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Abstract

Single-cell gel electrophoresis is the standard test used by biomedical researchers to
analyze damage to the cell. Currently, this test is only done using standard image
processing techniques, that skews the outputs, requires manual work and/or human
supervision. Other problems with current solutions include poor usability, lack of
flexibility, and high price for commercial applications. In this work, we create a deep
learning-based end2end pipeline, that receives images from the test as an input, and
produces damage metrics as an output. We have trained UNet with SE-ResNet50
encoder on the custom-created synthetic dataset, which achieves the dice coefficient
of 76.8. We hope that the results of this work will become the base of the easy-to-use
open-source application available for any researcher.
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Chapter 1

Introduction

Single-cell gel electrophoresis is one of the most usable tests for cell damage assess-
ment in the world. Though being very popular, it is not finally standardized, and
is used by researchers according to their needs. The final part of the test is image
analysis, in which segmentation is performed on the image of individual cells, and
metrics of damage are calculated.
Medical image segmentation has improved during recent years due to usage neural
networks and creation of new datasets. However, for single-cell gel electrophoresis
there are no implementations involving deep learning, as well as no dataset for im-
age segmentation. Image analysis is done using standard computer vision methods,
that sometimes can not handle the complexities that occur in dataset, like overlaps,
debris, different image characteristics. Open software, that produces resulting met-
rics is mostly old, poorly supported / not usable, not accurate, very restricted in
usage, and requiring manual supervision. Commercial programs can be very ex-
pensive, starting from $3000, so they couldn’t be tested for this work.

1.1 Goals

In this work, we want to create and test a single-cell gel electrophoresis dataset for
segmentation using the latest developments in medical image segmentation. We also
want to process the resulting masks to create an end2end model for damage metrics
calculation, which will become the basis of the image analysis application. We are
curious to discover which results we can achieve using 125 samples hand-labeled
dataset, annotated by not professionals.

1.2 Thesis structure

Chapter 2. Biomedical background
This chapter contains information on the process and usage of single-cell gel elec-
trophoresis and approaches to image analysis of the microscopic slides.

Chapter 3. Technical background
In this chapter, we provide background on neural networks, convolutions, and se-
mantic segmentation.

Chapter 4. Related work
This chapter includes the related work on comet assay image analysis, as well as
recent developments in cell segmentation.

Chapter 5. Materials and Methods
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Here we explain the dataset annotation, the process of creating the synthetic dataset,
data preprocessing, and augmentation. We describe the models used for the experi-
ments and metrics used for comet evaluation.

Chapter 6. Experiments
In this chapter, we describe the experiments conducted on the dataset and report the
scores.

Chapter 7. Summary Here we summarize the work done, achieved results, and
plans for future work.
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Chapter 2

Biomedical background

2.1 Single cell gel electrophoresis

Single-cell gel electrophoresis is the most common technique for DNA damage mea-
surement using visual damage of eukaryotic cells. SCGE is used for assessment of
DNA strands on individual cell level requiring low-cost, short time for the test, and
a small number of cells for sample per test. Single-cell gel electrophoresis has a high
sensitivity that captures low-level DNA damage and is flexible, as it allows us to
capture various types of cell damage.

The test is conducted the following way - suspension of cells is embedded in
an agarose gel and put on the microscopic slides. The cells undergo lysis, the pro-
cess of breaking down the membrane of the cell to purify and liberate the DNA. To
convert some types of damages into DNA strands damage, and make them visible
during the process, cells are put into alkali-labile sites during the alkaline unwinding
stage. The next important step is electrophoresis, in which negatively charged parts
of the DNA start moving towards the anode, migrating away from the nucleus and
spreading to form a comet-like structure. These comet-like looking cells resulted in
single-cell gel electrophoresis being referred to as comet assay.

FIGURE 2.1: Comet-like cells after SCGE.

After the electrophoresis, alkali neutralization is performed. Succeeding step is
to fix the comets and stain them with fluorescent or silver nitrate substance. Latter
will result in noisy black comets, while fluorescent - light green ones. The final step
is to capture images of the microscopic slides and send them for image analysis to
calculate metrics describing each isolated comet.

2.2 Image Analysis

Though the methodology developed by Ostling and Johason in 1984, the protocol
for standardized comet evaluation was only developed in 2006. The procedure can
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differ drastically, depending on the needs of the researchers using it. After receiv-
ing an image as an input, all image analysis programs will output one of the three
results.

Distance of DNA migration

This simple approach is suitable for only relatively low damage to the cell. It mea-
sures the distance of DNA migration from the body of the nuclear core. It would
not be useful for cases when DNA damage is substantial, as with increasing damage
DNA, the intensity increases, but not the length of the comet.

Damage classification

Collins suggested assessing comets by 5 classes (0 to 4), in which 0 class would
indicate no damage, while 4 - maximum damage for DNA strands. This approach is
currently used in many labs, though it can not provide a more detailed description
by each comet. It is common to calculate the average of classes per image to estimate
the damage.

FIGURE 2.2: Five classes of comet damage by Collins

Tail moment

A more accurate and flexible approach is calculating metrics, describing the damage.
The main idea is that DNA in a comet is proportional to the sum of intensity values
of all the pixels representing the comet.
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FIGURE 2.3: Damage metrics calculation

According to this idea, we can calculate DNA, and tail DNA ratio, as follows:

DNA = ∑
xεcomet

I(x)

TDNA =
1

DNA ∑
xεtail

I(x)

CPH is the center position of the head, and CMT is the tail center of mass. Tail
length is the distance between the rightest most point of the head, and the end of
the comet. Tail distance is the distance between CPH and CMT. An example of these
points on one of the comets from the dataset can be seen in figure 2.3. Having all
the coordinates, we can calculate three more metrics describing the comet: extent
moment, a tail moment of inertia, and Olive moment.

ExtentMoment = TailLength ∗ TDNA

OliveMoment = TailDistance ∗ TDNA

TailMomentInertia =
1

DNA ∑
xεtail

I(x) ∗ (CPH − x)2

2.3 Usage

SCGE is used in biomonitoring, genotoxicology, ecological monitoring, DNA dam-
age/repair assessment in response to DNA-damaging agents.

Hoeijmakers classified main DNA damaging agents into three categories Hoeij-
makers, 2009:

1. environmental (UV light, ionizing radiation, genotoxic chemicals)

2. normal cellular metabolism
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3. chemical agents that bind to DNA and cause spontaneous disintegration

Apart from working with agents, more specific cases were described by M, A,
and S, 2018. They include testing of newly developed pharmaceuticals, research in
diabetes, rheumatoid arthritis, Alzheimer’s and Parkinson’s disease, male infertility
testing, detection of toxic environmental factors (radiation, heavy metals), evalua-
tion of carcinogens, forecast of tumor radio and chemosensitivity. Due to the flexi-
bility of the test, it is used in other research areas as a standard method to assess the
damage.
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Chapter 3

Technical background

Neural networks have become a standard in medical image segmentation due to the
ability to learn complex patterns and features, state-of-the-art results, and the ability
to generalize on different data. In this chapter, we will cover introductions to artifi-
cial neural networks, convolutional neural networks, and semantic segmentation.

3.1 Artificial neural networks

Artificial neural networks are an information processing paradigm, meant to mimic
the human brain. ANNs consist of layers of nodes (neurons) that are connected
in an acyclic graph. Each ANN would have an input layer, output layer, and hid-
den layers. The input layer merely contains input data, the output layer contains a
prediction of a neural network, and hidden layers number and structure vary de-
pending on the ANN architecture design. One of the most popular types of layers
is a fully-connected layer, in which all neurons in two adjacent layers are pairwise
connected. Depending on the specifics of the task (for example, classification, or
regression), the output layer will have different dimensions.

FIGURE 3.1: Artificial Neural Network.

Input in the neural network is a single vector that is processed by neurons. Each
neuron is a mathematical function that maps its’ input x into output y by combin-
ing weights with the input and passing it through the activation function. Weights
can be interpreted as connections between neurons. They are learned and updated
throughout the whole process of training the neural network. After completing the
forward pass - passing the input through all the layers of the ANN, and saving the
outputs, we will complete a backward pass - calculate the gradients and update the
weights.
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3.2 Convolutional neural networks

Convolutional neural networks are similar to ANNs in that they also consist of neu-
rons. Neurons process the data by taking an input, computing the dot product, and
sometimes passing it through the non-linear function. However, they are designed
to process images and preserve the spacial information, by taking an input image as
is - with its width, height, and depth dimensions, and not stretching the data into
a single vector, as ANNs. Convolutional Neural Network for image classification
will typically consist of the input layer, a convolutional layer, a layer with activation
function, a pooling layer, and a fully-connected layer.

Convolutional layer.

Convolutional layer parameters consist of filters - matrices, whose elements are
learned and updated during the training. We compute the dot product of the fil-
ter and the current part of an image, record the output, and slide filter to the next
part.

FIGURE 3.2: Filters in Convolutional Neural Networks.

To control the output of the convolutional layer, and to set the way filters to slide
over the image, we can regulate the following hyperparameters: stride, number of
filters, filter size, padding. Stride is the number of pixels we shift on an input image
after each slide. Padding an input image may be useful to make filter fit over the
input dimensions. The number of filters will impact the output depth.
If W is an input image size (width, or height), F - is the filter size, P - is padding, and
S is stride, then width and height of the output can be calculated by the formula:

(W − F + 2P)/S + 1

Pooling layer

The poling layer is used for downsampling along the spatial dimensions. Its’ func-
tion is to reduce the number of parameters, thus reducing the compute and some-
times to prevent overfitting. Different types of pooling would include max pooling,
average pooling, and sum pooling. The former is the most common to use.
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FIGURE 3.3: Max pooling

Image classification

For image classification problem, CNN would usually consist of input layer, combi-
nation of convolutional layer, ReLU, and pooling layer, and fully-connected layer in
the end, with dimensions corresponding to number of classes.

3.3 Semantic Segmentation

Semantic segmentation is the task of linking each pixel of the image with the specific
class. It could be thought of as pixel-level image classification because each pixel
in an image is classified according to a category. In the case of cell segmentation
with three classes: cell, nucleus, artifacts, each pixel would be labeled according to
the category or labeled as background. The segmentation model would produce a
mask as the output. However, overlapping nuclei would not be distinguishable in
this setup, and would be look merged in the output mask. It is indistinguishable, as
semantic segmentation is different from instance segmentation, and the model can
not distinguish between each instance of the nucleus.

FIGURE 3.4: BBBC039 sample with instance and semantic maps.

Though having its limitations, semantic segmentation is wildly used for scene
understanding, autonomous driving, image editing tools, robotics, and biomedical
image analysis.

Segmentation using Deep Learning

In 2012 Cirean et al., 2012 published Deep Neural Networks Segment Neuronal
Membranes in Electron Microscopy Images, in which they performed segmentation
by classifying each pixel using a region around it and sliding through the image.
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This approach was limited by the fact that regions (patches) were overlapping, re-
sulting in redundancy and computational inefficiency. Additionally, they faced a
trade-off between localization accuracy and use of context, as larger patches required
more pooling, and thus lowered the localization accuracy. In Shelhamer, Long, and
Darrell, 2016 introduced Fully Convolutional Networks for semantic segmentation.
Their idea was to downsample, similarly to traditional CNN for image classification,
remove the fully-connected layer in the end, upsample the feature bottleneck to im-
age size, and predict a semantic map in the end. They used pre-trained classification
networks like AlexNet, VGG, and GoogleNet, as powerful feature extractors, and
modified them into FCNs for semantic segmentation. Compared to processing the
image patch-by-patch, this approach significantly improved compute and accuracy.
Further development in segmentation, was to change one-step upsampling opera-
tion to a series of upsamplings done in a few layers.

Upsampling

The simplest approach to upsampling is unpooling. In this case, we save the indices
from max-pooling during downsampling, and during upsampling unpool into in-
dices saved from the corresponding part of the network. Below is the example of
max unpooling, also referred to as "Bed of nails."

FIGURE 3.5: Max unpooling

In the case of interpolation, we will use a linear combination of neighboring pix-
els (two for bilinear, and four for bicubic), to calculate the value of the pixel. This
type of upsampling produces smooth output.

FIGURE 3.6: Bilinear interpolation

Previous upsampling methods did not include any learnable parameters, so an-
other method for upsampling would be transpose convolution, also called deconvo-
lution. The idea is to have filters, similarly, as in convolution, take each scaler value



Chapter 3. Technical background 11

in the input image, multiply it by the filter, and place it in the corresponding region
of the output. Whenever outputs overlap, we sum the values.

FIGURE 3.7: 3x3 transpose convolution, stride 2, pad 1

Encoder-Decoder Architectures

In semantic segmentation, a popular architecture with downsampling and upsam-
pling is called encoder-decoder. The encoder will take an image and produce a high-
dimensional features vector as an output. The decoder will take the feature bottle-
neck in, as an input, and produce a semantic map, as an input. This architecture
was proposed by Badrinarayanan, Kendall, and Cipolla, 2015 in SegNet, where they
changed upsampling in one step to decoder, and used unpooling for upsampling.
Later, in the learning deconvolution network Noh, Hong, and Han, 2015, upsam-
pling was done using transposed convolution or deconvolution.
The next important architecture for image segmentation is UNet.

FIGURE 3.8: UNet architecture
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UNet was specifically developed for biomedical image segmentation by Ron-
neberger, Fischer, and Brox, 2015 and is currently the base of most biomedical seg-
mentation architectures. UNet consists of two paths: contracting and expanding, en-
coder, and decoder, which are connected by skip connections. Skip connections were
introduced to handle small objects, and they used interpolation instead of trans-
posed convolution to handle checkerboards artifacts and produce a smooth output.
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Chapter 4

Related work

4.1 Comet assay image analysis

Comet classification

Despite being a very popular method, SCGE still has no open dataset for image
analysis, allowing it to improve the current results. Some data available online was
found on Afiahayati et al., 2020 Github repository. This is the only paper that in-
corporated neural networks for comet analysis. Their work is based on CNN usage
for comet classification by Collins 2.2. They have achieved a classification accuracy
of 70.5%, using pre-trained VGG16. They have tested their dataset on OpenComet
Gyori et al., 2014 - the most popular free tool for comet analysis, and it was only
accurate in 11.5%.
This approach can certainly automate hand labeling of the classes, like done in O.
Yu. Harmatina, 2019, but is limiting the comet quantification to class. The input into
the network, are comets, segmented by thresholding, so this approach is not flexible
to work with images with different characteristics, overlapping comets, debris, and
artifacts.

Metrics calculation

Works, that analysed images to compute tail moment, and other metrics 2.2, are
Ganapathy et al., 2014, Ganapathy et al., 2015, Jones et al., 2008, Gyori et al., 2014,
and Lee et al., 2018. They analyse comets using standard computer vision methods
similarly to the following pipeline, which is typical for most tools for SCGE image
analysis.
Though some of these solutions have an open-source implementation, most of them
are not usable, as they are either not supported, have no documentation on installa-
tion, like in Lee et al., 2018, are not flexible for changes Jones et al., 2008, or some-
times require hand labeling the comet, or its’ head, like CaspLab.
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FIGURE 4.1: Comet segmentation pipeline.

Their approach to segmentation is based on Otsu’s thresholding method, filter-
ing by shape and simple CV techniques, like contrast enhancement or noise removal.
However, depending on image size, specifics of data - overlapping, fainted, blurred,
not damaged comets, image characteristics, and quality, many parameters in this
pipeline need to be fine-tuned to perform accurately. For example, when an image
from our dataset was fed into cell profiler comet assay pipeline, it produced the fol-
lowing results:

FIGURE 4.2: Cellprofiler segmentation predictions.
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Overlapping comets are usually discarded, as they can not be handled by stan-
dard methods. Lee et al., 2018 in their work tackled this problem, and they correct
the overlapping comets using watershed and distance transforms. After receiving
the individual comets they validate them using the Fourier shape descriptor and the
assumption, that all comets are elliptical.

As stated in Lee et al., 2018, "Although these platforms have various new aspects,
the basic principle behind the analysis has remained unchanged: identification and
characterization of individual comets. Due to the overlap of comets and debris, most
of the existing analysis programs require laborious manual identification of comets
from the fluorescent images."

Apart from filtering and handling overlaps, HiComet classifies DNA damage
states into normal, necrosis, and apoptosis. Necrosis and apoptosis refer to the type
of cell "death". Necrosis is unregulated cell death, as a result of external or internal
stresses, while apoptosis is regulated cell death, triggered by physical, chemical,
or biological factors. Their work was the first to solve the problem of overlapping
and analyze current software. However, the predictions are still limited by user-
defined head dimensions and need to be set for each comet, and their open-source
app couldn’t be tested due to the absence of documentation and errors.

4.2 Cell segmentation

As comet segmentation has not been done using deep learning, the closest problem
in computer vision would be cell segmentation. Cell segmentation includes differ-
ent approaches, depending on the input dataset. Some cells are processed similarly
to the pipeline described before, using watershed and image processing. In case we
need to segment more classes, like cell nuclei, membranes, overlapping instances,
remove artifacts and debris, this simple approach becomes insufficient. In this case,
we use deep learning, that can recognize complex patterns, and generalize on differ-
ent data samples. Most deep learning approaches to segmentation are usually based
on UNet or MaskRCNN model family. The former ones are used in Zhu et al., 2020,
Sun et al., 2020, or Ibtehaz and Rahman, 2019, and latter was used in Johnson, 2018.

The high focus in recent papers in biomedical image segmentation has been on
learning shape features. This could be achieved by creating a special loss function
like in Chen et al., 2019, where they create a loss function that takes into account
both length of the contour as well as the area of a mask. In work byZhu et al., 2020
it was proposed to incorporate edge information twice, by adding outer and inner
border loss to the loss function. The idea is to preserve shape information and use
it for a more accurate prediction of boundaries. Their dataset included multiple cell
shapes, from round to star-shaped, and they have boosted Residual Attention UNet
performance with the edge-enhancement loss idea. Another approach is to create
a separate shape stream, as Sun et al., 2020 implemented in shape-attentive UNet.
They propose not only to use the separate stream for shape features, that can be
built-in a model, but also to use the outputs for shape stream for interpretability.

As semantic segmentation models are unable to distinguish between instances,
touching cells can become a problem. To solve the problem a separate class can be
added, that would represent a cell border - Chen et al., 2016, cell centroids -Zhou
et al., 2019, or somehow label the overlap. Another problem in biomedical segmen-
tation is the lack of data. To solve this problem heavy augmentation and synthetic
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dataset generation could be applied. For example winners of DSBowl 2018 used
similar approaches for cell segmentation Data Science Bowl 2018 1st place. As part
of the augmentation they copying nuclei on images to create overlapping instances
and help the model to better learn borders between them.
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Chapter 5

Materials and Methods

When comets are not properly diluted - described in (Braafladt, Reipa, and Atha,
2016), the same problem of touching cells will occur. However, due to specifics of
the data, cells are not touching, but sometimes fully overlapping. Our dataset in-
cluded complex images with overlaps, so we will also focus our work to distinguish
between the instances.

5.1 Dataset creation

The images were gathered from different sources online, like Github repositories,
and open-source apps with samples provided. They include , Jones et al., 2008,
and Lee et al., 2018. We have contacted eleven researchers, that published comet
assay related works to help with the data gathering and annotation, and received
a few more images to expand our dataset. Gathered data included many samples
with not distilled cells, so they couldn’t be properly analyzed during image analysis.
Other images included text or elements that needed to be photoshopped, cropped,
or otherwise edited. The final dataset consists of 125 images of comets after the
fluorescent DNA stain. The images contain a total of 959 comets, 16.5% of which are
overlapping.

5.1.1 Data annotation

Data samples were annotated using an open-source tool CVAT Sekachev et al., 2020.
Each pixel was hand-labeled, as one of the following categories: background, head,
comet body, or overlap. Having an instance of each comet, we have generated a
center of the mass class.

5.1.2 Synthetic dataset generation

To create a full pipeline, and extract instances of comets, we need to process the
output of the semantic segmentation model. However, due to the lack of data and
class imbalance, the model couldn’t learn proper boundaries between overlapping
/ nearby comets, thus skewing the output metrics. The resulting dataset doesn’t
include many overlaps (126), so we needed to create a synthetic dataset with over-
lapping comets and heavier augmentation. Not overlapping comets are situated on
the black background, so it allowed us to generate realistic data and complicate it as
far as we wanted.
All comets, that were not already overlapping, were clustered by head/tail ratio,
intensity, and size into four groups. For each isolated comet with 30% probability,
we picked a random comet from the same cluster, scaled it to have similar dimen-
sions, placed it randomly near the main comet, with a high probability to overlap.
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To automatically create the overlap on the mask, we have the following approach.
Whenever heads were intersecting, we have put a stretched segment on the diagonal
of the rectangle of the intersection. In the other case, when tails were intersecting,
we have created a border mimicking dominant comet shape.

FIGURE 5.1: Mask with synthetic overlaps.

We have generated a synthetic dataset, and cleaned it from 4000 images to 1000
images, to include most realistic ones. To add more noise to the image, and increase
the complexity, we have randomly placed nuclei of U2OS cells. We used image set
Caicedo, 2018, available from the Broad Bioimage Benchmark Collection. The nuclei
were augmented (randomly rotated, resized, blurred).

FIGURE 5.2: Synthetic data with cells.

5.1.3 Data Augmentation

We have created 9 hierarchical stages of data augmentation, from the lightest ver-
sion to the heaviest one. For augmentation, we have used the augmentation library
albumentations. Following is the list of the elements used in augmentations:

• Random size crop, flip, rotation

• Mask dropout - zeroing out random instances
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• Random brightness /contrast

• Gaussian noise

• CLAHE

• Emboss, sharpen

• Affine augmentation

• Random sun flare, shaped like a circle

• Gray image to randomly colored

• Blur, median blur, and motion blur

• Addition of negative samples from other U2OS cells Bray et al., 2017

The last stage of augmentation was very similar to the one used in Data Sci-
ence Bowl 2018 1st place for cell segmentation, and resulting images would look like
shown on 6.1.

FIGURE 5.3: Augmented images

5.2 Semantic Segmentation

5.2.1 Architectures

In this section we will briefly describe the architectures used in experiments.

UNet

We have used UNet as a base architecture in our work. We have conducted ex-
periments with multiple variations, like pre-trained VGG16 encoder, pre-trained
ResNet34 encoder, and pre-trained SE-ResNet-50 encoder. UNet architecture was
described earlier. 3.3.

Attention R2UNet

Attention R2Unet is a modification of UNet, built with two modifications. The first
one is the addition of residual blocks, which were introduced by He et al., 2016,
and the second one is the attention mechanism, which was introduced by Oktay
et al., 2018. Both modifications were proposed as separate networks and later were
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merged into one. All of the variations are highly popular for medical imaging, in-
cluding pancreas segmentation, cell segmentation, and lesion boundary segmenta-
tion.

FIGURE 5.4: Residual Attention UNet

SAUNet

Shape-Attentive UNet by Sun et al., 2020 is another UNet modification, that con-
sists of two streams - texture stream and shape stream. The modifications in tex-
ture stream include dense blocks and dual attention decoder blocks. Shape stream
produces edge predictions that are incorporated into the loss function and can be
descriptive for model interpretability.

FIGURE 5.5: Shape-Attentive UNet
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5.2.2 Losses

For training we have used standard losses for segmentation, like cross-entropy loss,
dice loss, and a weighted combination of two. Dice loss is calculated as follows:

DL(p, p̂) = 1 − 2pp̂ + 1
p + p̂

Also, we have used Edge Enhancement loss, that was proposed in Zhu et al., 2020,
and is calculated, as described on the figure below.

FIGURE 5.6: Edge Enhancement Loss

For SAUNet we have used dual loss, which is calculated as weighted sum of
binary cross-entropy loss on edges, cross-entropy of segmentation prediction, and
dice of segmentation predictions.

5.3 Further processing

To process the output semantic map into instances, we have used a watershed algo-
rithm. It is a transformation on grayscale images in which pixel intensity is modeled
as height on the topological map. We first take the output mask and threshold it to
include heads and tails. Then we calculate the local gradients, which will have high
pixel values along the edges. If we feed the gradients directly into the watershed, we
can have over-segmentation, so we use markers to overcome this problem. Mark-
ers are components, connected to the image, that are of two types: internal marker,
which denotes the object itself, and external marker, which denotes the boundary. Fi-
nally, we apply watershed to receive separate comets. The outputs of the predicted
mask that is split into instances are shown below.
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FIGURE 5.7: Watershed processing of the mask

Having segmented the instances, we calculate the metrics described above in 2.2
for final outputs.
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Chapter 6

Results

6.1 Experiments

Most experiments were done using Google Colaboratory, and we used neptune.ai
for experiments storage.

Experiment results

Firstly, we were doing experiments using original dataset with 125 images described
in 5.1, and the results are as follows.

TABLE 6.1: Experiments with original dataset

Model Dice Prediction Overlap prediction

UNet with VGG16 encoder 35.1

UNet with ResNet34 encoder 54.9

R2Attention UNet + EE 53.2

Shape-Attentive UNet 55.7

Note: Dice is calculated for head and tail classes.

As one can notice, overlapping instances were not handled well by any of the
models, even though separate comets features were learned well. To overcome this
problem, we created a new class for comets overlapping, as described above, as well
as generated a synthetic dataset that will include artificial overlapping. A chunk of
our dataset included images that could be segmented using simple computer vision
techniques. However, at least half of the images included either heavy overlaps,
or debris, or some other type of artifacts, that needed to be removed. Some of the
examples are below:
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FIGURE 6.1: Images with low results on predictions

To train the model to learn how to separate overlaps, and to give predictions on
images as above, we have created a synthetic dataset 5.1.2, cleaned it, applied heavy
augmentation with other types of cells. After training on the new data we have
received the following results.

TABLE 6.2: Experiments

Model Dice Prediction Prediction overlap

UNet with VGG16 encoder 60.6

Shape-Attentive UNet 59.1

UNet with SE-ResNet50 encoder 76.8

Note: Dice is calculated for all classes, head, tail, and border.

In final results, we are able to separate overlapping comets that can still produce
separate metrics for the outcome of the test, and we have achieved a final dice met-
ric on a validation set of 76.8. The important thing about these results is that the
dataset included mistakes and comet-related assumptions, so the final accuracy is
still limited by the dataset quality. These results visually outperform any segmenta-
tion available in open-source tools online, but the results are not comparable due to
different approaches to segmentation (no segmentation of the comet) and because of
no ground truth.
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Chapter 7

Summary

In this work, we have created an end2end single cell gel electrophoresis pipeline.
It consists of the following parts: image segmentation, further mask preprocessing,
and metrics calculations. We have created the first work that uses semantic seg-
mentation for comet analysis, as well as we were the first to create a corresponding
dataset. After testing multiple solutions online, we have learned why some comet
assay image analysis is still not automated and is usually fully-processed by hu-
mans or needs supervision. We hope that the problems learned and solved in this
work will be further used to create an accurate tool that can be freely used by any
researcher.

7.1 Future work

The next steps in our work will be as follows.

Data gathering

We have emailed multiple researchers all over the world, and plan to continue until
we gather a larger dataset. The other help needed is supervision for data annotation,
as we did all the annotations, and thus they are not too reliable.

Open-source application

We plan to continue working on this pipeline to create an open-source app for biomed-
ical researchers that will be flexible to their requests and produce accurate results.
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