could have foreseen failures in our or-
ganism. Foreseeing issue in this case means a life of an individual, in the car case
saving a lot of time money of the user. But How the program, or in our case, mo-
bile app will know that something is wrong? Here comes the Anomaly Detection.
Having all data stored in memory, we can clearly see the place and the time point
when something went wrong. So, A.D.E.S project aim is to give people who are not
very familiar with car engine construction a powerful tool, which can help in their
everyday life by having your “pocket mechanic” which watches over your car.

1.2 Problem

As was described modern car users can no longer see problem by themselves. So,
we can only react on failure when it‘s occurs. Which is not the most efficient way of
problem solving. The easiest and economically effective way is to be able to prevent
failures of the system.

1.3 Suggested solution

A.D.E.S system is a pairing of Android mobile app with software which allows ana-
lyze data, and special Bluetooth adapter for car which will be described in technical
related parts of this work. Workflow of the app is the following:

– User connects adapter to car diagnostics socket

– For the first time app is in synchronization mode in which it is gathering and
preparing vital data
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– When initialization is done app is in working mode. While user drives it con-
tinually sends data to the user’s phone. Data there is mapped to appropriate
form for Anomaly Detection algorithm.

– If app mentions suspicious behavior of some systems it notifies the user about
it, giving useful tips about what can cause the problem and what can be a
solution.
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Chapter 2

Market analysis

Cars apps are divided in two sections: OBD readers and Car mangers. First ones
are used to read car data and display it to the user, second are just managing apps,
which user can track his expanses, count days till service, etc. A.D.E.S will combine
and improve this function bringing new level of service to the client. Currently on
the market there are a few quite successful apps for interacting with car via phone
and via Bluetooth. The best apps from this section have from 500.000 to 5.000.000
downloads. So, these are quite demanded tools in the car owner’s world. But all
of them has some elements in common. Old UI, not obvious UX and absentness of
any innovations. On the other hand, still many people use it, because it brings a lot
of additional, valuable information about their car. Here are some examples of apps
this kind:

FIGURE 2.1: Motor-
Data

FIGURE 2.2: Torque
Pro

So here you can obviosly see that these apps are quite old fashined. But this
is not main problem. Above I mentioned that these apps now, are missing some
inovative part. Yes, they can read and display values that car system provides, but
in modern world data is a key to something bigger, and as was mentioned in the
first chapter – preventing failures – that is the feature that none of the current apps
on the market has. And this is the feature which will be the core function of A.D.E.S
system. Giving powerfull macine learning algorithms and neurall networks which

https://play.google.com/store/apps/details?id=com.motordata.obd
https://play.google.com/store/apps/details?id=com.motordata.obd
https://play.google.com/store/apps/details?id=org.prowl.torque
https://play.google.com/store/apps/details?id=org.prowl.torque


Chapter 2. Market analysis 4

will be disscussed later in this article, A.D.E.S could become new state of the art
solution in car industry with no real compatitors at the start.
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Chapter 3

Technical information

3.1 OBD

3.1.1 Overview

OBD stands for on board diagnostics. This is term is referring to vehicles self-
diagnostics and reporting capability. Since first introduced in early 1980s. This
communication standard has dramatically improved and now is a mandatory op-
tion which car manufactures should include to their production. In this project I
will be using OBD-2 because nowadays this is world-wide standard. OBD-2 pro-
vides a standardized hardware interface – female 16-pin J1962 connector. The big

FIGURE 3.1: Common place for OBD-2 socket

advantage of standardization is that car manufactures are obliged to place OBD-2
connector within 0.61m from steering wheel, so it‘s always accessible for driver.

3.1.2 Available data

OBD -2 can provide big amount of information about car status including:

• Engine load

• Engine coolant temperature

• Engine RPM

• Vehicle speed
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• Mass air flow sensor air flow rate

• Throttle position

• Run time since engine start

• Engine oil temperature

• Fuel condition

• Fuel Pressure

• Intake manifold pressure

• Fuel Rail Pressure

• Fuel Tank Level Input

• Car fuel type

And many more other params. Full list could be found here.

3.1.3 Request structure

Communication is built using simple request – response structure. Each request is
array of bytes divided by section

Each request contains:

• Header

– Header information is sending to tell receiver what kind of information
is to be transmitted, priority of data and whether or not a response from
sender is expected

• Body

– Contains data from censors

• Control sum

– Helps to ensure that Body data is valid

• Other

– SOF – starts of frame – marks start of message

– EOD – marks end of data

– EOF – end of frame – marks end of message etc

Overall structure looks like the following :

FIGURE 3.2: OBD-2 Request / Response structure

For example, request for getting current speed will look like the following:

https://en.wikipedia.org/wiki/OBD-II_PIDs
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68 6C F1 01 0D A6, where:
68 6C F1 – Header
01 0D – Body (01 – work mode 0D pid number which is responsible for current

speed)
A6 – CRC

3.1.4 Work modes

OBD-2 can send data in 10 working modes.

FIGURE 3.3: OBD-2 possible working modes

In my case I’m interested only in 01 and 02 work modes which are for sending
live data and data in specific time frame correspondingly.

3.1.5 Adapter

Adapters for OBD-2 are based on ELM327 microcontroller
So, usage of this adapter is quite simple, it is sold in

every car shop for a price around 10$. After purchas-
ing user just needs to stick to female adapter in his car
and forget that it is there. The sizing on new adapters is
quite small so they will be not noticeable people inside
of the vehicle Basically, consists of microcontroller itself
and Bluetooth module. There are some models which
are allowing communication via WIFI by I stopped my
choice on Bluetooth one, because of its simplicity. More-
over, Bluetooth Low Energy API is far more effective
that WIFI in terms of battery and phone resources con-
sumption.

3.1.6 Mobile

Mobile platform to which application is aiming for Is Android. It gives full access
for Bluetooth API, that‘s why it‘s perfect choice for an application of this kind.

Later in this article I will describe in detail app architecture, it‘s internal logic and
functionalities.

For accessing Bluetooth I’m using RxAndroidBle. Powerful library based on Rx-
Java, which is best java library for asynchronous apps for now. So, knowing that

https://en.wikipedia.org/wiki/OBD-II_PIDs
https://en.wikipedia.org/wiki/ELM327
https://github.com/Polidea/RxAndroidBle
https://github.com/ReactiveX/RxJava
https://github.com/ReactiveX/RxJava
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all Bluetooth operations are asynchronous this library provides very high level of
comfort while using it. It also does thread management which is very important in
Android development because mobile device has limited resources and has speci-
fied treads for different actions.

On the part of actual communication with OBD connector things are more com-
plicated. There is java library obd-java-api which provides some most common pre-
coded requests like reading the RPM or engine temperature. But the other side of
medal is that this software tool is quite outdated and has poor error handling mech-
anism that’s why my usage of it was limited to these basic functions. More complex
data requests required native query implementation and direct communication with
device Overall efficiency on the app you can see on this graph:

FIGURE 3.4: App energy efficiency

So, on start on the application when it is performing the search of devices the
energy usage is high for a small period of time. Then it drops almost to stand –
by power mode. With red lines I marked the moments of data reading, as you can
see it slightly affects the CPU usage and courses very little change in the energy
consumption. How app works in detail I will describe in dedicated article.

https://github.com/pires/obd-java-api
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Chapter 4

Methods

4.1 Overview

Core of the application is the prediction module and anomaly detection. Anomaly
detection can be explained as the identification of rare events or observations which
significantly differs from the main part of data. Usually these suspicions cases are
signals for the problem. These points could not be an actual failure, but they will
signalize that this particular censor or equipment is no longer in normal condition.
Based on founded outliers, system can predict future failures. This approach is also
well known as condition monitoring.

FIGURE 4.1: Outlier visualization

There are a lot of ways to do so, but they are divided into 2 main approaches.
Machine Learning and Deep Learning. For this project I’m still in the process of
finding best way and algorithm for it, so in this chapter I would like to write which
methods were used their pros and cons.
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4.2 Multivariate statistical analysis

In our case we could not build our decisions on data from only one censor, there will
be always combination of different circumstances which in total could bring the real
indication of the situation. So first of all, dimensionality reduction techniques need
to be applied, in order to compress data to less dimensional one without big data
loss.

PCA

One of the most wide -spread methods is PCA – principal component analysis.
Main idea of this method to create a linear mapping from original data to lower-
dimensional space, in such way that the variance of the data in this space is max-
imized. This algorithm is quite straightforward. Firstly the covariance matrix of
initial data is constructed. From this matrix we can compute it‘s eigenvectors. That
the eigenvectors which correspond to largest eigenvalues can be used to construct
matrix, with a help of which the original matrix could be transformed to a lower-
dimensional space formed by eigenvectors.

FIGURE 4.2: PCA example

Anomaly detection

Basically, problem of finding anomaly boils down to finding probability if point con-
sider to be unnormal or normal. For doing so fist step is to calculate probability
distribution p(x) from our data points. Than when we will be analyzing next point
x1, we will need to compare p(x1) to some threshold - t. The anomaly points usu-
ally would have small p(x), so comparing p(x1) to t would give us an answer. If
p(x1) < t point will be considered as anomaly.
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Mahalanobis distance

The Mahalanobis distance measures distance relative to the centroid — a base or
central point which can be thought of as an overall mean for multivariate data. The
centroid is a point in multivariate space where all means from all variables intersect.
The larger the MD, the further away from the centroid the data point is. The most
common use for the Mahalanobis distance is to find multivariate outliers, which
indicates unusual combinations of two or more variables. The Mahalanobis distance
between two objects is defined (Varmuza Filzmoser, 2016, p.46) as:

d(Mahalanobis) = [(xB − xA)
T ∗ C−1 ∗ (xB˘xA)]

0.5 Where: xA and xB is a pair of
objects, and C is the sample covariance matrix.

4.3 Artificial Neural Network

4.3.1 General

Artificial neural networks, further – ANN, is one of the fastest growing areas in
machine learning. From word “neural” obviously comes that this system inner logic
was inspired by brain structure. The main idea of it was to recreate way how our
brain works, learns and understands. Main structural part of these are input, hidden
and output layers. Their roles are: input of the information, processing info, and
output the result correspondingly.

FIGURE 4.3: ANN schema

The idea is the following: every cell in hidden layer represent a single neuron
in a brain. In ANN it is represented by a differentiable function, which is called –
activation. It is connected to a neurons in a previous layer and accepts their output
signals as inputs, as shown in a figure below. Based on these signals it compiles it‘s
own output signal which will be transmitted to next layer of neurons. This compila-
tion is based on special weights which are assigned to each input signal. Adjusting
these weights, the main goal of training process. This training process is based on
gradient descent, and it‘s aim to minimize difference with output which is given by
ANN and real result. For doing this we need to define loss function which will give
as a measurement of how far our output is from real result, this process is called
forward propagation. Now, when we have our measurement of error we need try

https://www.digitaltrends.com/cool-tech/what-is-an-artificial-neural-network/
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to minimize it, using gradient descent, having the fact that all neurons are differ-
entiable functions, we can compute gradients to determine how much and to what
direction we should adjust our weights, this is called back propagation. Repeating
this process N times, will leave us with weights that guaranties the minimal possible
error between ANN output and real result with current network params.

4.3.2 Autoencoder NN

An Autoencoder is a type of ANN which is used to learn data dependencies in unsu-
pervised way. The main goal of this type of network is to learn to reconstruct its own
input from its reduced encoding representation. Sound‘s similar to dimensionality
reduction, isn‘t it? Simplest form and autoencoder can be illustrated as following:

FIGURE 4.4: Autoencoder NN schema

I our case, the goal is to use autoencoder to transform data from sensors to a
lower-dimensional encoded state, where using features of this ANN type, it will
detect correlations and bindings between given variables. The main advantage of
this approach over the PCA, that it cal also detect non-linear dependencies.

But how it can be used for anomaly detection? The main idea is the that as the
target sensor will be giving inaccurate data, this will affect the correlations in the
variables. Giving this we will see the increasing error in network output layer as it
represents the reconstruction of giving data. By watching over this error, we can see
the “health” of an sensor.

https://en.wikipedia.org/wiki/Autoencoder
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In my case I used the following configuration:
3-layer network: first layer 10 nodes, middle layer 2 nodes, and 10 nodes in third

layer.
Mean square error was used as loss function
Model trained with ADAM optimizer, with 10 epochs with batch size of 10.

FIGURE 4.5: Loss function

As you can see, training and validation losses after fifth epoch are tending to
zero.

4.3.3 Results

During testing runs, I was using datapoints from engine RPM and corresponding
throttle position. As you can see from the data visualization below, RPM is increas-
ing and decreasing correspondingly to throttle position. For simulated anomaly in
last records, where RPM goes significantly higher, throttle values were set to 0.

FIGURE 4.6: RPM
dynamics

FIGURE 4.7: Throttle
dynamics

As was described above, Mahalanobis distance is the evaluator of error in the
model. Once it‘s exceeds the threshold value, we can consider this as an anomaly
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point. As you can see below, once RMP is starting to increase without changing of
throttle position, this value is increasing significantly, which signalize about error.

FIGURE 4.8: Mehalanobis results

In the case on ANN, the situation is almost same, the value of error is increasing
in the anomaly area.

FIGURE 4.9: Autoencoder results

Both models performed similarly. The difference is in training time. Training
ANN takes many times longer, but numbers are not very big around 3 sec, with 10
epochs. On the other hand I can assume that ANN will perform much better when I
will include more engine parameters with non-linear relations.

The problem now is that models are performing good on relatively large anoma-
lies but does not react pretty well on smaller. Because changing the RPM from 800
to 850 without changing acceleration pedal position should already be considered as
anomaly. So the next steps in this process is to improve model “perception”, teach it
to react on smaller changes.
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Chapter 5

Implementation

5.1 Technical side

In this section I would like to describe implementation process. The very first thing
that I needed to collect many technical data about car, which functions are depend-
ing on which sensors, which sensors rely on each other, and which sensorics data
will change accordingly to driver actions.

Data which is now collected by app and is used in algorithms:

• Engine temperature

• Engine RPM

• Selected gear

• Vehicle speed

• Throttle position

• Fuel condition

Engine temperature is very important for detecting work mode, which will be dis-
cussed further in this section. RPM one the best way to rate the health level on
engine. When something is wrong in engine system, RPM will be the first who will
fell it. In normal conditions engine RPM remains stable over time, in case of problem
it‘s value can start jumping from higher to lower over time without changing throt-
tle position or changing throttle position will lead to wrong (lower higher) RPM
values. So, this number is target value for anomaly detection algorithm.

For a Petrol engine normal value of RPM when car is idle is – 700 - 800r/min, for
diesel engine 500-600 r/min. But it makes no sense to analyze RPM itself, because
cars are not just standing still, which results in continuously changing RPM value.
That why algorithm is taking into consideration also throttle position and selected
gear (if available).

The Logic is the following if RPM and throttle position values corresponds than
this is not considered as an anomaly, but if RMP changes without change of throttle
position, this will signalize about failure in engine system. Then app can propose
to user possible solutions of the problem based on data. To make prediction more
accurate in future other values that affects RPM could be added to the input data.
Like Fuel condition or intake air pressure.

As was mentioned above car engine basically has 2 main working modes: -
Warming up (-further on cold), and Normal operation (-further on hot). Censor
data during these two modes can differ significantly. So for analyzing data I‘m us-
ing two models trained on 2 different sets of data: obtained on cold, and obtained on
hot. The difference is in idling state. During this time car CPU artificially increases
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RPM in idling state, for engine to reach working temperature faster. And many all
other paraments could be changes in order to warm engine faster. That’s why engine
temperature is quite important parameter.

Other parameters are not used in Machine learning, but still are used to detect
anomalies, in more simplistic way of general algorithms:

• Run time since engine start

– If temperature could not reach 90 degrees from 5 till 15 mins from starting
of engine It could signalize about problem with engine coolant circle.

• Fuel Pressure

– If pressure goes down when driver is pressing on acceleration pedal that
could mean problems with fuel pump

• Low air flow rate

– Could be the consequence of dirty air filte

I mentioned only a few and most common problem which system can detect.
Giving all data, which car is providing system can predict very wide variety of fail-
ures.

Next step in this direction will a be a consultation with professional car mechanic,
in order to list all dependencies between censor data and information which it gives.

5.2 Internal architecture

5.2.1 General Technologies

App is supposed to be backendless solution, so for storage of the user data Firebase
can be used. It provides great service for backendless applications. Firebase-Auth
is used for user authentication. In this app, authentication is not necessary, only by
user wish, if he wants his data to be synchronized among different devices.

App Auth is made by phone number. For user’s comfort users’ number is auto
populated from his google account. Firebase send a sms code to client device, this
code is auto populated, so user don’t have to enter it himself. This code is sent back
to firebase for verification, if code is verified, user account gets created and he will
have access to the DB to save his data.

But where is DB if A.D.E.S is backendless solution? And once again Firebase is
helping with that. Firebase Cloud Firestore saves our day. It also has a security layer,
so I can cleary define how user will access the DB and what data will be visible for
them.

Firebase Cloud Firestore is used to store trained models for users for them not
to re-train them once again if they will change a device and some general anony-
mous data for client analysis. Such as location, car, time in app, time of training etc.
This data in future will help to better understand clients, and improve application
accordingly to their needs

5.2.2 App architecture

Main language for an application was chosen to be Kotlin. This is relatively new
language for Android development with many cool features which simplifies devel-
opment process. Code on it usually has 25% less lines that Java. What is more, it

https://firebase.google.com/?gclid=CjwKCAjw4871BRAjEiwAbxXi28bkJc4o3lwWKlGHnD4iMi-CiUdh5b0AHxNx3AivBOkEFIpGr2K3AxoCbDkQAvD_BwE
https://firebase.google.com/docs/auth/?gclid=Cj0KCQjwzN71BRCOARIsAF8pjfivN8rRrKH47Hv3vrlbJ5ZpPr4j3IUdmFrFpbuw-vex6vynXzEmb_kaAo8bEALw_wcB
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allows direct calls to native Java code, which means full support of Java -libraries. I
was trying to use latest technologies and best practices presented on Google IO.

App is based on MVVM (Model – View – ViewModel) architecture, and is using
RxJava / RxKotlin for handling asynchronous operations.

To explain what it is, firstly I need to explain the meaning of Android Lifecycle.
Every UI screen in Android system has it‘s own living time, and during this time it
goes through different stages. So the biggest pain point in all of this, is that if you
will leave some business logic on UI screen, you could not be sure that it will not be
killed by system and your computations would be stopped.

For ex: When you rotate your Android phone, it not just changes the way it looks,
under the hood portrait version of screen is destroyed, and recreated in an landscape
version. That’s why all important data and business logic should be separated from
it to some lifecycle-aware components.

On of them is ViewModel. It‘s is relatively new architecture component, firstly
introduced in 2017. The biggest advantage of it, that it is UI-independent and if
used in right way, can ensure you that your business logic is save from any lifecycle
changes. So View (UI part) is only responsible for displaying data which ViewModel
send to it. And if it will be destroyed ViewModel will just wait for next screen to be
attached to it.

FIGURE 5.1: MVVM

Now I will try to describe technical part of the application, how relations are
build inside of it, but not going to deep, for general understanding. In this section
the most important components will be mentioned

Device manager

This Singleton class is fully responsible for actual communication with OBD-2
adapter. It‘s responsibilities include:

• Sending commands to data stream obtained from Connection manager

• Retrieving data from data stream and decoding data from bytes that it gets.

– Request structure was explained in this section

• Delegating commands to Connection manger to scan, connect, dispose devices
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Data Manager
Singleton class responsible for transforming raw data obtained from Device Man-
ager to a form that it will be understandable for ML Models and Car Control sys-
tem. It combines corelative params into packages with which next analyzes module
would be comfortable to work with.

Fox example data for engine current RPM and throttle position are obtained from
two different requests which are executed in two separate threads, Data Manager
should combine them in one data package and send it for further analysis.

Car State Manager
Singleton class aimed to monitor car state, it detects changes of work mode of an
engine (cold hot), which will trigger changes in ML Models behavior. Also it‘s
responsible for storing current vehicle state. Here params which does not play role
in ML algorithms are analyzed.

ML Model Manager
Singleton class responsible for ML Model management. It manages the state of
ML Model, responsible for training and saving to internal memory. Main work-
ing params are work mode (on Hot on Cold ) received from Car State Manager and
data from Data Manager. Accordingly to work mode it creates instance of Actual
Model and is responsible for training and saving it‘s trained state to memory.

ML Model Manager is also responsible for getting predictions from trained mod-
els accordingly to current work mode and transmitting results to a Control Center.

All computations are made in separate working threads, so this does not affect
the main UI thread.

Control ViewModel
ViewModel class which represents the core of the system. It‘s responsibilities in-
clude:

• Sending data from Car State Manager to UI

• Managing state on ML Model Manager

• Transmitting user commands from UI to business logic part

• Delegating commands to corresponding manager Simplified version of these
relations you can see at the following graph
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FIGURE 5.2: Application architecture

5.2.3 Database

External

For an external database Firebase Cloud Firestore was used. Here, in case user
went through authentication flow, app saves necessary data for data synchroniza-
tion among multiple devises.

Firebase Cloud Firestore is NoSQL database, unlike a SQL database, there are no
tables or rows instead it stores data in a form of documents, which are grouped in
collections for data organization and query building. They are organized in hierar-
chical model, from main collection to sub collections and with a simple document
in the end. Each document is lightweight object, in fact a collection of key – value
pairs, some kind of JSON object, with restriction of size (< 1MB) Here is an example
of data record:

FIGURE 5.3: Document in Firebase

The communication with database is made by subscription model. Unlike com-
mon SQL databases, where data is obtained via queries, Firestore is following some
sort of Observer pattern. Client in this case – mobile app, is subscribed on data
updates, that means that every time data field is updated, client is notified about
this change and will receive updated document. This feature becomes very useful
in case if user is using different devices. The data obtained from one device, will
automatically synchronize with second one.

Other big advantage of this database is offline support. As we know that A.D.E.S
will be used in car, we can assume that there could be problems with network along
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the way of traveling, which can lead to data loss, but Firestore solves this problem
for us. During connection losses data is stored in local storage and when internet
connection will be available it will synchronize data with remote database.

Internal

In A.D.E.S application local storage is also used. For this reason ROOM library is
used. This is official Google library which provides and abstraction level over SQLite
DB which lies under the hood. Local storage is stored for the same reasons as Fire-
store, which was described above, to ensure no data loss, and to save data of the
non-authenticated client. Also all necessary data obtained from sensors is stored
locally in this DB.

5.3 Design Prototypes

As A.D.E.S is a mobile application, it requires professional designs to be attractive
for customers from UI / UX point of view.

Some designs has already been made, so in this section I would like to share them
with you

https://developer.android.com/jetpack/androidx/releases/room
https://www.sqlite.org/index.html
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5.3.1 Car screen

FIGURE 5.4: Car info screen

This screen is responsible to show main statistical data about user‘s car. Values
like average speed, fuel consumption. From here user can open inner app features.
The main car image will change accordingly to the information acquired from the
car itself. Images will be stored in Firebase with public read rights.
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5.3.2 Engine state screen

FIGURE 5.5: Engine state screen

The engine statistics screen. This graphic will be compiled from numbers of de-
tected anomaly states inside if the application. So, this screen does not show dynam-
ics about concrete sensor, because for most of the car users nowadays don‘t know
which sensors is responsible from which function, but instead it shows general sys-
tem dynamics. If number of error exceeds “normal” threshold, system with notify
user about critical engine state, and will advise to visit maintenance station and will
try to help with usefull tips and error details
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5.3.3 Connections screen

FIGURE 5.6: Connections screen

Simple connections screen, which will allow user to choose device to connect.

5.4 App versions

As every software product, A.D.E.S app development process was divided in sepa-
rate versions to ensure smooth development process. Versions roadmap:

5.4.1 POC

At this stage the basement of the application was formed. Added Bluetooth func-
tions, ability to connect to devices and read basic data.

Functions:
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• Bluetooth scanning / connecting

• Data reading from adapter

5.4.2 MVP

At this stage basic valuable functions appear. Having functions from POC version.
App now has abilities to communicate with main sensors such as: RPM, Speed,
Car info, Throttle position, etc. Store this data for further analysis. Authentication
methods are included as well as data base connections. ML side of the project is
being developed. Acquired first results from both algorithms.

Functions:

• Read real data from car

• Decoding this data from byte format to real numbers

• User Authentication

• Firebase connection and data storage

• First attempts on training ML algorithm and ANN (separately using Python)

• Internal logic reacts on car state changes (on cold on hot)

5.4.3 V0.1

In this version all functions from an MVP are improved, first designs are getting
implemented. ML algorithms are under investigation and improvement. New data
points are added to the training process such as selected gear, fuel condition and
data from air sensors.

Functions:

• First designs implemented

• Improved ML algorithms

• Full analysis of car data

5.4.4 V0.5

The rest of designs will be ready for implementation. ML models will be imported
from Java to Kotlin. Start of testing in real driving scenarios.

5.4.5 V.** Future Plans

5. V.** Future Plans In next app versions will be added the following functions:

• Car profile

• Tracking car overall health

• Maintenance profile

• After consulting with car mechanic specialist, add ability to detect most com-
mon failures:
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– Fuel rail problems

– Fuel pump degradation

– Gearbox problems

– Failures in ignition system

– Alternator degradation

–

• Data synchronization among multiple devices
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Chapter 6

Results

6.1 General

In this paper I tried to cover all topics of development cycle around A.D.E.S app,
from technical details to inner software architecture. As a result, now I have a work-
ing project, which already has all vital parts to be finished till going live state.

The whole development process was divided into 3 stages. At first stage I was
investigating technical side of the problem. As workflow of IVS engine is the target
is the application, I needed to understand the basic principles of its work. Which
parameters are connected and how censors data is connected to engine health state.
A lot of work was done to become acquainted with OBD-2 technology and to under-
stand communication protocols.

Second stage was dedicated for investigation of possible ML and DL techniques.
In the end two were chosen: Mahalanobis distance and Autoencoder Neural Net-
works. By this time both models performed relatively similar, so work on improving
them is going on.

The third stage was dedicated to software development process, during it app
architecture, was made and main service features was implemented. During devel-
opment time I was using the following technologies:

- Android SDK along with Kotlin programming language
- RxJava / RxKotlin for Handling asynchronous app flow.
- Android Architecture components
- RxAndroidBle for establishing Bluetooth connection with device
- obd-java-api for actual communication with device
- Firebase Auth for user authentication
- Firebase Firestore as remote NoSQL database
- SQLite with ROOM adapter for internal database

6.2 Improvements to be made

By the time of writing this article app is in development, current version - MVP. The
main focus for now is improving ML algorithms, testing it with different data com-
binations and internal architecture(in case of ANN). Having current results model
could recognize anomaly points, when difference is significant and fails in a smaller
errors. Solution to this will be enlarging training datasets, for models to better group
the normal points.
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6.3 Weak points

The main, and for now unsolved problem is false positive data readings. App is self-
thought, that means that I’m not using one pre-trained model for all devises. Every
device train it‘s own model based on data from a specific vehicle. That means if at
the moment app is gathering first training data, one of the target sensor is already
giving wrong data, or engine is already in a poor health. Algorithm will learn on
this “unhealthy data”. Which means he will treat normal working conditions as
anomaly. The solution could be, before training model, check general statistics with
some reference values obtained from data base. But this requires investigation.

6.4 Summary

In the end I would like to say, that A.D.E.S project demanded from me all my knowl-
edge from different areas. Starting from IVS engine structure to Deep Learning with
ANN. The road to this point was hard, but a lot of work still needs to be done.
Thanks for your attention.

Git: Android App
Git: ANN
Git: Mahalanobis
Video: Demo

https://github.com/VictorYezhov/ADES
https://github.com/VictorYezhov/ANN
https://github.com/VictorYezhov/Mahalanobis
https://drive.google.com/open?id=1gRh0fVHUopkgxBCl36T6yI2dJQ6DvSSC
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