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Abstract

Face-reenactment, also knows as puppetry, has become very popular in recent
years. The proposed task requires generating new face expression while preserv-
ing person identity and scene features. In this work, we propose advancements for
recent novel methods of accurate face-reenactment synthesis. We present results us-
ing a flexible generation module, and compare different families of encoding back-
bones, introduce identity loss to preserve a person’s identity in image generation
with state-of-the-art models in the deep face-recognition domain. We also provide
improvements in the training procedure and test on approach weaknesses.
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Chapter 1

Introduction

+ ⮕

SourceTarget Result
FIGURE 1.1: Visualized aim of face-reenactment

The goal of face-reenactment is to transfer facial expression from the source im-
age to the target face (Fig. 1.1). Re-enacted image of a face should have a realistic
expression, same identity, lightning and background. These factors influence the
problem complexity. One has to optimise multiple tradeoffs (realism-identity/back-
ground preservation) in order to solve this problem.
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FIGURE 1.2: Histogram of the number of found research papers on
face reenactment and synthesised images detection as of April 2020

Face reenactment, also known as puppetry, has myriads of use cases: Multime-
dia, Augmented Reality, Virtual Reality, Cinematography, Animation of computer
graphics (CG) and Face forensics, to name a few. For instance, the film industry uses
visual manipulation tools in post-production. It also applies cutting-edge systems
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to bring deceased actors “back to life”, known as “digital resurrection”, for creating
film sequels.

Like any other technology, face-reenactment could be used either for good (bona
fide) purposes or could be misused. Face reenactment as technology is mainly a
computer vision problem. However, it also touches forensics and ethical aspects. In
the range between 2014 – 2020 these algorithms gain popularity (Fig. 1.2), in partic-
ular among researchers. One may see this fact by looking at the number of research
papers published, mainly doing a reenactment of faces. [48, 68, 86, 65, 53] or related,
such as detection of generated images [47, 45, 89].
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Chapter 2

Related Works

2.1 Image-to-Image Translation

Computer vision algorithms for image processing, similarly to a language transla-
tion, can be viewed as a “translation” of an input image into a processed output
image. Translation tasks may vary, for instance, translation of RGB image into e.g.
a grayscale, edge map, semantic mask, etc. Automatic translation from one image
state into another, given sufficient training data, is defined as image-to-image trans-
lation problem. [22]

Face-reenactment could be interpreted as an image-to-image translation prob-
lem. Recent studies [22] propose methods for translating/mapping images from one
domain to another. However, one should have pairs of images from these domains.

Isola et al. [22] condition translation process on some data (e.g. edge map images),
condition on to both the generator and discriminator as they observe an input image;
in terms of GANs it is called conditional GANs (cGANs) [44].

Datasets with paired images are rare due to the high cost and time investments
needed to create them. Zhu et al. [91] proposed solution to this limitation in Un-
paired Image-to-Image translation. Moreover, with this work, one can translate im-
ages between domains even if there cannot be a pair-sample in real-life (e.g. pair
image of oranges on the apple tree). Other works [64, 35, 36, 77] also address this
issue.

Pumarola et al. [51] synthesise images of higher resolution than previous works,
albeit for the price of being less robust.

Images can contain very different head poses, face expressions and lighting con-
ditions. Existing image-to-image translation models could generate unnatural im-
ages in extreme conditions such as large poses (Fig. 21 in [22]), or fail on unseen
images [51], changing identity of a face.

Inspired by recent studies [48, 86], we incorporate adversarial training with mod-
ified discriminator and additional losses, which is successfully adopted in these
works, to synthesise realistic face images.

2.2 Face Reenactment

Main objectives of face-reenactment: 1) facial expression transfer; 2) identity preser-
vation; 3) background and illumination retention.

Recent works in face-reenactment commonly use the facial expression of a source
face to condition the expression of the synthesised face image. Following Reenact-
GAN [78] approach, we define the expression of a face with interpolated landmarks.
Wu et al. use these solid-line landmarks as a medium to map from the face image to
the generated face by adapting target and source landmarks.



4 Chapter 2. Related Works

~z ~x f ake
G(~z)

generator

pθ(~z)

~xreal
pdata(~x)

~x real?
D(~x)

discriminator

FIGURE 2.1: Diagram of a standard GAN

Another studies e.g. [88, 78] apply ANN-based adaptation modules in their pipe-
line. Delaunay triangulation [33] is also utilised in face-reenactment [48], and in the
related problem of face-swap [79].

The other objective is to preserve the identity of the target person in the generated
face image. Some works [78] relate to identity in terms of person face texture and
apply CycleGAN [91] to maintain the identity of the synthesised face image. We
advance the identity constraint via applying models from face recognition domain.

To prevent blurry background in synthesized images [73] researchers apply con-
textual [41] or perceptual loss [24] between the generated and target images.

Face2Face [66] produce photo-realistic face reenactment but require large expres-
sion variability in the input target-video sequence.

For one-to-one face-reenactment Zakharov et al. [85] propose virtual talking heads
generation approach with high realism. However, the limitation of this method is in
the mimics representation (e.g. gaze-reenactment is not possible) and many-to-many
reenactment scenario produces noticeable identity mismatch. The approach also re-
quires retraining the model for each new person.

Recent work [58] achieves higher generalisation in the generation of reenacted
video. This model feeds one image for a target and a video sequence as a source
driving video. The approach generalises well to the range of objects i.e. when trained
on a set of videos with objects of the same category, their method can be applied to
any source video or target image with the object of this class.

2.3 Generative Adversarial Network

Standard/“Vanilla” GAN [17] (represented in Fig. 2.1) consists of two networks:
Generator and Discriminator. The Generator feeds latent random variable (noise
vector) pθ(~z) and ouputs sample ~x f ake which should resemble ~xreal from the real data
distribution pdata(~x). The Discriminator is a binary classification model that conse-
quently feeds ~xreal and ~x f ake, and ouputes likelihood value whether the input was
real (close to 1.0) or not (close to 0). Whole GAN framework is a minimax (Eq. 2.1)
two-player game [46, 23]. Each subnetwork i.e. generator G(~z) and discriminator
D(~x) tries to beat each other.

min
G

max
D

V(D, G) = Ex∼pdata(x)[log D(x)] + Ez∼pz(z)[log(1− D(G(z)))] (2.1)
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(A) Five face landmarks estimation

(B) Matching
with predefined

pattern

(C) Applying sim-
ilarity transforma-
tion to get the nor-

malized face

FIGURE 2.2: Face normalization process using similarity
transformation

FIGURE 2.3: Face recognition pipeline [69]

2.4 Face Recognition

Face identity preservation is an important part of a face-reenactment pipeline. Face
recognition as research blossomed in the seventies and today methods range from
classical to more novel approaches using deep learning trained on massive data-
sets [69].

General face-recognition pipeline consists of four steps (Fig. 2.3). Face detec-
tion [26] is the first step - finding the coordinates of a bounding box representing the
location of the face on an image. Many algorithms exist for face detection [1, 2, 84,
49]. Methods range from more classical [8, 32], e.g. Viola-Jones method [71], to more
modern ANN-based [87, 83, 13, 34, 7].

Second step is face landmarks estimation and face normalization (alignment)
procedure (Fig. 2.2). After this step, we obtain aligned face image.

During the third step, we map face image to some face representation, i.e. embed-
ding vector in most cases. Finally, this latent vector we can compare to some other
embedding vector. If the vectors are similar, we can recognise with some probability
the face identity of the person on the image.

To conclude, Face identity is represented as an embedding vector, typically of
size 128, 256 or 512.
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Chapter 3

Methods

3.1 Network Architecture

Our pipeline structure [30] is similar to the standard GAN (2.3). It consists of a
Generator (described in 3.1.1) and a Discriminator (3.1.4).

Images of a source (x) and a target (x′) are propagated through the Generator
(Fig. 3.2) to produce the reenacted image (x̂) of the target. First, the Discriminator
computes adversarial loss, which we use to improve the generator in producing
more accurate expression. Second, Identity loss ( 3.2.5) ensures same identity for
the synthesised face image. Finally, perceptual content loss ( 3.4.1) is responsible for
overall image content preservation.

Discriminator

Perceptual
+

Identity
Loss

Adversarial
Loss

Generator

TargetSource Output

FIGURE 3.1: High-level full system architecture diagram

3.1.1 Generator

In our work we consider FPN [37]-based (Fig. 3.2) generator. Both source and tar-
get images are fed into separate FPN-like feature extraction modules (encoders) to
generate multi-scale feature maps from source and target images. During our exper-
iments with siamese [4] encoders we observed (Tab. 5.2) that separate encoders for
source and target extract more unique features which yield better results.

3.1.2 FPN

Inspired by recent advancements in semantic segmentation [43] we chosen Feature
Pyramids [37] as the feature extraction module.

In order to utilise better both low and high feature resolutions the FPN (Fig. 3.3)
consists of: a bottom-up (in the left part of the Fig. 3.3), top-down (in the center) and
lateral connections. The bottom-up pathway is a CNN for extracting features from
the image. It produces multi-scale feature maps with a different semantic value
which are then redirected to the top-down path.
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Convolution	block

Max	pooling	layer

Upsample	layer

Concatenation	layer

Addition	layer

1x1	Convolution

Element-wise	addition

Encoder	1
Encoder	2

Decoder Upscale	8x

4x

2x

1x

SourceOutputTarget

FIGURE 3.2: High-level FPN-based Generator architecture diagram

In the top-down pathway semantically “rich” feature maps increase in resolu-
tion. The top-down path could be viewed as a hierarchical “super-resolution” net-
work. Some location information is lost due to downsampling operations.

To recover it we add 1× 1 lateral connections after each scale in the top-down
path from a corresponding bottom-up feature map.

Further, those multi-scale features from the top-down path could be upscaled,
concatenated and processed by convolution to produce “enriched” with local and
global context information prediction.

In our pipeline, we receive five separate feature maps from target and source
FPN-Encoders. Then, in the Decoder, top four maps after upscaling and concate-
nation in FPN are propagated through a series of convolutional and upsampling
layers. After first upsampling, we add the last (fifth) bottom-most feature map from
the target Encoder. In the end, the target image, as a skip connection, is added to the
result of the Decoder to get the final generated the face.

FIGURE 3.3: Skeleton of FPN. Figure from [82]

We can easily swap FPN-“backbones”, i.e. classification models for feature ex-
traction (bottom-up pathway). To conclude, the FPN module is an efficient feature
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extractor and flexible in a sense depending on “backbone” it can train faster or pro-
duce results of higher quality.

3.1.3 Feature Extractor “Backbones”

InceptionResNetV2

Inception-ResNet-v2 [62] is a modification of InceptionV3 [63]. This model achieved
top-1 accuracy of 80.4% on ILSVRC2012 [11].

ResNext WSL

ResNext WSL [40] is a ResNext101 [80] model pre-trained with billion scale weakly-
supervised data and fine-tuned on ImageNet. Nearly 1 billion (940 million) image-
data this model was trained on were collected from social media Instagram. Users
of this platform “voluntarily” put hashtags on the images they upload to their pro-
files. Most of these profiles are public. Those image-hashtags Mahajan et al. [40]
used as labels for training ResNext model on the image classification task. Different
capacity variations of the model scored from 82.2% to 85.4 top-1 accuracy on Ima-
geNet [11]. In our experiments, we use WSL-ResNext-101-32x8d (32 groups of con-
volutions whose input and output channels are 8-dimensional) which has 88 million
of parameters.

MobileNetV2

MobileNetV2 [56] is a lightweight mobile ANN architecture that reached top-1 Image-
Net accuracy of 72.0% with only 3.4 million of parameters.

3.1.4 Discriminator

Markovian discriminator called PatchGAN proposed by Isola et al. [22] works on
patches of the image, producing sharper results.

Our discriminator is similar to PatchGAN architecture, but with additional infor-
mation on landmarks. Discriminator feeds the full input image with concatenated
dense interpolated landmarks, so the input tensor shape is 4D (RGB and a “land-
marks” channel).

3.2 Identity

3.2.1 Face Identity Estimation

To achieve a high-quality reenactment effect, we need to preserve the original face
geometry and illumination. Primarily, it is crucial when we conduct a reenactment
of a person different from a source one.

To represent a person’s identity, we encode it in a vector of features, i.e. embed-
ding vector. In order to extract such identity embedding vector from the image, we
use a face-recognition model. We want the face-recognition model to have a well
structured latent space. The distance between the two latent vectors must be small
if the embeddings are of the same person, while the distance between the vectors of
distinct individuals to be large. The concept illustrated in Fig. 3.4.

We conduct experiments with different identity loss models to choose the one
with the most sattisfactory results: CosFace [72], SphereFace [39] and ArcFace [12].
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3.2.2 SphereFace

Many loss functions for face recognition use a Euclidean-based margin to make a
better separation between feature embeddings. Softmax applied to face recognition
problem have an intrinsic angular distribution of learned features.

SphereFace [39] uses CNN and adopts euclidean margin idea but in angular
terms. It proposes angular margin to softmax, named angular softmax (A-Softmax)
loss for face feature discrimination. Method map face image embedding onto the
hypersphere with good enough latent space properties to recognise identity.

This face recognition model achieves 99.42% accuracy on Labeled Faces in the
Wild (LFW) [20] and 95% on YouTube Faces (YTF) [76] database.

3.2.3 CosFace

Wang et al. [72] introduce in CosFace large margin cosine loss (LMCL). Similarly to
SphereFace (3.2.2) this loss is another angular margin technique, which improves on
the weaknesses of the SphereFace. CosFace defines the decision margin in cosine
space instead of angular space. It adds L2 normalisation for features and weights
to addresses the problem of different margin for different classes which exists in
SphereFace.

CosFace shows accuracy of 99.73% on LFW and 97.6% on YTF.

3.2.4 ArcFace

We adopt Additive Angular Margin Loss (ArcFace) [12] as our baseline identity
model. It has exact correspondence to the geodesic distance.

ArcFace has better separable decision boundary than SphereFace (3.2.2) and Cos-
Face (3.2.3). It has constant linear angular margin, while other works have only a
nonlinear angular margin. One may see the result of MSE of Arcface embeddings
illustrated in Fig. 3.4.

MSE of embeddings
i.e. distance

2. 06

0. 76

Bill Gates

Elon MuskBill Gates

Bill Gates

FIGURE 3.4: MSE of “ArcFace embeddings”
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ArcFace scores 99.83% LFW and 98.02% on YTF dataset.

3.2.5 Identity loss

To make synthesised identity as same as possible to the target face identity we em-
ploy identity loss. It is a distance between the target and generated face feature
embeddings learned by separate Deep CNN with the use of recently proposed state-
of-the-art loss in the face-recognition domain (described in 3.2.1).

In our study, we adapted and compared ArcFace, CosFace and SphereFace mod-
els to generate face embedding. We use open-source pre-trained models.

The identity loss Lidentity prevents the generator from modifying face character-
istics of a target person. Here we use a concept of a “similarity” function.

d(img1, img2) = degree of difference between images (3.1)

Having image of a face (img1 we want to compute a similarity (distance) to some
other face (img2).

To measure the identity dissimilarity between target x′ and synthesised x̂ image
we compute the following distance between the embedding vectors ex′ and ex̂ as the
identity loss:

Lidentity = ∑ (ex̂ − ex′)
2 (3.2)

This loss we use when training with ArcFace model (3.2.4) for face identity estima-
tion.

When we train with CosFace (3.2.3) or SphereFace (3.2.2) we employ cosine dis-
tance as the models were trained using such distance. The Lidentity in this case is as
follows:

Lidentity = 1− cos (ex′ , ex̂) (3.3)

3.3 Face Normalisation

Face normalisation (alignment) is important in our pipeline since it is sensitive (5.1.4)
to head scale and its position on an image. We conduct face alignment (Fig. 2.2)
as a preprocessing step during dataset generation procedure. Face normalisation
procedure makes a face on different images appear similar to a predefined template
(reference).

We apply normalisation on the raw image in order to obtain aligned face. The
five facial landmark points (eyes, nose and two mouth corners; Fig. 2.2a) for each im-
age in the dataset. Then we choose a type of transformation that makes landmarks
from the template and the image the most similar. There are euclidean, similarity,
affine and projective transformation (Fig. 3.5). We choose similarity transformation,
which in contrast to rigid (euclidean) transformation also includes scaling, there-
fore does not preserve the distance between points. Similarity transformation in-
cludes rotation, translation and scaling. It produces more natural-looking faces than
other types of transformations. Finally, we add some padding to obtain a canonical
(aligned) cropped face of size 256× 256 pixels.

We use Dlib [27] for face landmarks estimation. Landmarks are estimated twice
in our pipeline: 1) during dataset generation; 2) before feeding the discriminator
(mentioned in 3.1.4, 3.4).

Dlib returns 68 face landmarks as keypoints in cartesian-coordinates, (x, y) posi-
tion on an image. During the first landmarks estimation, we pick only five of them to
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FIGURE 3.5: Types of transformations

FIGURE 3.6: Examples of interpolated face-landmarks

normalise/align the face. Before feeding the discriminator we interpolate/rasterize
landmarks (Fig 3.6) following the idea of Wu et al. [78].

3.4 Network Training

GANs are notorious for being hard to train [42]. Per one feedforward training
path, we pull two images from the training dataset at random: a source (x) and
a target (x′).

Our discriminator feeds face image concatenated with rasterised landmarks, sim-
ilarly to [57]. First, the discriminator calculates the value for the source image and
its landmarks. Second, it processes the synthesised image (x̂) concatenated with
landmarks of the source (x), to calculate the “accuracy” of expression transfer.

In this way, our discriminator learns to tell the difference between real and syn-
thesised facial expression. We then use discriminator skill to penalise the generator
in order to produce face with the correct expression.
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Additionally, identity loss and content loss penalise the generator on identity
and image content dissimilarity.

3.4.1 Content loss

To constrain the proposed model in retaining the background, we adopt some rep-
resentation learning approach for computing content loss. We use Johnson et al. [24]
perceptual loss. Using pre-trained on ImageNet [11] VGG-19 network [59] we calcu-
late MSE (squared `2) loss not only between raw pixels to preserve low-level details,
but also between features maps to preserve general content, to preserve semantic
information.

The combination of two MSE parts produce more “eye-pleasing” results:

Lcontent = 0.06 · lφ,relu3 3
feat + 0.5 ·MSE (3.4)

where φ is the VGG-19, lφ,relu3 3
feat is the feature reconstruction loss i.e. squared `2

norm between feature representations of VGG-19 relu3 3 layer; MSE is the squared
`2 norm between raw images (per-pixel difference).

3.4.2 Adversarial loss

For adversarial loss, we have chosen RaGAN-LS loss function from the family of
Relativistic average GANs (RaGANs) proposed by Jolicoeur-Martineau [25], which
generate higher quality data than non-reltivistic ones.

Therefore adversarial loss Ladv is as follows:

Ladv = LRaLSGAN
G = Exγ [(D(xγ)−E(x,x′)D(Gγ(x, x′)) + 1)2]

+E(x,x′)[(D(Gγ(x, x′))−Exγ D(xγ)− 1)2] (3.5)

where xγ - source image x concatenated with its face landmarks γ; Gγ(x, x′) - gener-
ated image concatenated with source’s face landmarks γ.

3.4.3 Full Objective

Generator’s objective

Full objective combines three losses scaled by correpsonding λ (4.1): content (3.4.1),
adversarial (3.4.2) and identity (3.2.5).

The final objective formula is as follows:

Ltotal = λcontent × Lcontent + λadv × Ladv + λidentity × Lidentity (3.6)

Discrminator’s objective

Finally, discriminator objective function is as follows:

LRaLSGAN
D = Exγ [(D(xγ)−E(x,x′)D(Gγ(x, x′))− 1)2]

+E(x,x′)[D(Gγ(x, x′))−Exγ D(xγ) + 1)2] (3.7)

where xγ - source image x concatenated with its face landmarks γ; Gγ(x, x′) - gener-
ated image concatenated with source’s face landmarks γ.
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Chapter 4

Experiments

We conduct experiments with different generator encoder types, generator feature
extractor backbones, identity loss models, alignment methods. We evaluate three
components, which are significant for face reenactment: 1) image realism, 2) expres-
sion accuracy, 3) identity preservation.

FIGURE 4.1: Visualisation of many-to-many face-reenactment

Results in these three components may vary depending on different reenactment
scenarios. This work explores two possible scenarios. For every scenario, we created
the corresponding dataset.

1. “Many-to-many” - source and target identities and expressions are different,
randomised (i.e. many identities) in the dataset (Fig. 4.1);

2. “One-to-one” - source and target identities are the same, facial expressions are
different (Fig. 4.2); This case may be used when identity in the source image
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changed his hair or wearing a hat. In such a case the task is to generate an face
image of the same identity with expression from the source but with the look,
background of the target.

The first case is the one in which we are most interested. It is the most challenging
so far, mainly in identity and background preservation. Within the second scenario,
we study whether self-reenactment, i.e. of the same person, can improve the overall
quality of the image and modify a person’s identity less than in a “many-to-many”
case. However, we note that for the best possible results fine-tuning on particular
people is recommended.

+ ⮕

ResultSourceTarget
FIGURE 4.2: Visualisation of one-to-one face-reenactment. (Source
image is different from the result image in the real-world application)

4.1 Implementation Details

Experimentaly the following coefficients produced the most satisfactory results:
λcontent = 0.01, λadv = 0.001, λidentity = 0.001 (for Formula 3.6) . The coefficients were
chosen to bound the loss values, to insure the gradients from being too stochastic and
ensure there are no exploding gradients (a common problem in GANs [18]).

For this work, we are using Pytorch [50] as our main machine learning frame-
work, Pytorch Lightning [15] for better scalability and Hydra [81] for configuration
management. The experiments were trained from scratch on NVIDIA RTX 2080
Ti, GTX 1080, Tesla K80, Tesla M60 GPUs using the Adam solver [28] with a range
of batch sizes: 1, 2, 4, 8. The learning rate both for discriminator and generator is
initially set to 1e−4 with reducing learning rate down to 1e−7 when a metric has
stopped improving.

For monitoring training, experiments tracking and metrics logging we exten-
sively use Weights & Biases [3] (https://www.wandb.com/) and CometML
(https://comet.ml).

4.2 Datasets

For training, we selected Compound facial expressions of emotion (CFEE) dataset [14].
This database consists of 244 human identities; each of them expressed 26 emotions
(Fig. 4.3). They are totalling to 6344 raw RGB images.

We split the dataset into three parts: train (85% of the dataset without test part),
validation (15% of the dataset without test part), test (20% of the entire dataset).

https://www.wandb.com/
https://comet.ml
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FIGURE 4.3: 26 expressions of one person from CFEE dataset
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4.3 Evaluation Metrics

It is important to note that there is no “silver-bullet” metric exists which could
tell definitely that one image will be evaluated better over some other by humans.
Therefore better metrics is still needed to be found. Nonetheless, we evaluate our
method on standard metrics connected to image quality, realism and expression
transfer accuracy, namely: FID, NMSE and CSIM.

Though the metrics mentioned above give approximate quantitative measures, it
is still the visuals and human perception that may tell when the results are plausible.
The problem this research aims to solve still lacks appropriate metrics.

4.3.1 FID

We apply Fréchet inception distance (FID) [19] to measure the variation and realism
of generated images. It compares the statistics of generated samples to real samples.
Lower FID is better, corresponding to more similarity between real and generated
samples (Fig. 4.4), as measured by the distance between their activation distribu-
tions.
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FIGURE 4.4: Gaussian noise effect on FID value. Figure from
Heusel et al. [19]

This metric is widely used in image generation projects. It could be seen as an
“analytical function” that tries to imitate capturing the variance of the generated
samples as good as possible.

4.3.2 NMSE

For semantic evaluation, i.e. the correspondence between the source landmarks and
the landmarks on the synthesized image, we employ NMSE (normalized (by inter-
ocular (centroid of an eye) distance) mean squared error (times 100%)) commonly
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used in many [38, 5, 61, 90, 52, 6] papers to compare semantic information i.e. face
expression through landmarks.

The formula to calculate the NMSE between target (source) landmarks and gen-
erated (reenacted) landmarks is the following:

NMSE =

L
∑

i=1

√
(xi − x̂i)2 + (yi − ŷi)2

L ·
√
(xl − xr)2 + (yl − yr)2

· 100 (4.1)

where L - number of landmarks, xl - x-coordinate of left pupil of the source (ground
truth), yl - y-coordinate of left pupil of the source, similarly xr and yr - coordinates
of the right pupil.

4.3.3 CSIM

To compare identity preservation of the generated image, we use CSIM metric -
cosine similarity between embedding vectors of a face-recognition network - Cos-
Face (3.2.3).

CSIM =
ex′ · ex̂

‖ex′‖ · ‖ex̂‖
(4.2)

where ‖ · ‖ - Euclidean norm of a vector, ex′ - embedding vector of a target face x′, ex̂
- embedding vector of a generated face x̂.



18

Chapter 5

Results

5.1 Quantitative results

Here we present metrics from our experiments. We want to notice that these met-
rics are a theoretical approximation to the final goal of a well-reenacted face image.
These metrics may show general estimation for comparing failure case (if metrics
are orders of magnitude different from some other model) with good enough re-
sults. During our experiments, we stumbled upon such cases where metrics were
good; however, visuals were not. The idea is similar to notorious “panda-gibbon”
case [16] - generated samples were such to satisfy some metrics while being full of
visual artefacts. These are the main arguments why having both types of data we
prioritised visual to numerical results. Nowadays, it is still mainly the visuals and
human judgement that could select a better model. To conclude, a holistic view of
both metrics and visual images should be used for judgement.

5.1.1 Comparison of Identity estimation models

We experimented with state-of-the-art models in the deep face-recognition domain
for identity preservation of the synthesised face images.

FID ↓ NMSE ↓ CSIM ↑
“many-to-many” w/o “one-to-one”

ArcFace 7.33 4.38 0.71

CosFace 4.43 4.5 0.86

SphereFace 5.62 4.41 0.79

“one-to-one”

ArcFace 7.04 3.56 0.76

CosFace 4.24 3.38 0.89

SphereFace 5.5 3.46 0.84

TABLE 5.1: Quantitative resuls using different identity estimators

One may see from the Table 5.1 that CosFace (3.2.3) showed better identity preser-
vation and higher realism in both reenactment scenarios. It scored best in “one-to-
one“ in all metrics, whereas in pure “many-to-many” scenario it gave way to Arc-
Face (3.2.4). However, due to the large difference in FID and CSIM, the difference in
NMSE, in this case, may be neglected. The results presented here were measured in
evaluation mode (5.5) for all models on the test dataset. All models were trained for
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our proposed method with separate encoders (FPNMobileNetV2 (3.1.3) as a back-
bone)), batch norm [21] and batch size = 8 for 330 epochs for fair comparison.

To conclude, overall, CosFace identity model works best as identity loss for our
method, improving realism and reenactment accuracy.

5.1.2 Comparison of siamese vs separate encoders in the Generator

We compared siamese [4] Generator (3.1.1) encoders, i.e. same weights for each en-
coder, with separate weights for source and target encoder.

In this experiment, one may see from the results in Table 5.2 that separate en-
coders achieved a better result in both scenarios in FID and CSIM, but scored lower
in NMSE. Considering a significant gap in FID, i.e. image realism, we incorporated
separate encoders in our main proposed method.

FID ↓ NMSE ↓ CSIM ↑
“many-to-many” w/o “one-to-one”

Siamese encoders 9.77 4.94 0.8

Separate encoders 6.0 5.04 0.81

“one-to-one”

Siamese encoders 9.73 3.76 0.85

Separate encoders 5.82 3.92 0.85

TABLE 5.2: Quantitative resuls using siamese encoders vs separate in
the Generator

5.1.3 Comparison of Generator “backbones” for Encoder(s) feature ex-
traction

In this work we have experimented with different feature extractors for our gener-
ator (3.1.1) encoder (3.1.2). Here we compare models trained with ArcFace idenity
model (3.2.4), batch norm and separate encoders of different heaviness (capacities):
lightweight (MobileNetV2 (3.1.3)), middleweight (InceptionResNetV2 (3.1.3)) and
heavyweight (WSLResNext101 (3.1.3)).

As can be seen in Table 5.3, heavyweight WSLResNext model scored best in FID
and CSIM in both scenarios but scored a little worse in NMSE. It should be noticed
that here we present results for models of different capacities trained for the equal
amount of epoch (steps), however heavier models take longer to train, so the result
may not be final.

InceptionResNetV2 scored better than MobileNetV2, in this case, we neglect
small difference in NMSE in “one-to-one” scenario. However, for final judgement,
one has to see the actual synthesised images (Fig. 5.3).

5.1.4 Comparison of dataset preprocessing alignment methods

We experimented with different data preprocessing algorithms - here we compare
our main face normalisation (3.3) procedure with another normalisation which uses
distance between eyes in each face image.
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FID ↓ NMSE ↓ CSIM ↑
“many-to-many” w/o “one-to-one”

FPNInceptionResNetV2 6.22 4.27 0.68

FPNWSLResNext 5.64 4.61 0.77

FPNMobileNetV2 6.43 4.3 0.72

“one-to-one”

FPNInceptionResNetV2 6.23 3.48 0.73

FPNWSLResNext 5.24 3.66 0.82

FPNMobileNetV2 6.22 3.45 0.77

TABLE 5.3: Quantitative resuls using different backbones for the gen-
erator

The latter method for normalisation works as follows: first we locate 68 facial
landmarks with dlib [27]; second we center (rotate) and scale found landmarks
around mid-point between eyes via calculating the rotation matrix and apply iso-
tropic scaling; third we shift the landmarks to make all faces have constant position
in the 256× 256 image; finally we apply the computed transformation matrix to the
image and obtain the normalised by interocular distance face image.

We observed that the second method we use for comparison is not optimal for
our project since people in our dataset have different face compositions, i.e. different
forms of eyes, lips, nose; different distance between eyes and lips, which as we saw
from the result produce unnatural face images.

In Table 5.4 one may see that our main normalisation procedure (3.3) produces
better results in all metrics.

FID ↓ NMSE ↓ CSIM ↑
“many-to-many” w/o “one-to-one”

Similarity transformation (3.3) 3.44 6.02 0.86

Interocular distance normalisation 4.11 7.49 0.85

“one-to-one”

Similarity transformation (3.3) 3.3 4.47 0.89

Interocular distance normalisation 3.75 6.89 0.87

TABLE 5.4: Quantitative resuls using different normalisation
methods for dataset preprocessing

5.1.5 Comparison of batch sizes and normalisation layers

Here we compare training with batch normalistaion [21] and instance normalisa-
tion [70] layer, with respective batch sizes. From the Table 5.5 one may see that
instance normalisation with a batch size of 1, scores better in FID and CSIM, how-
ever, batch norm outperformed instance norm in NMSE. We notice that training the
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model with batch normalisation layer and bigger batch size is more efficient and
faster.

Despite that model trained with batch norm performed worse in FID and CSIM,
one may use it for training much larger dataset in the shorter amount of time than
training with instance norm would take. We observed that setting the model in train
mode (5.5) during inference could improve the results more in batch size than in
instance norm.

FID ↓ NMSE ↓ CSIM ↑
“many-to-many” w/o “one-to-one”

Batch norm (batch = 8) 6.22 4.27 0.68

Instance norm (batch = 1) 3.44 6.02 0.86

“one-to-one”

Batch norm (batch = 8) 6.23 3.48 0.73

Instance norm (batch = 1) 3.3 4.47 0.89

TABLE 5.5: Quantitative resuls using different normalisation layers
and batch size in network architecture

5.2 Qualitative Results

In Figure 5.1 one can see results of the proposed method trained with separate gener-
ator encoders, FPNWSLResNext101 (3.1.3) as a backbone, batch norm (batch size =
2), ArcFace Identity model (3.2.4). Additionaly, we show the result of this model on
unseen targets in Figure 5.4.

5.3 Comparison with other works

In the domain of face-reenactment, it is hard to compare with others due to the lack
of published datasets. Here we compare with Pix2PixHD (5.3.1) method. The results
show advantages of our model both in metrics and visually. Our proposed method
has better mimics reconstruction, plausible identity preservation and fewer artefacts.

5.3.1 Pix2PixHD

We compare with pix2pixHD [74] trained on CFEE dataset (4.2). As one may see
from the Table 5.6, the model we propose has much better identity preservation,
higher realism and plausible expression transfer. Even though Pix2PixHD has better
NMSE, it has drastically different FID and lower CSIM.

5.4 Forensics

To evaluate our results we use close to state-of-the-art model from FaceForensics
Benchmark [55] – Xception c40. The results are presented in Table 5.7. One may
see that Xception c40 fails to discriminate on our data. We acknowledge that for
the more fair evaluation fine-tuning of the aforementioned model on our data is
required; however, the code for the model training was not released yet.
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FIGURE 5.1: Qualitative results in “many-to-many” scenario
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FIGURE 5.2: Qualitative results in “one-to-one” scenario
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FPN_MobileNetV2 FPN_InceptionResNetV2 FPN_WSL_ResNext101_32x4d

Target Source

FIGURE 5.3: Comparison of generator backbones for encoders feature
extractor

FID ↓ NMSE ↓ CSIM ↑
“many-to-many”

Pix2PixHD 26.16 4.17 0.49

Our method 6.66 4.56 0.77

TABLE 5.6: Quantitative comparison of Pix2PixHD with Our pro-
posed method

5.5 Interesting “eval” case

Experimenting we observed (Tab. 5.8) that sometimes during inference our genera-
tor being in .train() mode produce better results than in .eval() mode. We do not
yet have the exact answer to why this happens.

When the model is set to .eval() mode all layers will behave in accordance, it is
especially important when using some particular type of layers which have different
behaviour during training and during the evaluation, e.g. Batch normalisation [21],
Dropout [60]. We suppose that in our case this may be due to the use of Batch norm
layer in the Generator.

During production use one has to ensure a robust and not stochastic behaviour,
therefore setting the model into .eval() mode is a must. That is why for measur-
ing our models with metrics, we set our generator in evaluation mode, although
.train() could produce better outcomes.
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SourceTarget Result

FIGURE 5.4: Results of Our proposed method on unseen targets
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FIGURE 5.5: Qualitative comparison of our proposed model vs
Pix2PixHD.

Accuracy of the Xception c40

“many-to-many”

Pix2PixHD 70%
Our proposed method 14%

TABLE 5.7: Classification accuracy of Xception c40

FID ↓ NMSE ↓ CSIM ↑
“many-to-many” w/o “one-to-one”

.eval() 7.43 4.31 0.71

.train() 5.13 4.71 0.78

“one-to-one”

.eval() 7.27 3.42 0.76

.train() 4.93 3.66 0.83

TABLE 5.8: Quantitative resuls comparing FPNMobileNetV2 (3.1.3)
generator trained with arcface (3.2.4) and batch size = 8 being in eval-

uation and training mode
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Chapter 6

Conclusions

6.1 Ethical questions

Face-reenactment, like any other technology, could be used either for good or harm-
ful purposes. There are examples of videos of persons appear to do or say things that
did not happen. These generated videos have been named as DeepFakes. Deepfake
title is a combination of words i.e. “deep learning”, and “fake” [75].

Nowadays, an average human cannot discern bona fide image of a face from the
generated fake face. Even some AI-based models fail (5.4) to discriminate.

Defense Advanced Research Projects Agency (DARPA) has started developing
technology that can detect deepfakes [29]. Big tech giants also understand the emerg-
ing threat and encourage skilled professionals to participate in the challenge to build
innovative new counter technologies for detecting deepfakes and manipulated me-
dia (https://deepfakedetectionchallenge.ai/) with a bounty of $1 M.

We plan to publish our synthesised dataset in order to help researchers train
more accurate, more robust classification models for deepfake detection.

6.2 Our contribution

In this work, we proposed:

• an efficient and flexible FPN-based generator architecture for face-reenactment;

• separate encoders for more accurate feature extraction of the source and target
image in the generator;

• a range of feature extraction backbones following the recent advancement in
semantic segmentation and image classification domain;

• an identity loss for generated image identity features preservation based on
the state-of-the-art model in deep face recognition domain;

We conducted experiments and provided quantitative and qualitative compar-
isons for architectural decisions and training procedures. Finally, we explored our
approach in terms of forensics and showed the results using close to a state-of-the-art
model for AI-generated content detection on our data.

https://deepfakedetectionchallenge.ai/
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Chapter 7

Future Advancements

• Big structural gap exists between the source face and the target (5.1.4). There-
fore better ways of landmarks adaptation may be utilized, such as separate
NN module (like in [88]) for mapping from actor landmark space onto avatar
landmark space.

• Conduct Human validation of the results, using e.g. Amazon Mechanical Turks
(AMT) [9].

• Use depth (3D) images of faces [54, 92] for more features.

• Train on larger dataset. Need more computing acceleration.

• Conduct hyperparameter tuning, to find best parameters.

• Research train-eval case (5.5) in more details. For instance, one may try train-
ing our pipeline with freezed batch norm layers.

• Compare our approach on Face forensics++ dataset [55] which consists of videos
generated using four face manipulation methods, namely Deepfakes [10],
Face2Face [66], FaceSwap [31] and NeuralTextures [67].
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