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Abstract

We propose an approach for the single image reflection removal problem. Our
model is based on a feature pyramid network (FPN), trained with adversarial and
perceptual losses. Additionally, we address the problem of bright spots removal
when only a small portion of an image is covered with the reflection. The difficulty
of collecting real-world data makes the problem even harder to solve. We propose
a novel method of collecting real-world data, that does not require any additional
devices but a camera, and is cheaper than the existing ones. We collected a small
dataset with this approach.
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Chapter 1

Introduction

Photos, taken from the inside of a cafe, car, or a shopping mall, may be contaminated
with an undesirable glass reflection. Although sometimes the reflection may be part
of the picture concept, it usually corrupts the image and thus is unpleasant. One
may want to obtain a clean background image by removing the reflection from the
photo. Restoring the reflection-free background layer - reflection removal - is an
active research topic in computer vision.

Although we can intuitively understand what a reflection is and imagine how a
clean background should look like, one may have a hard time mathematically defin-
ing what a "reflection" is. To reduce unclarity, we assume that statistics of the reflec-
tion and the background layers are profoundly different - their edges and textures
should rarely overlap.

Commonly, we formulate reflection removal tasks as a layer separation. Let I ∈
Rn×m×3 be the picture containing reflection. One can approximate I as I = B + R,
where B ∈ Rn×m×3 is the reflection-free background image, and R ∈ Rn×m×3 is
the reflection image. The goal is to recover the background layer B, given image I.
Without introducing any constraints or using any prior knowledge, the problem is
severely ill-posed, thus challenging.

Many recent works made attempts to leverage the layers statistics by introducing
additional images, such as video sequence [Wen et al., 2019] or flash-no flash image
pairs [Chang et al., 2020]. Nevertheless, solving the problem with a single image is
still challenging. Some use prior assumptions and handcrafted features [Yang et al.,
2019], thus are not robust to outlining changes in edges, colors, and textures. Other
methods rely on hardware, extracting extra layers, such as near-infrared light and
depth layer [Li and Lun, 2019].

Recently, it became common to use convolutional neural networks (CNN) to ex-
tract sophisticated features of the images. Attempts to retrieve reflection-free back-
ground using deep neural networks (DNN) were made [Chang et al., 2020; Fan et al.,
2019; Zhang, Ng, and Chen, 2018], showing remarkable results in a wide range of
images. In our experiments, we use state-of-the-art architectures, such as generative
adversarial networks (GANs) [Goodfellow, Bengio, and Courville, 2016], proved to
be effective in related image restoration tasks, to solve the reflection removal prob-
lem as a layer separation task.

Neural nets are extremely efficient in obtaining high-level statistics from data,
which makes their performance highly dependent on the quality of the data, see Fig-
ure 1.1. At best, the training data should be from the same domain as the data from
the problem we try to solve - in our case, both from the real world. Given the expen-
siveness and difficulty of obtaining real-world data for reflection removal, most of
the approaches rely on synthetic data. As the experiments show, methods trained on
such data poorly generalize to the real-world data, which makes the performance of
every approach highly limited to the training data. Some of the approaches [Zhang,
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FIGURE 1.1: This figure shows examples of the models trained on
synthetic data comparing synthetic test images and the real-world.
Although they work well on the synthetic data, they are highly lim-
ited in performance in the wild. At best, not detecting the reflection
and doing nothing significant to the picture, at worst, corrupting the

image.
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Ng, and Chen, 2018] used both the synthetic dataset and a real "mini" dataset to train
their models. Although they perform well on the similar real-world pictures as used
during training (the same glass, similar scenes, the same camera), they still fail on
arbitrary real-world images.

Several works [Zhang, Ng, and Chen, 2018; Wan et al., 2017; Han and Sim, 2019]
proposed methods for obtaining real-world data. In those works, authors used a
piece of glass, taking images with and without it, obtaining corrupted and reflection-
free ground truth pairs. In [Wan et al., 2017] and [Han and Sim, 2019], they also
placed an opaque black sheet behind the glass plane to get the ground truth re-
flection as well, forming triplets data samples. Partly, in [Wan et al., 2017], the au-
thors used postcards as a background and the reflection, leveraging the headache on
working with a big piece of glass, but limiting the dataset to a few different image
samples.

These approaches have some apparent limitations. First, one must physically
have a piece of glass and a place to put it, which limits the data diversity, as one can’t
remove the glass in any arbitrary cafe or a shopping mall. Next, the background
scene must be static, as the background changes during the time they put off the
glass can introduce severe noise to the data. We propose a data collection approach,
partly free of the mentioned limitations. Although having other constraints and
challenges, we believe it to be cheaper and more straightforward than the mentioned
ones.
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Chapter 2

Related Work

2.1 Neural Networks

Neural networks are biologically inspired algorithms, aiming to mimic the way hu-
mans learn. Many applications use feed-forward neural networks, designed to take
a fixed-size input (for example, biometric data) and give a fixed-size output (for
example, the probability of a heart attack). They usually consist of several layers.
Layers that are neither output nor input layers are called hidden layers. Neural
nets train, using the backpropagation algorithm, which updates the weights inside
layers, concerning the current prediction error. Algorithms, trained to extract use-
ful properties and features of the data are called unsupervised learning algorithms.
Training with data, where each example is associated with its label, is called super-
vised learning. Neural networks are particularly useful to extract non-trivial pat-
terns, especially when the problem is too hard to solve with handcrafted features.

FIGURE 2.1: Schematic picture of a neural net.

2.2 Convolutional Neural Networks

Convolutional Neural Networks [Lecun et al., 1998], or CNNs are algorithms that
aim to work with grid-like data, such as images. The foundation of CNNs lies in the
convolution operation; that is, convolutional networks are neural networks that use
convolution in place of general matrix multiplication in at least one of their layers
[Goodfellow, Bengio, and Courville, 2016].

Beside LeNet (Figure 2.2) [Lecun et al., 1998], there are few more CNN architec-
tures worth mentioning. AlexNet [Krizhevsky, Sutskever, and Hinton, 2012] had a
great success in expanding CNNs to a larger scale. As the authors pointed out in
their paper: "We trained one of the largest convolutional neural networks to date
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FIGURE 2.2: LeNet [Lecun et al., 1998] - a classic CNN architecture.
Created for the character recognition in the ’90s.

on the subsets of ImageNet." They were also one of the first to successfully imple-
ment nonlinear activation function - Rectified Linear Unit (ReLU). VGG [Simonyan
and Zisserman, 2014] has made a foundation for the next generation of "very deep"
Convolutional Networks with a "very small (3× 3) convolution filters", following
the tradition of using ReLUs from AlexNet. Feature maps from the VGG network
are widely used as the perceptual loss in the image reconstruction tasks [Johnson,
Alahi, and Li, 2016]. InceptionNet architecture [Szegedy et al., 2015] uses filers of
different sizes (1× 1), (3× 3) and (5× 5) to concatenate them in so-called "inception
blocks", allowing extracting features at different scales, keeping the computation
cost unchanged. ResNet [He et al., 2016] introduced "Shortcut Connections," which
act as networks inside a network, skipping one or more layers before computing the
output. They mainly addressed the solution to the problem of vanishing gradient,
when repeated multiplications diminish the value of the final gradient.

2.3 Generative Adversarial Networks

GANs are a particular type of network constructed to learn the distribution of the
data. They consist of two main parts: the Generator, which learns the data distri-
bution, and the Discriminator, trained to evaluate how precise the estimate of the
Generator is. They play minimax game in which the Generator tries to fool the Dis-
criminator with its generated data, and Discriminator tries to learn a function that
maximizes the distance between the generator’s fake data and the real one [Goodfel-
low, Bengio, and Courville, 2016]. Mathematically, the game can be expressed with
the following formula:

minGmaxDV(D, G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1− D(G(z)))] (2.1)

where V(D, G) is the value function of the minimax game, pdata is the data dis-
tribution, and pz is the model distribution.

2.4 Feature Pyramid Network

The Feature Pyramid Networks (FPNs) are general-purpose and originally were
used for object detection [Lin et al., 2016]. They are composed of bottom-up and
top-down pathways. The bottom-up pathway is a regular backbone convolutional
network (e.g., [Simonyan and Zisserman, 2014; Szegedy et al., 2015, He et al., 2016]),
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containing semantic information at different scales and serves for feature extrac-
tion. The top-down pathway hallucinates higher spatial resolution features. Feature
maps of the same spatial size from bottom-up and top-down pathways are merged
via lateral connections.

2.5 Reflection Removal

In this section, we first review the general approaches for the Single Image Reflection
Removal (SSIR) [Jin, Süsstrunk, and Favaro, 2018; Zhang, Ng, and Chen, 2018; Wen
et al., 2019; Li et al., 2019; Fan et al., 2019; Sun et al., 2019] and also those who use
some priors or constraints [Springer and Weiss, 2017; Zhang et al., 2019; Kim, Huo,
and Yoon, 2019; Chang et al., 2020; Liu et al., 2019; Wan et al., 2019]. Then, we discuss
the problem of generating synthetic data and attempts to make it more realistic, as
well as attempts to collect a reasonable amount the real-world data.

Many methods for image reflection removal approaches have been proposed,
based on different principles. Some attempts try to solve the most general task of
the reflection removal and take as input a single image only [Jin, Süsstrunk, and
Favaro, 2018; Zhang, Ng, and Chen, 2018; Wang, Li, and Yang, 2018; Wen et al.,
2019; Li et al., 2019; Fan et al., 2019; Sun et al., 2019].

Deep models were widely used to target the reflection removal problem. [Fan
et al., 2017] present a Cascaded Edge and Image Learning Network (CEILNet) that
can be used to solve different image restoration tasks such as layer separation (e.g.,
reflection removal) and image filtering (e.g., image smoothing). Perceptual loss
[Johnson, Alahi, and Li, 2016], which compares high-level features of the resulting
images, was successfully applied to improve the performance of the algorithms by
[Zhang, Ng, and Chen, 2018], along with adversarial loss, used to address unrealistic
color degradation and undesirable subtle residuals. [Fan et al., 2019] demonstrated
a novel training approach, while during the training, the model is fed with image
pairs, and is able to remove reflections only from a single input for evaluation.

Other approaches include unsupervised methods [Gandelsman, Shocher, and
Irani, 2018; Liu and Lu, 2019], those, which estimate image priors, such as depth
[Sun et al., 2019], physics of light [Kim, Huo, and Yoon, 2019], object semantics [Liu
et al., 2019]. Some require user interaction to guide the algorithms [Zhang et al., 2019;
Springer and Weiss, 2017], hardware to work with flash-no flash image pairs [Chang
et al., 2020]. Some address more specific problems, such as face reconstruction from
reflection [Wan et al., 2019].

In [Liu et al., 2020], authors use motion image pairs to get a better estimate of the
background behind the glass, plus also successfully building their model to remove
small obstructions. In [Alayrac et al., 2019], authors apply a controllable model, able
to adjust attention for the two layers, recovering whether reflection or background,
from a video sequence.

The general task of SIRR is still challenging, despite some impressive progress in
recent research. The issue lays on the foundation of the assumption that the reflec-
tion and the background layer have very different statistics, e.g., edges of both layers
rarely overlap, textures rarely coincide. For instance, they make and the assumption
that the reflection layer is blurred, as it is usually out of the camera focus. These do
not always take place in real-world images.
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FIGURE 2.3: Real data collection setup and captured images by
[Zhang, Ng, and Chen, 2018]. They capture two images with and
without the glass with same camera settings in a static scene. Right
column from top to bottom: captured image with reflection and the

ground-truth transmission image T.

2.5.1 Real World Data

Collecting real-world data is expensive; thus, no reasonably big real dataset exists.
Such a dataset might be collected, using a piece of glass, taking two images with
and without it with fixed camera parameters. This approach is limited to only static
scenes (difficult to collect pictures with people, clouds, animals, grass), with reason-
able noise otherwise. Moreover, the refraction effect of the glass usually produces
some noise. [Zhang, Ng, and Chen, 2018] collected a dataset with 110 image pairs:
image with the glass and its corresponding ground-truth reflection-free image (see
examples on the Figure 2.3).

Collecting the ground-truth reflection layer is challenging too. One may put a
black, opaque object, behind the glass and obtain the reflection. [Wan et al., 2017]
made a collection SIR2 (Single Image Reflection Removal) of three different datasets
with a total of 500 image triplets. Postcard Dataset, where both reflection and trans-
mission are postcards (200 samples), Solid Object Dataset, taken in lab conditions
with static objects such as toys, mugs, fruits (200 samples), and Wild Dataset, taken
outside with natural environment illumination (100 samples). Although the Post-
card dataset contains 200 image triplets, it should be noted that the authors used
only 5 different postcards (combining them to obtain 20 combinations), plus using 10
different conditions, thus obtaining 200 different, but not diverse triplets. They used
types of glass with different thickness (3mm, 5mm and 10mm). They used seven
different aperture sizes and choose seven different exposure times, corresponding
to the seven aperture settings to make the brightness of each picture approximately
constant [Wan et al., 2017]. The same is true for the Solid dataset, which contains 20
unique samples, plus 10 different conditions, resulting in 200 samples. The ground-
truth reflection is rarely a sharp image as it is usually out of camera focus. Some
examples of SIR2 are in Figure 2.4.
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FIGURE 2.4: Real-world data triplets collected by [Wan et al., 2017].
From top to bottom rows: I - images with reflection, B - ground-truth

background images, R - ground-truth reflection images.

2.5.2 Synthetic Data

As a physical phenomenon, reflection light always adds up to the transmission light
in a formed image (Figure 2.5). Thus, reflection synthesis is an additive process,
where we add a reflection layer to the background layer, with other processing. Triv-
ially, the blended image can be computed as a linear combination of corresponding
pixels of a background layer and reflection layer: I = B+ αR. However, images syn-
thesized in this manner rarely look realistically; thus, some processing is required.

FIGURE 2.5: Physical model of image formation. Here the light from
the reflected object (star) reflects twice, projecting with different in-
tensities and different locations. This effect is mostly visible with a
thick glass. For simplicity, lens models are omitted in the scheme.
Sometimes reflection objects are out of the lens focus. causing addi-

tional reflection blurriness. Figure inspired by [Wan et al., 2017].

In [Zhang, Ng, and Chen, 2018] authors propose several processing steps to ob-
tain closer images to those we observe in real life. They collected a dataset of 13700
image pairs from Flickr [Flickr 2020] ether one outdoor, one indoor, or vice versa.
The visualization of the blending approach is shown in Figure 2.6.

Steps to reproduce (these details are extracted from the official implementation
of the [Zhang, Ng, and Chen, 2018] paper):

1. Pick any two images for the reflection (R) and the background (B), normalized
to [0, 1]
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2. Apply Gaussian blur on the reflection:

Rb = G(R2.2, k× k, ω), where
ω ∈ [1; 5]
k = b2× d2×ωe+ 1c = kernel size

3. Apply random darkness for each channel separately

Rbd = Rb − (µ− 1)× α1, where
α1 ∈ [1.08; 1.18]
µ = max(1, mean{R,G,B}({Rb + T2.2} > 1))

4. Apply Gaussian mask M with a random center to simulate vignette

Rbdm = Rbd ×M

5. Obtain blended Image with α2 ∈ [0.8; 1]

I = 2.2
√

Rbdm + B2.2 × α2

6. Clip∗ {I > 1} := 1; {I < 0} := 0

∗ The reflection image usually gets dark enough so that clipping rarely gives
any effect

FIGURE 2.6: Synthesis of images with reflection by [Zhang, Ng, and
Chen, 2018]. For the notation details, please refer to the numeric list

above.

Name Real Has GT reflection Outdoor # of samples
Zhang synth - + 13700
Zhang real + - mixed 110
SIR2 Postcard + + - 200
SIR2 Solid + + - 200
SIR2 Wild + + + 100

TABLE 2.1: Summary of the reflection removal datasets used in this
work.
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Chapter 3

Proposed Approach

The main goal of our research is to create an efficient pipeline to separate the back-
ground layer of the image from the reflection layer. Given the image I, we want to
get the background B without any prior knowledge about the nature of the reflection
R. Also, we do experiments on the problem of bright spots removal, where reflec-
tion occupies roughly 10% of the image (e.g., lamp reflection), for which we created
a real-world dataset.

3.1 Data

3.1.1 Collecting Real-World Data

This section describes our approach to acquiring real-world data. The source image
is the photo from which the reflection should be removed; the reference image is a
supporting photo to extract the ground-truth behind the bright spot; the recovered
image is the estimated ground-truth.

The background is assumed to be static and laying on one plane. The source im-
age is taken with the reflection present; the reference image is taken by a slight side
movement of the camera, such that the background behind the reflection reveals.
However the bright spots are not necessary to disappear from the reference image
completely. Ideally, one should use a stereo camera, taking both the source and the
reference images at once, assuming the sufficient distance between two cameras.
Then, taking similar key points from both images, the homography of the back-
ground of the images is estimated. The reference image is transformed to match
the source image’s background homography. Taking into account that reflection is
guaranteed to add illumination to the background, the pixel-wise minimum of both
images gives us the estimation of the ground-truth image.

The challenges we faced while obtaining the data:

• Obstacles between background plane and window (trees, people, plants), which
can cause poor homography estimation (Figure 3.4).

• The background is not a perfect plane, especially noticeable if it’s located rela-
tively close to the camera (Figure 3.4, row 2).

• Algorithm could wrongly select parts of a reflection as the key points (possible
to overcome with multiple runs) (Figure 3.4, row 3).

• Bright spots overlap in source and transformed reference image if the camera
was not moved enough to the side (Figure 3.4, row 4).

• Non-static background, such as clouds, nature, people, vehicles (Figure 3.4,
row 5).
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• Glass reflections from windows, belonging to the background are located on a
very different plane (although we don’t want to remove or change them).

• One has to walk into facilities and ask managers for permission to "take a pic-
ture of your window because I’m a scientist and need it for my research." I
am genuinely grateful to all the waiters and waitresses who didn’t kick me
out and didn’t call the police while suspiciously looking at what I am doing in
their restaurant.

FIGURE 3.1: Recovering images, using homography estimation. Pic-
ture 3 shows matched keypoints, connected with blue strings, and
the plane that corresponds to the source image’s patch to be recov-
ered, with the red quadrangle. For the visualization, we reduced the
number of strings to 100. In this case, the real number was 2000. Pic-
ture 5 shows the absolute pixel-wise difference of the source image
and transformed reference image. Blue color notes a small difference,
where red and yellow shows a big difference. At best, in picture 7, all
the pixels, but the reflection part should be blue. Because most of the
pixels outside the reflection are blue, we consider the recovery to be

successful
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FIGURE 3.2: Real data examples collected using our approach. The
source image is taken with the reflection present; the reference image
is taken by a slight side movement of the camera, such that the back-
ground behind the reflection reveals. The background is restored by
taking a pixel-wise minimum from the source image and transformed

reference image.
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FIGURE 3.3: This Figure follows Figure 3.2. Real data examples col-
lected using our approach. The second sample was taken by opening
an automatic glass door, the last one by switching off the lamp. Al-
though the camera remained static in the last two examples, reference
image transformation was still applied, as it showed better accuracy

on the pixel level.
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1. Trees, the fence, and the hill are located on different planes, leading to failed
homography estimation. Here the key points were selected from the fence; thus it’s

the least damaged from the "recovering" .

2. The background building is located too close to the camera, diminishing the
assumption of the planar background.

3. As the reflection occupies too much space, the algorithm chose the bright spots
as the key points, leading to a false homography estimation.

4. The movement of the camera to the right was not enough to fully reveal the GT
background; thus part of a bright spot is present on the recovered image.

5. Kafka’s head moved during the procedure, breaking the assumption that the
background is static

FIGURE 3.4: Different failures during the recovering process of the
reflection-free images. The last column shows the absolute pixel-wise

difference between the source and the recovered images.
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3.1.2 Bright Spots Data Synthesis

FIGURE 3.5: Synthetic images with bright spots reflection, generated
with Blender [Community, 2018].

Aiming to simulate real-world indoor light, we generated data using Blender [Com-
munity, 2018] glass reflection simulation algorithm, which calculates a linear combi-
nation of background pictures and reflection layer. We also add minor light noise to
the blended image. Background pictures are from [Lin et al., 2014] dataset. Examples
are shown on the Figure 3.5.

3.2 Network Architecture

FIGURE 3.6: DeblurGAN-v2 pipeline architecture [Kupyn et al.,
2019]. The setting consists of a feature pyramid network (FPN) in
the encoder-decoder style. The input image is added to the output

image to make the learning focus on the residual.

We use DeblurGAN-v2 [Kupyn et al., 2019] architecture in our model: Figure 3.6,
which is proven to work well on the similar image restoration domain - deblurring.
The setting consists of a feature pyramid network (FPN) in the encoder-decoder
style, where the input shape is equal to the output shape. The encoder backbone
contains features at different levels; we output five of them to be upsampled and
concatenated with the corresponding decoder layers. Additionally, two upsampling
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and convolutional layers are added afterward to restore the original image size.
We add the input to the output image to make the learning focus on the residual.
Inception-ResNet-v2 [Szegedy et al., 2017] is used for the backbone, although one
can freely replace it with any other efficient network.

3.3 Loss Functions

Perceptual loss As proposed in [Kupyn et al., 2019] we use perceptual loss (Lpercep),
calculating the Euclidean distance between VGG19 [Simonyan and Zisserman, 2014]
conv_3_3 feature maps. In the experiments we additionally propose to replace sin-
gle feature map of VGG19 with weighted sum of multiple: conv_1_2, conv_2_2,
conv_3_2, conv_4_2, and conv_5_2, as proposed in [Zhang, Ng, and Chen, 2018].
However, later evaluation showed weaker performance of such loss. We also se-
lected mean-square-error (MSE) loss (Lmse) in advantage to other "classical" L1 dis-
tance (MAE).

Adversarial loss PatchGAN, as proposed in [Isola et al., 2016], operates on im-
age patches 70× 70, and is proven to make sharper results, than a standard global
discriminator. To take advantage of both global and patch discriminators, we use
both in our complete loss.

The overall loss is formulated as the following:

L = λadv × Ladv + λpercep × Lpercep + λmse × Lmse (3.1)

Where λ notes weights to balance between losses importance.
In the initial experiments, we use the same loss function as proposed by [Kupyn

et al., 2019]. For this specific setup, perceptual loss used for reflection removal by
[Zhang, Ng, and Chen, 2018] showed lower performance than the perceptual loss
used for deblurring by [Kupyn et al., 2019], according to our evaluation.

3.3.1 Patched loss

In the bright spots removal problem, most of the pixels are unaffected, or infinites-
imally affected by the reflection. Taking this into account, one can crop the bright
spots on an image on several patches. Given that the reflection-free areas should be
unchanged by the network, one may want to "amplify" the loss function to the ar-
eas with bright spots. While having synthetic data with the ground-truth reflection
layer, localization and cropping bright spots or computing bright spots mask is a
trivial task. Patched loss is computed as an average loss of each bright spots patch,
weighted and added to the "global" loss. Steps to compute the Patched loss are the
following:

1. Given ground truth reflection layer, compute bright spots centroids, using con-
volutions

2. Crop each bright spot by the fix-sized square (in our experiments, we empiri-
cally set the size to (32× 32))

3. Calculate the average loss for all patches

4. Multiply by coefficients and add to the "global" loss function
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Chapter 4

Experiments

4.1 Metrics

Intuitively, we want to measure the statistics of the two images to conclude how
perceptually close they are to each other. Structural similarity (SSIM) index and
Peak signal-to-noise ratio (PSNR) are standard metrics in this domain. Although it
is not trivial to formalize the sense of human perception, and they both are not the
best perception criteria, they are widely used to compare approaches to the state-of-
the-art.

SSIM index considers changes in structural information, luminance and contrast
between image patches x and y [Wang et al., 2004]:

SSIM(x, y) = [l(x, y)]α × [c(x, y)]β × [s(x, y)]γ, where (4.1)

l(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1
, (4.2)

c(x, y) =
σxσy

σ2
x + σ2

y + C2
, (4.3)

s(x, y) =
σxy + C3

σxσy + C3
, (4.4)

where µ, σ and σxy are the mean, standard deviation and covariance of the image
patches respectively, C1, C2, C3 > 0 are stabilizing constants to prevent the division
when the denominator is approaching zero, and α, β, γ > 0 are weights to control the
importance of the three factors. The final value is calculated as a weighted average
index of patches, taken by a sliding window. SSIM reaches the maximum value of 1
for two identical images and 0 for images with no structural similarity.

PSNR, given images x and y, computes with the following formula:

PSNR(x, y) = 10 log10
MAX2

x√
MSE

(4.5)

where MAXx is the maximum possible intensity value and MSE stands for the
mean-square-error between two images of shape M× N:

MSE(x, y) =
1

MN

M
Σ

i=1

N
Σ

j=1
(xij − yij)

2 (4.6)

PSNR is measured in decibels (dB), and MAXx is 255 for images, encoded with
8 bits. For color images (e.g., RGB), the value is the same, except that MSE is the
sum over all squared value differences additionally divided by three. The higher is
PSNR, the higher is the similarity between two images.
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4.2 Training and implementation details

All of the models are implemented using PyTorch [PyTorch]. The model was trained
on NVIDIA GeForce GTX 1080 Ti. The images were reshaped to 256× 256. We used
Adam optimizer [Kingma and Ba, 2014]. The learning rate for the generator is 10−4

and remains unchanged. After 50 epochs, we linearly decrease the learning rate to
10−7. We train with the batch size 1. The SSIM index is used from the skimage [Walt
et al., 2014] library.

4.3 SIRR

In [Kupyn et al., 2019], authors propose to measure the perceptual loss by calculating
the Euclidean distance between VGG19 [Simonyan and Zisserman, 2014] conv_3_3
feature maps to solve the deblurring problem. In contrast, [Zhang, Ng, and Chen,
2018] suggests the distance between the weighted sum of several VGG19 feature
maps (conv_1_2, conv_2_2, conv_3_2, conv_4_2, and conv_5_2) to extract features at
different scales and solve the reflection removal problem. We experimented with
replacing default perceptual loss in the DeblurGAN-v2 model with loss proposed
by [Zhang, Ng, and Chen, 2018]. However, our evaluation showed weaker perfor-
mance of such setup, see Table 4.1.

loss train validation

λadv Lpercep SSIM PSNR SSIM PSNR
0.001 Kupyn 0.91 27.35 0.909 26.85
0 Kupyn 0.9 26.9 0.906 26.17
0.001 Zhang 0.891 26.5 0.904 26.53
0 Zhang 0.895 26.47 0.875 25.83

TABLE 4.1: Choosing perceptual loss between [Zhang, Ng, and Chen,
2018] and [Kupyn et al., 2019], trained on synthetic data by [Zhang,
Ng, and Chen, 2018]. λadv is weighting the Adversarial loss value.

Best results are bold.

As shown in Table 4.2, it is hard and non-trivial on some metrics to outperform
even a baseline approach with particular real-world data.

Loss CEILNet SIR2 Wild SIR2 Solid SIR2 Postcard

Lpercep, λadv SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR
Baseline 0.75 14.0 0.898 19.02 0.88 23.62 0.87 20.93
Kupyn, 0.001 0.778 15.534 0.865 23.721 0.878 23.17 0.894 22.225
Kupyn, 0 0.786 15.865 0.863 23.907 0.88 23.44 0.895 22.988
Zhang, 0.001 0.769 15.582 0.857 23.793 0.875 23.688 0.880 23.332
Zhang., 0 0.778 16.014 0.845 23.614 0.856 23.186 0.878 23.328

TABLE 4.2: Choosing perceptual loss between [Zhang, Ng, and Chen,
2018] and [Kupyn et al., 2019] on real data with the same setup as in
[4.1]. Additionally, we provide a baseline, where the target image is
the same as the input image. Best results are bold, results worse than

the baseline are red.
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FIGURE 4.1: Examples of our model performing on synthetic data.
Order: input image, predicted image, ground-truth image
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.

.

FIGURE 4.2: Examples of our model performing on SIR2 real data.
Order: input image, predicted image, ground-truth image.
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From the examples in Figure 4.2, we assume that in most of the cases, the model
managed to detect the reflection layer and not mess up the background. Our further
experiments stress this assumption by providing the model with the ground-truth
reflection layer mask in the bright spots removal problem. Table 4.3 shows perfor-
mance of our approach on SIR2 dataset

Methods SIR2Total SIR2Postcard SIR2Solid SIR2Wild

SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR
Baseline 0.88 22.72 0.87 20.93 0.88 23.62 0.891 25.89
Zhang 0.837 19.23 0.797 15.80 0.88 22.14 0.831 21.15
Ours 0.884 23.3 0.895 22.988 0.88 23.44 0.863 23.91
Relative +5.6% +21.1% +12.2% +45.4% 0 +5.8% +3.8% +13%

TABLE 4.3: Comparing our model with model by [Zhang, Ng, and
Chen, 2018] trained on the same data. Best results are bold, results
worse than the baseline are red. Baseline measures accuracy when
the input and the output images are the same. Relative change for

ours vs Zhang.

4.4 Bright Spots Removal

Standard setup Knowing that the model should not change most of the pixels in
data instances, we observed inefficiency of SSIM and PSNR metrics, as returning
the input image gives nearly the same score as the maximum possible. For these
experiments, the visual evaluation was done. Objective evaluation for this problem
is still an open question. Figure 4.3 shows the results with the same model setup, as
in earlier experiments.

Four channel input To address the hypothesis of the model successfully detect-
ing the reflection layer, we introduce a four-channel input to the network. The first
three channels are normal RGB channels, and the 4’th channel is a binary mask of
the reflection, where pixels have a value of 1 when belonging to the strong reflection
patch and 0 otherwise. The first layer of weights of the pre-trained network is copied
to a 4’th input layer.

Varying Patched Loss weights Overall, the patched loss has the same formula
as the "global loss," but computed for patches. For the faster search, MSE and Per-
ceptual loss share the same weight. Worth to mention that by introducing such loss,
the model sometimes produces artifacts in the reflection-free part of an image, see
Figure 4.6.
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FIGURE 4.3: Bright Spots Removal with global loss function. From
left to right: input image, bright spots mask, prediction, ground-
truth. The mask is provided for visualization purpose only and is
not used for training in this setup. The last row shows example of
the input without any reflection, confirming that the model is able to
detect and not damage the background layer. Zoom in for a better

view.
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FIGURE 4.4: Results with for 4-channels input with patched loss.
Setup with coefficient for the MSE and perceptual losses equal to 1,
and coefficient for the adversarial loss equal to 1000 showed the most

eye-pleasing results
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FIGURE 4.5: Detailed view of the models output from Figure 4.4. First
column - input image, second column - prediction.
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FIGURE 4.6: Artifacts caused by adding the patched loss. Likely, it is
caused by the nature of the loss: we amplify penalty for parts with
reflection, so the model "pays less attention" to the reflection-free part

of the image
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Chapter 5

Conclusion

We proposed a competitive approach for the SIRR problem, using feature pyramid
and generative adversarial networks. The experiments showed that our approach
generalizes better on the real-world data that the SOTA, improving SSIM by 5.6%
and PSNR by 21.1%. We proposed a novel and cheaper procedure for collecting real-
world data and collected samples with this approach. We addressed the problem of
bright spots removal and introduced a promising approach for solving it, though
many improvements and new experiments can be done further.
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