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“Push yourself again and again. Don’t give an inch until the final buzzer sounds.”

Larry Bird
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Abstract

Action detection on a team sport is a challenging task, while sports analysis is
on-demand and in high interest. A great number of researchers try to make analysis
automated. Despite enormous success in image classification using deep learning,
action recognition in the video remains a difficult task, and at present no good solu-
tion exists in terms of accuracy and speed. The main challenge in action recognition
is to design architecture that will capture both spatial and temporal information. In
team sports action analysis, the serious challenges are that we have multiple play-
ers performing simultaneously different actions, the players are constantly moving,
there are occlusions, the camera itself is moving. The proposed method is able to si-
multaneously recognize the actions of multiple players using pose estimation, track-
ing, and LSTM for action classification.
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Chapter 1

Introduction

In today’s world, we can use technological advancement to help people with their
work or at least make their life easier. For example, it is hard to compare players
on a basketball match, because we do not have a single value or some small set of
metrics that can be taken quickly from the video. Also, it is crucial to know that the
player is improving his technique or understand what needs to be improved. The
solution to such a problem is rather complicated; that is why we choose to work
on one part, action detection for each player. We have a significant amount of data
available; there are a lot of basketball games in proper resolution on YouTube. It is
crucial to have a good dataset, so the model will learn the right patterns and give
the right prediction despite having a challenging task.

Action detection in a team sport is an exciting and challenging topic. Some chal-
lenges, we have to face:

• there are several objects of interest, which performing different activities as
running, walking, dribbling (running and bouncing the ball), etc.

• the actions are pretty similar: walking, running, etc and person’s poses do not
differ much on these activities.

• the camera movements: the person can see that the camera is moving, while
our approach does not have this information, this may be added in further
work.

• there are two teams, and all team members have the same uniform (this is a
challenge for player tracking)

• they often collide (for example before making the shot, while the shot class
is crucial to distinguish) that it is nearly impossible to distinguish the whole
body.

• there may be other people on background; their poses are not interesting for
us.

What is easier in our task in contrast to the action detection in general:

• the environment is similar through different videos

• we have a smaller amount of classes to distinguish. We have six categories,
while UCF101 [25] dataset has 101 classes, MultiTHUMOS [33] has 65 classes.

Comparing to the typical action recognition task that works on the level of se-
quences of entire video frames, our solution should work on the level of moving
bounding boxes, without using RGB frames.
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Chapter 2

Background

2.1 MLP

Multilayer Perceptron is a deep artificial neural network, that consists of only fully
connected layers. The fully connected layer is a layer, in which all previous layer
neurons’ are connected with some weight wi to all next layer’s neurons and there
are not any connections in the layer. There need to be three or more layers.

FIGURE 2.1: MLP architecture [30]

FIGURE 2.2: A mathematical model of neuron [30]

The one neuron takes as input xi multiply it by weights wi, add bias b, summarize
all. The last step is sigmoid activation to give prediction y.
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y = σ(∑
i
(wixi) + b)

The main drawbacks are:

• with a growing number of neurons, the number of weights grows very fast;

• vanishing gradient;

• slow convergence;

• falling into a local minimum.

2.2 RNN

Recurrent Neural Network is used to process sequences of input data and output
depends on both current input and state, which contains the memory of past inputs.
In traditional Neural Networks, all the inputs are independent of each other. RNN
is similar to human’s memory, as we read we understand sentence based on words
we read and recognise.

Another way of thinking about RNN is to understand it as a looping layer or a se-
quence of NNs. This architecture allows old information to be remembered through
the process of learning new data.

FIGURE 2.3: RNN architecture [29]

We can see that structure of RNN is rather simple. The output ht is a combination
of the information from previous cell ht−1 (cell is one piece of the chain) and new
data xt.

ht = tanh(W · [ht−1, xt] + b)

2.3 LSTM

Long Short Term Memory (LSTM) is a Recurrent Neural Network (RNN) architec-
ture that is capable of learning long-term dependencies [10]. LSTM is widely used
in different areas of research, where we can find the sequence, as the action is some
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sequence of frames or sequence of words in a sentence.

The RNN has vanishing gradient problem for long input sequences. RNN is un-
rolled into a feed-forward net with multiple layers (one layer for a one-time step).
When the gradient is passed back multiple times for each time step, it tends to van-
ish (sometimes explode), the same way as it happens in the ordinary neural network
with a large number of layers. LSTM solves this problem having three gates.

LSTM has a chain structure as all RNN models. The most interesting about this
model is that it has various gates, which has a different purpose. The gates are NNs
that decide which information is important and needed to be passed to the cell, and
which is not – so, we can get rid of it. The LSTM has two types of memories: cell
state Ct which acts as long term memory, and hidden state ht which acts as working
memory (a state at current time step). Unlike LSTM, RNN has just hidden state.

FIGURE 2.4: LSTM architecture [29]

The first gate (it is located in the bottom left) is Forget gate, here we choose which
part of the information we need to ignore – forget from the previous hidden state
ht−1 (a bottom line from the previous cell), based on input xt. We use the sigmoid
here to be able to get rid of the part of the data.

ft = σ(W f · [ht−1, xt] + b f )

The next gate is Input gate that chooses, what we need to update in a cell state Ct,
knowing new input information xt. The output after the sigmoid is it. The sigmoid
helps to carry only important values. While using tanh we rearrange values in -1 to
1 range to show the importance of each value.

it = σ(Wi · [ht−1, xt] + bi)

C̃t = tanh (WC · [ht−1, xt] + bC)

The cell state is a sum of the previous cell state Ct−1 multiplied by output from
Forget gate ft, then added output of Input gate it ∗ C̃t, the values that are scaled
based on importance. The cell state Ct is the upper line that goes into the next cell.

Ct = ft ∗ Ct−1 + it ∗ C̃t

The last gate is Output gate, where we choose the information that hidden state
should hold ht, as well as, the output from our cell ht (the arrow out of the cell
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pointing up). Here we choose only relevant values to output based on the previous
hidden state ht−1 and the input xt.

ot = σ(Wo · [ht−1, xt] + bo)

ht = ot ∗ tanh (Ct)

2.4 BiLSTM

Bidirectional Long Short Term Memory [8] is a combination of two LSTMs, where
one is taking information as it is (from start), while other – start from the sequence’s
end. This way model gets a better understanding of the data. It was proved that
they outperform unidirectional LSTM in many research directions. The main dis-
advantage of such an approach, the whole sequence is needed to be passed to the
model at the start.

FIGURE 2.5: BiLSTM architecture [3]

The output yt is the combination of hidden states of forward
−→
ht and backward

←−
ht models. The combination function may be concatenation, summation, multipli-
cation or taking average.

yt = σ(
−→
ht ,
←−
ht )

2.5 Human Pose Estimation

Human Pose Estimation gives the coordinates of the body joints of one or multiple
people. It is widely used in action detection, animation tasks.

A more challenging task is the multi-person pose estimation, that can be solved
with two approaches:
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• top-down approach: try to detect people on video and then find the pose.

• bottom-up approach: find all body’s parts and then connect them to find the
pose.

It is hard to measure which approach is better as it mainly depends on detection
function and grouping algorithm, that was chosen.
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Chapter 3

Related work

Action detection task has a great variety of approaches. Some of them use differ-
ent CNN models [11, 16, 28, 35], while others use RNN models [1, 24, 27]. Also,
there exist solutions that use the advantage of combining both approaches [4, 18, 20,
32]. [24] approach model consists of the main LSTM network, the spatial attention
subnetwork, and the temporal attention subnetwork. The network automatically
chooses crucial joints between the frames using a spatial attention model, then it
gives importance score to the frames using the temporal attention subnetwork. An
action prediction goes from combining outputs of main LSTM network and the tem-
poral attention subnetwork. The accuracy on NTU dataset [23] with CrossSubject is
73.4% and with Cross-View is 81.2%.

3.1 Pose-Based Action Recognition

Some approaches rely on a person’s pose directly [1, 11, 16], while other builds
CNN for detecting the pose [4, 6]. [16] is one of the small amount approaches that
meet real-time restriction, as they use Yolo v3 [21] for people detection then pose is
estimated using optical flow [31], for action classification is used simple CNN.

The [1] approach meets real-time performance. They propose two pipelines
ActionXPose-basic and ActionXPose-advanced. The first step of both approaches
is dealing with missed data. If the pose doesn’t have enough landmarks, it will be
discarded. Some landmarks can be estimated by knowing the location of other land-
marks. Nest step is pose centring and scaling, which gives more robust pose rep-
resentation. In the advanced approach are additional steps as spatial information
analysis, which learns generalised poses from training data, temporal information
analysis, which looks for changes in the pose through the time, Spatio-temporal em-
bedding allows to measure the distance between generalised poses and the one in
the input for each frame. Final sequence classification is done by MLSTMFCN [14].
They achieve 99.04% accuracy on KTH dataset [22].

[4] get main information about human’s pose from CNN, after that they group
semantically-related joints, this way they try to get richer information about the
pose. For each body part, they use LSTM hidden state and CNN predictions to
get the pose’s features. Then, they fuse the information from all the body parts and
give it to LSTM, which predicts action. The big benefit of this approach is that test
data can be without annotated joints, as model learned robust features for all body
parts.
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3.2 3D Convolutional Neural Networks

3D Convolutional Neural Networks [26] are designed to work on video-level, not
on frame-level. As input it gets volume – the video, the output is a volume, as well.
A similar approach in this direction was done on the base of Resnet architecture
[9]. The main drawbacks of these methods are a large number of parameters, they
tend to overfit; expensive an interference time. The accuracy is lower than in other
approaches.

3.3 Multi-stream Fusion

The multi-stream CNN [7] is used for such task [11, 18, 28, 35], here they extract
visual features using RGB and motion features using optical flow. In [11] approach
in addition to stated above features, they use preprocessed pose prediction, which
goes into the proposed 3D temporal pose CNN. The next step is a multi-dimensional
fusion, which allows taking advantage of both 2D and 3D CNN feature maps. They
get awesome results on PennAction dataset [34] the accuracy is 97.6%.

[28] multi-stream CNN consist of three two-stream networks, the first network
input is bounding box of human; the second region is selected from the first one
using their motion saliency measure; the third input is entire RGB image. From these
three regions, three motions streams are formulated. After extracting descriptors
from streams they are fused for the action recognition task.

3.4 Action detection in team sports

Action recognition in videos with many people moving is a challenging task. As
different players perform different actions and in some sports, the players and the
ball are very fast, so they may be blurry. It is common that the camera is moving
through the video; it sometimes may zoom in or out. There exist action detection re-
searches for different sports like hockey [6], football [27], basketball [20], etc. Some
approaches have a goal to distinguish both sports actions and everyday actions [18,
32].

[6] approach tracks player and crop a frame with the player in centre, then it
used the stacked hourglass network [17] to get a set of heatmaps of body parts that
can be combined to general pose. Next component is feature transformer that gets
information from heatmaps and generates a better pose representation. It helps to
distinguish actions based on the pose. The action is predicted by six fully connected
layers, the number of layers, as well as, number of neurons are chosen empirically.
Hockey is a fast game and it has a lot of moments when people are occluded by other
people. Another difficulty is that people are wearing protective equipment, which
makes pose estimation task even more challenging. This approach has an accuracy
of 65.47% for four classes.

The [18] approach pays attention to the sequence of events that always happen
in some order. They build a pipeline that allows learning temporal action relations
through the video. From each frame, they extract information – action probability,
using CNN. The next step is the temporal structure filter, which is proposed in this
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paper, that gives the information where in the video is relevant segments for frame-
level event detection. They learn a set of temporal structure filters, that is smaller
than the number of classes, as they assume that some classes will share same filters
or use a combination of given filters. Then, using information from several frames
(the super-event representation) and data from CNN, they predict the class for each
frame. This approach was SoTA; on MultiTHUMOS [33] mAP is 36.4%.

The [19] approach present new Temporal Gaussian Mixture (TGM) layer. They
use it on top of sequence representation. This layer allows learning features while
having a smaller number of teachable parameters. Their model doesn’t have a sep-
arate set of Gaussian distributions per class, instead, it has a combination of Gaus-
sians. The approach is SoTA, while using super-events and TGM layers and has
46.4% accuracy.

In [20], they try to find the key person and classify action, while in this work we
will mainly focus on predicting action for each player. To represent each frame they
use the activation of the last fully connected layer of the Inception7 network; features
that describe a person’s appearance and spatial information about the player. The
event classification is done by BLSTM in combination with LSTM. Each player’s
track is an input to separate BLSTMtrack, hidden state of which is used in main
LSTM, which represent the state of the event. Also, there is another BLSTM f rame that
extract information from the whole frame and output the data to the main LSTM.
The attention model is using BLSTMtrack’s hidden state to find an important player.
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Chapter 4

Recognition Pipeline

There are a vast majority of approaches, a big amount of them need huge datasets
and a lot of computation resources. Our approach is simple, at the same time, it is
efficient.

FIGURE 4.1: The model’s prediction for one frame

The result of our work is shown on Figure 4.1. In other words, the result of our
approach is the model, that is able to predict action for each player.

4.1 Pose prediction

For Action Recognition we need to have the sequences of player’s poses through
some amount of time. We selected 17 as the length of the sequence, which corre-
sponds to the time duration of 0.68 sec (25 FPS) or 0.57 sec (30 FPS). We have found
that this duration should be sufficient to recognise player actions in basketball, that
is a fast and dynamic game, even though a player may change its action during the
1-second interval (e.g. RUN -> RECEIVE_BALL -> WALK). The prediction of LSTM
corresponds to the centre element of the sequence, that is why we have 8 frames be-
fore the centre element, and 8 frames after. We used Alpha pose [5] for pose predic-
tion and then SORT tracker [2] to distinguish players one from another. The Alpha
pose works well on videos with many people, but it doesn’t track people through
the frames. SORT is a fast and elegant way to track players through the video.
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FIGURE 4.2: Alpha pose pipeline [5]

4.1.1 Alpha pose

We use Alpha pose [5] for pose estimation. The alpha pose is a framework, that
predicts human’s pose and outputs the key points of main joints (17 key points). It
is a top-down method (find the person and predict the pose), the accuracy of which
highly depend on people detector.

FIGURE 4.3: The problem that Alpha pose is solving [5]
The problem of low confidence in bounding boxes (red - ground truth, yellow - prediction).

They focus on improving the search of bounding boxes, using Symmetric Spatial
Transformer Network (SSTN) attached to Single-Person Pose Estimator (SPPE) [17].
Spatial Transformer Network (STN) [12] helps to find high-quality features from
bounding boxes predicted by SPPE.

Some predicted poses may not be correct, to automatically distinguish them the
researches use pose non-maximum suppression (NMS). Firstly, most confident poses
are selected, others that are similar to most confidence are also accepted.

4.1.2 SORT

SORT [2] is real-time multiple object tracker, as input goes bounding boxes for dif-
ferent frames, as output we get the id for each bounding box. This tracker follows
tracking by detection paradigm. It uses only bounding boxes, no appearance infor-
mation is used.
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The model they constructed uses Kalman Filter [13] and Hungarian method
[15], as both are extremely efficient. They construct a linear constant velocity model,
that approximate the object’s movement through the frames, this model is not af-
fected by other objects and camera movement. The object state is described by this
formula:

x = [u, v, s, r, u̇, v̇, ṡ]T

Where u and v are the horizontal and vertical location of the object’s centre. Vari-
ables s and r are area (scale) of the object and aspect ratio of the object. When we
find a detection that corresponds to the target, we update the state, using a Kalman
filter [13] for finding optimal velocity parameters. The next step is finding bound-
ing boxes with maximum IoU over the neighbour frames, using Hungarian method
[15]. Then ids for each bounding box are assigned.

4.2 Action Recognition

FIGURE 4.4: BiLSTM pipeline

As was stated before, we use pose estimation and multiple object tracker, from
which we get sequences of key point vectors for some time. This player track will be
an input into BiLSTM or another model, which will predict action for one person.

Our model should learn distinguishable features for each class, even if our classes
are similar and we do not have many examples. About these challenges, we will talk
in the next sections.
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Chapter 5

Dataset

We create our own dataset of basketball match videos with good resolution, choose
the part of the game, where we can distinguish a player’s action. We use 6 classes:
RECEIVE_BALL, THROW (the ball), DRIBBLE (bouncing the ball), RUN, WALK,
NO_ACTION (another action from all stated before). We use 37 videos for data
annotation, 11 from them are taken from Youtube, rest from another source. We
prepare video before annotating. We run Alpha pose for each frame. The next step
is to give all bounding boxes from different frames to SORT tracker and get the
player’s track. It is important to select an action in the middle, as for example for
RECEIVE_BALL the model will learn arms position before and after this fast action.

FIGURE 5.1: The classes distribution among the dataset.
The pink colour is data that was added, purple – starting data.

As we can see on the Figure 5.1 we have unbalanced data, where all ball related
actions have a small number of examples. One more challenge is that actions run
and walk are pretty similar, in addition, some examples are in between run and
walk. Another challenge is that dribble is similar to walk and run, the only differ-
ence is moving hand, as we don’t use RGB image. The recognition of actions that
involve ball (dribble, throw, receive the ball) may be significantly improved by using
additional ball detector or tracker, at present, we do not use ball location.
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5.1 Data Preprocessing

The keypoints returned by Alpha pose are in pixel coordinates, thus their values
depend on frame position and scale (size of the bounding box). We standardize key-
points relatively to bounding box centre and size with the goal to make keypoints
position and scale-invariant. So we will have x values between -1 and 1 and y values
between -1 and 1, we think this will give a model better explanation of where key
points are located in relation one to another. As we are using Alpha pose we have
a score for each keypoint it predicted. If this score is less than 0.1, we will put this
point into the centre with coordinates (0, 0), so bad keypoint prediction will less af-
fect a player’s pose and general performance. In future, feature engineering may be
done on this part of the solution.

The labelled videos had different fps 25, 30 and 50. While 25 fps and 30 fps
are pretty similar, the videos with 50 fps are different. That’s why we downsample
videos with big fps to 25 fps, and this is named additional data and is pink on the
Figure 5.1 and on the Figure 5.2. The additional data was split to train, validation
and test.

FIGURE 5.2: The percentage of examples in train (left) and test (right).
The pink colour is data that was added, purple – starting data.

The dataset was split into three categories: train, validation and test. For the
train, we use 2073 sequences, for the validation – 520 and for the test – 866.

Using additional pink data on Figure 5.2, the accuracy increased from 64% to
75%. This shows that our model benefits from a bigger number of training examples.

We augment 40% of training data using vertical transform to have more data.
As a result, we have 2902 training examples. In future work, we can augment data
adding some noise to the coordinates of key points.
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Chapter 6

Experiments

The LSTM is an awesome architecture to work with classification problem on time
series data. When a player is performing a certain action, his body parts (legs, arms)
follow motion patterns. Thus it is natural to choose the LSTM model to perform
such a task. We would like to try an alternative approach to compare, and decided
to choose MLP architecture. As a result, we have several hypotheses to test:

• BiLSTM will perform better than the MLP approach because it uses the infor-
mation that it gets the sequence as input.

• BiLSTM will perform better than LSTM, as it read sequence from start to end
and from end to start.

• Classes RUN vs WALK, WALK vs NO_ACTION will be difficult to distinguish.

6.1 Implementation details

The neural networks were implemented on Keras with TensorFlow backend. Dur-
ing the project, we were using Python, Jupiter, Google Colab, TensorBoard, Pandas
etc.

As loss function, we use categorical cross-entropy. We use Adam optimizer. As
accuracy, Keras uses categorical accuracy, that calculates the frequency of the predic-
tions matches one-hot labels. The activation functions are ReLU for all Dense layers,
except the last, there we use Softmax.

6.2 Results

Our first guess was to try BiLSTM model with 100 units per LSTM and then add
some Dense layers, but it did not work, the validation accuracy was fluctuating all
the time, during the training. The model starts overfitting and validation accuracy
was near 73%. There are many options for reducing overfitting. One option of them
is to reduce the number of parameters, thus we reduced the number of LSTM units
from 100 to 32 (in case of bidirectional LSTM this is multiplied by 2, which gives
64 units as you can see in the diagram 6.1). Another option is adding the Dropout
layers.

The BiLSTM model description is on Figure 6.1, loss and accuracy per epoch is
on Figure 6.2. We can see that validation loss stop falling on 50th epoch and start
fluctuating. It signalises us that the model starts overfitting on train data.
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FIGURE 6.1: BiLSTM
model description

FIGURE 6.2: BiLSTM
training procedure

FIGURE 6.3: LSTM
model description

FIGURE 6.4: LSTM
training procedure
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For the LSTM model happens something similar to described above. The model
architecture is described on Figure 6.3 and loss on Figure 6.4. The model starts over-
fitting and the loss for validation data stop decreasing on 60th epoch.

FIGURE 6.5: MLP
model description

FIGURE 6.6: MLP
training procedure

We tried many different configurations of the MLP model, changed a number of
layers and a number of filters to get the best accuracy. A vast majority of the mod-
els we tried was having low accuracy combined with high overfitting. The model
demonstrated on Figure 6.5 has the best performance. The training process is shown
on Figure 6.6. While the LSTM and BiLSTM validation loss saturated at a certain
level, here validation loss started to grow after some epoch. As it can learn more
deep features, it overfits even more than others.

The dataset we use for training is rather small. We can have better results if we
use bigger and more balanced dataset.
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BiLSTM and LSTM models take advantage of knowing how the pose develops
over time; the MLP model has information as a set of values. The BiLSTM model
outperforms both LSTM and MLP models. However, the number of trainable pa-
rameters for LSTM model is two times smaller and the accuracy is only 2% less than
the BiLSTM model, but it still is better than the MLP model’s accuracy. The LSTM
and BiLSTM models have better training curve, so they learned more generalized
features.

Architecture # of parameters Accuracy

LSTM 10,086 78.52
BiLSTM 19,942 80.60

MLP 22,086 77.25

TABLE 6.1: Results on test data for different architectures

It is interesting to look at the confusion matrix of our models to see, which classes
are less distinguishable.

FIGURE 6.7: Confusion matrix for BiLSTM model

The classes WALK and NO_ACTION are easy to misclassify as there is no much
difference in slow WALK and NO_ACTION at all. The camera is moving and the
model may think that the player is moving, while in fact it can stand still or move
only his arms. This can be improved by calculating global camera motion in x and y
direction between frames (e.g. using optical flow) and adding this as an additional
input to our model.

The other challenge is with fast WALK and RUN, as they look similar.

One more problem is distinguishing RUN and DRIBBLE. We can give better pre-
dictions when we know the location of the ball in reference to the chosen player.

All in all, the diagonal has big values, showing that the model is well trained.
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Chapter 7

Conclusion

To sum up, we did research on methods of action recognition for multiple players,
that differs from typical approaches for video level action recognition. We anno-
tated new small dataset with six actions. We propose the solution with 80.6% accu-
racy, that seems to be the maximum for our small dataset. We can have accuracy
improvement if we increase dataset size. During work on this project, we tried a
different model’s architectures and configurations. We get a better understanding of
the training process; we tried various techniques for dealing with overfitting.

In further work, we will try our approach on heatmap images of a person’s joints.
We can try feature engineering on our data, it may help with the key points, we got
from Alpha pose, that have a low score. We may add some parameters: relative
motion between joints, global camera motion and ball position. It will be interesting
to compare the proposed solution to Multi-stream Fusion models trained on our
data.
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