
UKRAINIAN CATHOLIC UNIVERSITY

BACHELOR THESIS

Identification of Dynamical System’s
Parameters using Neural Networks

Author:
Dmytro KUSHNIR

Supervisor:
Dr. Lyubomyr DEMKIV

A thesis submitted in fulfillment of the requirements
for the degree of Bachelor of Science

in the

Department of Computer Sciences
Faculty of Applied Sciences

Lviv 2019

http://www.ucu.edu.ua
http://www.johnsmith.com
http://www.jamessmith.com
http://researchgroup.university.com
http://department.university.com

ii

Declaration of Authorship
I, Dmytro KUSHNIR, declare that this thesis titled, “Identification of Dynamical Sys-
tem’s Parameters using Neural Networks” and the work presented in it are my own.
I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

iii

“... all models are approximations. Essentially, all models are wrong, but some are useful.
However, the approximate nature of the model must always be borne in mind....”

George E.P. Box, Statistician

iv

UKRAINIAN CATHOLIC UNIVERSITY

Faculty of Applied Sciences

Bachelor of Science

Identification of Dynamical System’s Parameters using Neural Networks

by Dmytro KUSHNIR

Abstract

Parameter identification of Dynamical systems examined in the context of its value
for the DNN training process facilitation and mitigation of the data imbalance. In
the result of the theoretical analysis of the stated problem’s methodological roots,
were proposed the approach of augmenting usual NN model with part responsible
for explicit representation of required parameters. Moreover, this approach involves
the change of a learning procedure towards indirect supervision setting, where the
NN responsible for system modeling, in form of time series prediction, does not ob-
serves the dataset at all but is being taught via the intermediate step of identification
of target system parameter knowing its physical interpretation. Work considered
the dynamical process on the example of DC motor described by the system of the
ordinary nonlinear differential equations.

HTTP://WWW.UCU.EDU.UA
http://department.university.com

v

Acknowledgements
I am gracefull for all who supported me in the course of my academical efforts, from
my loving family who gave me the chance to follow this path, to my teachers and
colleagues who guided me. Also to my scientific advisor, who introduced me to
the field of robotics and showed the whole new world, the world of challenging
problems, but fruitful applications.

vi

Contents

Declaration of Authorship ii

Abstract iv

Acknowledgements v

1 Introduction 1

2 Background information 2
2.1 Systems modeling . 2
2.2 Systems properties . 3

2.2.1 Systems classification . 3
2.2.2 Linearity and Nonlinearity . 5
2.2.3 DC Motor as an example of a nonlinear system 6

2.3 Control theory . 8
2.3.1 Control theory for dynamic systems 8

2.4 Models classification based on information source attitude 9
2.4.1 Black and White box concepts . 10
2.4.2 Gray box . 11
2.4.3 Classification of Gray-box models 12

2.5 Optimization . 12
2.6 Neural networks . 14

2.6.1 Concept and properties . 14
2.6.2 RNN . 16
2.6.3 LSTM . 18

3 Related works 20
3.1 Grey box models concept . 20
3.2 Dynamical System Observation . 21
3.3 Decomposition methodology . 22
3.4 NN for the similar problem . 23

3.4.1 Goal Statement . 23

4 Modeling experience 25
4.1 Object of modelling . 25

4.1.1 DC motor description . 25
4.1.2 Data generation . 26

4.2 Optimization goal . 28
4.2.1 Parameter Identifiability prerequisites 28
4.2.2 System dynamics as the optimization criterion 32
4.2.3 Loss function . 33
4.2.4 Loss application . 34

4.3 Architecture of Neural Network . 35

vii

Parameters identification . 35
Modeling of a system . 36

4.3.1 Restrictions on parameters . 36
4.3.2 Multiscaled parameters - learning procedure extension and

complication . 37
4.3.3 Data normalization-denormalization procedure 38

5 Experimental results 40
5.1 Experiment description . 40

5.1.1 Experiment parameters . 40
5.1.2 NN architecture parameters . 41
5.1.3 Results . 42

5.2 Conclusion . 43

Bibliography 44

viii

List of Figures

2.1 Principal scheme of DC motor physical concepts involved. Picture
from (DCMotorScheme) . 6

2.2 Westingson DC generator (1907), Museum of Science Industry, Birm-
ingham. Image from wiki (Westingson DC generator) 7

2.3 Abstract representation of NN. Image from (Conceptual scheme NN) . . 15
2.4 RNN can be "unfolded" into a sequential representation. Image from

(Unfolded representation of RNN) . 16
2.5 Internal structure of single a LSTM node. Image from (Understanding

LSTM Networks) . 18

4.1 Principal scheme of DC motor. Picture from (Kara and Eker, 2004) . . . 25
4.2 Organization of DC simulation in Simulink 27
4.3 Example of generated data. Voltage in blue and resulting torque in

green. Data re-scaled to fit the same plot. 28
4.4 Dataflow in our main neural network architecture 36
4.5 Convergence of different parameters. Top: parameter values, Bottom:

Rate of change. Red lines showing the moment when senior parame-
ter had converged . 38

ix

List of Tables

5.1 Comparative results of testing. Units: relevant to minimal result column-
wise . 42

x

List of Abbreviations

ROS Robot Operating System
ML Machine Learning
(A)NN (Artificial) Neural Networks
RNN Recurrent Neural Network
LSTM Long Short Term Memory
EMF Electro Magnetic Force
WB White Box model
BB Black Box model
GB Gray Box model
NLDS NonLinear Dynamic System
GD Gradien Descent
MLE Most Likelyhood Estimator
SGD Stochastic Gradient Descent
ODE Ordinnary Differential Equations

xi

List of Symbols

|= ’independant’
a distance m
P power W

ω angular frequency rad
v linear velocity m

s
R electrical resistance Ω
V electrical voltage V
i electrical current A
H inductance of the conductor H

xii

Dedicated to my patient loved ones . . .

1

Chapter 1

Introduction

People are eager to change the environment, make things, and express their creativ-
ity in their deeds. Innovations in tools and machines that augment people creative
power, giving them new abilities for altering things had been the milestones of his-
tory. From the simplest instruments up to the great machines of the late industrial
period, all of those required artisan master or experienced human-operator for tar-
geting and moving each machine component and processed detail.

But with the progress of technology and the rise of the complexity of such sys-
tems, direct control became a limitation, and more systems got controller as the mid-
dle part between the operator influence and occurring process. Studies in a field
of related problems gave rise to the Control theory, separate field of mathematics,
which is especially actively developing since the 50th of the XX century.

With the modern state of technology and progress towards digitalization not
only industrial processes but even casual life, controllers had become much more
sophisticated and now have their place in lots of everyday things.

But despite computing technology progress, the fundamental challenges of build-
ing controllers remain, as they depend on knowledge of controlled system state.
When there is a real-world mechanical system, it is essentially impossible to grasp
all its properties with computer simulation. Problems of stability of control, reliabil-
ity of the model, lay a significant limitation on present controllers.

To eliminate issues concerning system state observations, separate algorithms
called observers are used. Their task is to estimate directly unavailable or inaccurate
parts of the system’s state. An observer can identify essential system parameters to
fill the gaps in knowledge about the system and its current state in the environment.

But the problem of observer synthesis is not trivial at all and requires extensive
physical modeling and involves sophisticated mathematical apparatus.

Recent progress in a field of machine learning gives rise to adaptations of those
new methods to the control theory problems. Shift from the computer systems pro-
gramming, requiring strict, rigorous abstractions of system components to the teach-
ing of such a system can help a lot with control problems. But as the biggest prob-
lem of programming is not in computational abilities but in the expressiveness of
abstractions provided by the human, the same we have with ’teaching’ approach,
where now the edge is shifted towards the data and statement of the purpose of the
learning process.

Attempt to address that problem is the motive behind this work, here we will re-
view an approach to increase the expressiveness of the system modeling task state-
ment using the identification of underlying system parameters, try to incorporate
them to the usual nowadays methods and estimate the resulting benefits on an ex-
ample of modeling the nonlinear dynamical system.

2

Chapter 2

Background information

2.1 Systems modeling

When natural sciences deal with a real-world object to describe it, each scientific
field uses abstractions relating to their subject matter field. Describing those objects
through the lens of natural laws which governs them allows operating with their
adapted representations. Such representations are usually grasped in some sym-
bolic form within mathematical expressions. That kind of expressions and equations
are translating observed real-world phenomenons to a strictly founded sequence of
computations reproducing the described processes but in abstract form. Those forms
do not reproduce all properties, but only those are interesting for a particular case.
As those representations are modeling the part of the object, they are called models.

Following the famous statistician’s aphorism “All models are wrong, but some of
them are useful” (Box, 1976), it worth underlining that practical models of real-world
systems cannot grasp all its aspects. In mathematical model included only a small
relevant portion of attributes from a real system. Models are an accurate represen-
tation of real systems only to some extent of uncertainties and only in ranges of
real-world data it was validated against.

The most general field of knowledge spreading towards common characteris-
tics of such objects’ representations regardless of its disciplinary origin is system
theory. The systems theory is focused on the connections, dependencies, and emerg-
ing characteristics of an object’s components and evolution of that object as a system
concerning time and interactions between its parts or with the external environment.

When the model of some system considered it is usually represented in terms of
their interactive properties as some rules which under external influences (inputs)
exhibits specific behavior (outputs). Such abstraction allows for describing a sys-
tem in the form of mathematical functions which provides a mapping from input to
output values.

Within the model real-world object properties represented as vectors of variables,
where the range of each variable’s values represents possible states of corresponding
modeled parameter and dimensionality of a vector, - the number of modeled prop-
erties. Equivalently, such variables vector can be treated as coordinates of a point in
n-dimensional space, where n - is the dimensionality of a vector.

Due to referred imperfectness of representation and inherent measurement er-
rors and noisiness of real-world data, the best model we can hope for is the approx-
imation which provides a representation of the targeted system with some inherent
small stable random error.

Using error for model validation: To state that some model has the best fit to
the modeled system, we can explicitly assume the modeled process includes some
inherent noise part v(t). Afterward, we can construct the function measuring the

2.2. Systems properties 3

error between the data provided by a real system and data its model produces as
following (2.1):

F(u)→ y + v(t),

F̂(u)→ ŷ

e(y, ŷ) = v(t)⇒ F̂(u) = F̂∗(u)

(2.1)

Where:
u = input signal
y = output signal
ŷ = estimation of signal y

v(t) = noise
e = error function

F(u) = real system

F̂(u) = our system estimation

F̂∗(u) = correct model estimation

With such an approach, we can verify that our model-candidate is a best-capable
of predicting real system reaction onto inputs. Another problem is how to identify
an optimal model among infinitely many possible? That requires additional consid-
eration of the search procedure.

2.2 Systems properties

To reason about systems’ properties we are interested in those work, we need to in-
troduce symbolic abstractions for them. Denote system as F and time of experiment
as t. Interaction with the system will be described in forms of Inputs and outputs at
the moment will be described as xt and yt.

For the needs of this works, we have to consider a system abstractly, as we fre-
quently have to address both real-world objects and their mathematical models si-
multaneously. Therefore let’s consider a System like the previously defined Model
of a System, as an entity that perceives influence (as input) and outputs some infor-
mation. In such terms, most of the considerations can be performed with all forms of
the considered object or its abstractions interchangeably and don’t require particular
clarifications.

2.2.1 Systems classification

In the context of interactions causality of the results, all systems can be divided into
stochastic and deterministic. Stochastic systems under the same input xi produce a
random value from some probability distribution Yi. Deterministic systems, in turn,
produce only one possible value. Since the deterministic output can be represented
as a degenerate case of a random variable from a distribution with probability of a
single value, equal 1, further we will implicitly consider them both if other is not
specified.

4 Chapter 2. Background information

We can denote system as mapping from the domain of input values to its outputs
as F(xt)→ yt.

For static systems equal inputs always produce the same distribution of outputs
Yt (2.2).

i f xti = xtj , ti 6= tj ∀i, j⇒ Yti = Ytj (2.2)

The concept of a ‘time’ does not play a significant role in the description of a static
system. A trial performed at ti for the static system will be predetermined by xi only
ignoring all the history of interactions with the system from time t0 to the ti. We can
say that the static system does not ’remember’ the previous trials.

As an example of such a system in the real world, we can take a series of coin
tossing experiments. Here the outcome of the experiment will result in sequence
P(heads|tails) sampled from some probability distribution. From our experience, we
know that the coin does not ’remember’ what was the results of previous experiments,
and all the trials are independent of the outcome of the others.

The notions of time and the system’s memory gain meaning in the course of
consideration of dynamical systems. Here each input results not only in the change
of output but altering the system itself. Model of such a system has to have some
own variable attributes, as well as input and output objects. Those attributes are
called system state, and their possible values are system state space.

The output of the dynamical system in a moment of time t is determined by both
state and input (2.3).

F(xt, st)→ Yt or F(xt)|st → Yt (2.3)

System’s change in response to influences is reflected in those states changes.
The law, governing those changes, is called the system evolution rule (2.4).

Ev(s|tcurrent) −→ s|tnext (2.4)

Evolution rule also can be either stochastic or deterministic, but for our research,
we will have a focus on the systems with deterministic evolution.

As evolution rule governs a system to transition tcurrent → tnext on each moment
and “time” here considered as an abstract parameter which "moves" only in one
direction and determine the order of events.

Knowing all the sequence of transitional conditions, deterministic system’s state
can be traced from the episode at t0 via those transitions through all the intermedi-
ate states to every ti. This property is called the causality property (axiom) of the
dynamical systems (Hinrichsen and Pritchard, 2005). It formalizes that in each mo-
ment of time system is affected by interactions that happened in the past, but not
in the future. From this same principle arises requirement that description of a dy-
namical system requires an explicit statement of the state at the beginning moment
of time s|t0.

Property of causality means that the model of a dynamic system requires only
the definition of the state-transition rule and initial state to be able to describe all its
time-states. Therefore such evolution rule in a mathematical model of a real-world
system for continuous processes usually is represented by the differential equations.

2.2. Systems properties 5

The equation (2.4) rewrites as (2.5):

dx
dt

= Ev(x, u) (2.5)

or as difference equation for discrete-time models (2.6):

xt+1 = A(xt, ut)

where A is a transition matrix
(2.6)

2.2.2 Linearity and Nonlinearity

Certain systems’ properties are arising from the characteristics of their mathematical
representation. One of the most prominent of them is the property of system linear-
ity. Those are systems properties of which can be modeled by the linear equations,
having all the terms introduced in the first degree.

Defining properties for the linear systems are additivity and homogeneity:
Additivity: If system produces output ya under input ua, and yb under ub, it has

to produce ya + yb under the input (ua + ub) (2.7):

F(ua + ub) = ya + yb (2.7)

Additivity determines the property of superposition of linear systems, mean-
ing that several linear systems can be represented as one system representing the
combined effect of them. In case of superposition of inputs it looks like (2.8):

F(ua) + F(ub) = ya + yb = F(ua + ub) (2.8)

Homogeneity: If we scale input by k, the output will also be scaled by k:

F(ku) = ky (2.9)

Linear models can describe only a limited subset of phenomenons due to lim-
itations on its mathematical form. The linearity is considered a nice property for
modeling of the real systems, as characteristics following from it eases the comput-
ing task and allows better solutions. But this property not only desirable but also
seldom. It is hard to find a completely linear real-world system (Boeing, 2016). A
much more frequent case is modeled nonlinear system that can be linearized (repre-
sented and solved as linear) under some assumptions or conditions for the particular
case (Krener and Respondek, 1985).

Most of the nontrivial systems observed in real-world are both nonlinear and
dynamical (Boeing, 2016). As nonlinear phenomenons are more common in nature,
it is an active research field not only amongst natural science disciplines and engi-
neering but also in nontechnical studies as psychology (Guastello, 2013), economics
(Puu, 2003), finances (Chen, 2008), medicine (Hoshi et al., 2013) and urban plan-
ning(Ostwald, 2013). Therefore research of flexible methods for modeling of NLDS
bears a prominent value for the wide specter of disciplines.

6 Chapter 2. Background information

2.2.3 DC Motor as an example of a nonlinear system

Looking inside such ubiquitous for modern days system as the DC motor, used in
fields varying from electric toys to the power plant turbine, we can observe an en-
tangled system of co-occurring physical processes. Here we see the fusion of me-
chanical and electrical systems, where electrical current sent to the motor winding is
being transformed to the mechanic rotation of the shaft.

Under applied voltage to the motor’s coil, it starts to feel the moving force from
the magnetic field it bears in. When the voltage becomes large enough to overcome
friction and inertia of rest, coil starts its rotations, thereby driving the motor shaft.
With the increase of the rotational velocity rotation inertia of moving parts grows,
it became harder to stop it now. Moreover, velocity gain continues increasing for a
while. But with the increase of the coil rotation speed, other forces are gaining effect:
as DC motor can be used as a generator producing electricity when experiencing
shaft rotation, those principles are inherent to this system. Therefore with rotation
in a magnetic field, inductive coils suppose to have electrical current emerging inside
and opposing to its rotation, but as applied voltage has the opposite direction, this
system starts to suffer from emerging reverse electromagnetic force (EMF). It slows
the velocity gain and consequently balances the moving force, and rotor speed sta-
bilizes while the voltage remains stable.

FIGURE 2.1: Principal scheme of DC motor physical concepts in-
volved. Picture from (DCMotorScheme)

Besides those mentioned processes DC motor system is affected by other nonlin-
ear processes, as magnetic loss in the form of hysteresis (shift in a phase of the output
to the input) and eddy currents emerging in the rotor core. And with the increase of
the system’s scale number of processes worth consideration also increases, making
the task of modeling even for such well-known system a nontrivial problem.

At the same time, with a glance from the outside on such a motor, we observe
only phenomenons: we see how the rotation of the shaft increases in the response of
supplied electrical voltage growing. We can notice that while the change of voltage
can be performed almost instantly, the shaft rotation speeding up or slowing down
requires some time.

Also, it is notable without any measurements that electrical can be arbitrary, from
0 to arbitrarily large values, but any particular motor will always have operating
mode nonlinearities. There are at least several of them: while under too low voltage

2.2. Systems properties 7

shaft is not rotating at all, there is ’dead-zone’ nonlinearity, as well as when and
above some threshold voltage rotation speed slows its rotation speed gain, and we
observe the ’saturation’ nonlinearity effect.

FIGURE 2.2: Westingson DC generator (1907), Museum of Science In-
dustry, Birmingham. Image from wiki (Westingson DC generator)

But such observations give us no insight about involved physical processes; knowl-
edge from such observation are bare values, therefore obtained knowledge is quan-
titative. But for such system modeling, we still can collect diverse enough set of
experimental data for all available regimes of functioning and build a detailed map
of states and transition without discovering any detail of governing rules for this
system.

Moreover, in a combination with a known theoretical model of this system de-
scribing underlying physical processes, data collected from system behavior obser-
vation can improve modeling accuracy. With its help, we can perform model verifi-
cation procedure, and therefore decide what are exact coefficients should be plugged
in the equations of a model to make it describe this particular physical system opti-
mally.

We think that such an approach can help in the creation of both precise and in-
terpretable models. Property of NN to be the universal approximator can be a good
foundation for creations of a model, flexible enough to fit all possible nonlinear-
ities. But while computational complexity of NN-based modeling could be over-
come via adaptation of architecture to a specific problem and growing availability
of computational resources, the lack of such model interpretability and robustness
to uncertainties are the inherent flaw for such approach to the modeling. This lim-
its such approaches from application in risk-related tasks and fields requiring active
decision-making where exposure of bases for such decisions is necessary.

This research is aimed exactly on the methods of introduction expert knowledge
about the modeled system, that should help to solve those flaws.

8 Chapter 2. Background information

2.3 Control theory

Real-world physical processes could be represented by the systems of differential
equations, being built according to physical laws governing the process. Result-
ing dynamical system of equations, if precise enough, being solved concerning time
gives us the states of the referral system as the solution. Using such a model, we can
predict a system’s behavior under certain actions from outside. Those approaches,
utilized in fields of engineering, gave rise to the control theory, the field of applied
math whose aim is modeling the control influence and improving the designing
principles for controller synthesis.

2.3.1 Control theory for dynamic systems

Unfortunately, solving such systems in the closed (analytic) form usually is very
hard or even impossible. Therefore the only available tool is a numerical solution.
Computational capabilities achieved required abilities only recently to model such
systems with sufficient accuracy (Torokhti and Howlett, 2007).

Despite its reach mathematical apparatus, control theory not always can propose
an approach for robust and reliable control. There are cases when the accuracy of
simulation and precision of control influence has to be impossibly high; mostly, those
cases are concerned with controlled systems instability (Minorsky., 2009).

Lots of NLDS are not stable; this means that introducing small influence can re-
sult in a significant change in the system state. Unstable systems illustration is a
known concept of the butterfly effect when even minuscule change in initial condi-
tions results in a drastic change in the trajectory of the model states (Lorenz, 1963).
Facing that, reliable modeling in such cases with reliable predictions is an unsolved
problem of high importance as such unstable systems are usual in meteorology, fi-
nances and, of course, engineering.

One of the best possible scenarios to handle a system which has unstable states
is to prevent it from reaching those dangerous state-space regions (Rieger, Gertman,
and McQueen, 2009). This lays more requirements on the controller, which has to
possess accurate information about controlled system state description. For such
a complicated task, as a rule, used closed-loop controllers, where control process
includes some feedback about the state of the systems.

Preventing the system from instability is only a specific use case for closed-loop
control, as in general case it has even wider application for providing reliable control.

Despite its benefits, such control methodology is limited by the availability of
system state data. Providing advanced control influence requires even more addi-
tional terms included in state space.

For example, we can consider the case when we want to control the rate of sys-
tem state change, in such case we need to augment the state space with the first
derivative of the mentioned state dx

dt . Similarly, for the systems where the momen-
tum of such parameter plays the role, the controller requires the second derivative
in the system’s observation: dx

dt2

For such cases, it is customary to isolate the task of tracking state values and ap-
proximating their derivatives (Goodwin, Graebe, and Salgado, 2001). Accompanied
by unobserved parameters estimation task, those tasks are separated to the separate
actor of the closed-loop control system, called observer.

2.4. Models classification based on information source attitude 9

Following the notation for dynamical systems (2.5) we can denote linear DS with
closed-loop controller as (2.10) and then it’s observer in an explicit linear matrix form
as the Luenberger observer (CICCARELLA, MORA, and GERMANI, 1993) (2.11):

dx
dt = Ax + Bu
y = Cx + Du

(2.10)

Where:
x− state vector
y− output vector
u− input vector

A, B, C, D−−corresponding transformation matrices

dx̂
dt = Ax̂ + Bu + L(y− ŷ)
ŷ = Cx̂ + Du (2.11)

Where:
L−Observer gain matrix chosen such that (y− ŷ)→ 0 asymptotically
x̂− estimate of system’s state x by the Observer

dx̂
dt
− estimate of system evolution rule

dx
dt

by the Observer

ŷ− estimate of system output y by the Observer

But for the cases of nonlinear systems we cannot present any explicit matrix form.
In order to build such observer we have either to linearise such a system if it is
possible (Krener and Respondek, 1985) or use more sophisticated Observer synthesis
methods applicable only for certain class of systems, as high gain observers (Bernat
and Stepien, 2015), sliding mode observers (Drakunov, 1992) or other.

Therefore our goal of estimation parameters for NLDS is covering this problem
of NLDS observers creation by using NN, as the system modelling tool agnostic to
underlying system structure.

2.4 Models classification based on information source atti-
tude

For classification of modeling approaches, we will use prior information criteria as it
was done in the (Hauth, 2008). Every model created is based on some priors which
can be divided into three primary types: either prior knowledge about the real sys-
tem, underlying structure or physical phenomenon used as K, or information of sys-
tems behavior obtained from collected exploitation data D, or assumptions on prop-
erties and adequacy of our proposed model A. As the author states in (Hauth, 2008),

10 Chapter 2. Background information

assumptions are an inherent part of any model and can be tested on adequacy, while
the choice of using knowledge and data as grounds for modeling is the fundamental
difference between modeling approaches.

There are opposite methodologies: data-based, called Black Box models, and
knowledge-based, called White-box models.

2.4.1 Black and White box concepts

Concepts of black-box and white-box models: Naming of the models or concept as
’-boxes’ in the scientific field started at the 50th of 20 century. Mostly discourse was
devoted with ’black-box,’ concept, which meant ’some process or system with un-
observable parts’ and counterparts to its concept of white-box, or ’glass-box’, where
the underlying process is evident.

As an abstract term definition in cybernetics field notion of “black box” were
introduced by Ross Ashby in 1956 (Ashby, 1956). Description of this concept later
was provided in 1961 by Norbert Wiener as an unknown system which has to be
identified by system identification special methods (Wiener, 1965). Those ideas were
expanded by other scientist and philosophers in 60th, epistemologist Mario Bunge
detailed and strengthened the formal foundation of this concept by producing the
general Black Box theory (Bunge, 1963).

Black box models are relying on Data from an experiment, which secures them
from false assumptions provided by human-in-the-loop of model design . The main
principle they follow is popular nowadays when computing power is widely acces-
sible, and data amounts became Big, is: ‘let the data speak for themselves.’ But, the
relative simplicity and universality of those methods are challenged by their draw-
backs:

Lack of results interpretability: a black box model aim is to imitate the pro-
cess being led by its imprint in data. The goal of the Black box model is to provide
expected output, not to express how this output was produced. As there exist in-
finitely many mappings X → Y when |X| and |Y| are finite . Then we can expect
more than one possible process to have the same imprints. Therefore we can’t say
with confidence that resulting black box model represents the aimed system, but
only its data-represented characteristics.

Data-intensive
Dependence on provided data: model cannot provide any insight from data if

relevant information is not there. Also, any bias in provided data and possible flaws
in the training process can threaten to achieve reliable results.

Those two properties result in vulnerability to unseen data and outliers in pro-
vided inputs.

But nowadays we observe that this methodology is on the top of its popularity,
as an illustration, can be considered a hype on neural network modeling and arise
of deep learning, we will return to their characteristics later and show why they are
vivid examples of black-box modeling methodology.

On the other side of the modeling methodologies spectrum lies models, where
the model foundation is made by expressing knowledge about governing physical
laws and system properties in the form of the equations. Those models usually ex-
pressed in terms of the differential equations (or the time-difference equations for
discrete-time processes) coupled with a prescribed set of rules for specific cases.
Those approach to modeling covers some flaws mentioned for Black boxes, but im-
pose their own shortcomings:

2.4. Models classification based on information source attitude 11

Expertise demand: Beside of knowledge about physical processes requirement,
which is already a substantial limitation for applying this methodology, the building
of a reliable model also requires some experience with complex computations.

Discrete calculations: Overall computing machines are inherently operating with
discrete values, as for continuous processes we have to operate with Real values,
possessing an infinite number of digits, we are limited to operate only with finite
digits-number approximations. It means that all continuous processes models are
dealing with their discrete approximations. Especially sensitive cases for this prob-
lem are unstable systems, where roundoff error can cause a significant change in
modeling result and when there is a goal of long term modeling, where the accumu-
lation of error results in a deviation from correct states-trajectory.

Overspecification of models: Models produced in such a method can achieve
excellent results in a specific case when lots of factors specific for a given system in
given conditions. But it means that the change of problem sets will require a restart
of the modeling process from scratch. Moreover, with an increase of components
number model’s equations become cumbersome in manipulation and computing.

Idealistic modelings: If instead of model specification we will follow the gen-
eralization strategy, the resulting nice looking model will rather model perfect ma-
chine then real-world aggregate with its wear, noisy signal, and flaws.

Upon those categories became widely used in fields of philosophy, social science,
and what most essential for us to, cybernetics and control theory, this discourse had
produced derived categories, like ’grey-box’ concept.

2.4.2 Gray box

Both approaches White-box and Black-box are both extreme abstractions of the op-
posite extremes; they possess descriptiveness for theoretical reasoning, but not for
the real-world applications. Most of the created models are encompassing to some
extent both Data and Knowledge in some form: either it would be data processing
based on insights from their real-world nature, or tuning the parameters of equa-
tions in white-box models based on experimental data.

Altogether a combination of two approaches can help to negotiate the flaws of
either.

Those models from ‘in between’ part of the specter are collectively referred to as
Gray box (GB) models. As they give optimal practical use, practical application of
such methodology in industrial systems came into wide practice up to the develop-
ment of special design procedures and guidelines (BOHLIN, 1994). To describe them
briefly we can cite short principle, listed by Bohlin himself which is: “don’t estimate
what you already know but test your knowledge against experimental data.”

Often modeled system posses some obvious properties and including this knowl-
edge to Black box model can give it a boost in performance, but that how to do this
becomes a challenge by its own. How to incorporate the best of two approaches is
one of this research aims.

Advantages from use of GB approaches depend on each particular situation, but
several most obvious of them can be listed for general cases:

• allows incorporating prior knowledge

• allows explicit formulations of nonlinearities and dynamical properties

• data imbalance impact diminishes

• additional variables not available from data alone could be estimated

12 Chapter 2. Background information

• both statistical modeling tools and subject field apparatus can be applied

• results could be interpreted by experts from a field

• suits combined teams of both, knowledge field specialists and modeling ex-
perts

• the model requires fewer parameters

2.4.3 Classification of Gray-box models

From what is stated up to this point Gray Box methods is a vague notion for a group
of modeling methods that are neither purely White box nor Black box. Clarifying
this notion is accompanied with a problem that gray-box methodologies does not
possess any firm distinction as white-box or black-box models, but just denotes the
grouping attribute of diverse approaches. To designate this concept further, we will
follow a descriptive approach by considering its constituting groups of modeling
methods. Following by classification proposed by (Sohlberg and Jacobsen, 2008) GB
models can be split into five classes:

1. Constrained Black Box identification: approach where a-priory knowledge is
incorporated in the form of additional restrictions laid upon the original Black
Box model methodology.

2. Semi-physical modeling: when system input and output data can be addi-
tionally transformed with a known nonlinear transformation occurring in the
underlying process.

3. Mechanistic modeling: where the original white-box model is expanded by
hypothesis testing process and information about model prediction errors.

4. Hybrid modeling: when the model is explicitly divided into black-box and
white box parts.

5. Distributed parameters systems: approaches aimed to solve the challenge of
distinguishing the errors produced by model reduction and errors from pro-
vided data and assumed system properties.

2.5 Optimization

A search of the best model parameters can be formulated in terms of a mathematical
optimization problem. For setting the notation and definitions for research we will
outline its basic notions as we use them:

Parameters: If the model uses parameters (values that characterizes the modeled
process) then optimization process can help to select the optimal set of parameters
for the model to fit the given data. Define that all parameters are described in one
vector term as θ. Then model that provides outputs using parameters will be defined
as F(u, θ) = y. Alternatively when the same set of parameters is used for several
different inputs we can use notation for parameterized function Fθ(u1) = y1

Likelihood: Likelihood is the joint probability distribution of one parameter,
conditioned on the other. Likelihood function provides a probability of one one
parameter distribution, given distribution of another. In our case, we will use it like
L(θ|y) , for evaluating the probability of parameters given our observations from

2.5. Optimization 13

the model. This function defines probabilities for possible values of the searched
parameter and drives all procedure of parameters estimation, as according to likeli-
hood principle all the relevant information for inference of parameters is contained
in likelihood function (Edwards, 1984).

Estimator: Is the function of data, that estimates the searched parameter θ. Esti-
mator is the function which maps distribution of observed data to certain parameter
value – the estimand (estimate) (2.12) (Kosorok, 2008). For the use of notation, we
can denote estimator θ̂(X) and its estimand value θ can both be denoted the same as
θ̂.

θ̂(X)→ θ̂ (2.12)

Where:
X− given data distribution

θ̂(X)− estimator

θ̂ − estimate (estimand)

Estimate is sampled from vector space of parameter values Θ. Difference be-
tween the estimate and actual values of estimated parameter is error of estimation
(2.13):

e(X) = θ̂(X)− θ (2.13)

If estimated parameter θ maximize the likelihood of observing data, X such Es-
timator is Maximum Likelihood Estimator (MLE) (2.14) (Aldrich, 1997).

|L(θ̂MLE|X)− L(θ)| → 0 (2.14)

Loss function: Since the estimation error defined as the difference of real and
estimated values, it belongs to the same vector space θ̄. For a model of a system, it is
the space of modeled values, which means that the meaning of ‘distances’ in this such
vector space is vague as it depends on introduced modeling abstractions. To clarify
the meaning of a distance and define which prediction is the best in the sense of the
lowest error has to be stated distance function, which in optimization task context is
called loss function.

The loss function is denoted as (2.15) and the lower value of the loss function
means the better fit of parameters estimate to the formulated problem with given
data. Specifically, for each problem, it can be augmented with additional restric-
tions laid upon estimated parameters or other task-specific limitations. Loss func-
tion can include terms facilitating optimization process while targeting the optimiza-
tion method, not optimization goal, called auxiliary loss functions (Du et al., 2018).

L(X, X̂)→ R (2.15)

If loss function has at least one local minimum, we can find the optimal local
estimator for our estimated parameters. If this local minimum value is the lowest

14 Chapter 2. Background information

function value for all parameters space it is global optimum estimator θ̂∗ (2.16). Our
goal in this works is to find such estimator for parameters values.

L(θ̂∗(X), θ) ≤ L(θ̂(X), θ), ∀θ̂ (2.16)

We will come back to the question of loss functions design during the description
of our modeling process with a neural network, as it is also the cornerstone of the
NN training process.

Summarizing: Our task of parameter idenfication can be formulated in the terms
of optimization problem for parameter θ value as the search of such estimator θ̂(X)
which estimate minimizes loss function defined for function of θ and data X.

After being formulated, the optimization problem can be solved with different
approaches. We will concentrate our attention in this work on gradient-based meth-
ods of parameter identification.

Gradient descent: Continuum of the loss function values constitutes some sur-
face of loss function values, and aim of the learning process can be considered as to
find the minimum of the ’height’ on this surface. To steadily progress toward this
value the iterative gradient-based approach to optimization is used. On each iter-
ation, the gradient (derivative) of a loss function calculated in the circumference of
the current parameter estimation (̂θi) defining the direction of the ‘downhill’ step
towards new, improved estimate:

θ̂i+1 = θ̂i + γ∇θ L(F(x, θ̂i), y) (2.17)

Where γ is a small value of a ’step’ being made.
This process will eventually converge to some local minimum, but convergence

to global optimum is not guaranteed and strongly depend on starting parameter
values initialization, the shape of the loss function ’landscape’ and allows the use of
various techniques for optimization problem facilitation (Bottou, 2012).

Lθ(F(θ̂(X), y)→ min (2.18)

2.6 Neural networks

2.6.1 Concept and properties

Artificial Neural Networks can be defined as a framework for different machine
learning algorithms. For shorthand, we will refer to them simply as Neural Net-
works (NN). They have widely inspired by neural science, therefore naming of con-
cepts was also brought from that field (Marblestone, Wayne, and Kording, 2016). NN
consists of individual nodes, called neurons, and connection between them called
edges. They have floating point values called weights, which are the learnable pa-
rameters for the NN and are adjusted in course of the NN ’Training’. Those weights
are involved in computations with processed data and determine the resulting NN
properties. Weights increase or decrease the power of a signal (called activation)
going through.

For better abstraction of model structure groups of neurons are combined in lay-
ers. NN consisting of a large number of neurons are called Deep Neural Networks
(DNN) (LeCun, Bengio, and Hinton, 2015).

2.6. Neural networks 15

On the picture (2.3) you can see a simple example of Feed Forward NN with
fully connected layers where processing happens in a straight manner from the input
layer via a hidden layer towards the output layer.

FIGURE 2.3: Abstract representation of NN. Image from (Conceptual
scheme NN)

NN provides only a wireframe or a canvas for building a model to be filled by
defining the loss function – expressing the goal of modeling and embodied via train-
ing procedure. Training is stated in terms of the optimization task (2.5) goal of train-
ing has to be expressed as the loss function of NN output values and desired values
L(ŷ, y), where y stands for the desired values and ŷ for NN-predicted values (??),
where F(•) is function representing NN and x are input values.

To achieve this goal training algorithm should find the optimal set of weights θ∗

for NN F(x, θ̂) → ŷ which will minimize the loss function given the distribution of
training data:

L(F(x, θ̂∗), y) < L(F(x, θ̂), y), ∀θ̂, θ̂∗! = θ̂ (2.19)

A training of NN is also the form of loss function minimization. Usually it is being
done with gradient-based optimization (2.5). As NN training often is a data-hungry
procedure, compute gradient on each iteration using all the available training data
at once is impractical. Therefore is commonly used stochastic gradient descent-based
(Bottou, 1998) (SGD) optimization method, where only a small part of data is used
on each iteration to make the optimization step. As each used part of data are not
absolutely representative, the computed gradient can deviate from the real one, but
with smaller optimization steps being made but in larger quantity, SGD-based algo-
rithm eventually converge to a minimum of the loss function (Bottou, 2012).

The loss function is determined in terms of predictions ŷ, not by weights of NN
nodes connections themselves. Therefore training goal is to translate and transfer
the error from NN output vector to weights responsible for those estimate. This
transition e(θ̂)→ e(Wi) is performed with the error Backpropagation (Werbos, 1975)
algorithm based on the derivative chain rule. Use of this algorithm made the large
NN training computationally feasible, as it benefits largely of calculating each in-
dividual derivative in only once. After it was shown by Rumelhart, Hinton and
Williams (Rumelhart, Hinton, and Williams, 1986) that it is an assured method for

16 Chapter 2. Background information

deriving the useful representation of data in hidden layers of a NN the backpropa-
gation procedure became the driver of modern ANN advancements (LeCun et al.,
2012).

Data splitting. Neural networks as universal approximator can fit any provided
data in case of sufficient NN size. This issue shapes a training procedure because
inherent noises present in data could be learned as well as useful information. To
avoid this overfitting problem data available for model training are split onto dis-
joint subsets (Ripley, 2007):

• The training set: The biggest part of data, which is used for the training itself,
and two smaller parts, validation set, and test set.

• Validation set. The validation set is a part of the data which is hidden from
the training algorithm but used to evaluate the model performance. Error cal-
culated on the validation set is not propagated through the network but only
used to tune hyperparameters and detect whether the model capable of gener-
alizing its assumptions on the validation set as well. The lowest value of Error
value indicates a training moment when the desired optimum is achieved, and
further training should be stopped.

• Test set As we specially tune some hyperparameters concerning validation set
performance, it can result in another case of overfitting by hyperparameters
selection for the validation set. To secure from such a bias can be introduced
dedicated test set, absolutely excluded from the training procedure and used
for final evaluation only.

2.6.2 RNN

Recurrent neural networks (RNN) are a special class of NN architectures which have
a recursive connection made to transport activation from the previous input to the
next one. Such RNN structure can be unfolded to the oriented graph of hidden
state transition that helps to grasp dependencies in sequential data, as it is shown
on [picture] In case of dealing with a time-organized data this property allows to
capture dynamic properties from observed data (Miljanovic, 2012).

FIGURE 2.4: RNN can be "unfolded" into a sequential representation.
Image from (Unfolded representation of RNN)

Those properties hidden activation in RNN resembles the process of dynami-
cal systems evolution with the inner state transition from one timestep to another.
Because of those properties, RNN gains popularity in time series studies (Che et
al., 2018), dynamical system modeling and processing of other linearly structured

2.6. Neural networks 17

data as natural language processing (Plank, Søgaard, and Goldberg, 2016) or images
frames in video streams .

It is hard to define RNN properties more precisely, as it is the name for whole
class of NN. As an example we will consider Elman and Jordan (Pham and Karaboga,
1999) networks, they have simple idea lying in their foundation. Both of them store
values from previous iteration in dedicated parameter neurons called ’context neu-
rons’.

ht = σh(Whxxt + Whhht−1 + bh)
yt = σy(Wyhht + Whyyt−1 + by

(2.20)

Where:
t = moment at time

xt = inputs vector
ht = hidden layer vector
yt = output vector

Wq1q2 = parameters matrix

q1, q2 = matrix transformation spaces, q2
W−→ q1

b = bias parameters vector
σh, σy = nonlinear activation functions

Equations for Jordan NN are barely the same as for Elman NN (2.20) with differ-
ence in just one term of first the first equation: ht−1 is replaced by yt−1 (2.21). This
shows that context neurons in Elman NN are storing values from previous timestep
internal state, but in Jordan NN they store the previous step output value.

ht = σh(Whxt + Whyt−1 + bh)
(2.21)

Methods for training RNN are based on the same backpropagation algorithm
that for general NN, but the sequential character of data determines the special tech-
nique called backpropagation through the time which inherently works like the usual
backpropagation algorithm, but requires a representation of RNN in the unfolded
form as shown at picture (2.4) . Such representation treats a whole range of T inputs
and T outputs as like they are available simultaneously (Werbos, 1988).

The requirement of Backpropagation through the time application revealed the
limitation of the classical error backpropagation algorithm, called the vanishing gra-
dient problem. As a number of considered timesteps rise, the chain of derivatives
becomes longer eventually, resulting in a numerical value of gradient drops to zero.
Popular activation functions like tanh have values range [0, 1] and value the product
of such values decreases exponentially with the number of cofactors grows. This is-
sue makes it harder to track dependencies between remote inputs (Bengio, Simard,
and Frasconi, 1994).

18 Chapter 2. Background information

2.6.3 LSTM

The Long Short Term Memory networks (LSTM) (Hochreiter and Schmidhuber, 1997)
were originally designed to overcome the vanishing gradient issue. They include
separate track for passing the memorized cell state between the cells and separate
nodes with nonlinear activations responsible for managing those cell state by learn-
ing when to ‘remember’ or ‘forget’ long-term states.

This cell state passing track is depicted on the (2.5) as a straight horizontal line
on the top of the cell. From the equation (2.22) it can be seen that state ct does not
pass via any activation function, but only multiplied with forget gate ft values ’filter-
ing’ out all unnecessary states and being add with the value from update gate ot.
Therefore if nonlinear activation representing forget function is chosen such that we
can expect to have values very close to 1 then state ct−1 is passed through the cell
without significant changes.

FIGURE 2.5: Internal structure of single a LSTM node. Image from
(Understanding LSTM Networks)

LSTM is the model class name itself, as it has several variations in architectures.
We follow the classical approach and using LSTM with forget gates (Gers, Schmid-
huber, and Cummins, 2000). It is represented in terms of the following equations
(2.22):

ft = σ(Wi f xt + bi f + Wh f ht−1 + bh f)
it = σ(Wiixt + bii + Whiht−1 + bhi)
g = tanh(Wigxt + big + Whght−1 + bhg)ot = σ(Wioxt + bio + Whoht−1 + bho)
ct = ft ◦ ct−1 + it ◦ σc(Wcxxt + Wchht−1 + bc)
ht = ot ◦ tanh(ct)
h0 = 0, c0 = 0

(2.22)

2.6. Neural networks 19

Where:
◦ stands for elementwise multiplication
t−moment of time
σ− nonlinear function applied
ht − hidden state
ct − cell state
xt − input
it − input gate
ft − forget gate
gt − cell memory gate
ot − output gate

Wq1q2 − parameters matrix, mapping q2
W−→ q1

ft, it,ot, ht, ct, bq1q2 ∈ Rdim(h)

xt ∈Rdim(x)

As we see, there are way more parameters and, therefore, memorizing capabil-
ities, by this reason and broad applicability to learning on sequential data we had
selected it as the component of choice for incorporating into our architecture.

20

Chapter 3

Related works

In a discourse of exploitation, the dynamical system interaction with controller works
as following: signal emitted by the controller makes its influence onto the evolution
of the system state. To maintain the desired behavior of the system controller has
to operate in a ’feedback loop’ relations with the systems state, to when the result
of provided control influence is exhibited back to the controller via sensors observa-
tions or deducted by other means.

Regarding the governed system state observation, controllers can be created with
the ‘White-box’ modeling approach, where the system is assumed perfectly observ-
able with all its intermediate steps and transitions occurring in the process of sys-
tem transitions from one state to another, in this case, a controller operates with
detailed state description provided in ’disclosed’ form. On the opposite part of the
specter lies a ‘Black-box’ modeling: when the internal system state is presumed un-
observable and controller relies on state estimation based on external with respect
to the system state data and no interpretable system state description produced as a
byproduct of control procedures. Lastly, the ‘Gray-box’ concept lies between those
concepts and refers to the systems which are observed only partially or with the
limited degree of confidence.

As the system we are dealing with has generally known structure we can use
this knowledge to introduce into the creation of the governing entities. Hence it
is possible to create something more transparent then pure black-box. But those
governing equations for our system are parametrized by with some time-evolving
parameters of a kind µ(t) as well as nonlinearities arising from the process flow.
Therefore the pure, predictable white-box model is impossible for our case.

Therefore best we can expect of our model is to lie somewhere on the specter
between ‘white-box’ and ‘black-box’ models, belonging to the family of ‘gray-box’
systems.

3.1 Grey box models concept

The idea of creating a Grey-box model observer of Nonlinear Dynamic System is not
new, as example there are several works written by Cen (Cen, Wei, and Jiang, 2013),
(Cen, Wei, and Jiang, 2011) on this topic.

As mentions in his paper Cen (Cen, Wei, and Jiang, 2011), the task of modeling
is NDS incorporates two major challenges: modeling of nonlinearities and dynamic
simultaneously. As nonlinearity reflects the static and dynamics reflects dynamic be-
havior. This problem is feasible to track if observed object or system is well-known;
in such case, we can parametrize the mathematical model describing the system and
produce a so-called ‘white-box’ model. But actual mechanical system observed in
automation and robotics problems is not entirely deterministic, despite underlying
processes are known.

3.2. Dynamical System Observation 21

On the other hand, such systems can be modeled with a "black-box" model ap-
proach, with any of discriminative ML methods , neural networks are belonging to
as well. Those approach does not require the introduction of any knowledge about
the modeled system in advance but can be purely data-driven instead. But the com-
plexity of task lies in the idea of supervised learning itself: training sample is a static
snapshot of the object behavior. Therefore only those dynamical properties can be
learned which are represented in the training dataset.

Because those limitations Cen proposed Gray-Box Neural Network Model (GBNNM),
an approach taking advantages of white-box and black-box approaches. According
to (Mandic, 2001), the Gray-box model is the one obtained from black-box with
introduction of some a priory knowledge, whether it is some PDF, statistics of ob-
served data, attractor geometry, etc. Sjorberg (Sjöberg et al., 1995) describes two
classes of gray-box models: physical models where physical process is used for de-
signing the state-space, as semi-physical, where knowledge about process is used
for defining some non-linear combination of data structures later estimated with
black-box methodology.

While analyzing two abovementioned works regarding the gray-box modeling,
Cen proposes a question-based plan for systematization such projects description:

• What kind of NN are used in our gray-box model and why?

• NN is used to identify nonlinearity, dynamics of the process or both?

• Which parts of the studied object are known and which is unknown?

• What is approximation ability of used NN? To what, extent is it possible to
model the process?

• What is the training procedure for the mentioned GBNN model?

• What is the performance of the obtained GBNN?

As those questions are providing a and clear structure, we will follow them in
the corresponding part of our research during the resulting model description.

3.2 Dynamical System Observation

As mentioned Vantsevich (V. Vantsevich, 2018), controller for the automatized sys-
tem requires as many parameters as possible with best possible precision, but there
lies major drawback concerning the price and complexity of required sensor sys-
tem to obtain them. Instead of deployment of real sensors can be used observer – a
mathematical algorithm that estimates unknown parameters based on the subset of
known parameters of the system and observed parameters from sensors. It can be
found in control systems as part of a feedback loop. However, the author empathizes
that there are lots of serious drawbacks and limitations in this approach: additional
computational resources, correct configuration parameters, problems with handling
noisy data, etc.

Awareness of those warnings will be used in the course of our model synthesis
and testing, as we are striving exactly to one of the stated aims of Vansevich’s re-
search highlighted by the author: estimating unmeasured system parameters in the
exploitation discourse. But while the author uses Extended Kalman Filter (Kalman,
1960) for extracting detailed structured information, this method has problems with

22 Chapter 3. Related works

an increasing number of estimated parameters as it implies including even more
variables to the system state vector, increasing dimensionality of the problem imply-
ing demands on both measurements collection and computing parts of the problem.
Also, Kalman Filter relies on the linear solving method, which implies the lineariza-
tion of the observed system. At the same time, NNs are better suited to dealing with
multidimensional optimisation as well as estimating nonlinearities, and as those are
inherent components of the stated problem, we will use the NN-based approxima-
tion method.

3.3 Decomposition methodology

For dynamical system identification, there were lots of approaches produced and
trialed. As Puscasu (Puscas et al., 2009) stated. Currently, there are two major
distinct approaches:

1. Concentrated on computing parameters of a neural network to approximate
linear or nonlinear mapping between the inputs and outputs of the modeled
system, as researches on networks with memory neurons (Sastry, Santharam,
and Unnikrishnan, 1994), Elman neural networks and Jordan neural networks
(Pham and Karaboga, 1999).

2. Based on the neural network (Adeli, Asce, and Jiang, 2006) structural organi-
zation which itself represents structural dependencies of system components
(Sastry, Santharam, and Unnikrishnan, 1994). These structures contain them-
selves system state representation in discrete time steps, where on each step k
which is mapped onto the k+1 step state using some nonlinear mapping. This
mapping can be approximated using NN, as the universal approximator.

The general idea of NN representation is to approximate system of governing
equations (3.1) with neural networks (3.2).

{
x(k) = fNL(x(k− 1), u(k− 1))

y(k) = gNL(x(k), u(k)) (3.1)

Where:
x(k)− state vector
y(k)− output vector
u(k)− control (input) vector

Those nonlinear mappings (3.1) can be approximated suing the neural networks
in following manner (3.2):

{
x(k) = N f (x(k− 1), u(k− 1))

y(k) = Ng(x(k), u(k))
(3.2)

where N f and Ng stand for the neural network approximators for the nonlinear
functions fNL and gNL

3.4. NN for the similar problem 23

Mentioned Puscasu (Puscas et al., 2009) work itself incorporates those approaches,
therefore creating another method of grey-box system representation using internal
recurrent neural networks (IRNN). The author uses the representation of a studied
system based on the structural decomposition onto parts which have its own iso-
lated peculiarly engineered functionality exploiting some physical principles (as hy-
draulic, mechanical, electric-based systems, etc.). As any decently complex system
of the car or robotic aggregate complexity level can be decomposed in numerous
ways because of each structural subsystem has it own subsystems as well author
uses approaches described by (Yue and Schlueter, 2005) (Sjövall and Abrahams-
son, 2008) for appropriate system parts identification and isolation for the following
modeling using separate NN with prescribed inputs and outputs.

We see the potential in Pucasu’s approach, yet in our work on this stage of the
research we will use more traditional architecture in order to evaluate the general
impact of used approach on the modeling experience and decompose model only
on parametrised and parameter-free components.

3.4 NN for the similar problem

Branch of research devoted to using NN with memory cells for time series analy-
sis nowadays came the long way and predominantly converged to use one of two
pretty similar approaches: first, concerned with use of recurrent neural networks
(RNN) with of Long-short term memory cells (LSTM) (Hochreiter and Schmidhuber,
1997) or the second one, devoted to networks with Gate Recurrent Unit (GRU)(Cho
et al., 2014). The application of those NN architectures is researched by Ogunmolu
(Ogunmolu et al., 2016). As he mentions, ordinary multilayered neural networks are
proven to suit well for identification and control of static and dynamic neural net-
works simple nonlinear systems (Narendra and Parthasarathy, 1992), (Narendra
and Parthasarathy, 1990). But for the time-series (Graves, Mohamed, and Hinton,
2013) and in dynamic identification and control of nonlinear systems (Wang and
Chen, 2006), (Dinh, Bhasin, and Dixon, 2011) RNN took its place, as their property
of representing associative memory is crucial for problems with long-term depen-
dencies in data.

Ogunmolu in his paper studied how different kinds of RNN (ordinary RNN,
LSTM, Fast-LSTM, and GRU-RNN) perform on nonlinear system identification. He
concluded that such self-organized Deep NN suit good for nonlinear parameter es-
timation. In our work, we will also use this class of neural network replacing with
the low-level details of implementation the individual NN for the approximation of
each individual subsystem model on which we decompose our general one. Used in
that paper datasets from DaISy database, containing both SISO and SIMO datasets
of nonlinear systems, will also be used for functional verification of our model’s
individual subsystems approximators and the whole NNs combination.

3.4.1 Goal Statement

Founding on a problem field highlighted at the Background Overview chapter (2)
we decided to aim onto the stated in the title of this research topic of a parameter
identification from the specific angle. Despite the overall importance of parameter
identification for the NLDS control and operation, this task inevitably faces another
issue: as identified parameters are used for parameterization of the system’s model

24 Chapter 3. Related works

equations, there is always standing requirement of building that system’s model
itself.

We are addressing issues of model building issues concerned with the applied
methods itself. Inherent flaws of the Black box (2.4.1) modeling does not allow
the resulting estimator to be robust and fully accountable. At the same time, the
White box methods require extensive knowledge about target system constituting
processes which complicate the task and conflicts with the requirement of model
adaptation to the individual system.

Following the highlighted in Related Works experience (2.4.1) as well as our
clauses mentioned in the course of those works analysis, we will state our general
goal as the identification of dynamical systems parameters and using them to ad-
dress the flaws of usual NN-based modeling.

To achieve those goals we use analysis of methods for addressing the similar
problem, then formulate the proposal of our own method and implement it. The
evaluation will be performed using the exemplary nonlinear dynamical system.

25

Chapter 4

Modeling experience

4.1 Object of modelling

4.1.1 DC motor description

For providing control to such a system, underlying parameters have to be identi-
fied for each particular case, as in the course of exploitation and under different
conditions, their properties can change. Interactive Observers should provide this
functionality. To make a step towards the synthesis of such Observer, we studied
methods of estimation on modeled example of NLDS representing such a motor. For
model building was used Simulink as a tool for visual system constructor provided
with a set of prepared solvers for differential equations systems.

To reproduce a DC motor system behavior, we took the representation described
at (Kara and Eker, 2004)

FIGURE 4.1: Principal scheme of DC motor. Picture from (Kara and
Eker, 2004)

The system is described by the following ODE:

Ua = Raim(t) + La
dim

dt
(t) + e(t) (4.1)

Where :
Ua (V) is the motor armature voltage
Ra (Ω) is an armature coil resistance
La (H) is an armature coil inductance
ia (A) stands for armature current

And

ea = Kbwm (4.2)

26 Chapter 4. Modeling experience

ea (V) is back electromotive force
Kb (rad/Vs) is the EMF constant
wm (rad/s) is a rotational speed of the motor

moreover

Tm = Ktia (4.3)

Tm (Nm) is a Torque produced by the motor
Kt (Vs/rad) is motor’s torque constant

As this basic representation has only the components of the first order, this is
a simplified linear model of DC motor. It, like any real-world mechanical system
characterized by numerous nonlinearities, an example could be mentioned in Back-
ground overview dead-zone nonlinearity example . For training procedure general-
ization, we introduce the nonlinear term representing voltage loss due to magnetic
hysteresis. This part of DC motor model described in the context of similar problem
consideration by (V. Vantsevich, 2018) were considered as nonlinearity example sat-
isfying two crucial criterions: makes an influence in any part of state space and have
big enough effect on the system to detect it in data.

uHS = KHSwm(t)ia(t) (4.4)

Where introduced KHS is a magnetic hysteresis constant.
Its nonlinearity may be not obvious as it consists of different terms wm and ia,

in our model they relate as wm = iaKt. In result we have obvious nonlinear term in
equations rewritten as uHS = KHSKbia(t)2

In the DC motor system, Ua plays the role of control influence and dia
dt describes

system evolution rule and dynamical properties arising.

dim
dt (t) =

Ua−Raim(t)−e(t)−uHS
La

ea = Kbwm
Tm = Ktia
uHS = KHSKbi2

a(t)

4.1.2 Data generation

For a generation of sample data were used Simulink, the system for a visual build-
ing of mathematical models. Modeled system gains representation in visual blocks,
as shown at picture (4.2). The Simulink model is composed of two primary compo-
nents: blocks graphical abstractions for some underlying operation and connections
(lines and arrows) representing the passage of data (signal) between them.

Diagram (4.2) shows the scheme of a build model we used for simulating the
behavior of the NLDS representing DC motor.

In the left part of the diagram are grouped blocks responsible for generation
input voltage for DC motor.

Generating block which uses random signal generators denoted as sig_value used
for sampling value of a signal and sig_duration for the duration of which chosen
signal value will be transmitted. Those blocks are sampling their output values from

4.1. Object of modelling 27

FIGURE 4.2: Organization of DC simulation in Simulink

uniform distribution bounded by pmax and pmin parameters for each block. Block
denoted as randomized_time_period represents the programmatic implementation of
combining those two signals into resulting random-valued, random-period signal.

Also, we introduced uncertainties if a form of additive noise and other distor-
tions in the course of this research to evaluate the robustness of NN to such phe-
nomenons, as an example on the picture is shown block denoted as ’Noise’.

The largest part of the scheme is devoted to DC motor model itself placed at the
top right part. The core part of this scheme is the bottom signal line with integrator
marked with 1

s . This is the block which treats input as derivative value and outputs
value of the corresponding integral in the current moment of time.

Upper three signal flows are representing processes describing computations for
the members of differential equations according to their marks: Hysteresis, EMF, the
resistance of the motor armature.

To simulate system the solver algorithm is being used. A solver is a method for
the numerical solution of a given system. It is responsible for the transition of states
in the model concerning time. We’ve chosen the ’ode3 (Bogacki-Shampine)’ solver
(Shampine and Reichelt, 1997).

To achieve sufficient accuracy, we chosen solver timestep of 0.01 sec. The value
was taken due to experimental experience, showed that larger values of solving step
results in values transitions between solution steps being not smooth enough to rep-
resent state values with the precision required for parameters identification or even
causes significant deviations from the expected system behavior.

On the other hand, decreasing timestep more is also impractical, as even with
this step size, we had to select only each k-th time record, dropping all the others.
On the stage of parameters identification, we treat that time-data as a discrete states
sequence and selected timestep is a compromise between sequence long enough to
grasp properties of underlying process and computing time spent.

To grasp the context of occurring dynamics, the RNN we are using in our archi-
tecture processes, the data split into small sequential periods. We picked step for
sampling those periods such that the number of states seen by the model in each
subsequent period would cover the expected length of the transitional phase met in
data. In this way, we ensure that single data samples will be representative regard-
ing the dynamical properties of a system.

28 Chapter 4. Modeling experience

At the bottom part of the diagram placed blocks for visualizing and storing val-
ues from signal lines to file.

FIGURE 4.3: Example of generated data. Voltage in blue and resulting
torque in green. Data re-scaled to fit the same plot.

Example of generated data used for evaluation of our model is shown at (4.3).
Control voltage on this example is rescaled to match the scale of resulting output
torque. On the plot, you can see the curvature of the output plot showing the process
of system transition to the new stable state.

4.2 Optimization goal

Modeling of a system implies reproduction of its properties. For this reason, our
NN-based model should represent the same data transformation that can be ob-
served from the original system . In our case, it should predict values of system
output yt, knowing information from previous timesteps and control signal xt. Such
a problem statement literally defines the problem of TS prediction (Madsen, 2007).

Core goal stated as the topic of this work is the identification of parameters de-
scribing the underlying physical process. We state it as search for vector of variables
θ such that function representing the model of our dynamical system parametrized
by this vector will produce the observed mapping from inputs to outputs. F(xt, θ) =
yt

4.2.1 Parameter Identifiability prerequisites

Following the (Newey and McFadden, 1994), to ensure that formalization of the
parameter identification problem could be formulated as an optimization task, we
have to clarify several assumptions that should be satisfied:

We presume that θi uniquely identifies the system in sense that no two different
parameter values result in the same output sequence (4.5).

θi 6= θj ⇔ F(•, θi) 6= F(•, θj) (4.5)

For the successful identification of the parameters, loss function defined for sys-
tem properties have to satisfy the following criterions:

4.2. Optimization goal 29

• smoothness in the neighbourhood of θ∗:

∃ ∇θ L(F(θ∗ + ε, X), Y) ε→ 0 (4.6)

• have minimum in the neighbourhood of θ∗:

L(F(θ∗, X), Y) < L(F(θ∗ + ε, X), Y) (4.7)

If requirements above (4.2.1) are satisfied then the solution of optimization prob-
lem will correspond to identifiable parameters of modeled dynamical system, as
(Hengl et al., 2007)

Those assumptions being held result in that true system parameters θ from given
data, given data X for the system Fθ(X) will infer, as certain data distribution maxi-
mizes likelihood (2.5) of only one possible θi (4.8).

L(θ0|Y0) > L(θ|Y0), θ0 6= θ (4.8)

Equivalently in terms of loss function it implies, that only one parameter value
corresponds to the loss function global optimum given sample data (4.9).

L(F(θ0, X0), Y0) ≤ L(F(θ, X0), Y0), θ0 6= θ (4.9)

Two separate goals standing before our model could be formalized in the form
of optimization task as a search for the following estimators (4.10):

F̂(x, θ)→ F(x, θ)
F(x, θ̂)→ F(x, θ)
Where :
F− original f unction
F̂− its estimator

(4.10)

Here we see the problem, that we do not have the original function available.
To overcome this we could use its estimate instead, but then as we have it as the
optimization goal in other function, our goal function system will reduce to single
expression as F̂(x, θ̂) = F(x, θ).

L(Ŷ, Y) = L(F̂(X, θ̂), F(X, θ))

→ F̂ = F̂(X, Y, θ̂), θ̂ = θ̂(X, Y, F̂)
(4.11)

Problem is that such optimization task is ill-specified as it includes two different
optimization criterions and used estimators have a recursive dependency in their
definition. There are two cases which resolve this issue:

30 Chapter 4. Modeling experience

• Both optimization criterions are independent; then the problem can be split
into two independent subproblems (4.12).

L(Ŷ, Y) = L(F̂(X, θ̂), F(X, θ))

θ̂ |= F̂ ⇒ = LF(F̂(X, θ), F(X, θ)) + Lθ(F(X, θ̂), F(X, θ))

→ F̂ = F̂(X, Y), θ̂ = θ̂(X, Y)

(4.12)

• Optimization criterions are interdependent. Moreover, optimality of one im-
plies the optimality of another. Then it should be possible to rewrite it in terms
of combined criterion optimization (4.13).

F̂∗ ⇔ θ̂∗ ⇒ F̂(X, Y, θ̂) = F̂θ̂(X, Y) (4.13)

According to our previous assumptions we consider functions which are uniquely
determined by its parameters (4.2.1), it means that precondition of estimators inde-
pendence is not held, as one criterion defines the other uniquely. At the same time,
unique identifiability indicates that the parameters identify the function: θ ⇒ Fθ .
Therefore, such a formulation of the optimization problem in some general case is
correct and decidable, because if we can find the correct representation of θ, this im-
plies that a real is necessarily derived from it, but the search for θ is an ordinary task
optimization of one parameter. From here we conclude that there is such a consistent
pair of estimates that are simultaneously optimal: ∃(F̂∗, θ̂∗):

Since such a problem is solvable in general case, as the next step, we should an-
alyze the problem in the context of our precise task and consider if optimum of that
problem will be the one we need. Not-unique value for F̂ satisfies conditions of our
task, while they have the required dynamical properties but the system parameter
identification problem expects !∃θ.

It would be a trivial task in case if this problem has only one optimum ∃!(θ̂∗, F̂∗).
From uniqueness criterion (4.2.1) follows naturally demand of its exclusiveness

(4.14):
If exists any F̃ that is parametrized by some θ̃ is valid representation of our data

our assumption of single optimum does not hold.

i f ∃F̃, ∃θ̃, F̃ 6= F̂, θ̃ 6= θ̂, such that F̃(X, θ̃) = Ỹ,

e(Ỹ, Y) ≤ e(Ŷ, Y) ⇒ ∃ 6 !θ̂∗.
(4.14)

We have assumption that θ ⇒ F, this mean not only that guarantees on θ̂ will
lead us to the valid solution of both problems θ̂ → θ̂∗ (4.15), but also guarantees on
F, as having F we can use it to check θ (4.16).

i f θ̂∗ = θ ⇒ F = F̂(θ) (4.15)

i f F̂∗ = F, θ̂ → F̃,⇒ θ̂ = θ ⇔ F̃ = F̂∗ (4.16)

4.2. Optimization goal 31

Since parameter values and observed TS are both just sets of values, and unique
identifiability statement is nothing more than a requirement on the mapping be-
tween those sets to be bijective, we can think of the function we are parameterizing,
as that bijective mapping. As several possible bijective mappings between two sets
can be infinite (we can represent a mapping from the set A to the set B: A −→ B as
A −→ Z −→ B where Z is arbitrary set), therefore exists lots of such functions that
could be parametrized by θ and produce the observed data (X, Y).

if A
FAB−→ B, and ∃A

FAQ−→ Q
FQB−→ B

∃ 6 !Q→ FAB FAQ(FQB), ∃ 6 !FAB

∃Faq(A) = Q, Fqb(Q) = B, Fab = Fqb(Faq),
∃ 6 !Q⇒ ∃ 6 !Fab

Therefore as the actual form of equation ("template" to insert parameters) is not
known and our optimality criterion consists of both estimators, for the function and
its parameters, we cannot expect that result of optimization will be exactly targeted
dynamical system model.

It means that we should impose additional restrictions to find our exact solutions
from the space of optimal estimators. As follows from (4.15), (4.16) we could restrict
only one part of solution: either F̂ or θ̂. We will consider both options:

Uniqueness of F̂∗ because of several reasons:

• Functions of the same restricted form: As we stated in the dynamical systems
overview, different processes can leave the equivalent data imprint, therefore
exists many configurations for nonlinear dynamical systems that satisfy our
optimality condition. As it is hard to provide all available state space for the
model in a finite training set even for an ideal problem. For the case of the
real-world mechanical systems, it is truly impossible, due to:

– unknown disturbances from the external environment in the course of
exploitation

– noises from sensors and analogue components

– inherent flaws of measurements approximations and calculations, etc.

• Even form of the function cannot be guaranteed: As we have the NN as a Black
box-based estimator included in our model, we cannot control explicitly what
parametrized system is being approximated by a particular model instance.

Therefore we decided to follow the path of restricting θ̂ and then rely on it to
optimize F̂(X, Y, θ̂). Restricting of θ̂ will be achieved by introduction explicit dy-
namical model of our goal system in form of governing differential equations (4.2.2)
building for it a White box model.

Isolation of TS prediction and DS parameter identification provides us with vari-
ous possible ways to achieve them. Models could be trained in a sequential manner,
while one is the supervisor for another. But we decided to build a combined model
because such setting gives us wider applications cases:

32 Chapter 4. Modeling experience

• Could be used in an interactive manner as the Observer part for the real-world
system, identifying additional system parameters.

• Parameter identification could be used as the auxiliary loss for the TS-prediction
NN, responsible for the ’modeling’ of the system itself.

• Translating problem from pure black-box setting to Gray-box we see as the
very promising methodology and used in this work approach can be one of
the examples of such approach benefits.

Order of accomplishing: As we’ve already stated that TS prediction part cannot
be restricted effectively in case of treating it as a Black-box problem. Therefore re-
strictions would be lay on the parameter identification task. As the source of the
data, we can take either available training data (X, Y) or the TS estimate from BB
model (X, Ŷ). We decided to use the original data, as then it will break the recursive-
reference in optimization problem as stated in (4.13).

We also want to use the obtained White-box representation with identified pa-
rameters to use it as the system dynamical properties representation. Having a form
of the system, we can perform property-based learning procedure of the Black Box
model with an aim to improve its robustness to data change and push towards learn-
ing the nonlinearities of target system instead of the memorizing data mapping from
the training procedure.

4.2.2 System dynamics as the optimization criterion

As a model of interest posses certain nonlinear properties described by a system of
ODE parametrized by some parameters θ, solving such a system means finding sys-
tem states in each moment of time. As we see, solving such a system corresponds to
the time-series prediction problem. To combine those two sides of the same problem
we use the explicit evolutionary rule of a system in a form of state derivative to pre-
dict values. For the case of generated data, it is the same differential equations we
used to generate the data (perfect White Box case).

To translate our physical equations into the abstract model for the optimization
problem, we will rewrite it in terms of used variables:

As the DC motor speed is governed by the control voltage Um. It is natural to
choose it as xt standing for the input for our system in the time moment t. The goal
of the motor is to transform input current into the output torque. Therefore we use
the motor produced torque τm as the output of the system yt. Constant parameters
chosen for identification our system are parameters denoting behaviour of the DC
motor as the electrodynamical system:

1. armature coil inductance of the motor: La = θ1

2. armature coil resistance: Ra = θ2

3. constant parameter of the Hysteresis process: KHSθ3

ea = Kbwm
y(t) = Ktia
uHS = θ3Kbi2

a(t)
dy
dt (t) = Kt

di
dt (t) = Kt

x(t)−θ1im(t)−e(t)−uHS
θ2

(4.17)

4.2. Optimization goal 33

Where :
x(t)−Ua

y(t)− Tm

θ1 − Ra

θ2 − La

θ3 − KHS

Restriction on individually identifiable parameters: As you can see, all these
parameters are chosen in such a way that we cannot rewrite them in a form that is
non-linear with respect to the terms θ. This is done intentionally, as if we had mem-
bers of θi and θj that were included in only one factor, such as aθibθj, the final model
would be absolutely correct for the purposes of the model, but not so useful for rep-
resenting the identification of individual parameters, the model will be limited only
to this value of the product, but not to the individual values of θi, θj.

Such form of the derivative will be used in the loss functions for subtasks, param-
eter identification, and TS estimation. We use this method to impose a requirement
of the dynamic properties resulting system approximation has to satisfy.

4.2.3 Loss function

As we stated in time series prediction formalization and providing solutions for dif-
ferential equations with respect to time are equivalent tasks. We use it to formulate
our problem in term of both. Differential equations are used to introduce known
physical model (WB) and TS prediction – for learning NLDS properties from data
representation (BB). We designed our loss function to involve those approaches in
combination while also allowing to use only one of them in order to explore the
impact of each method used.

In time series analysis the area of interest usually on dynamical properties of
TS. They can be extracted not from original TS, but from its "first difference" form
madsen2007timeSeries: the difference between every two consequent elements of
series (4.18).

D(Y) = Yt −Yt−1 (4.18)

Equivalently we can get the difference of time series D(Y) in a manner of nu-
merical integration calculating the derivative in the current moment and adding it
multiplied by data timestep we time-difference for our time series (4.19) .

τ(Yt) = time o f Yt observation (4.19)
ht = τ(Yt)− τ(Yt−1 (4.20)
dy
dt

(t) =
dy
dt

(xt, θ) (4.21)

D(Y) ≈ ht
dy
dt

(t) = D̂(Y) (4.22)

(4.23)

34 Chapter 4. Modeling experience

Combining those two representations, we can define loss function for our prob-
lem as absolute value of plain vector difference (l1 norm) between estimated and
target values (4.24):

L(D(Y), D̂(Y)) = |D(Y)− D̂(Y)| (4.24)

= |(Yt −Yt−1)−
dŷ
dt

(t)ht| (4.25)

= |(Yt −Yt−1)−
dy
dt

(xt, θ̂)ht| (4.26)

= L(D(Y),
dŷ
dt

(xt, θ̂)) (4.27)

Which can be equivalently used as Loss function for initial TS (4.28):

L(Y, Ŷ) = |Y− Ŷ| (4.28)

= |(Yt−1 + D(Y))− (Yt−1 + D̂(Y))| (4.29)

= |D(Y)− D̂(Y)| = (4.24) (4.30)

We used L1 instead of L2 error measures, despite L2 loss function curve behaves
better for gradient-based optimization , but the problem of the multiscaled parame-
ters identification (4.3.2) we are facing, required introduction of balancing weights.
If we use them together with L2 error measure our resulting estimate of θ̂ will be
harmed, as dependence Y(θ) is nonlinear and under introducing square measure
will result in bias of L2-loss-based estimator θ̂L2(Y) 6→∗(Y).

4.2.4 Loss application

As we showed form from (4.24) is ill-defined, as result we have to split it in two
stages. In section dedicated to formalization of our task in terms of optimization
problem (2.5) we made the conclusion that only valid way of achieving our goal is
to solve our problem as two separate.

To achieve those two stated goals (4.2.2) this purposes we split our learning pro-
cedure in two stages repeated on each iteration.

First: Using target values from Y calculate loss for and Ŷ resulting in parameters
update θ̂. There are no computed gradient on TS predictor as no predicted data is
involved in computing:

L(D(Y),
dy
dt

(xt, θ̂)ht)→ eθ̂(YD, Yθ̂)→ ∇θ̂Y (4.31)

Second: Then against Ŷθ and ŶD with updated θ̂ and Ŷθ . As, while θ̂ is frozen. In
both samples we use difference of differential equation-based computed derivative
and explicit difference of a y time series.

L((Ŷt − Ŷt−1),
dŷ
dt

(xt, θ̂))→ eŶ(ŶD, Ŷθ̂)→ ∇Ŷ,θ̂Ŷ (4.32)

Here we will have involved gradients on both θ̂ and Ŷ. On a stage of programat-
ical implementation we choose to ’freeze’ our Parameter Context Nodes and don’t

4.3. Architecture of Neural Network 35

change them on Backpropagation of this error. Eventually it will converge to the
same values, but notation for such setting will be clearer and it will much harder to
impose some strict explanations on learning process.

4.3 Architecture of Neural Network

To achieve the desired properties following the gray box modeling approach, we
decided to follow the Hybrid approach exactly and build parallel models respon-
sible for white-box and black-box modeling parts. It is done by incorporating in
same NN the Black-box part represented by LSTM, and special Parameter Context
Neurons (PCN) dedicated for explicit parameter identification. A number of these
nodes is the same as the number of parameters required for storing a vector of model
parameters.

The idea of parameter storing nodes was inspired by Jordan RNN described by
. Jordan NN has nodes of a similar type used for remembering previous timestep
outputs and passing them as inputs for next timestep, in this way achieving RNN-
specific properties of sequential memory.

This approach gives us following benefits:

• White box isolation: θ̂ in nodes stored explicitly as their real values grasped in
float-point weights in those nodes. We do not use any nonlinearity or hidden
layer calculations for these parameters. We performed only gradient prop-
agation with for the target data, therefore this approach does not uses any
NN-specific properties. This mean that we can insist on explicity of the iden-
tefication procedure and treat it as a White box model.

• Constant: As we pursuing estimation of constant terms inherent for the pro-
cess, no need in activation-based identification dependant of each specific batch
of data and involving both additional computations and errors from varying
predictions.

• Clearer Loss: In case of including θ̂ to output of LSTM we will have to im-
pose constantness of parameters explicitly, what mean additional terms in lost
function and more computation involved.

Dataflow: Input for the model xt is a control signal, when the output is composed
of two parts ŷt – resulting system response and θ̂ estimation of requested dynamical
system parameters. Estimated parameter values also used as additional inputs for
LSTM, to enforce (not guarantee) the parameter-driven inference. I this role we see
such parameter estimation as an auxiliary task for our time series prediction (Trinh
et al., 2018).

Parameters identification

As we stated before in it is impossible to build the model of parametrized function
with BB and estimate its parameters simultaneously.

Because of this reason we are solving the parameter identification to and learn
them from the target data directly applying knowledge about the underlying physi-
cal model of a relevant system to overcome the absence of the system.

36 Chapter 4. Modeling experience

FIGURE 4.4: Dataflow in our main neural network architecture

Modeling of a system

We have already mentioned above NN approximation power causes the problem
of training data overfitting. The same problem illustrates that in a common direct
supervision approach desired output can be memorized without inferring general-
ization from data (Arpit et al., 2017). If provided data complexity is low enough and
the capacity of weights allows We have already mentioned above NN approximation
power causes the problem of training data overfitting. The same problem illustrates
that with the directly-supervised learning approach when the training goal is for-
mulated in terms of reproducing desired output if provided data have a low enough
diversity for weights to store it by enumeration, for NN is easier to learn a direct
mapping between inputs and outputs, than underlying consistent patterns.

As we are addressing the problem of NN memorizing data instead of modeling
behavior of the system of interest, we tried to implement learning process without
direct supervision, when predicted data are compared against the target data and the
resulting error used for learning. Instead, we try to achieve behavior-based model-
ing by using some representation of desired system dynamical properties in the loss
function.

In our problem setting, TS prediction is driven by the dynamical properties of
the system in the form of:

• identified parameters of the targeted system

• form of the original system dynamical model

• data of system dynamics

In the result, we expect the NN-based model to express the same dynamical proper-
ties, as the original system.

4.3.1 Restrictions on parameters

According to (Sohlberg and Jacobsen, 2008), introduced knowledge about the sys-
tem follows the methodology of Restricted Black Box model approach. Mentioned
restrictions should be laid according to known physical properties of a system. Such
an approach also can help us to achieve better estimate convergence, as loss func-
tion expressing some real-world physical process could be well-behaved (be differ-
entiable and smooth) only in parameter ranges corresponding to meaningful param-
eter values.

4.3. Architecture of Neural Network 37

An illustration of such problem was met in the course of this research: as it can
be seen from pic loss function shape around 0 for La, the parameter is not deter-
mined, as La stands in the denominator of our calculated loss. If the initial value of
parameter La would be randomly initialized with a negative value, there is no way
when a gradient-based approach will lead to the global minimum of this function.
In general case for NN, similar kind of a problem is not a critical as weights repre-
senting parameters of a model give us parameter space of very high dimensionality,
but in our case, where the problem was formulated in such low-dimensional space
intentionally this requires special attention. We are allowed to introduce such limi-
tation of being positive to all values we estimate in this problem, as it follows their
physical sense.

4.3.2 Multiscaled parameters - learning procedure extension and compli-
cation

In pursuit of identifying several system parameters at once, we met the problem
of combined convergence rate. As parameters stated for learning have a different
magnitude of influence on resulting time series their convergence procedure inter-
fere with each other. At the time when parameters with a higher-order magnitude
of impact still in the process of converging to its stable minimum, they shadow the
benefit of lower-order parameters improved estimates, which does not allow them
to converge effectively.

As we use batch-learning procedure and data in each batch can’t grasp all sys-
tem properties accurately, each batch has a different optimal parameter value. The
aforementioned stochastic learning process results in that even after estimator con-
vergence to its optimum we still can observe the error oscillations around that pa-
rameter value which also require special treatment to diminish its harmful effects on
the learning process.

To address this issue and facilitate the parameter identification process, we’ve
introduced an adaptive learning rate into the training process and instance-wise
representativeness-based weight coefficients into loss function.

An adaptive loss rate is a common technique for NN training used especially
for the oscillating optimal value estimates [(Bengio, 2012),(Smith, 2018)]. We’ve in-
troduced a decrease in learning rate upon loss function value stops decreasing and
starts to oscillate as it decreases the amplitude of gradient-based steps, therefore also
dumping the oscillation.

On the same time, introducing weights into a task is not just following the com-
mon practice, but subject matter base driven decision. After the change of control
signal, it takes some time for the dynamical system output value to reach a new sta-
ble state. This period in between steady states is called transitions period . Usually
observed in real-world mechanical systems are spending most of the functioning
time in a steady state mode. But dynamical properties are tightly concerned with
system state memory, therefore are most prominent where this states changes in the
course of a transition period.

Some parameters from governing ODE influence the stable state value, and ac-
cordingly can be derived from it. Other affects mostly or exclusively on the behavior
at the transition periods conditions. Because of it, different exploitation data samples
have different significance for different parameter identification .

Therefore disparity of available exploitation data for parameter identification is a
usual problem . A similar issue is even more prominent for system failure prediction
task, as failure-based data are both inaccurate and expensive to obtain .

38 Chapter 4. Modeling experience

FIGURE 4.5: Convergence of different parameters. Top: parameter
values, Bottom: Rate of change. Red lines showing the moment when

senior parameter had converged

To address this issue were introduced, weight coefficients are giving more atten-
tion to transition period data against steady-state periods. As we already compute
derivatives in our loss functions and derivative value by its physical sense is a mea-
sure of underlying |function rate of change, we used absolute values of derivative
| dy

dt | as the basis for our introduced weights. We normalized it between 0 and 1
using as weights coefficients for the errors. To prevent severe unbalance in favor
of transition-state based parameters against stable-state ones, we also added some
small constant value to weights not to zero-out stable state info at all.

4.3.3 Data normalization-denormalization procedure

One of proposed method issue is that loss function formulated in terms of the time-
difference derivative does not grasp initial state problem of differential equations. Any
TS with corresponding curvature will satisfy the optimality criterion despite shift on
a constant value.

4.3. Architecture of Neural Network 39

But in the context of ML problems and time series prediction, especially it is a
common procedure to normalize data to 0-1 diapason (Madsen, 2007). Hence data
normalization removes an added constant problem before giving it to our model and
denormalization after normalizing inputs and denormalizing outputs.

Also, we use denormalization on the stage of parameter-driven loss calculation,
as due to the nonlinearity of the system, its identified parameters values does pre-
serve under normalization-denormalization transformation.

40

Chapter 5

Experimental results

5.1 Experiment description

As the basis for comparison, we will propose four variations of the same model with
the identical NN architecture and data used for training. We restricted the difference
between the experiments only to the used loss approach, in all cases were used the
same architecture, dataset, learning rate, and the number of epochs. Error measure
L1 was preserved the same for all loss functions. We used an excessive number of
800 training epochs to let the slowest converging instance fit the data.

The difference will be in loss functions and loss application procedures: (5.1).

1. The main model: Learning parameters for WB, then using only to train the BB
model. Model is agnostic for the data themselves, being led only by identified
dynamical properties of the system.

2. Same as (1) but in the process of BB model training use the goal data for the
evaluation of dynamics-based loss. Model is aware both of data and separated
dynamical properties.

3. WB and BB parts both are learning from data in a conventional, directly su-
pervised manner. BB has WB predicted parameters on input. Usual model,
but with additional inputs passively introducing system parameters, but none
insights provided about the system form.

4. BB model is learned from data directly, no parameter identification included.
Ordinary TS learning as the baseline.

5.1.1 Experiment parameters

While for the models training we use different loss functions, the comparison is per-
formed using only the ordinary error between predicted and target values |D(Y)−
D(Ŷ)|. That gives the advantage for model baseline model 3, which were trained
under the same conditions.

All data were obtained from the same Matlab model of DC motor described in
(4.1.2). Following parameter values of DC motor were used:

5.1. Experiment description 41

Lm = 0.5 H
Rm = 1 Ω
KHS = 10
Kt = 0.01
Kb = 0.01

As we mentioned in (4.2.2), parameters used for identification are Lm, Rm, KHS.
For the evaluation, we chose four additional datasets and added a performance

on training set evaluation (train / test split preserved). Special sets are the following.
R[a, b] - stands for the range of control signals, D[a, b] - durations of steady-value
signals:

1. R[1, 2]D[3, 3]: The one used for training the models. The most constrained
depleted set of values, has steady values of signals with constant duration of 3
of values in range of [1,2].

2. R[5, 15]D[3, 3]: evaluation set with depleted steady signal period only.

3. R[1, 2]D[1, 20]: evaluation set with depleted signal variance only.

4. R[5, 15]D[1, 20]: signal with moderate values. All estimator instances trained
on such set have approximately equal ability to predict data from all the other
proposed sets.

5. R[5, 15]D[1, 20] + sin(t): Added sinusoidal signal.This dataset represents the
signal where the system permanently remains in a transition state.

6. R[5, 15]D[1, 20] + v(t): where v(t) stands for noise.

7. R[0, 33]D[1, 20]: increased range of duty cycle voltage values. With this dataset,
we want to test the robustness to changes in observed data patterns. As the
normalized data are insensitive to a steady value shift, we changed the data
distribution.

8. R[5, 15]D[.001, 2]: altered range of steady signal duration, present values which
does not allow system to reach the new steady-state value before signal changes.
This set should underline the transition state importance in expressed data.

5.1.2 NN architecture parameters

To struggle the memorization of data we used the LSTM with an intentionally small
number of hidden layer weights. This also should show that it is possible to use such
an approach when computing power is expensive or unavailable, as in the example
of on-board systems for integrated observers.

Performance of the proposed method best seen in the cases when the training
set consists of an intentionally depleted data sample. In this case, the model has
to make a conclusion from data about underlying nonlinearities, rather than fit the
observed curvature regardless of context. This setting corresponds to a real-world
scenario when mechanical systems are usually functioning in limited narrow space
from all possible states. To describe the system better with the data we have to

42 Chapter 5. Experimental results

collect them in all specter of exploitation conditions, including extreme and harmful
for the real-world system itself. Therefore such experiment setting corresponds to
the real-world challenges, especially in cases of system fault prediction tasks and
experiments availability.

5.1.3 Results

Results of our modeling experiment provided in following table (5.1). Columns de-
note the different used data during the experiment, while lines regard to modifica-
tions of the model:

Experimental datasamples descriptions in table are following: V[vmin, vmax] stands
for signal values sampling range and D[Dmin, Dmax] for the steady states durations.
Additional markings are +sin(t) - stands for added sin-wave signal and +noise for
added noise.

In the following table (??) we placed the obtained results of our models perfro-
mance evaluation. All values in the table is divided by the minimal error among the
experiment participating models, therefore .0 means model 100% of lowest error.
Models in table are listed in the same order as in listing above (5.1).

NN type R[1,2] R[5,15] R[1,2] R[5,15] R[5,15] R[0,33] R[5,15] R[5,15]
D[3,3] D[3,3] D[1,20] D[1,20] D[1,20] D[1,20] D[.001,2] D[1,20]

+sin(t) +v(t)
Main 1.26 .021 1.78 .0 .0 .207 .0 .0
Sees the
Data

.850 .042 1.18 .104 .050 .365 .247 .106

Supervised
+ Parame-
ters

.0 .008 .0 .176 .129 .163 .138 .219

Supervised .144 .0 .174 .229 .152 .0 .072 .270
Baseline
error

428.2 3399.9 258.4 4455.6 20867.5 8485.4 4052.0 3241.5

TABLE 5.1: Comparative results of testing. Units: relevant to minimal
result column-wise

From results in the table (5.1) it can be seen that there are no uniform arrange-
ments among model performance at the different tasks.

It is illustrative that models performing worse on the training set are the leaders
by results of evaluations on more complex datasets.

Our main model is lagging behind in case with training set or similar sets. But the
size of this handicap is not dramatic, you can see that the R[1,2]D[3,3] model being
trained on and its modification with varying dataset R[1,2]D[1,20] are both having
baseline error much lower 428.2 and 258.4 accordingly. On the other hand modifi-
cation of the training data with higher variability of control signal R[5,15]D[3,3] has
significant baseline error of 3399.9, but instead, deviations from the best result are
very small, as the biggest deviation is only 4.2% for the main model modification
which observed data directly.

Comparioson of the main model results and its modification with direct data ob-
servation availabel shows that the isolation of training data gave a clear advantage,
as all evaluations resulted in main model performed better.

As we can explain it, duration signal effects the most to the data distribution, as
well as the adding sin(x). With those changes system remains in the transition state

5.2. Conclusion 43

more than in training data, therefore model which had shifted the focus of interest fit
those insignificant regarding the representation part in training set data, produced
the best results.

From this, we can conclude that the current experiment showed that the pro-
posed method can help to address the issue of focusing the model attention on the
precise mode of behavior. Therefore the requirement on behavior can be imposed on
the model via the parameter identification and introduction of system-specific loss
function involving a physical description of the modeled process.

As we see the model had been trained in a directly supervised manner with the
introduction of the identified parameters behaves more like the baseline model. It
can be interpreted that the training process of such a model is being determined by
the TS predictor training procedure.

The general decision in favor of introduction identified parameters to directly
supervised model is not absolutely clear from those results. Better performance of
supervised model supplied with evaluated parameters on the training-set related ex-
amples can be the negative clue, meaning the larger data distribution overfitting. But
in the cases of more complicated examples, its performance is considerably higher
than the baseline model. The only complication is in extreme cases with very high
range or very low duration values, but explanations for those results require exten-
sive analysis on a wide range of different data distributions.

In general, we consider examples on data which includes sin(x) and wider sam-
pling ranges for durations and value ranges as the most prominent arguments in
favor of our proposed NN training method.

5.2 Conclusion

Therefore in the course of this research, we showed that the proposed method for
indirectly supervised NN training can be used for the controlling of the Black box
model remembering the training set, instead of inferencing nonlinearities of the un-
derlying system.

The proposed methodology and architecture could be farther improved and ap-
plied to the practical problems, as current versions being made without additional
components used to improve the performance of such systems, but potentially un-
dermining the reliability of experimental results.

Also, farther research for better training parameters values should help to specify
conditions under which observed the increase in performance remains and provide
better-argument results.

44

Bibliography

Adeli, Hojjat, F Asce, and Xiaomo Jiang (2006). “Dynamic Fuzzy Wavelet Neural
Network Model for Structural System Identification”. In: Journal of Structural
Engineering-asce - J STRUCT ENG-ASCE 132. DOI: 10.1061/(ASCE)0733-9445(2006)
132:1(102).

Aldrich, John (1997). “R.A. Fisher and the making of maximum likelihood 1912-
1922”. In: Statistical Science 12.3, pp. 162–176. DOI: 10.1214/ss/1030037906. URL:
https://doi.org/10.1214/ss/1030037906.

Arpit, Devansh et al. (2017). “A Closer Look at Memorization in Deep Networks”. In:
Proceedings of the 34th International Conference on Machine Learning. Ed. by Doina
Precup and Yee Whye Teh. Vol. 70. Proceedings of Machine Learning Research.
International Convention Centre, Sydney, Australia: PMLR, pp. 233–242. URL:
http://proceedings.mlr.press/v70/arpit17a.html.

Ashby, William Ross. (1956). An introduction to cybernetics. J. Wiley, chap. chapter 6:
The black box, 86 – 117. DOI: 10.5962/bhl.title.5851. URL: https://doi.org/
10.5962/bhl.title.5851.

Bengio, Y., P. Simard, and P. Frasconi (1994). “Learning long-term dependencies
with gradient descent is difficult”. In: IEEE Transactions on Neural Networks 5.2,
pp. 157–166. DOI: 10.1109/72.279181. URL: https://doi.org/10.1109/72.
279181.

Bengio, Yoshua (2012). “Practical Recommendations for Gradient-Based Training of
Deep Architectures”. In: Neural Networks: Tricks of the Trade, 437–478. ISSN: 1611-
3349. DOI: 10.1007/978-3-642-35289-8_26. URL: http://dx.doi.org/10.
1007/978-3-642-35289-8_26.

Bernat, Jakub and Slawomir Stepien (2015). “Multi-modelling as new estimation
schema for high-gain observers”. In: International Journal of Control 88.6, pp. 1209–
1222. DOI: 10.1080/00207179.2014.1000380. eprint: https://doi.org/10.
1080/00207179.2014.1000380. URL: https://doi.org/10.1080/00207179.
2014.1000380.

Boeing, Geoff (2016). “Visual Analysis of Nonlinear Dynamical Systems: Chaos, Frac-
tals, Self-Similarity and the Limits of Prediction”. In: Systems 4.4, p. 37. DOI: 10.
3390/systems4040037. URL: https://doi.org/10.3390/systems4040037.

BOHLIN, TORSTEN (1994). “Derivation of a ‘designer’s guide’ for interactive ‘grey-
box’ identification of nonlinear stochastic objects”. In: International Journal of Con-
trol 59.6, pp. 1505–1524. DOI: 10.1080/00207179408923143. eprint: https://
doi.org/10.1080/00207179408923143. URL: https://doi.org/10.1080/
00207179408923143.

Bottou, Léon (1998). “Online Algorithms and Stochastic Approximations”. In: Online
Learning and Neural Networks. Ed. by David Saad. revised, oct 2012. Cambridge,
UK: Cambridge University Press. URL: http : / / leon . bottou . org / papers /
bottou-98x.

Bottou, Léon (2012). “Stochastic Gradient Descent Tricks”. In: Lecture Notes in Com-
puter Science. Springer Berlin Heidelberg, pp. 421–436. DOI: 10.1007/978-3-642-
35289-8_25. URL: https://doi.org/10.1007/978-3-642-35289-8_25.

https://doi.org/10.1061/(ASCE)0733-9445(2006)132:1(102)
https://doi.org/10.1061/(ASCE)0733-9445(2006)132:1(102)
https://doi.org/10.1214/ss/1030037906
https://doi.org/10.1214/ss/1030037906
http://proceedings.mlr.press/v70/arpit17a.html
https://doi.org/10.5962/bhl.title.5851
https://doi.org/10.5962/bhl.title.5851
https://doi.org/10.5962/bhl.title.5851
https://doi.org/10.1109/72.279181
https://doi.org/10.1109/72.279181
https://doi.org/10.1109/72.279181
https://doi.org/10.1007/978-3-642-35289-8_26
http://dx.doi.org/10.1007/978-3-642-35289-8_26
http://dx.doi.org/10.1007/978-3-642-35289-8_26
https://doi.org/10.1080/00207179.2014.1000380
https://doi.org/10.1080/00207179.2014.1000380
https://doi.org/10.1080/00207179.2014.1000380
https://doi.org/10.1080/00207179.2014.1000380
https://doi.org/10.1080/00207179.2014.1000380
https://doi.org/10.3390/systems4040037
https://doi.org/10.3390/systems4040037
https://doi.org/10.3390/systems4040037
https://doi.org/10.1080/00207179408923143
https://doi.org/10.1080/00207179408923143
https://doi.org/10.1080/00207179408923143
https://doi.org/10.1080/00207179408923143
https://doi.org/10.1080/00207179408923143
http://leon.bottou.org/papers/bottou-98x
http://leon.bottou.org/papers/bottou-98x
https://doi.org/10.1007/978-3-642-35289-8_25
https://doi.org/10.1007/978-3-642-35289-8_25
https://doi.org/10.1007/978-3-642-35289-8_25

BIBLIOGRAPHY 45

Box, George E. P. (1976). “Science and Statistics”. In: Journal of the American Statistical
Association 71.356, pp. 791–799. DOI: 10.1080/01621459.1976.10480949. eprint:
https://www.tandfonline.com/doi/pdf/10.1080/01621459.1976.10480949.
URL: https://www.tandfonline.com/doi/abs/10.1080/01621459.1976.
10480949.

Bunge, Mario (1963). “A General Black Box Theory”. In: Philosophy of Science 30.4,
pp. 346–358. ISSN: 00318248, 1539767X. URL: http://www.jstor.org/stable/
186066.

Cen, Z., J. Wei, and R. Jiang (2011). “A Grey-Box Neural Network based identifica-
tion model for nonlinear dynamic systems”. In: The Fourth International Workshop
on Advanced Computational Intelligence, pp. 300–307. DOI: 10.1109/IWACI.2011.
6160021.

Cen, Zhaohui, Jiaolong Wei, and Rui Jiang (2013). “A gray-box neural network-
based model identification and fault estimation scheme for nonlinear dynamic
systems”. In: International journal of neural systems 23, p. 1350025. DOI: 10.1142/
S0129065713500251.

Che, Zhengping et al. (2018). “Recurrent Neural Networks for Multivariate Time
Series with Missing Values”. In: Scientific Reports 8.1. DOI: 10.1038/s41598-018-
24271-9. URL: https://doi.org/10.1038/s41598-018-24271-9.

Chen, Wei-Ching (2008). “Nonlinear dynamics and chaos in a fractional-order finan-
cial system”. In: Chaos, Solitons & Fractals 36.5, pp. 1305–1314. DOI: 10.1016/j.
chaos.2006.07.051. URL: https://doi.org/10.1016/j.chaos.2006.07.051.

Cho, Kyunghyun et al. (2014). “Learning Phrase Representations using RNN Encoder-
Decoder for Statistical Machine Translation”. In: CoRR abs/1406.1078. arXiv: 1406.
1078. URL: http://arxiv.org/abs/1406.1078.

CICCARELLA, G., M. DALLA MORA, and A. GERMANI (1993). “A Luenberger-
like observer for nonlinear systems”. In: International Journal of Control 57.3, pp. 537–
556. DOI: 10 . 1080 / 00207179308934406. URL: https : / / doi . org / 10 . 1080 /
00207179308934406.

Conceptual scheme NN. URL: https://en.wikipedia.org/wiki/Artificial_neural_
network#/media/File:Colored_neural_network.svg. (accessed: 15.04.2019).

Crossing, Gillett. Westingson DC generator. URL: https://commons.wikimedia.org/
wiki/File:Westinghouse_DC_generator_(1907)_driven_by_Ruston_Proctor_
engine, _Museum_of_Science_\%26_Industry, _Birmingham_21.1.1995_
Scans124_(11634042363).jpg. (accessed: 15.04.2019).

Dinh, Huyen, Shubhendu Bhasin, and W.E. Dixon (2011). “Dynamic Neural Network-
based Robust Identification and Control of a class of Nonlinear Systems”. In:
pp. 5536 –5541. DOI: 10.1109/CDC.2010.5717445.

Drakunov, S. V. (1992). “Sliding-mode observers based on equivalent control method”.
In: [1992] Proceedings of the 31st IEEE Conference on Decision and Control, 2368–2369
vol.2. DOI: 10.1109/CDC.1992.371368.

Du, Yunshu et al. (2018). “Adapting auxiliary losses using gradient similarity”. In:
arXiv preprint arXiv:1812.02224.

Edwards, A.W.F. (1984). Likelihood. Cambridge science classics. Cambridge Univer-
sity Press. ISBN: 9780521318716. URL: https://books.google.com.ua/books?
id=LL08AAAAIAAJ.

François, Deloche. Unfolded representation of RNN. URL: https://commons.wikimedia.
org/wiki/File:Recurrent_neural_network_unfold.svg. (accessed: 15.04.2019).

Gers, Felix A., Jürgen Schmidhuber, and Fred Cummins (2000). “Learning to For-
get: Continual Prediction with LSTM”. In: Neural Computation 12.10, pp. 2451–

https://doi.org/10.1080/01621459.1976.10480949
https://www.tandfonline.com/doi/pdf/10.1080/01621459.1976.10480949
https://www.tandfonline.com/doi/abs/10.1080/01621459.1976.10480949
https://www.tandfonline.com/doi/abs/10.1080/01621459.1976.10480949
http://www.jstor.org/stable/186066
http://www.jstor.org/stable/186066
https://doi.org/10.1109/IWACI.2011.6160021
https://doi.org/10.1109/IWACI.2011.6160021
https://doi.org/10.1142/S0129065713500251
https://doi.org/10.1142/S0129065713500251
https://doi.org/10.1038/s41598-018-24271-9
https://doi.org/10.1038/s41598-018-24271-9
https://doi.org/10.1038/s41598-018-24271-9
https://doi.org/10.1016/j.chaos.2006.07.051
https://doi.org/10.1016/j.chaos.2006.07.051
https://doi.org/10.1016/j.chaos.2006.07.051
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078
https://doi.org/10.1080/00207179308934406
https://doi.org/10.1080/00207179308934406
https://doi.org/10.1080/00207179308934406
https://en.wikipedia.org/wiki/Artificial_neural_network#/media/File:Colored_neural_network.svg
https://en.wikipedia.org/wiki/Artificial_neural_network#/media/File:Colored_neural_network.svg
https://commons.wikimedia.org/wiki/File:Westinghouse_DC_generator_(1907)_driven_by_Ruston_Proctor_engine,_Museum_of_Science_\%26_Industry,_Birmingham_21.1.1995_Scans124_(11634042363).jpg
https://commons.wikimedia.org/wiki/File:Westinghouse_DC_generator_(1907)_driven_by_Ruston_Proctor_engine,_Museum_of_Science_\%26_Industry,_Birmingham_21.1.1995_Scans124_(11634042363).jpg
https://commons.wikimedia.org/wiki/File:Westinghouse_DC_generator_(1907)_driven_by_Ruston_Proctor_engine,_Museum_of_Science_\%26_Industry,_Birmingham_21.1.1995_Scans124_(11634042363).jpg
https://commons.wikimedia.org/wiki/File:Westinghouse_DC_generator_(1907)_driven_by_Ruston_Proctor_engine,_Museum_of_Science_\%26_Industry,_Birmingham_21.1.1995_Scans124_(11634042363).jpg
https://doi.org/10.1109/CDC.2010.5717445
https://doi.org/10.1109/CDC.1992.371368
https://books.google.com.ua/books?id=LL08AAAAIAAJ
https://books.google.com.ua/books?id=LL08AAAAIAAJ
https://commons.wikimedia.org/wiki/File:Recurrent_neural_network_unfold.svg
https://commons.wikimedia.org/wiki/File:Recurrent_neural_network_unfold.svg

46 BIBLIOGRAPHY

2471. DOI: 10.1162/089976600300015015. URL: https://doi.org/10.1162/
089976600300015015.

Goodwin, G.C., S.F. Graebe, and M.E. Salgado (2001). Control System Design. Prentice
Hall. ISBN: 9780139586538. URL: https://books.google.com.ua/books?id=
7dNSAAAAMAAJ.

Graves, Alex, Abdel-rahman Mohamed, and Geoffrey Hinton (2013). “Speech Recog-
nition with Deep Recurrent Neural Networks”. In: ICASSP, IEEE International
Conference on Acoustics, Speech and Signal Processing - Proceedings 38. DOI: 10 .
1109/ICASSP.2013.6638947.

Guastello, S.J. (2013). Chaos, Catastrophe, and Human Affairs: Applications of Nonlin-
ear Dynamics To Work, Organizations, and Social Evolution. Taylor & Francis. ISBN:
9781134787852. URL: https://books.google.com.ua/books?id=9U2fVd0Q8soC.

Hauth, Jan (2008). “Grey-Box Modelling for Nonlinear Systems”. doctoralthesis. Tech-
nische Universität Kaiserslautern. URL: http://nbn-resolving.de/urn:nbn:
de:hbz:386-kluedo-22879.

Hengl, S. et al. (2007). “Data-based identifiability analysis of non-linear dynamical
models”. In: Bioinformatics 23.19, pp. 2612–2618. ISSN: 1367-4803. DOI: 10.1093/
bioinformatics/btm382. eprint: http://oup.prod.sis.lan/bioinformatics/
article-pdf/23/19/2612/16861405/btm382.pdf. URL: https://doi.org/10.
1093/bioinformatics/btm382.

Hinrichsen, Diederich and Anthony J. Pritchard (2005). Mathematical Systems Theory
I. Springer Berlin Heidelberg. DOI: 10.1007/b137541. URL: https://doi.org/
10.1007/b137541.

Hochreiter, Sepp and Jürgen Schmidhuber (1997). “Long Short-Term Memory”. In:
Neural Computation 9.8, pp. 1735–1780. DOI: 10.1162/neco.1997.9.8.1735. URL:
https://doi.org/10.1162/neco.1997.9.8.1735.

Hoshi, Rosangela Akemi et al. (2013). “Poincaré plot indexes of heart rate variability:
Relationships with other nonlinear variables”. In: Autonomic Neuroscience 177.2,
pp. 271–274. DOI: 10.1016/j.autneu.2013.05.004. URL: https://doi.org/10.
1016/j.autneu.2013.05.004.

Kalman, R. E. (1960). “A New Approach to Linear Filtering and Prediction Prob-
lems”. In: Journal of Basic Engineering 82.1, p. 35. DOI: 10.1115/1.3662552. URL:
https://doi.org/10.1115/1.3662552.

Kara, Tolgay and İlyas Eker (2004). “Nonlinear modeling and identification of a DC
motor for bidirectional operation with real time experiments”. In: Energy Conver-
sion and Management 45.7-8, pp. 1087–1106. DOI: 10.1016/j.enconman.2003.08.
005. URL: https://doi.org/10.1016/j.enconman.2003.08.005.

Kosorok, Michael R. (2008). Introduction to Empirical Processes and Semiparametric In-
ference. Springer New York. DOI: 10.1007/978-0-387-74978-5. URL: https:
//doi.org/10.1007/978-0-387-74978-5.

Krener, A. and W. Respondek (1985). “Nonlinear Observers with Linearizable Error
Dynamics”. In: SIAM Journal on Control and Optimization 23.2, pp. 197–216. DOI:
10.1137/0323016. eprint: https://doi.org/10.1137/0323016. URL: https:
//doi.org/10.1137/0323016.

LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton (2015). “Deep learning”. In: Na-
ture 521.7553, pp. 436–444. DOI: 10.1038/nature14539. URL: https://doi.org/
10.1038/nature14539.

LeCun, Yann A. et al. (2012). “Efficient BackProp”. In: Lecture Notes in Computer Sci-
ence. Springer Berlin Heidelberg, pp. 9–48. DOI: 10.1007/978-3-642-35289-8_3.
URL: https://doi.org/10.1007/978-3-642-35289-8_3.

https://doi.org/10.1162/089976600300015015
https://doi.org/10.1162/089976600300015015
https://doi.org/10.1162/089976600300015015
https://books.google.com.ua/books?id=7dNSAAAAMAAJ
https://books.google.com.ua/books?id=7dNSAAAAMAAJ
https://doi.org/10.1109/ICASSP.2013.6638947
https://doi.org/10.1109/ICASSP.2013.6638947
https://books.google.com.ua/books?id=9U2fVd0Q8soC
http://nbn-resolving.de/urn:nbn:de:hbz:386-kluedo-22879
http://nbn-resolving.de/urn:nbn:de:hbz:386-kluedo-22879
https://doi.org/10.1093/bioinformatics/btm382
https://doi.org/10.1093/bioinformatics/btm382
http://oup.prod.sis.lan/bioinformatics/article-pdf/23/19/2612/16861405/btm382.pdf
http://oup.prod.sis.lan/bioinformatics/article-pdf/23/19/2612/16861405/btm382.pdf
https://doi.org/10.1093/bioinformatics/btm382
https://doi.org/10.1093/bioinformatics/btm382
https://doi.org/10.1007/b137541
https://doi.org/10.1007/b137541
https://doi.org/10.1007/b137541
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1016/j.autneu.2013.05.004
https://doi.org/10.1016/j.autneu.2013.05.004
https://doi.org/10.1016/j.autneu.2013.05.004
https://doi.org/10.1115/1.3662552
https://doi.org/10.1115/1.3662552
https://doi.org/10.1016/j.enconman.2003.08.005
https://doi.org/10.1016/j.enconman.2003.08.005
https://doi.org/10.1016/j.enconman.2003.08.005
https://doi.org/10.1007/978-0-387-74978-5
https://doi.org/10.1007/978-0-387-74978-5
https://doi.org/10.1007/978-0-387-74978-5
https://doi.org/10.1137/0323016
https://doi.org/10.1137/0323016
https://doi.org/10.1137/0323016
https://doi.org/10.1137/0323016
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1007/978-3-642-35289-8_3
https://doi.org/10.1007/978-3-642-35289-8_3

BIBLIOGRAPHY 47

Lorenz, Edward N. (1963). “Deterministic Nonperiodic Flow”. In: Journal of the At-
mospheric Sciences 20.2, pp. 130–141. DOI: 10.1175/1520-0469(1963)020<0130:
dnf>2.0.co;2. URL: https://doi.org/10.1175/1520-0469(1963)020<0130:
dnf>2.0.co;2.

Madsen, H. (2007). Time Series Analysis. Chapman & Hall/CRC Texts in Statistical
Science. CRC Press. ISBN: 9781420059687. URL: https://books.google.com.ua/
books?id=WAHLBQAAQBAJ.

Mandic, Danilo (2001). Recurrent Neural Networks for Prediction: Learning Algorithms,
Architectures and Stability. Wiley. ISBN: 0471495174. URL: https://www.xarg.org/
ref/a/0471495174/.

Marblestone, Adam H., Greg Wayne, and Konrad P. Kording (2016). “Toward an
Integration of Deep Learning and Neuroscience”. In: Frontiers in Computational
Neuroscience 10. DOI: 10.3389/fncom.2016.00094. URL: https://doi.org/10.
3389/fncom.2016.00094.

Miljanovic, Milos (2012). “Comparative analysis of Recurrent and Finite Impulse Re-
sponse Neural Networks in Time Series Prediction”. In: Indian Journal of Computer
Science and Engineering 3.

Minorsky., N. (2009). “DIRECTIONAL STABILITY OF AUTOMATICALLY STEERED
BODIES”. In: Journal of the American Society for Naval Engineers 34.2, pp. 280–309.
DOI: 10.1111/j.1559-3584.1922.tb04958.x. URL: https://doi.org/10.1111/
j.1559-3584.1922.tb04958.x.

Narendra, Kumpati and K Parthasarathy (1990). “Identification and Control of Dy-
namical System Using Neural Networks”. In: vol. NN-1, 1737 –1738 vol.2. DOI:
10.1109/CDC.1989.70448.

Narendra, Kumpati and Kannan Parthasarathy (1992). “Neural networks and dy-
namical systems”. In: Int. J. Approx. Reasoning 6, pp. 109–131. DOI: 10.1016/0888-
613X(92)90014-Q.

Newey, Whitney K. and Daniel McFadden (1994). “Chapter 36 Large sample esti-
mation and hypothesis testing”. In: Handbook of Econometrics. Elsevier, pp. 2111–
2245. DOI: 10.1016/s1573-4412(05)80005-4. URL: https://doi.org/10.1016/
s1573-4412(05)80005-4.

Ogunmolu, Olalekan et al. (2016). Nonlinear Systems Identification Using Deep Dynamic
Neural Networks. arXiv: 1610.01439 [cs.NE].

Olah, Christopher. Understanding LSTM Networks. URL: https://colah.github.io/
posts/2015-08-Understanding-LSTMs/. (accessed: 15.04.2019).

Ostwald, Michael J (2013). “The Fractal Analysis of Architecture: Calibrating the
Box-Counting Method Using Scaling Coefficient and Grid Disposition Variables”.
In: Environment and Planning B: Planning and Design 40.4, pp. 644–663. DOI: 10.
1068/b38124. URL: https://doi.org/10.1068/b38124.

Pham, D and Dervis Karaboga (1999). “Training Elman and Jordan networks for
system identification using genetic algorithms”. In: Artificial Intelligence in Engi-
neering 13, pp. 107–117. DOI: 10.1016/S0954-1810(98)00013-2.

Plank, Barbara, Anders Søgaard, and Yoav Goldberg (2016). “Multilingual Part-of-
Speech Tagging with Bidirectional Long Short-Term Memory Models and Aux-
iliary Loss”. In: CoRR abs/1604.05529. arXiv: 1604.05529. URL: http://arxiv.
org/abs/1604.05529.

Puscas, Gheorgh et al. (2009). “NONLINEAR SYSTEM IDENTIFICATION BASED
ON INTERNAL RECURRENT NEURAL NETWORKS”. In: International Journal
of Neural Systems 19.02. PMID: 19496207, pp. 115–125. DOI: 10.1142/S0129065709001884.
eprint: https://doi.org/10.1142/S0129065709001884. URL: https://doi.org/
10.1142/S0129065709001884.

https://doi.org/10.1175/1520-0469(1963)020<0130:dnf>2.0.co;2
https://doi.org/10.1175/1520-0469(1963)020<0130:dnf>2.0.co;2
https://doi.org/10.1175/1520-0469(1963)020<0130:dnf>2.0.co;2
https://doi.org/10.1175/1520-0469(1963)020<0130:dnf>2.0.co;2
https://books.google.com.ua/books?id=WAHLBQAAQBAJ
https://books.google.com.ua/books?id=WAHLBQAAQBAJ
https://www.xarg.org/ref/a/0471495174/
https://www.xarg.org/ref/a/0471495174/
https://doi.org/10.3389/fncom.2016.00094
https://doi.org/10.3389/fncom.2016.00094
https://doi.org/10.3389/fncom.2016.00094
https://doi.org/10.1111/j.1559-3584.1922.tb04958.x
https://doi.org/10.1111/j.1559-3584.1922.tb04958.x
https://doi.org/10.1111/j.1559-3584.1922.tb04958.x
https://doi.org/10.1109/CDC.1989.70448
https://doi.org/10.1016/0888-613X(92)90014-Q
https://doi.org/10.1016/0888-613X(92)90014-Q
https://doi.org/10.1016/s1573-4412(05)80005-4
https://doi.org/10.1016/s1573-4412(05)80005-4
https://doi.org/10.1016/s1573-4412(05)80005-4
http://arxiv.org/abs/1610.01439
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://doi.org/10.1068/b38124
https://doi.org/10.1068/b38124
https://doi.org/10.1068/b38124
https://doi.org/10.1016/S0954-1810(98)00013-2
http://arxiv.org/abs/1604.05529
http://arxiv.org/abs/1604.05529
http://arxiv.org/abs/1604.05529
https://doi.org/10.1142/S0129065709001884
https://doi.org/10.1142/S0129065709001884
https://doi.org/10.1142/S0129065709001884
https://doi.org/10.1142/S0129065709001884

48 BIBLIOGRAPHY

Puu, Tönu (2003). Attractors, Bifurcations, & Chaos. Springer Berlin Heidelberg. DOI:
10.1007/978-3-540-24699-2. URL: https://doi.org/10.1007/978-3-540-
24699-2.

Rieger, Craig G., David I. Gertman, and Miles. A. McQueen (2009). “Resilient con-
trol systems: Next generation design research”. In: 2009 2nd Conference on Hu-
man System Interactions. IEEE. DOI: 10.1109/hsi.2009.5091051. URL: https:
//doi.org/10.1109/hsi.2009.5091051.

Ripley, B.D. (2007). Pattern Recognition and Neural Networks. Cambridge University
Press. ISBN: 9780521717700. URL: https://books.google.com.ua/books?id=
m12UR8QmLqoC.

Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams (1986). “Learning
representations by back-propagating errors”. In: Nature 323.6088, pp. 533–536.
DOI: 10.1038/323533a0. URL: https://doi.org/10.1038/323533a0.

Sastry, P. S., G. Santharam, and K. P. Unnikrishnan (1994). “Memory neuron net-
works for identification and control of dynamical systems”. In: IEEE Transactions
on Neural Networks 5.2, pp. 306–319. ISSN: 1045-9227. DOI: 10.1109/72.279193.

Shampine, Lawrence F. and Mark W. Reichelt (1997). “The MATLAB ODE Suite”. In:
SIAM Journal on Scientific Computing 18.1, pp. 1–22. DOI: 10.1137/s1064827594276424.
URL: https://doi.org/10.1137/s1064827594276424.

sherrellbc. DCMotorScheme. URL: https://i.stack.imgur.com/s37EI.jpg. (ac-
cessed: 15.04.2019).

Sjöberg, Jonas et al. (1995). “Nonlinear black-box modeling in system identification: a
unified overview”. In: Automatica 31.12. Trends in System Identification, pp. 1691
–1724. ISSN: 0005-1098. DOI: https : / / doi . org / 10 . 1016 / 0005 - 1098(95)
00120 - 8. URL: http : / / www . sciencedirect . com / science / article / pii /
0005109895001208.

Sjövall, Per and Thomas Abrahamsson (2008). “Substructure system identification
from coupled system test data”. In: Mechanical Systems and Signal Processing -
MECH SYST SIGNAL PROCESS 22, pp. 15–33. DOI: 10.1016/j.ymssp.2007.06.
003.

Smith, Leslie N. (2018). A disciplined approach to neural network hyper-parameters: Part 1
– learning rate, batch size, momentum, and weight decay. arXiv: 1803.09820 [cs.LG].

Sohlberg, B. and E.W. Jacobsen (2008). “GREY BOX MODELLING – BRANCHES
AND EXPERIENCES”. In: IFAC Proceedings Volumes 41.2. 17th IFAC World Congress,
pp. 11415 –11420. ISSN: 1474-6670. DOI: https://doi.org/10.3182/20080706-
5-KR-1001.01934. URL: http://www.sciencedirect.com/science/article/
pii/S1474667016408025.

Torokhti, Anatoli and Phil Howlett (2007). Computational Methods for Modeling of Non-
linear Systems. 1st. San Diego, USA: Elsevier Science. ISBN: 0444530444, 9780444530448.

Trinh, Trieu H. et al. (2018). Learning Longer-term Dependencies in RNNs with Auxiliary
Losses. arXiv: 1803.00144 [cs.LG].

V. Vantsevich D.Gorsich, A.Lozinsky L.Demkiv T.Borovets (2018). “STATE OBSERVERS:
AN OVERVIEW AND APPLICATION TO AGILE TIRE SLIPPAGE DYNAM-
ICS”. In: Trends in System Identification. URL: https://www.istvs.org/10th-
asia-pacific-conference-kyoto.

Wang, Jeen-Shing and Yen-Ping Chen (2006). “A fully automated recurrent neural
network for unknown dynamic system identification and control”. In: Circuits
and Systems I: Regular Papers, IEEE Transactions on 53, pp. 1363 –1372. DOI: 10.
1109/TCSI.2006.875186.

Werbos, Paul J. (1988). “Generalization of backpropagation with application to a re-
current gas market model”. In: Neural Networks 1.4, pp. 339–356. DOI: 10.1016/

https://doi.org/10.1007/978-3-540-24699-2
https://doi.org/10.1007/978-3-540-24699-2
https://doi.org/10.1007/978-3-540-24699-2
https://doi.org/10.1109/hsi.2009.5091051
https://doi.org/10.1109/hsi.2009.5091051
https://doi.org/10.1109/hsi.2009.5091051
https://books.google.com.ua/books?id=m12UR8QmLqoC
https://books.google.com.ua/books?id=m12UR8QmLqoC
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
https://doi.org/10.1109/72.279193
https://doi.org/10.1137/s1064827594276424
https://doi.org/10.1137/s1064827594276424
https://i.stack.imgur.com/s37EI.jpg
https://doi.org/https://doi.org/10.1016/0005-1098(95)00120-8
https://doi.org/https://doi.org/10.1016/0005-1098(95)00120-8
http://www.sciencedirect.com/science/article/pii/0005109895001208
http://www.sciencedirect.com/science/article/pii/0005109895001208
https://doi.org/10.1016/j.ymssp.2007.06.003
https://doi.org/10.1016/j.ymssp.2007.06.003
http://arxiv.org/abs/1803.09820
https://doi.org/https://doi.org/10.3182/20080706-5-KR-1001.01934
https://doi.org/https://doi.org/10.3182/20080706-5-KR-1001.01934
http://www.sciencedirect.com/science/article/pii/S1474667016408025
http://www.sciencedirect.com/science/article/pii/S1474667016408025
http://arxiv.org/abs/1803.00144
https://www.istvs.org/10th-asia-pacific-conference-kyoto
https://www.istvs.org/10th-asia-pacific-conference-kyoto
https://doi.org/10.1109/TCSI.2006.875186
https://doi.org/10.1109/TCSI.2006.875186
https://doi.org/10.1016/0893-6080(88)90007-x
https://doi.org/10.1016/0893-6080(88)90007-x

BIBLIOGRAPHY 49

0893- 6080(88)90007- x. URL: https://doi.org/10.1016/0893- 6080(88)
90007-x.

Werbos, P.J. (1975). Beyond Regression: New Tools for Prediction and Analysis in the Be-
havioral Sciences. Harvard University. URL: https://books.google.com.ua/
books?id=z81XmgEACAAJ.

Wiener, N. (1965). Cybernetics Or Control and Communication in the Animal and the Ma-
chine. DE-601)251474038: MIT paperback series. M.I.T. Press. ISBN: 9780262730099.
URL: https://books.google.it/books?id=NnM-uISyywAC.

Yue, Meng and Robert Schlueter (2005). “An Algorithm and Properties Enabling
Identification of Bifurcation Subsystems”. In: Electric Power Components and Sys-
tems 33.6, pp. 611–628. DOI: 10 . 1080 / 15325000590885243. eprint: https : / /
doi.org/10.1080/15325000590885243. URL: https://doi.org/10.1080/
15325000590885243.

https://doi.org/10.1016/0893-6080(88)90007-x
https://doi.org/10.1016/0893-6080(88)90007-x
https://doi.org/10.1016/0893-6080(88)90007-x
https://doi.org/10.1016/0893-6080(88)90007-x
https://books.google.com.ua/books?id=z81XmgEACAAJ
https://books.google.com.ua/books?id=z81XmgEACAAJ
https://books.google.it/books?id=NnM-uISyywAC
https://doi.org/10.1080/15325000590885243
https://doi.org/10.1080/15325000590885243
https://doi.org/10.1080/15325000590885243
https://doi.org/10.1080/15325000590885243
https://doi.org/10.1080/15325000590885243

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Background information
	Systems modeling
	Systems properties
	 Systems classification
	Linearity and Nonlinearity
	DC Motor as an example of a nonlinear system

	Control theory
	Control theory for dynamic systems

	Models classification based on information source attitude
	Black and White box concepts
	Gray box
	Classification of Gray-box models

	Optimization
	Neural networks
	Concept and properties
	RNN
	LSTM

	Related works
	Grey box models concept
	Dynamical System Observation
	Decomposition methodology
	NN for the similar problem
	Goal Statement

	Modeling experience
	Object of modelling
	DC motor description
	Data generation

	Optimization goal
	Parameter Identifiability prerequisites
	System dynamics as the optimization criterion
	Loss function
	Loss application

	Architecture of Neural Network
	Parameters identification
	Modeling of a system

	Restrictions on parameters
	 Multiscaled parameters - learning procedure extension and complication
	Data normalization-denormalization procedure

	Experimental results
	Experiment description
	Experiment parameters
	NN architecture parameters
	Results

	Conclusion

	Bibliography

