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Abstract

Lane detection is an image analysis problem of detecting lane markings on the
road. Recently it became one of the crucial parts of most Advanced diver-assistance
systems. With the current progress in deep learning, plenty of new methods have
been developed for lane detection. However, even novel powerful CNN architec-
tures are struggling to give a satisfactory result along with acceptable performance.
Recent studies show that developing a fast, robust and accurate model for real-time
lane detection is a hard task due to external factors such as weather conditions, light-
ing, traffic, complex marking shapes, thin or invisible lanes on rough and hilly roads,
etc.

The main focus of this thesis is to investigate, compare, and develop lane detec-
tion methods that can be used in real-time ADAS applications. Current demonstra-
tion of the work presented in this thesis can be found here.
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Chapter 1

Introduction

Lane detection is a problem of finding lane markup on the road image. Autonomous
driving is impossible without lane detection. It is widely applied in various ad-
vanced driver-assistance systems(ADAS) and can be used in other fields such as
sports and robotics. In particular, such applications as parking systems, sports ana-
lytics systems, cars/robots/drones navigation, adaptive cruise control, lane depar-
ture warning, and lane-keeping assist systems, etc. can benefit from an effective
solution to the lane detection problem.

The nature of the problem itself introduces a number of issues. First of all, lanes
are tiny and thin objects, and they occupy 2-3% of an image, which makes them hard
for a model to learn. Second of all, lanes have a very basic shape - line, which can be
present anywhere on a real-life image, for instance, on buildings, vans, traffic lights,
etc. This simplicity of the shape forces the model to confuse lane markings with
sunlight reflections, pipes, or other line-like objects.

In computer vision, lane detection is mostly formulated as a semantic segmen-
tation problem. Semantic segmentation is a task of classifying pixels of an im-
age. Nowadays, this task is mainly solved with deep convolutional neural net-
works(DCNN) that outperform previous approaches in terms of accuracy and ro-
bustness. However, DCNN-based methods require a significant amount of compu-
tational power, which is only possible using special processors with hardware accel-
erators(e.g., GPU). Such automotive processors are expensive, and they are usually
busy running multiple other algorithms(e.g., obstacle detection). Thus it is impor-
tant to research how to design a lane detection algorithm that is both accurate and
efficient in terms of computation.

1.1 Goal setting

As the main application for lane detection, we chose to implement a lane departure
warning system, detailed in Chapter 5. Therefore the main task for the thesis is to
train a robust, accurate, and fast model for real-time usage in the system mentioned
above. Another challenge is that we want to make our model robust against missing
or damaged road lines and generalize in this case from the surrounding scene. As
in real life, not all roads are marked, and sometimes drivers understand where the
marking should be by tire traces or by visually analyzing a context of a driving scene.

1.2 Method proposal

• Combine existing lightweight CNN architectures, and segmentation pipelines
with self-attention based training to achieve the needed speed and accuracy,
as detailed in Chapter 4
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• Force the model to learn where the markings should be, by removing or blur-
ring markup on training images, also detailed in Chapter 4. To our knowledge,
no one tried this yet.

1.3 Thesis structure

• Chapter 2. Background theory

This chapter contains background information on key machine learning con-
cepts such as neural networks and convolutional neural networks.

• Chapter 3. Related work

In this chapter, a short overview of recently introduced semantic segmentation
methods based on deep learning can be found. Also, here we examine the
research around the lane detection problem before and after deep learning.

• Chapter 4. Methodology

In this chapter, you can find a thorough description of the proposed method.

• Chapter 5. Implementation and application

In this chapter, all implementation details, frameworks, and hardware are out-
lined. Also, a lane departure warning system and the role of the method in it
are described.

• Chapter 7. Experiments and Results

This chapter is a collection of experiment descriptions and an analysis of their
results.

• Chapter 8. Summary

This chapter concludes the thesis and contains a summary of the work done
and a future work outline.
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Chapter 2

Background information

The performance of information processing systems changed drastically, with deep
learning gaining more and more popularity. Artificial Neural networks showed im-
pressive results in solving a wide range of problems, and their future potential is
yet to discover. One of the most impacted fields by DL is image analysis, where
Convolutional Neural Networks(CNNs) caused tremendous progress.

2.1 Artificial Neural Networks

The idea behind Artificial Neural Networks was to reconstruct the work of the an-
imal neural tissue. Similarly to natural nervous tissue, ANN consists of mathemat-
ical representations of neurons, the biological cells, arranged in layers, see figure
2.1. The simplest form of an artificial neuron, known as a multi-layer perceptron, re-
ceives multiple inputs(signals from other neurons), calculates a weighted sum of in-
puts, adds bias, and applies the activation function, which produces neuron output.
The neuron output value is propagated to the input of the neuron in the next layer.
An activation function is usually non-linear, monotonically increasing, and differ-
entiable. The neuron learns how to process input signals by changing the weights.
The right configuration of weights in each neuron is what we try to achieve when
training the network. Neurons can be arranged in different types of layers, the sim-
plest of which is a dense layer, also known as a fully connected(FC) layer, where
neurons and connections form a complete graph. A typical simple network has an
input layer, hidden layers, and an output layer. A deep neural network is a network
that has many hidden layers in it. An area of research on deep neural networks is
called Deep Learning.

FIGURE 2.1: An illustration of a dense neural network with input,
output, and a hidden layer [Source]

https://commons.wikimedia.org/wiki/File:Colored_neural_network.svg
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So how do we train a network? The training process is carried out using an op-
timization method called gradient descent. First of all, we need some function that
evaluates how good is the output of the model in comparison to the label. This type
of function is called loss function or sometimes error function. We determine the
output of the network by computing an output of each neuron starting from the in-
put layer and on, creating a chain of calculations. Finally, we compute the value of
loss function. This process is called forward propagation. When we know the value
of the loss function, we can start computing how we should update the weights.
Since the loss function is a combination of previous functions, all of which are differ-
entiable, we can compute gradients and use the chain rule to determine how much
and in which direction we should change our inner functions, and therefore weights
of the last layer. In this manner, we can calculate gradients for every layer, moving
from the output to input determining how to change each weight of each neuron.
This process is called backpropagation. By propagating the network forward and
backward many times, we update our weights so that the result is more and more
similar to the label according to the loss function.

2.2 Convolutional Neural Networks

The simple dense(fully connected) neural network has a serious limitation in image
analysis - it heavily depends on the placement of an object. In other words, it will
not find an object on an image if it changes its location. It also has other drawbacks,
such as a huge number of parameters, which makes training and inference slow, and
causes the risk of overfitting. Convolutional neural networks, introduced by Lecun
et al. [20], are invariant to the placement of an object. They contain convolutional
layers that try to find some features in the input matrix using filters - smaller matri-
ces of weights (Figure 2.1). The input image is multiplied by the filter in a sequential
manner in order to create a feature map. Each neuron in a convolutional layer tries
to learn weights for a filter, therefore finding features on an image. The next con-
volutional layer finds features in the output of the previous one, thereby building a
network.

FIGURE 2.2: Convolutional layers [Source]

In the simplest case, CNNs consist of three kinds of layers - mentioned above
convolutional, pooling, and dense, described in section 2.1. Pooling layers have no
learnable parameters in them. They provide invariance to the object placement by
reducing the size of the feature map and creating the so-called perception area for
each neuron. The bigger the perception area also called the receptive field, the better
the image analysis that the network performs. By reducing the size of the feature
map, we also reduce the number of parameters and computation in the network.
Dense layers are usually used as the last layers of the network.

https://commons.wikimedia.org/wiki/File:Convolutional_Layers_of_a_Convolutional_Neural_Network.svg
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Over the last years, the CNNs found their application practically in all computer
vision tasks, superseding most of the existing approaches. Starting from AlexNet’s
[17] success on ImageNet dataset [12] numerous novel architectures, like Vgg [31],
Resnet [14], Inception [32], Xception [11], ResNeXt and others were constructed for
image classification task. From there, the existing architectures were modified, and
new state of the art architectures were built to solve other image analysis problems,
object detection and image segmentation in particular.
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Chapter 3

Related works

3.1 Image Segmentation

3.1.1 Overview

An image segmentation task is a problem of assigning a class label to each pixel
of an image. Before DL, the majority of approaches to the segmentation problem
usually were based on handcrafted features and custom rules e.g., Conditional Ran-
dom Fields, 2001 [19]. These methods were neither robust nor accurate enough to
produce plausible results.

One of the first neural network-based approaches to image segmentation, FCN,
was introduced by Lang et al. [23] in 2014. Authors proposed to remove fully con-
nected layers from an existing VGG [31], GoogLeNet [33], AlexNet [17] architec-
tures and place convolutional blocks instead to obtain a small segmentation map.
To upsample the output of the last layers, the authors used bilinear interpolation
and backward strided convolution, also known as deconvolution.

A year later SegNet [3] was presented with its encoder-decoder architecture. Up-
sampling is performed using previously-stored max-pooling indices. This process is
known as unpooling. The decoder block is followed by a final pixel-wise softmax
classification layer. In 2016 transpose convolutions were put instead of unpooling
operations.

One of the most notable architectures was UNet by Ronneberger et al. [29] that
used skip-connections to pass feature map tensors from encoder blocks to respective
decoder blocks. Corresponding feature maps were concatenated in the decoder, thus
keeping information about small objects when downsampling. Transpose convolu-
tion is used for upsampling along with bilinear interpolation for image smoothing.

Later numerous attempts were made to create an accurate, multiscale model for
multiclass segmentation, with a large number of classes. Bright examples: FRRN
[28] PSPNet [39], Deeplab(s) [7] [9] [8], RefineNet [21].

3.1.2 Light architectures for segmentation

Most of the aforementioned approaches focus on accuracy and robustness letting
their models be as heavy as needed. However real-time applications demand lightweight
solutions for segmentation problem and lane detection is one of them. Efficient neu-
ral network (Enet) [27], used in this thesis is a deep network specifically designed
for real-time usage. Its structure, shown in Figure 3.1 is heavily influenced by that
of ResNets [14] and optimized for faster inference and high accuracy.

Among other relatively lightweight architectures are LinkNet [6] a fully convo-
lutional architecture with around 11.5 million parameters, that works well with a
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FIGURE 3.1: Enet architecture

multiclass problem and ICnet [38] that efficiently combines and fuses information
from different scales.

3.2 Lane detection

3.2.1 Earlier approaches

Before deep learning, lane detection was done mostly by using handcrafted features
and geometric parameters to obtain lane segments [18]. These methods require com-
plex image preprocessing and are not robust and accurate enough to give good re-
sults in complicated driving scenarios. As the main algorithm, different variations of
Hough transform [13] were used, and for preprocessing such methods as Sobel op-
erator[16], Inverse Perspective Mapping (also known as Bird’s eye view), Adaptive
Thresholding , Canny edge detection [5] were popular.

3.2.2 DCNN approaches

With the recent growth in deep learning, new architectures of CNNs were intro-
duced in image classification, object detection, and image segmentation. Therefore
a lot of novel approaches to this task were suggested in the last years.

Xingang Pan et al. [26] proposed to learn the shapes of the segmented lanes better
by introducing Spatial CNN. The network can learn spatial relationships between
pixels by using not just traditional layer by layer convolutions but also slice by slice
convolutions within the feature maps. Qin Zou et al. [40] proposed to combine
CNNs with Recurrent neural networks to make use of information about lanes in
consecutive video frames as opposed to performing segmentation on a single image
that has no information about continuousness of the lane. The approaches described
above concentrate mostly on the accuracy and robustness of the models without
taking into account the speed and weight of the models.
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Several approaches take into account the efficiency of the proposed methods.
For instance Davy Neven et al. [25] proposed an end to end pipeline for real-time
lane detection with no additional postprocessing needed. He et al. combine binary
segmentation with embeddings clustering in a network called LaneNet to achieve
accurate enough semantic segmentation without using heavy networks Figure 3.2.
As for post-processing he et al. proposed to use a light curve fitting network on the

FIGURE 3.2: Lanenet architecture [Source]

segmentation result. This network, H-net, learns a perspective transformation in a
way that benefits the curve fitting. All in all the proposed pipeline scheme is the
following: Figure 3.3

FIGURE 3.3: End-to-end lane detection pipeline [Source]

https://arxiv.org/pdf/1802.05591.pdf
https://arxiv.org/pdf/1802.05591.pdf
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Yuenan Hou et al. [15] proposed a new method of training the lightweight mod-
els for lane detection with so-called self-attention distillation, which forces the model
to capture useful information from itself. Authors chose Enet architecture to trans-
fer attention between its blocks. This method does not require any modifications to
the model on the inference stage. Self-attention is only used while training, which
makes the technique quite appealing to try.

As a result of related works study, the two aforementioned papers were chosen
as a basis for the proposed solution. We propose to develop a binary segmentation
model, Enet, trained with self-attention distillation on variously augmented data.
Later this model can be used as a binary branch of LaneNet to achieve semantic
segmentation, and the curve fitting network H-net can be applied afterward as a
form of postprocessing. In this thesis, we will focus on the development and research
of the binary branch for this approach. The details can be found in the next chapter.
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Chapter 4

Methodology

4.1 Data

The datasets for segmentation usually consist of an image and a binary mask pairs.
As for lane detection problems, masks are usually generated with polylines from
JSON or txt files with coordinates of the lanes, where vertical coordinates are joint
for the whole dataset to ease the work of the annotators.

4.1.1 Sources

With the recent growth of interest in applying machine learning to ADAS problems,
a few datasets for lane detection were collected. In our experiments, we are inter-
ested in detecting borders between lanes more than in the accurate placement of
each road marking like arrows or crosswalks, which determined the choice of our
datasets. The two most popular datasets were used - Tusimple [35] dataset and Cu-
Lane [36] dataset.

The Tusimple dataset was created for lane detection as well as velocity estima-
tion. The lane detection part of the dataset was generated from 7 000 road video
clips of 20 frames each. The train/validation part includes 3626 video clips where
one of the 20 frames is annotated, and a test part has 362 videoclips with no labels
available. Collected images usually feature relatively fine weather conditions with
sunny weather and excellent visibility, various daytime, traffic conditions, and a dif-
ferent number of lanes. The Tusimple dataset is relatively small and easy for a model
to learn, but also has all basic features for lane detection in it, which makes it really
convenient to try different methods on it.

The CULane is a bit newer and a much bigger dataset for lane detection. It was
extracted by six drivers on different vehicles in Beijing. The dataset consists of 88
880 and 9 675 labeled training and validation images, respectively, and 34 680 unla-
beled test images. The CULane dataset has plenty of data with complicated real-life
conditions on the road like bad lighting, traffic, snowy-rainy weather, sun reflections
on the window, etc. In cases where the markings are unseen, the annotations were
made as if the lane border is visible, with the intention for algorithms to be able
to distinguish between lanes even if the border is occluded by a road object. Dur-
ing preprocessing, we found out that the data is not as clean as we hoped, so after
preparation, we got 78 421 images in the training set and 8 936 in the validation set.

4.1.2 Augmentation

Deep neural networks require a considerable amount of representative data to achieve
satisfactory results. To increase data volume and introduce more real-life features to
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the existing dataset, researchers usually use image augmentation. Image augmenta-
tion is a set of processing techniques for existing images that makes some features
more visible or introduces new desired features to a picture.

FIGURE 4.1: Augmentation results on TuSimple dataset

Commonly used augmentation

In this work, we applied some commonly used methods for augmentation of real-
life photos. Due to the specifics of our task, we cannot use destructive augmentation
on our images. Therefore such operations as rotation, flip, perspective transform
were applied to imitate possible camera incline, and ISO noise for camera noise im-
itation is used. To accomplish such augmentation, we used python albumentations
[1] library.

Weather conditions imitation

Most cases of poor road visibility are caused by unwanted weather conditions. Hence
it would be useful to be able to imitate common weather-related obstacles when aug-
menting the data. After analyzing the driving process, we came to the conclusion
that the most common obstacles for lane visibility on a camera are solar flares, fogs,
and shadows on the road. To create such augmentation, we used the aforemen-
tioned albumentations library, which in turn uses a custom library for road images
augmentation called AutomoId [30]. This library also contains some augmentation
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techniques that can be used to imitate other weather conditions on the road. The
examples of the augmented data used in our experiments are shown in Figure 4.1.

Lane markings deletion

When we investigated the process of driving, we noticed that the substantial amount
of the roads in our country is not marked or marked a long time ago, and at present,
road lines are not visible. Thus most of the available training data is not represen-
tative in this case. So we came up with one more augmentation method - deletion
or blurring the existing lane markings on the image. This problem is essentially an
image inpainting task - we need to make regions with lanes on them similar to the
rest of the road, and we have a binary mask that indicates the lane placement. This
is solved with Telea [34] inpainting method. The implementation of this method in
OpenCV [4] library was used on data preparation step to obtain results shown in
Figure 4.2.

FIGURE 4.2: Lane deletion example

4.2 Architectures

4.2.1 Classical CV approach

When starting any work with deep learning, the first thing that should be done is
checking non-deep learning methods to know for sure that a deep learning approach
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is worth starting. As mentioned in the Related works, early lane detection was done
with classical computer vision methods, which require a significant amount of pre-
and postprocessing but are used in real vehicles. The simplest pipeline of classical
CV methods for lane detection is the following. A picture is filtered with yellow and
white(colors of road markup) color filters, after that, the region of interest is defined,
in our case, it is a lower part of the picture, where the road is located, other parts
of the image are of no use. On a filtered image, Canny edge detection is applied to
obtain an edge mask. Supposedly on this stage, the only straight lines on the mask
are lane markings, in practice though it rarely happens. To find straight lines on
this mask Hough lines algorithm is used, and the result is obtained. Hough lines
algorithm usually finds a large number of lines. Thus the final stage should perform
line clustering, outlier removal, etc.

4.2.2 Unet

Unet [29] is a known architecture that became an extremely popular solution in the
segmentation domain, and as such, was chosen as a first architecture to try on our
data for experimental purposes. Firstly introduced for bioimages segmentation, this
fully convolutional network has the following architecture 4.3.

FIGURE 4.3: Unet architecture. From [29]

The blocks in encoder consist of pooling and convolutional layers, in decoder -
deconvolution upsampling with bilinear interpolation for smoothing and convolu-
tion. The main aim was to prevent the network from losing information about small
objects while pooling, by introducing skip-connections. Through those connections,
feature maps from encoder blocks to decoder blocks of corresponding resolution are
passed. In the encoder, the feature maps are concatenated - white and blue tensors
in the decoder in Figure 4.3.

While Unet usually produces good results, the model drawback is that it contains
too many parameters, requires significant computation resources, thus not suitable
for real-time applications.
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4.2.3 Enet

When it comes to lightweight solutions in segmentation Enet [27] architecture is
definitely a choice. The architecture of the whole network can be seen in Figure
3.1. This encoder-decoder network consists of the following blocks: Figure 4.4. The

FIGURE 4.4: Enet blocks [Source]

bottleneck blocks are essentially branches that separate from the main branch and
then merge back by element-wise addition. The encoder consists of 3 stages, with 5
bottlenecks, stage three has no downsampling. the decoder consists of 2 stages with
3 and 2 bottlenecks respectively, followed by a fully convolutional layer for the final
output. For downsampling, a max-pooling layer is used in the encoder, and a 2 × 2
convolution with stride= 2 is used instead of 1 × 1 convolution.

In this work, two variations of Enet architecture are used. The main difference is
in upsampling strategies utilized in the main branches of the decoder bottleneck
blocks. The first implementation uses unpooling as an upsampling mechanism,
while the second one uses naive upsampling. In the original paper, zero-padding
was used. The Enet variant with naive upsampling is evaluated with the intention
to port the model to Google Coral embedded NN accelerator, which supports only
basic layers and thus lacks the support of unpooling.

4.2.4 Self-attention distillation

Self-attention Distillation (SAD) was proposed by Yuenan Hou et al. [15], as a method
for improving the training of lightweight models. He et al. proposed to utilize the
information from attention maps derived from different layers of the same network.
Attention maps show on which spatial areas of the input image the network focuses
most. Knowledge distillation is a well-known concept to transfer the knowledge
from the teacher(large network) to a student (small network). Self-attention distil-
lation(SAD) proposes to transfer knowledge not from separate teacher network, but
instead from the layers of the same network. Special branches called attention gen-
erators are incorporated into the network to derive activation-based attention maps
from different layers of the network. To get a better understanding of how they
work, assume the output of the internal layer, for which the attention map is gener-
ated is a tensor of size m × n × k. An attention map is m × n representation of this
tensor. In the original paper, attention generation was implemented as follows. To

https://arxiv.org/pdf/1606.02147.pdf
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squeeze the initial tensor to m× n, the authors tested a few functions. The best result
was produced by using the sum of squares on the depth axis k. After that, bilinear
interpolation was applied when needed to upsample the map, and the final step
was normalization by spatial softmax function. In our implementation, we used L2
normalization as the last step, and the rest remained the same.

FIGURE 4.5: Enet-SAD architecture, from [15]

Such attention generator branches can be placed after any layer of the network.
The way self-attention works is by optimizing the output of attention generator of
one layer to the attention map of the other layer, or a label. A special distillation
loss term has to be added to the loss function on the training step to enable such
optimization. One of the paths in which the attention can be transferred in Enet is
illustrated in Figure 4.5. One can easily define other ways of attention distillation
within the network.

4.3 Loss functions

4.3.1 Segmentation losses and penalties

When training segmentation models, particular losses should be considered. Bal-
anced cross-entropy loss (BCE) is one of the most common losses for segmentation
problems. This is a variation of simple cross-entropy loss with weights for positive
and negative examples that are used for unbalanced data. The loss has a serious
drawback - it causes the model to be "unsure" on the edges of the binary map. In
order to prevent this, some penalties are used alongside with BCE loss to improve
predictions. Among such penalties, Jaccard and Dice losses are used, both of them
add overlap measures to existing loss. The Jaccard coefficient adds intersection-
over-union(IoU) overlap, while Dice adds an F1-score measure. In this work, BCE
loss with the Dice penalty is used in most of the experiments to train the networks.

4.3.2 SAD loss

As was mentioned in section 4.2.4 to enable SAD within the network special loss
term should be added. In the original paper [15] the distillation loss was formulated
as follows:
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Where Ψ(Am) denotes Attention generator output from layer Am, and Ld is L2
loss. The impact of each attention map on the distillation loss term is adjusted with
coefficients. In experiments with SAD, our overall loss is comprised of BCE loss with
a Dice penalty and a distillation loss, and the impact of each term is regulated with
coefficients as well.
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Chapter 5

Implementation and application

5.1 Frameworks and computational resources

Python 3.6 is used for all of the work. Keras [10] with TensorFlow [2] backend is
used as the main framework for neural network building and training. Although
it is a very high-level library for deep learning, with the use of some hacks, it was
successfully utilized for self-attention distillation implementation, and all of the ar-
chitectures used for the Experiments section in this thesis. For the manipulations
with images albumentations [1] and OpenCV [4] was used. The implementation of
Enets with upsampling and unpooling was taken from [24].

Most of the models were trained on Nvidia Geforce 1080 TI, with 11 GB of
graphic memory. Enet with unpooling took approximately 1 minute per epoch on
78 421 images of size 256× 256 with batch-size 16. In the same setting, one epoch for
Unet took approximately 3 minutes.

5.2 Future application

5.2.1 Lane departure warning system

All of the work mentioned was done for future application in a lane departure warn-
ing system as a Proof of Concept project. Figure 5.1 provides a general scheme for
such a system. The main algorithm is going to be run on Raspberry PI 4 Model B
(4GB RAM, 1.5 GHZ quad-core) with acceleration on Google Coral Edge TPU.

FIGURE 5.1: Lane departure warning system

The end-to-end algorithm for lane detection can be seen in Figure 5.2. As illus-
trated, a LaneNet [25] pipeline is a basis for this algorithm. As was mentioned before
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Enet-SAD will be incorporated as a binary segmentation branch, but with shared en-
coder, as shown in the scheme.

FIGURE 5.2: End-to-end real-time lane detection

5.2.2 Hardware and limitations

There are some requirements and limitations for the model to be run on Edge TPU.
It must be converted to the TF Lite format and compiled by the Edge TPU compiler.
Some specific operations are not supported by the converter and compiler. Therefore
they should be replaced or removed.

Due to those limitations Enet SAD with unpooling could not be converted for
real-time usage, but after minor modifications to Enet with naive upsampling, the
team was able to run its quantized version on the specified hardware in real-time
with prediction-time 12 milliseconds, 0.5965 F1-score(Dice) and 0.9826 pixel-wise
accuracy. The measures provided here are evaluated on a 362-image validation set
extracted from the original Tusimple train set, as mentioned in section 4.1.1.
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Chapter 6

Experiments and results

Before diving into experiments, description evaluation metrics should be outlined.
Some of the standard metrics for segmentation tasks that we used in this thesis are
F1-score, or Dice coefficient, and pixel-wise accuracy. The metrics shown here are
evaluated on the validation sets described in 4.1.1. While experimenting, we found
out that the evaluation of the models on datasets is not the best criterion for judging
their success as the data is not diverse enough. With the intention to find the data
that differs from CULane and TuSimple, we tested our models on videos of Kyiv
roads and pacific coast roads for a better understanding of how each model per-
forms. In this section, you can find plenty of prediction visualizations on particular
frames of the videos that picture various scenarios.

To train all our models, we used Adam optimizer and a ReduceLROnPlateau
callback with a multiplying factor of 0.75, the minimum learning rate of 1e-6, 10
epochs of patience, and 1e-4 of minimum delta for Dice metric change. All our mod-
els are trained roughly to 150 epochs, the reason being that no significant improve-
ment or change of trend is seen further on. With more training and finetuning, Enet-
SAD unpooling architecture shows a 0.6239 dice coefficient with pixel-wise accuracy
of 0.984, and Unet shows 0.6289 and 0.984, respectively.

6.1 Classical computer vision methods

FIGURE 6.1: Classical CV methods result

To test them on some images featuring different road conditions, we applied
yellow and white color filters, defined a region of interest, then applied Canny edge
detection followed by Hough line detection and postprocessing for filtering out the
unnecessary lines and making corrections based on previous frames of the video.
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The algorithm ended up failing even in relatively simple scenarios, as shown in
Figure 6.1.

Although the method is easy to implement and does not require any additional
learning it did not show satisfactory accuracy or robustness, and needs tons of post-
processing to work properly, hence in the rest of the practical part of this work two
segmentation neural network architectures were given a try - Unet and various mod-
ifications of Enet.

6.2 Unet

For this experiment, Unet was trained with BCE loss and dice penalty, starting at the
learning rate of 1e-4. The model has approximately 31 million parameters, which is
relatively heavy. This model also was converted for real-time usage, but the speed
was too low for its usage. The results and process of training can be seen in Figure
6.2. The model generalizes quite good and is able to accurately place lanes even if
they are occluded by a sequence of cars, but tends to catch a larger amount of false
positives than Enet.

FIGURE 6.2: Unet results. Training process and Predictions

6.3 Enet unpooling

As a baseline for the set of experiments with this architecture, Enet was trained with
BCE loss, a Dice penalty, and a starting learning rate of 1e-3. The results are the
following, Figure 6.3

The comparison to Unet in terms of metrics can be seen in Table ??. The difference
with Unet predictions can be seen as well when comparing vdeoresults. Enet catches
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FIGURE 6.3: Enet-unpooling results. Training process and Predictions

a significant amount of false positives as well, but much less than Unet, it seems to
have worse generalization abilities than Unet, however.

TuSimple CULane
Dice Accuracy Dice Accuracy

Unet 0.6108 0.9835 0.4781 0.9804
Enet-unpooling 0.5992 0.9834 0.4674 0.9792

TABLE 6.1: Unet and Enet unpooling comparison.

6.3.1 Experiments with lane thickness

While experimenting with our data, we found that all models have quite a big false-
positive rate. It mostly happens because of the simplicity of what the models try to
learn as the features of a very thin white line are quite easily found on other objects.
Therefore we tried to make our labels thicker to make the model more focused on
the needed areas. The label width was increased from 5 pixels to 15 pixels so that
the lines are significantly thicker, but the shapes of the lines are not distorted. The
rest of the experiment setting is the same as the Enet-unpooling baseline. The results
are in Figure 6.4. As can be seen, the f1-score is bigger, but in this case, it does not
indicate any success as this metric is heavily impacted by the size of the labels. To
see the results, we compare the two models by analyzing predictions on the image
with lots of objects on the background.

As we can see, the performance is quite poor. The false-positive rate has only in-
creased, the learning curves (Figure 6.4) show that increasing lane thickness caused
the model to converge much faster and overfit very easily.
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[a] [b]

[c]

FIGURE 6.4: [a] The result of the model trained on a dataset without
changes. [b] The result of the model trained on a dataset with thicker

labels. [c] The learning curves for a train with thick labels.

6.3.2 lane deletion

For lane deletion, a mask with a label width of 25 pixels was used. The reason
for this is the fact that labels do not intersect with lane markings on the image as
accurate as needed for proper lane deletion. With increasing the width of the line on
a binary mask, we increase a percentage of markings deleted. The drawback of this
is sufficient image distortion. Bigger width is used only for the lane deletion process,
in the dataset itself, the labels have standard 5-pixel width.

[a] [b]

FIGURE 6.5: [a] The result of the model trained on a dataset without
changes. [b] The result of the model trained on a dataset with deleted

lanes.

The resulting dataset consists of both normal images and corresponding images
with deleted lanes (3626× 2). The validation set is the same as before. The rest of the
experiment setting is the same as of Enet-unpooling baseline. The results are shown
in Figure 6.5. To see the effectiveness of this augmentation, we decided to compare
models by analyzing their predictions on the images with the unmarked road. As
can be seen in the figure, the model did not capture any new global information
about the lane placement and overfitted to the dataset instead.
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6.3.3 Self-attention distillation

For this set of experiments, Attention generators were incorporated in Enet-unpooling
architecture after the initial block and 1, 2, 3 Encoder bottlenecks. In the original pa-
per [15], Enet architecture was modified, and also a small network for predicting the
existence of the lanes was added. But we were interested in how much SAD influ-
ences training on its own, therefore apart from SAD, no changes to the network are
made.

Chained attention path

In earlier Figure 4.5 you can see how chained SAD looks like on Enet. Each block
of the encoder mimics the successive block. We set the parameters so that each at-
tention generator has the same impact on training as the rest and Distillation loss
influences the training the same amount as BCE loss with the Dice penalty. The rest
of the setting is the same as in the Enet-unpooling experiment. The results are as
follows: 6.6

FIGURE 6.6: Enet-SAD-unpooling results with chained attention
path. Training process and Predictions

Mimicking labels

This experiment differs from the previous only in the paths for attention distillation.
While in the previous experiment, each attention map is compared to that of the next
block, here, all of them are compared directly with labels (like deep supervision).
The following results are received: 6.7

FIGURE 6.7: Enet-SAD-unpooling results with label mimicking.
Training process and Predictions
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Comparison

Even though the metrics results of SAD training are not as promising as in the orig-
inal paper, multiple train sessions proved the stable positive difference in dice coef-
ficient of approximately 0.01-0.1 and 0.005-0.02 difference in accuracy while training
on TuSimple dataset comparing to the model without SAD. Table 6.2

TABLE 6.2: The performance of Enet without and with SAD varia-
tions on TuSimple dataset

Accuracy Dice
Enet-unpooling 0.9834 0.5992
SAD chained mimicking 0.9831 0.6008
SAD label mimicking 0.9826 0.6017

This does not seem to be much until the models are compared on videos. As we
can see from Figure 6.8, the signal gets distilled the best when attention orients on
labels. The small difference in metrics results can be explained with the nature of the
TuSimple dataset. Most images of this dataset contain little to no city objects on the
background, and therefore no false positives are predicted with or without SAD.

FIGURE 6.8: from top to bottom: Enet-unpooling predictions,
chained-SAD predictions, label-mimicking SAD predictions. Predic-

tion performed on Kyiv streets

6.4 Enet upsampling

TABLE 6.3: Enet with unpooling and upsampling performance on
TuSimple dataset

Accuracy Dice
Enet-unpooling 0.9834 0.5992
Enet-upsamling 0.9823 0.5922
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For the sake of the possibility of real-time usage, the unpooling mechanism is
changed for naive upsampling. The rest of the experiment setting is the same as in
the Enet-unpooling experiment. As can be seen in the results below 6.9, this results
in some decrease in performance. SAD can be easily incorporated into this network
as well. Learning curves (Figure 6.9) show that the model converges faster than
Enet-unpooling with lower metrics numbers (table 6.3

FIGURE 6.9: Enet-upsampling results. Training process and Predic-
tions
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Chapter 7

Summary

7.1 Contribution

• A new way of augmentation for road lanes is tried out.

• Self-attention distillation is incorporated to Enet architecture in Keras frame-
work.

• An influence of SAD on training the models was investigated with a chained
mimicking and label mimicking.

• the performance of Enet with unpooling and upsampling was investigated and
compared.

7.2 Possible improvement

• Improve Enet. To investigate the influence of the various factors on training,
we took the Enet model as-is, with no additional improvements. However, if
we make the improvements suggested in [15], the results should be better.

• Try other architectures. Enet is not the only solution for lightweight segmenta-
tion, such architectures as ICnet or LinkNet should be considered for possible
improvement. Also, better architectures for capturing global context when no
lanes on the road are visible can be found.

• Augment better and get more data. New ways of weather imitation can be
tried, as well as changing the structure of the road. For example, this [22] re-
source provides a notable example of such augmentation. Besides, more data
can be added. For example, BDD 100K dataset [37] has lane markings classifi-
cation labels, which can be adjusted for our task. A small testing dataset can
be created from Lviv streets photos as well. The variety of road structures in
this city can be a valuable testing material.

• Future work. A binary branch should be incorporated into the main lane de-
tection pipeline, described in Future Application section 5.2.
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