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Abstract

Camera auto-calibration from a single image with radial distortion is a prevalent
task in computer vision. Most of the existing approaches are based on the same
process of extraction of features, such as circles, from the image. Since those features
are noisy, the error is propagated to the higher level, and the final estimations are
inaccurate.

We incorporate the constraints imposed by the division model of radial distor-
tion and suggest a simple approach that gives soft estimates of three Manhattan di-
rections. For this task, we adapt a well-known Expectation Maximisation algorithm.
We combine it with different initialization and filtering steps that we form based on
the division model and Manhattan world assumptions.

We illustrate the performance of the proposed approach on YORK Urban Database
(YUD) and AIT Dataset of indoor and outdoor scenes. Besides, we experiment with
the proposed initializations and filtering procedures.
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Chapter 1

Introduction

1.1 Motivation

A camera with a wide lens is of much use nowadays. It can enclose much more in-
formation, and people tend to use it more often due to a much more beautiful visual
effect. It became practical to shoot the 360◦ videos and choose what angle to leave in
a final version afterward. Practically every camera in use produces radial distortion.
Even if this distortion is small enough for our perception, it creates a massive prob-
lem for computer vision pipelines. The reason is that after adding a fisheye effect to
the image, the latter does not agree with the pinhole camera model anymore and an
additional preprocessing is required to undistort it before any further processing.

Several approaches were proposed to describe and solve the mathematical model
of radial distortion, which used complicated polynomial equations [5]. Currently,
numerous approaches exist for estimating the parameters of radial distortion and
removing it from the image. However, most of those approaches introduced several
simplifications, which helped them to solve the objective. The most common ones
are:

• square pixels assumption or skew of the lens is zero ( fx = fy = f or s = 0);

• the principal point of the image is in the center of the image;

• Manhattan frame assumption - orthogonality of the three Manhattan direc-
tions;

• the center of radial distortion is at the center of the image;

Those were used in most state-of-the-art approaches [30, 21]. Also, Fitzgibbon [13]
and Brauer-Burchardt and Voss [4] proposed a simplified model of radial distortion
called division model. Its single-parameter variant was used in many works [30,
21, 3, 2]. Even with such underparameterization, it can describe radial distortion of
different levels with very good accuracy Barreto [3]. We follow the same strategy and
make the same assumptions in our approach, except our solution does not rely on
the Manhattan frame assumption. We only assume three dominant vanishing points
in the image. An additional assumption that they correspond to the three mutually
orthogonal directions defining a Manhattan frame could give an opportunity to use
the vanishing points estimated by the proposed approach for auto-calibration setups
such as focal length estimation [29].

Most of the approaches [6, 17, 31, 18] use the radial distortion property under
the division model, in which parallel lines in the 3D scene are imaged as circles with
a small curvature [24]. Based on this fact, the initial step of their methods is to fit
multiple circles to the distorted edges on the image. Given the set of noisy circles,
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there is a variety of solvers that find the position of three orthogonal vanishing points
and parameter of distortion λ [6, 31].

We build our approach based on the structure formed by the circles that belong
to the same vanishing point, the so-called line of circle centers (LCC).

1.2 Structure

The thesis is organized in the following way:
Background chapter gives the reader an introduction into the field of projective

geometry and the geometry of a pinhole camera. The radial distortion formation
with all its properties is thoroughly explained, followed by the Expectation Maximi-
sation algorithm general probabilistic statement.

Related Work chapter gives an overview of previous approaches for camera
auto-calibration and distortion parameter estimation in different setups. The pro-
posed approach is compared with them.

Proposed Method chapter describes the way the circle creation is performed.
The adaptation of the Expectation Maximisation (EM) algorithm with initialization
and outlier detection is then reported. Several ways for λ approximation are also
introduced.

Datasets chapter gives an overview of used datasets with a detailed description
of the problems and advantages of each of them. The synthetic creation process from
one of the datasets is introduced with graphical examples.

Experiments chapter discusses the achieved results with a statistical exploration
of numerical stability, outlier robustness for different initialization and outlier detec-
tion approaches. The results are provided for fully synthetic scenes as well as for
synthetic and completely real images.

Conclusions chapter summarises the pros and cons of the proposed algorithm
according to the obtained results in the experiments chapter. The next steps as build-
ups to this work are addressed.
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Chapter 2

Related Work

Auto-calibration of a camera from a single image usually use Manhattan frame as-
sumption, and then with the known principal point the auto-calibration task is solved
using three vanishing points from the image. Coughlan and Yuille [8] were the first
to propose a method to tackle this problem in their works [8, 9]. They started with
a bottom-up approach that uses Bayesian inference on very low-level features, i.e.,
gradients of edges. They used the idea of Manhattan assumption of three orthogonal
directions frame. This inspired other works, which tried to improve the results by
using the Expectation Maximisation algorithm [10] for more accurate identification
of positions of vanishing points [1, 23, 25, 16, 32]. Antone and Teller [1] used EM for
VPs detection based on the line segments extracted from the edges. All of the seg-
ments were normalized using Gauss sphere. Outlier segments were modeled using
Gaussian with a large variance on a sphere. It should have approximated the uni-
form distribution. The initial guess was made by thresholding the peaks in Hough
space.

Then Kosecka and Zhang [16] tried to advance Antone and Teller [1] results in-
corporating the next changes. They tried to avoid Gaussian sphere representation
using normalization that does not rely on the camera parameters. They proposed a
new, more robust initialization from modes found on the histogram of line segments
directions.

Schindler and Dellaert [23] returned to a lower level. They tried to adapt EM for
Low-level Edge Grouping and Vanishing Point estimation by labeling each pixel as
outlier or an edge that belongs to one of the VPs. They estimated the VPs by a non-
linear optimization technique, e.g., Levenberg-Marquardt. It is noteworthy that the
only assumption they used was the existence of vanishing points. So they tried to
generalize to not only the Manhattan world model but also proposed their Atlanta
world model and concluded that the algorithm Atlanta world assumption.

Later, Wildenauer and Vincze [32] continued with the line segment-based ap-
proach. They tried to fix such weaknesses as initialization by proposing Multi Ransac
[12] based initialization; outlier detection by modeling the outlier distribution as
uniform with density set as the density of other models evaluated at a value of 3σ,
where σ denotes the standard deviation of the models. They also add a new merg-
ing indicator based on the similarity metric and new distance measure between a VP
and a line segment.

Tardif [25] followed Wildenauer and Vincze [32] with an improvement of results
using the newly proposed J-linkage algorithm [26] for better initialization. J-linkage
worked so good, that the authors considered the EM as an optional refinement step
in their method.

The problem of radial distortion in lenses was researched by Brown [5]. The
problem was that his approach used polynomials of higher order. Thus, Fitzgibbon
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[13] and Brauer-Burchardt and Voss [4] proposed the simplified single parameter
radial distortion model called division model.

After that, it became essential to include the division model into the solutions
for single view auto-calibration methods [24, 27, 2, 31] to keep up with other ap-
proaches. With the introduction of the division model, it was proven that line seg-
ments are arcs of circles with small curvature [4]. Strand and Hayman [24] pro-
posed technique to auto-calibrate based on circles extracted from the edges. After
that, the methods diverged into different branches: creating solvers based on the cir-
cles and contrary [2, 31] or trying to create sophisticated structures that are possible
to extract from the image (e.g., repeated patterns), and constructing corresponding
solvers based on these features [19, 20, 22]. One of the exciting properties appearing
under the division model is the Lines of Circle Centers. Antunes et al. [2] used it for
constraining the extracted circles. Based on them, he created a much robust solver
using Plücker coordinates.

In our work, we adopt the Expectation Maximisation algorithm, which was pre-
viously shown to give good results [1, 16, 32, 25] for estimation of vanishing points
based on line segments, to accurately estimate the Lines of Circle Centers [2]. In
addition to that, an unsupervised approximation of radial distortion parameter λ is
proposed. That gives the possibility to find the precise positions of vanishing points
and can be used to affinely rectify the image.

We define two main contributions of this work:

• the adaptation of simple, fast and well-known iterative approach (Expectation
Maximisation algorithm) for the soft assignment of circles to the three domi-
nant vanishing points;

• estimation of distortion parameter λ using the circle formation properties un-
der the division model to filter the inlier circles.
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Chapter 3

Background

3.1 Homogeneous coordinates properties

For simpler explanation of the subsequent transformations, it is convenient to use 2D
homogeneous coordinates introduced by August Ferdinand Möbius [14]. Simply, it
is a way of representing 2D coordinates in more flexible way. To transform a point
in the Cartesian coordinate system (X, Y) into homogeneous coordinates we simply
add a third coordinate Z 6= 0 and get the point (XZ, YZ, Z) in homogeneous coordi-
nates; accordingly a point (X, Y, Z) in the homogeneous coordinates corresponds to
(X/Z, Y/Z) in the Cartesian ones, where Z 6= 0. What is important for us in these
coordinates is the special interpretation: the mapping process from homogeneous
coordinates to Cartesian can be described as the process of perspective projection
of points from 3D space onto the plane Z = 1, can also be interpreted as 2D space
(Figure 3.1 A). The trick is that this transformation is non-linear in inhomogeneous
coordinates, but it is a linear one in homogeneous.

3.2 Camera Model

The process of photography can be described as some way of transformation (3.1) of
3D real-world space points, Xspace, into 2D photo plane pixels, Xphoto

Xphoto = f (Xspace) (3.1)

The common practice in computer vision is that our camera follows the simplest
model of a pinhole camera, also known as a camera obscura. It consists of two
parts [14]: camera location (location of a pinhole) and orientation with respect to
the world frame, referred to as extrinsic parameters; intrinsic parameters - mapping
between camera coordinates and pixels in the image. In (3.2) intrinsic and extrinsic
parameters are denoted as K and [R t] respectively

α(xphoto, yphoto, 1)> = [K][Rt](xspace, yspace, zspace, 1)> (3.2)

The geometry of the pinhole camera is depicted in Figure 3.1 (B).

3.2.1 Extrinsic parameters

Extrinsic part is described by a 3× 4 matrix and plays the role of changing the co-
ordinate system (CS) [14] from Scene CS to Pinhole CS (Figure 3.1 (B)). This trans-
formation can be decomposed into two steps: rotation and translation. Rotation is
defined by a 3× 3 rotation matrix which is invertible and can be decomposed into
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(A) (B)

FIGURE 3.1: (A) an example of perspective projection of points from
3D space onto plane π; red lines with the same direction from Π are
projected onto π as blue lines that intersect in a finite point; Y is the
projection of point X. (B) Pinhole camera model depiction with Xphoto

being the image of the point Xscene in a scene.

three rotational matrices (3.3).

R = R(γx)R(γy)R(γz) =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 (3.3)

where γx, γy, γz stand for the rotation angles in each of the axis respectively. The
translation t ∈ R3 is responsible for change of the origin to the position of pinhole.

3.2.2 Intrinsic parameters

Intrinsic part does the actual image formation process [14] and is defined by 3× 3
matrix K (3.4). It defines the transformation that projects the 3D points onto the
image pixels plane.

K =

 fx s cx
0 fy cy
0 0 1

 (3.4)

where f - is the focal length in pixels with fx = f kx, fy = f ky where kx, ky are the
parameters of the aspect ratio that is introduced due to the real nature of lens; s -
skew of the sensor; (cx, cy)> - is the principal point offset relative to the image origin
(in computer vision it is commonly a top left corner).

In most of the works the assumption of orthogonal raster (s = 0) and unary
aspect ratio ( fx = fy = f ) is used, also referred to as ORUA. We do follow this
assumption in our work as well. Under this assumption K simplifies to

K =

 f 0 cx
0 f cy
0 0 1

 (3.5)
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3.2.3 Properties that appear in the image (Vanishing Point, Vanishing Line)

After understanding the camera matrix, it is possible to see that it can be simplified
as a projection of 3D points on the image plane. There are several important struc-
tures for the later usage that follow from this camera formulation, such as vanishing
points and vanishing lines. Parallel lines in the world scene appear to intersect in
the image plane (3.7). The point of their intersection is called a vanishing point;
denoting by v its homogeneous coordinates and by lj = (lj1, lj2, lj3)

> j = 1, 2, the
coordinates of the lines intersecting in the image plane, we get

v = l1 × l2 (3.6)[
l1 l2

]> v = 0> (3.7)

The line connecting two vanishing points is called a vanishing line (3.8).

l′ = v1 × v2 (3.8)

where {v1, v2} - two different vanishing points in the image in homogeneous coor-
dinates; l′ - vanishing line created with the set of vanishing points. Depending on
the number of planes in the original scene, there could appear different numbers of
vanishing points.

3.3 Radial distortion

In real-world cameras, there always appears to be an unintentional radial distortion
created by the nature of the camera lens. Brown [5] did a comprehensive research
of radial distortion and proposed the mathematical model that uses higher order
polynomials (3.9).

xu = xd + x̃d(λ1r2
d + λ2r4

d + λ3r6
d + · · · ) + [P1(r2

d + 2x̃d
2) + 2P2 x̃dỹd][1 + P3r2

d + · · · ]
yu = yd + ỹd(λ1r2

d + λ2r4
d + λ3r6

d + · · · ) + [2P1 x̃dỹd + P2(r2
d + 2ỹd

2)][1 + P3r2
d + · · · ]

(3.9)

with

x̃d = xd − xc

ỹd = yd − yc

rd =
√
(xd − cx)2 + (yd − cy)2

where (xu, yu)> is point in the undistorted space; (xd, yd)
> is the image of this point

in the distorted space; (cx, cy)> - the location of the center of distortion; λ1, λ2, λ3
- are the coefficients of radial distortion; P1, P2, P3 - are coefficients of decentering
distortion.

It can describe the radial distortion of different levels, but uses a lot of parameters
and includes even-order terms, that makes it hard to solve.

The much simpler description of a radial distortion was proposed by Fitzgibbon
[13] and Brauer-Burchardt and Voss [4], later referred to as the division model (3.10).{

xu = xd
1+λ1r2

d+λ2r4
d+···

yu = yd
1+λ1r2

d+λ2r4
d+···

(3.10)
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In this model, the center of distortion is assumed to be known and the coordinate
system is recentered according to it. The significant advantage of this model in com-
parison with the Brown model [5] is that even significant distortion is possible to
describe at a much lower order. It was shown [28], even with one parameter, it is
possible to achieve good estimation results. In this work the one parameter setup of
the division model is used, so the point transformation under division model distor-
tion is stated as

γ(xu, yu, 1)> = (xd, yd, 1 + λ(x2
d + y2

d))
> (γ 6= 0) (3.11)

Here and furthermore in this work we assume that the center of distortion is at the
center of the image and the coordinate system is recentered according to it.

3.3.1 Lines under division model distortion

It appears that lines under the Division Model with parameter λ are transformed
into circles, e.g., line (l1, l2, l3)> is transformed into a circle (xc, yc, R)> with center
(xc, yc) and radius R [4], where

xc =
−l1
2λl3

; yc =
−l2
2λl3

; R =

√
x2

c + y2
c −

1
λ

(3.12)

The above relations give a simple dependence between xc, yc, R and distortion
parameter λ that will be used to estimate λ estimation in Proposed Method.

3.3.2 Line of Circle Centers

Lemma 3.3.1. The group of lines that pass through the same vanishing point, create the
pencil of circles such that the centers of these circles form the line in a distorted image.

Proof. In this proof the origin is located at the center of distortion. Let us take a
single line with parameters (l1, l2, l3)>. We are given a constraint that it should pass
through a vanishing point, i.e. (vx, vy, 1)>. It means that

l1vx + l2vy + l3 = 0 =⇒ l3 = −(l1vx + l2vy) (3.13)

Then the line (l1, l2, l3)> can be parametrized using l1, l2, vx, vy as (l1, l2,−(l1vx +

l2vy))>. Under the division model with parameter λ we obtain that the line will be
transformed into a circle with center

xc =
l1

2λ(l1vx + l2vy))
; yc =

l2
2λ(l1vx + l2vy)

(3.14)

If we calculate the projection of the circle center onto vector created by origin (0, 0, 1)>

and the vanishing point, we will obtain (3.15).

xcvx + ycvy =
l1vx + l2vy

2λ(l1vx + l2vy)
=

1
2λ

(3.15)

It turns out that the size of this projection is not dependent on the parameters {l1, l2}.
Thus, the centers of the circles that pass through the point (vx, vy, 1)> form a line
with parameters (vx, vy,− 1

2λ )
>.
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3.3.3 Properties that appear under division model distortion

Several properties appear in the image after the application of the division model of
radial distortion. The circles formed with lines that pass through the same vanish-
ing point create a pencil of circles. Therefore, for each of the vanishing points before
distortion, there are two symmetric vanishing points after. Those are the two inter-
section points of the pencil of circles. Since the LCC is the line that goes through the
centers of the circles of the pencil, it is by definition the line that splits the segment
created by two symmetric vanishing points equally and is also perpendicular to it.

3.4 Expectation Maximisation Algorithm

Maximum likelihood estimation is the most commonly used method in statistics for
estimating the parameters θ of the probability distribution p(·|θ) in the parameter
space Θ. For the given observed data X from the statistical model, it searches for the
set of parameters that maximises the likelihood L(θ|X),

L(θ|X) = p(X|θ) (3.16)

In other words, the maximum likelihood estimate θ̂ for the given X is equal to

θ̂ = argmax
θ∈Θ

L(θ|X) (3.17)

Most commonly, the observed data are assumed to be independent and iden-
tically distributed. Then the estimate of θ is found as the extremum point of the
log-likelihood as a function of θ. The problem with maximum likelihood approach
is that it assumes all relevant random variables are observed, i.e., that we have the
complete dataset. In the case the observed data X is dependent on another unob-
served random variable Z, also referred to as latent variable, the likelihood function
(3.16) is marginalised and takes the following form:

L(θ|X) = p(X|θ) =
∫

p(X, Z|θ)dZ (3.18)

In this case, the maximum likelihood estimation approach is intractable, as we can-
not integrate over Z.

Expectation maximisation algorithm is proposed in [10] to deal with the prob-
lem of latent variables. It is an iterative algorithm for iterative optimisation of θ
that consists of taking expectation followed by the maximisation steps. The authors
introduce the function Q(θ|θ(r)),

Q(θ|θ(r)) = EZ|X,θ(log L(θ|XZ)), (3.19)

which is the expectation with respect to the current conditional distribution of Z
given X and current estimate of θ of marginalised log-likelihood of θ on latent vari-
able Z. This allows to iteratively obtain the (r + 1)th step estimate of θ based on the
rth step estimate as the extremum point of Q(θ|θ(r)). It is also proved in [10] that
Q(θ|θ(r)) is the lower bound to p(X|θ).

The steps of the algorithm are then formulated as follows. The expectation step:

• the current value of Z is computer based on the current estimate θ(r) of θ;

• Q(θ|θ(r)) is formulated based on θ(r) and Z;
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The maximisation step:

• the new estimate of θ is computed as the maximisation of the formulated ex-
pectation function (3.20):

θ(r+1) = argmax
θ

Q(θ|θ(r)) (3.20)

Then the new estimate of θ(r+1) is used in the next iteration and the algorithm is
looped until the convergence criteria is met.

The Expectation Maximisation is proven to find the (local) maximum, due to
maximisation of the likelihood of parameters at each step.

Most commonly the latent variables are used in computer vision as an unob-
served part of the data, the random variable that represents the membership of data
points to one of the models in multi-model parameter estimation, e.g., mixture mod-
els. We adapt the same representation of latent variables in 4.1.
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Chapter 4

Proposed Method

In Section 3.3.2, we showed that each vanishing point can create a Line of Circle Cen-
ters with the circles that pass through it. Under the assumption of three dominant
directions in the image, there are three dominant line models in the space of circle
centers. Estimating these three lines from the centers of the extracted circles will
give us the λ-dependent positions of three orthogonal vanishing points. Using the
dependency between a circle center, its radius, and λ, we can apply a Kernel Density
Estimation algorithm to obtain the λ parameter. Then the λ-dependent equations
can be solved.

Based on the set of all circles extracted from the distorted image, it is possible
to find out the location of vanishing points and distortion parameter λ. The next
subsections are to describe each of these steps and follow the next structure:

• Adaptation of Expectation Maximisation algorithm for the detection of LCCs;

• Kernel density estimation for lambda approximation from extracted circles;

• Curvature Based Circle Consistency Filtering.

4.1 Adaptation of Expectation Maximisation algorithm for the
detection of LCCs

The problem states that given the set of centers of the circles, we have to determine
three dominant lines that most accurately fit them. More generally formulated, it is
a task of multi-instance line detection in the arbitrary set of points in R2.

4.1.1 Random displacement model

We have J = 3 line models L1, L2, . . . , LJ described by the line equations

`j(x, y) := − sin(αj)x + cos(αj)y + β j = 0, j = 1, . . . , J, (4.1)

where αj and β j are the direction angle and intercept of the corresponding line, re-
spectively. Also, there are n points (xi, yi), i = 1, . . . , n, which may belong to any
of these models but are subject to random displacements. Our task is to suggest an
optimal soft labelling that for each point gives its probability of being a member of
each of the line models.

There are some prior probabilities πj that any given point has come from the re-
spective model. Conditioned on the event that the point (xi, yi) belongs to the jth

model Lj, we assume that xi = x̂i + η1 and yi = ŷi + η2, where (x̂i, ŷi) is some
point on the line Lj and (η1, η2) is a random displacement. In contrast to the re-
gression model, in which the displacements are only possible in the y-direction,
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here (η1, η2) is a two-dimensional random variable. However, since goodness-of-
fit of the point (xi, yi) to the model Lj only depends on the orthogonal distance
from that point to the line Lj—i.e., on the orthogonal projection of (η1, η2) on the
normal vector nj := (− sin(αk), cos(αj)) to the line,— it does not matter what par-
ticular point (x̂i, ŷi) of the model Lj was moved off to the point (xi, yi) as long as
−η1 sin(αj) + η2 cos(αj) stays constant. As a result, it makes sense to assume that
the noise (η1, η2) only displaces points of the model Lj in the direction nj orthogo-
nal to the line Lj. In other words, we can assume that (η1, η2) is a degenerate two-
dimensional Gaussian random noise whose covariance matrix degenerates along the
direction vector (cos(αj), sin(αj)) of the line, and we can model (η1, η2) as ξ jnj with
a univariate normal random variable ξ j of mean 0 and some variance σ2

j .
To sum up, the conditional density of the point (xi, yi) given the model Lj is equal

to

φ(xi, yi | Lj) = φj(xi, yi) =
1

σj
√

2π
exp

{
−

d2
j (xi, yi)

2σ2
j

}
,

where dj is the (signed) orthogonal distance to the line. Observe that

dj(xi, yi) = −η1i sin(αj) + η2i cos(αj) = −(xi − x̂i) sin(αj) + (yi − ŷi) cos(αj)

= − sin(αj)xi + cos(αj)yi + β j = `j(xi, yi),

so that finally

φ(xi, yi | Lj) = φj(xi, yi) =
1

σj
√

2π
exp

{
−
`2

j (xi, yi)

2σ2
j

}

4.1.2 Setting of the mixture model

We have the following setting:

• points pi = (xi, yi), i = 1, . . . , n, center of circles from the image;

• line models Lj, j = 1, . . . , J, each fixed by the angle αj and the intercept β j;

• ξijnj is a random displacement of the point p̂i,j of the model Lj in the orthog-
onal direction resulting in pj; here p̂i,j is the orthogonal projection of pi on the
line Lj, nj = (− sin(αj), cos(αj)) is the normal to the line Lj and ξij is a random
scaling factor, realization of N (0, σ2

j ).

The soft point assignment for a mixture line models suggests that each point
pi = (xi, yi), i = 1, . . . , n, belongs to a model Lj with some prior probability πj ∈
(0, 1), j = 1, . . . , J (so that ∑j πj = 1). In view of the above discussions, we get the
following mixture model:

pi = p̂i,j + ξijnj with probability πj.

Under a natural assumption that ξij are independent random variables, the total
probability rule gives the joint density of p1, . . . , pn in the form

n

∏
i=1

( J

∑
j=1

πjφj(xi, yi)
)

.
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Denote by θ := (α1, . . . , αJ , β1, . . . , β J , σ2
1 , . . . , σ2

J ) the parameter vector of the mixture
model. Then the log-likelihood of θ is

log L(θ|X) =
n

∑
i=1

log
( J

∑
j=1

πjφj(xi, yi)
)

,

maximizing which we update the parameters of the mixture model.
To maximise the log-likelihood, we use the Expectation Maximisation algorithm.

First, the parameter vector θ is initialised as explained in Subsection 4.1.3. Denoting
by θ(r) the estimate of the parameters after the rth iteration, on the (r + 1)th iteration,
the E-step of the EM algorithm involves the formulation of Q-function as described
in Expectation Maximisation Algorithm. In our setting it takes the form

Q(θ|θ(r)) =
J

∑
j=1

n

∑
i=1

w(r)
ij log(π(r)

j φj(xi, yi)), (4.2)

where

w(r)
ij = P(z = j|xi, yi) =

π
(r)
j φ

(r)
j (xi, yi)

∑J
j=1 π

(r)
j φ

(r)
j (xi, yi)

is the distribution of a latent membership variable or estimate of the posterior prob-
ability that the ith observation belongs to the jth component of the mixture after the
rth iteration.

At the M-step, we find the maximum likelihood estimates θ(r+1) and π
(r+1)
j with

respect to the updated Q-function (4.2). For the model probabilities πj, this amounts
to computing the sample proportion

π̂
(r+1)
j =

∑n
i=1 w(r)

ij

n
(j = 1, . . . , 3)

To maximise in θ, it is convenient to use the vector notations pi for the point (xi, yi)
and nj for the normal vector (− sin αj, cos αj) to the line model Lj. In this notations,
the line model equation becomes

`j(pi) = nj
>pi + β j.

Keeping in mind the constraint ‖nj‖ = 1, we apply the Lagrange multiplier
method and maximise the Lagrangian

L (θ,ω) = Q(θ|θ(r)) + ∑
j

ωj(n>j nj − 1).

The partial derivative in ωj reproduces the constraints, viz.

∂L

∂ωj
= n>j nj − 1 = 0 (4.3)
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Since the Q-function is the sum of separate functions of αj, β j, σ2
j , each summand can

be optimised separately. The derivative in β j gives

∂L

∂β j
= −

n

∑
i=1

w(r)
ij

pi
>nj + β j

σ2
j

= −σ−2
j

(( n

∑
i=1

w(r)
ij pi

>)nj + β j

n

∑
i=1

w(r)
ij

)
Equating the derivative to zero, we find the relation between β j and nj

β j = −
1

∑n
i=1 w(r)

ij

( n

∑
i=1

(w(r)
ij pi

>)
)

nj

Setting

µj =
∑n

i=1 w(r)
ij pi

∑n
i=1 w(r)

ij

to be the weighted sample mean, we get

β j = −µ>j nj (4.4)

Using this relation in the derivative in nj, we obtain

∂L

∂nj
= − ∂

∂nj

( n

∑
i=1

w(r)
ij

`2
j (pi)

2σ2
j

)
+ 2ωjnj

= − ∂

∂nj

( n

∑
i=1

w(r)
ij

(pi
>nj −µ>j nj)

2

2σ2
j

)
+ 2ωjnj (from (4.4))

= − ∂

∂nj

(1
2

σ−2
j

n

∑
i=1

w(r)
ij ((pi −µj)

>nj)
2
)
+ 2ωjnj

Now let us stack the centered points (pi − µj) into matrix Xj of size 2× n and

weights {w(r)
ij }n

i=1 into a diagonal matrix Wj of size n× n. Then

∂L

∂nj
= − ∂

∂nj

(nj
>XjWjX>j nj

2σ2
j

)
+ 2ωjnj

The matrix XjWjX>j is a weighted covariance matrix of the points pi. Let us denote
it by Cj and set the derivative to zero:

∂L

∂nj
= −Cjnj

1
σ2

j
+ 2ωjnj = 0

i.e.,
Cjnj = 2σ2

j ωjnj (4.5)

On account of (4.3), we see that nj is an eigenvector of matrix Cj corresponding to
the eigenvalue 2σ2

j ωj.
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Finally, the derivative with respect to σj produces

∂L

∂σ2
j
=

n

∑
i=1

w(r)
ij

(
− 1

2σ2
j
+

`j(pi)
2

2σ4
j

)
so that

σ2
j =

∑n
i=1 w(r)

ij `j(pi)
2

∑n
i=1 w(r)

ij

(4.6)

Summarizing, we conclude that the optimal point θ̂ has nj, β j, σ2
j , ad ωj satisfying

the relations (4.3)–(4.6). We observe that the covariance matrix Cj has two positive
eigenvalues, say r+j and r−j , and two corresponding eigenvectors. To decide which
of them gives the maximum of L , we just calculate the corresponding values. Using
the equations (4.5) and (4.6), we derive the equalities

n

∑
i=1

w(r)
ij `j(pi)

2 = n>j Cjnj = r±j

and

σ2
j =

r±j

∑n
i=1 w(r)

ij

and
∑n

i=1 w(r)
ij `j(pi)

2

2σ2
j

=
∑n

i=1 w(r)
ij

2
.

As a result,

L (θ̂, ω̂) = Q(θ̂|θ(r)) =
J

∑
j=1

n

∑
i=1

w(r)
ij

[
log(π(r)

j )− 1
2

log(2πσ2
j )−

`j(pi)
2

2σ2
j

]

=
1
2

J

∑
j=1

n

∑
i=1

w(r)
ij log

(
π
(r)
j

)2
∑n

i=1 w(r)
ij

2πr±j
− 1

2

J

∑
j=1

n

∑
i=1

w(r)
ij .

Therefore, we see that the larger value of L (θ̂, ω̂) and thus of Q(θ̂|θ(r)) is obtained
if we take the smaller eigenvalue r−j of the matrix Cj. Thus

• nj must be taken to be the normalized eigenvector of Cj corresponding to the
smaller eigenvalue r−j ;

• α
(r+1)
j is set to be the corresponding direction angle of the vector nj;

• β
(r+1)
j = −µ>j nj is given by (4.4);

• σ
(r+1)
j

2 = r−j / ∑n
i=1 w(r)

ij .

Then the algorithm is looped with the new value θ(r+1) until the convergence crite-
rion is met.
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4.1.3 Initialisation

Expectation Maximisation is considered to be very init-dependent algorithm. That
is why it is very important to do the initialization correctly. We propose two simple
approaches for this task.

Random

We start with the most primitive way of initialization: random initialization. Two
points per each model are randomly sampled from the set input data. Then the
initial models are considered valid if any two of the line models do not overlap to
some numerically small level. In case of overlapping the random process is repeated.
One can argue, that this approach can create very bad models from the outlier points,
but on average it is working as good as more sophisticated approaches 6.3.

Spectral clustering

A more comprehensive approach tries to incorporate the structural patterns in the
input data to give a good initial setup for the algorithm. Minimum of 3000 or all
unique lines are generated from pairs of input points. Let us consider M being the
number of these lines and N being the number of points in the data. In the next step
the points are considered to have a connection if they have a line to which both of
them have distance lower than predefined outlier threshold. Based on it the matrix
of similarity of this graph is built and is fed into spectral clustering algorithm with
the specified 3 as a number of clusters. The output are the hard labels of clusters
per each point. This data is then used to fit each of the lines to the belonging points
using RANSAC algorithm [12].

4.1.4 Outlier Class Modeling

The circles provided from real world images are very noisy. That is why it is very
important to make the algorithm noise tolerant. In our work we choose a very simple
way to incorporate outlier detection into the pipeline.

We decided to specify the outlier class as an additional model that has a uniform
density over the squared area created by the points. The density remains constant
throughout the iteration process, but the prior is always updated, starting from the
value given at the initialization step. The prior value is given based on the fraction
of outlier points after hard labeling using initial models described in Initialisation.

4.1.5 Model Selection

In our work we do not deal with the problem of choosing the correct number of
models or the ways to merge similar models. We leave this as an important task
for the future work. That said, we restrict our current algorithm to find 3 models
plus additional outlier class in the given set of circles. That restriction can lead into
oversegmentation in some cases, but works numerically good on average 6.3. Fur-
thermore, it is discussed in Experiments.

4.1.6 Convergence criteria

We decided to follow one of the basic setups for this part of the algorithm. After
each iteration the incomplete log-likelihood is calculated and compared with the
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value from the previous step. If the relative error between the steps is not significant
for several epochs in a row, it means the algorithm achieved its saddle point.

4.2 Kernel density estimation for lambda approximation

Recall that the equation of the radius of a circle with center at (xc, yc)> that was
formed from a line (l1, l2, l3)> using division model distortion with parameter of
distortion λ is

R =

√
l2
1 + l2

2

4λ2l2
3
− 1

λ
=

√
x2

c + y2
c −

1
λ

(4.7)

From this dependency λ can be expressed as

λ =
1

x2
c + y2

c − R2

Multiple samples of λ from all extracted circles of the distorted image will have a
significant amount of noise. However, the mode of the distribution of these values
will be close to the real value of λ. Example of this distribution for the real image is
shown in Figure ??.

For the estimation of the distribution of λ we use a technique called Kernel Den-
sity Estimation [15], that estimates the distribution of λ based on the samples we
pass to it. In the experiments we choose the normal density as a kernel and band-
width value selected from tests on synthetic data as 1.0. Then for the set of λ esti-
mates λ1, λ2, . . . , λi i ∈ (1, n) the kernel density function takes form

kde(λ) =
1

n
√

2π

n

∑
i=1

exp
{
−1

2
(λ− λi)

2
}

From the obtained distribution we can get the mode value and the confidence of
the estimation based on the variance of the distribution.

Furthermore, we are able to use this approximation as a filtration step for the
input circle centers we pass to EM. Mean-Shift Clustering [33] algorithm with the
same bandwidth is used to find the clusters in the input set of λ. Then the the
cluster that contain the λ-value chosen at the previous step is kept. The results of
the proposed filtering is shown in Figure ??.

4.3 Curvature Based Circle Consistency Filtering

Having the set of all circles in the image, a useful constraint can be derived based
on the formation process of these circles. It follows from (4.7) that R2 = x2

c + y2
c − 1

λ ,
which implies the following statement.

Property 4.3.1. For division model of radial distortion under assumption that that the center
of distortion is located at the origin, the more distant the center of the circle is from the origin
the bigger the radius of this circle should be.

This property holds for the noiseless case. However, not all the circles from the
real image will be consistent with it. The circles obtained from the image are ex-
tracted in several steps. Each of these steps can introduce additional level of noise
to the circle parameters estimates. Besides, some of the circles may be outliers, and
would increase the error in the next steps of vanishing point and λ estimation.
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To get rid of the outliers we can setup a two step procedure that will do the
filtering based on the consistency with the outlined property 4.3.1. Based on the
estimated parameters we can sort our sequence of circle estimates into increasing
order by the distance from the origin. Then the goal is to find a subsequence that
satisfies 4.3.1. We can achieve it by finding the longest non-decreasing by radius
subsequence of our sorted sequence. It is a standard task of algorithmic program-
ming and is solved using dynamic programming in O(n log n) time.



Chapter 4. Proposed Method 19

FIGURE 4.1: KDE based λ filtering on Synthetic YORK. Columns
from left to right: original image with green and red colors mark-
ing the inlier and outlier circles, respectively; histogram of original λ
estimates; estimated density of λ using KDE with green points repre-
senting inlier estimates of λ, red - outlier and green vertical line - the

real value of λ.
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Chapter 5

Datasets

The tasks like the one we are working on are hard to be evaluated. You should have
the ground truth for the distortion parameter λ and the positions of the three van-
ishing points. The problem is that it is hard to explicitly label the vanishing point’s
position or the value of the parameter of distortion lambda by hand. Thus, the only
way to annotate the images is to do it in a stepped semi-supervised way. Each circle
should be checked by hand and labeled to the vanishing direction it belongs. Then
there are multiple approaches to precisely estimate the vanishing points and λ pa-
rameter, but they will still have a small fraction of error. Another way to create a
dataset for radial distortion is to synthesise it. It is far more easier to label images
with no distortion, because you will need to label lines instead of circles. Lines have
less degrees of freedom, so their parameter estimation can be more accurate. Then
you can create radially distorted images with your own parameter of distortion. One
can argue, that there is a problem that we are modeling the distortion following a
certain mathematical model, which only approximates the model of real lens distor-
tion, but it is still a great improvement in the amount of data that can be obtained.

In my work the combination of both approaches is used using two datasets: one
synthetically generated based on real photos; the other - with natural distortion, but
semi-supervisely labeled.

5.1 YORK Urban Database

York Urban Database was proposed by Denis, Elder, and Estrada [11]. The pri-
mary purpose of the database was to create a means for comparing different ap-
proaches for image auto-calibration. It consists of 102 images (45 indoor, 57 out-
door) of Toronto scenes with pixel resolution of 640× 480. The images were taken
on a digital camera Panasonic Lumix DMC-LC80.

The image annotation process consisted of three steps: manual annotation of
ground truth lines using author-proposed Matlab program; estimation of vanishing
points and camera parameters using Gauss Sphere method of Collins & Weiss [7]; re-
estimation of those parameters using non-linear search preserving the orthogonality
of Manhattan directions. The authors used an ORUA assumption for the simplicity
of the camera model. As a result each image in the database has labels for intrin-
sic camera parameters (focal length, principal point position) and a bunch of line
segments with the specified Manhattan scene direction, one of the three orthogonal.
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FIGURE 5.1: Example of synthetic images from YORK Urban
Database with labeled circles. Circles of the same color correspond

to the same vanishing point.

5.2 Synthetic YORK Urban Databse

We adapt the YORK Urban Database [11] for the purpose of our problem in a syn-
thetic way. We create a Synthetic Radially Distorted YORK Urban Database. Fol-
lowing the division model we can add a radial distortion to the existing images with
an arbitrary parameter of distortion λ. That creates a big space for experimentation
with different level of distortion.

To get the desired result we separately distort images and according lines seg-
ments in the normalised space using camera intrinsic matrix. The image is distorted
using per point transformation under division model following equation 5.1 ob-
tained as the inverse mapping from equation 3.10 [4].

Xd = Xu ·
1−

√
1 + 4λ‖Xu‖2

2λ‖Xu‖2 (5.1)

The output image will be much smaller and will have undesired radial borders
with empty regions in the corners. To fix both of these issues we scale the obtained
image and then cut the borders to eliminate white regions appearance.

Each of line segments we convert into lines. The distorted mapping of those lines
are circles as it was described above. Obtained circles are accordingly scaled and
shifted to match the transformations applied to distorted image when eliminating
distortion artifacts. The set of obtained images with labeled circles are shown in
Figure 5.1.

5.3 AIT Dataset

The AIT Dataset of urban images was proposed by Wildenauer and Micusik [31] for
comparison of approaches in natural lens distorted images. It contains 102 images of
mostly outdoor scenes. All images were taken using a Canon EOS 500D mounting a
Walimex Pro 8mm fish-eye lens. The lens has ≈ 170◦ horizontal field of view. Every
image was scaled to the resolution of 1188× 792 pixels.

For the estimation of focal length and λ, the center of distortion is fixed at the
center of the image, zero skew and square pixels are assumed. The standard cali-
bration process results in ground truth estimates f = 446 pixels and λ = −0.296.
In addition to this, the estimated positions of vanishing points are provided, that
makes this dataset a perfect match for the purpose of evaluation of our approach.
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Chapter 6

Experiments

In this section, we want to compare different combinations of the proposed algo-
rithm that can be set up using modifications described in Proposed Method. There
were introduced two main extensions: initialization and λ-filtering. Based on this,
we want to compare six different approaches:

• Rand+NoFilt - random initialisation and no filtration;

• Spec+NoFilt - spectral clustering based initialization and no filtration;

• Rand+KDE - random initialization and filtration based on Kernel Density Es-
timation of λ distribution (4.2);

• Spec+KDE - spectral clustering initialization and filtration based on Kernel
Density Estimation of λ distribution (4.2);

• Rand+LIS - random initialization and Curvature Based Circle Consistency Fil-
tering;

• Spec+LIS - spectral clustering initialization and Curvature Based Circle Con-
sistency Filtering;

All of them are tested on numerical stability, noise sensitivity and compared on real
images.

6.1 Labeling Metric

The main contribution of our work is the method that clusters the passed circle cen-
ters into four classes: three vanishing points or outlier class. Besides, this labeling
is soft. We need to define some particular metric to compare different modifications
of the proposed approach. The task we want to measure can also be referred to as a
multi-class classification of the points. The only difference is that at each particular
image EM clusters the points and not classifies them. So we need also to solve the
correspondence problem between ground truth classes and predicted classes. We
choose the correspondence that maximizes the objective function.

The appropriate metric for measuring the quality of multi-class classification is
considered to be mean F1-score. In our work, we first start with the formulation of
the global confusion matrix for four classes. Then the F1-score can be formulated as

F1 =
1
4

4

∑
i=1

2 · TPi

2 · TPi + FPi + FNi

where TP, FP, FN are True Positive, False Positive and False Negative counts ob-
tained from earlier mentioned confusion matrix.
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Name F1-score

Rand+NoFilt 0.9125
Rand+KDE 0.9125
Rand+LIS 0.9172

Spec+NoFilt 0.9694
Spec+KDE 0.9694
Spec+LIS 0.9681

TABLE 6.1: Numerical Stability scores on YORK Synth Dataset

Name σ = 0.5 σ = 1.0 σ = 2.0

Rand+NoFilt 0.8419 0.7962 0.7586
Rand+KDE 0.866 0.794 0.7635
Rand+LIS 0.8366 0.7822 0.7065

Spec+NoFilt 0.8926 0.807 0.7681
Spec+KDE 0.8941 0.7954 0.7458
Spec+LIS 0.87 0.8043 0.7021

TABLE 6.2: Noise sensitivity F1 scores on YORK Synthetic Dataset

6.2 Numerical Stability

This test is used to find out how good the methods are on the data without any noise.
In most cases, fully synthetic data is used for this purpose. However, in our work,
we decided to harden the task by using YORK Synthetic Dataset. To stay consistent
with the idea of the test, we use only ground truth set of circles. That way, we will
eliminate any noise in the values, that can appear during the circle extraction since
the ground truth circles are formed from manually labeled line segments.

The results for all of the approaches are shown in Table 6.1. It is clear why the
results are not perfect. Most of the images do not have the circle representations
for three of the Manhattan directions. However, we always over-segment and try
to fit all three models. Based on the results, Spectral initialization shows the best
performance.

6.3 Noise Sensitivity

We also need to check how three methods deal with different amounts of noise. For
this test, we will use the same data as in Numerical Stability. However, we need to
divide the inference process for each image into two steps: train and evaluation. The
train stage is the process of fitting the EM to ground truth circles with added noise,
and evaluation is the process of finding the membership probabilities for each of the
same ground truth circles without any noise using fitted EM. In our experiments, we
decided to use a white noise sampled from Gaussian with µ = 0 and σ = {0.5, 1, 2}.
It is added to measurements of the circles to model the random displacement noise.
From results in Table 6.2, we see that all of the modifications degrade with an in-
crease in the level of added noise, but spectral initialization always stands out.
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FIGURE 6.1: Example of images from AIT dataset with labeled circles

Name AIT YORK

Rand+NoFilt 0.70 0.73
Rand+KDE 0.76 0.74
Rand+LIS 0.45 0.77

Spec+NoFilt 0.71 0.79
Spec+KDE 0.75 0.66
Spec+LIS 0.64 0.74

TABLE 6.3: Real data F1 scores on YORK Synthetic Dataset and la-
beled AIT subset

6.4 Real Data

We decided to evaluate the performance on real data, e.g., using two previously
described datasets: York Synthetic and AIT. We follow the same two-step evaluation
technique. Except for the EM fitting training data, the circles are extracted from the
images in an unsupervised manner: edge detection, edge merging, and circle fitting.
Then a metric evaluation is made on ground truth ideal circles.

York Synthetic Dataset has all the information needed to set up the evaluation
process: ground truth circles, memberships per each circle, and distorted image.
However, for the AIT dataset, we do not have the circles with their memberships la-
beled. Indeed we have the distortion parameter λ provided with the camera param-
eters, i.e., focal length and principal point. Our intend is to label some circles with
their memberships to vanishing directions. It is quite a hard task to do in distorted
space. So we undistorted the image using the provided parameters, labeled line seg-
ments with their memberships and transformed them back to distorted space under
the division model. Even using such simplification, it is hard and time-consuming
work. That is why we labeled only ten chosen images. Some of them are presented
in Figure 6.1.

Surprisingly, the best results for AIT dataset appeared to be random initializa-
tion and KDE filtering in comparison with spectral initialization and no filtering on
YORK dataset (Table 6.3).

Based on all these experiments, it is clear that in most cases, spectral clustering
gives a boost. It takes into account the connection between the points and gives a
very good initialization for the EM. The filtering step is a harder choice. For the data
with the big group of consistent circles, it will give the wanted result. However, it is
very dependent on the location and radius of the circles that are not always reliable
in natural data setup. Maybe, it can be used as some soft filtering, but not in a way
we showed in the experiments. With a moderate amount of noise, it may cut out a
large number of circles that are not consistent enough with the chosen mode.
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Chapter 7

Conclusions

In this work, we studied the possibility of using the lines of circle centers as a means
for the detection of the thee Manhattan Directions. The adaptation of the Expectation
Maximisation algorithm was proposed as the solution for this task. The experiments
with six different modifications based on different initialization and filtering meth-
ods showed that the approach gives good results on real datasets, i.e., YORK Urban
Database, AIT Dataset. The method with the outlined spectral clustering initializa-
tion achieved the average F1 classification score of up to 0.79 on real datasets.

The main problem that we faced in our experiments was the over-segmentation
of circle centers extracted from the image. Most of the scenes in real datasets do not
have the representations of all three vanishing directions, or not all of them fall into
the set of extracted circles. The model selection problem is a very difficult one, and
we plan to study it in future work.
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Chum. Minimal Solvers for Rectifying from Radially-Distorted Conjugate Transla-
tions. 2019. arXiv: 1911.01507 [cs.CV].

[22] James Pritts, Zuzana Kukelova, Viktor Larsson, Yaroslava Lochman, and Ondřej
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