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Abstract

Accurate nodule detection in computed tomography (CT) scans is an essential
step in the early diagnosis of lung cancer. Radiologists often use Computer-aided
detection (CAD) systems to receive a second opinion during images examination.
Nodule classification is a crucial stage of the full process, which comes as the second
phase in a CAD system, right after candidates detection. Its task is to distinguish
between true nodules and false positives.

The main goal of this thesis was to compare different deep learning methods,
that can be used for nodule classification by evaluating their efficiency on a common
database - LIDC-IDRI. We implemented three neural networks with 2-D convolution
and three with 3-D, tested their performance and reported competitive FROC sensi-
tivity scores. Used methods are compared among themselves and across other stud-
ies. Experimental results demonstrate a strong dependence between higher scores
and 3-D CNNs application. For instance, VGGNet-11 gives 72.1% sensitivity at 8
FPs/scan, while same model with three dimensional convolution - VGGNet-11 3-D
produces 91.9% at 8 FPs/scan rate. Based on the obtained results we recommend to
use VGGNet-11 3-D for nodule detection, as it showed the best performance com-
pared to other implemented methods. Moreover, received sensitivity of 91.9% at 8
FPs/scan and 90.6% at 4 FPs/scan rate demonstrates the promise of chosen network
and its competitiveness with the state of the art method, which reported 92.2% at 8
FPs/scan and 90.7% at 4 FPs/scan. Our source code ! is publicly available so it can
be used for future work in other studies.

Ihttps://github.com/MarichkaS/Lung_Nodule_Classification
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Chapter 1

Introduction

1.1 Context

Cancer has been a major cause of mortality for many years. One of its most common
types worldwide is the lung cancer [34]. While being the most frequently fatal form
of the disease, lung cancer can be prevented. Computed tomography has shown the
survival benefit in annual screening, generally targeting individuals in a high-risk
category. It is possible to find cancer at early stages when performing CT screening,
and therefore, to decrease mortality caused by the disease [18]. The important role
in increasing the quality and cost-effectiveness of a lung cancer diagnosis is assigned
to Computer-Assisted Diagnosis algorithms. It performs nodule evaluation giving
structured reports on their volume, localization, and other suggestions for further di-
agnosis and treatment [18]. These methods use Computer Vision techniques in order
to extract useful information from each scan providing doctors with an automated
nodule detection system. Nonetheless, it is a doctor who inspects the information
received from the algorithm and uses his expertise to give a final conclusion about
potential danger of a nodule.

1.2 Problem

No matter how advanced CAD systems are nowadays, they still can not produce
results without any error. Often they are highly sensitive to such non-nodule struc-
tures like blood vessels, which results in a big number of false positive predictions.
One of the steps in nodule detection task is to classify all the regions, which were
received as candidates during ROIs extraction in order to decrease the number of
non-nodules before showing all the candidates to a doctor. The difference in pro-
portion of negatives to positives among them is very large: it is always the case,
that detection algorithms find many regions of interest while just a small number of
them actually contain a nodule. To increase the accuracy of a full end-to-end detec-
tion system, separate models are used for classification, which learn to distinguish
between nodules and non-nodules. The received probability for each ROI, then, is
used to filter out all the regions which certainly do not enclose any nodules, leaving
a smaller amount of images for a doctor to examine.

Many techniques have been used for the classification step. Some approaches
perform feature extraction using classical computer vision approaches followed by
any kind of machine learning classifier (decision trees, k-Nearest Neighbor, Support
Vector Machine, artificial neural network etc.). The others use end-to-end deep neu-
ral networks which complete feature extraction using convolution operation. The
domain of medical imaging differs from other computer vision directions due to
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a specific data complexity that is present in many problems. However, it is com-
mon for the tasks involving medical images to use methods and neural networks,
which were initially designed for other domains. In our task, datasets (scans) are
three dimensional, giving a chance to use 3-D convolutional networks to solve nod-
ule classification problem. Moreover, not using the whole volumetric region of the
data, but representing it in 2-D will cause the lost of information about the whole
candidate.

With a growth and evolution of deep learning many new model architectures ap-
pear. It is, thus, important to evaluate which of them give best performance in terms
of the number of produced false positives, as well as time consumption. Sometimes,
very deep neural networks are actually an overkill for a particular task, while us-
age of the less complex methods can preserve similar outcome, in the same time,
save some resources. Each specific problem, hence, needs the complete and detailed
studies, which would compare different approaches and provide a report on their
effectiveness.

1.3 Data resources

LUNA16 is a competition held in 2016. The goal of this challenge was to compare
different automatic nodule detection systems on a publicly available data set which
includes CT scans, annotations, and a list of candidate regions for the nodules pro-
duced by organizers” algorithms. As it is stated in the rules of competition, LUNA16
focuses on a large-scale evaluation of automatic nodule detection algorithms on the
LIDC-IDRI dataset [23].

LIDC-IDRI contains diagnostic and lung cancer screening thoracic computed to-
mography scans with annotated lesions. Seven academic centers and eight medi-
cal imaging companies collaborated to create this data set. It contains 1018 cases:
7371 lesions marked "nodule" by at least one radiologist, 2669 of these lesions were
marked "nodule > or =3 mm" by at least one radiologist [23]. This makes it the largest
publicly available database of CT scans.

Basically, the data set for LUNA challenge consists of images from LIDC-IDRI
database, however, not every annotation from the latest is present in competition.
In particular, non-nodules, nodules < 3 mm, and nodules annotated by only 1 or 2
radiologists are considered irrelevant and thus, are not included[23]. The organizers
of the challenge extracted 1,186 lung nodules from LIDC-IDRI images and formed a
data set from these nodules as positive candidates.

1.4 Our approach

In this thesis we apply several two dimensional neural networks to the annotated
slices of ROIs extracted from CT scans. Those include a two-layered network based

n [22], LeNet, VGGNet. Some of them are more complex (deeper), others have
simpler architectures. We compare their performance among themselves, and then
expand and implement all of the used models with 3-D instead of 2-D convolution.
This allows us to measure how much dimensional representation of the candidates
affects the results, and also how big is the role of number of layers in nodule classi-
fication. Evaluation using FROC analysis on predictions for LUNA16 dataset (con-
sists of scans from LIDC-IDRI) showed the competitiveness of the used methods
with other studies in false-positives reduction.
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1.5 Goals

1. Provide an overview of previous works and achievements on lung nodules
detection.

2. Apply different two and three-dimensional deep learning methods to the uni-
tied database of CT scans to perform classification of the regions which poten-
tially contain nodules.

3. Evaluate and compare used neural networks among themselves, as well as
with other studies from the literature.

1.6 Thesis structure

Chapter 2. Medical background
This chapter contains some background information on medical side of the
nodule detection problem. It describes the importance of this task, defines
nodules, explains Computer Tomography screening.

Chapter 3. Background
In this chapter, we specify the machine learning background needed for this
project. In particular, we illustrate what is deep learning and how convolu-
tional networks work.

Chapter 4. Related work
Here we analyze the previous works and research conducted in the area of our
problem. We also depict the stages of nodule detection.

Chapter 5. Methods
This chapter describes the approaches, which we used for ROIs classification,
in other words, for false-positives reduction step.

Chapter 6. Implementation
Here, the explanation of the full process of implementation is specified in de-
tails. We include the link to the source code and mention briefly the function-
ality of each module.

Chapter 7. Experiments
In this chapter, we do a careful evaluation of used methods using different
dataset splits and two numeric metrics: overall accuracy, and FROC sensitivity.
We report those results and compare them to the scores from others works
submitted to LUNA16 challenge.

Chapter 8. Conclusions
We summarize the achieved results and their comparison. In the same chapter
we describe the ideas for future work.



Chapter 2

Medical background

2.1 Lung cancer statistics

The leading killer among all forms of cancer is lung cancer. Its severity can be easily
shown by the very low survival rate, as well as the number of estimated new cases
worldwide and its tendency to progress quickly. What makes it even more alarming
is the fact that symptoms do not usually occur until the cancer is advanced. The
number of deaths caused by the lung and bronchial cancer exceeds all other types
of cancer with over 153,000 cases in total per year in the United States. It is almost
26% of all other sites of cancer. Lung cancer is ranked second in the number of new
cases in recent years. Meanwhile, it is one of the most dangerous types of cancer as
its 5-year relative survival rate at all stages is only 18%: 15% for men and 21% for
women.[1]. Survival time decreases significantly with the progression of the disease,
so it is crucial to diagnose and treat cancer as soon as possible.

2.2 Risk factors

The dominant risk factor for lung cancer is cigarette smoking, it is a cause of more
than 80% of lung cancer deaths in the US[1]. The quantity and duration of smoking
are also important factors. Exposure to involuntary smoking increases lung cancer
risk by about 25%, a finding replicated worldwide [13]. Other potential causes of
lung cancer include the exposure to radon gas released from soil and building mate-
rials, occupational or environmental exposure to second-hand smoke, certain metals,
some organic chemicals, radiation, air pollution, and diesel exhaust [1]. Sometimes,
genetic predisposition can cause the development of lung cancer.

2.3 Nodules and tumors

Lung cancer tumors are of different types. Two major types are non-small cell lung
cancer (NSCLC) and small cell lung cancer (SCLC). NSCLC accounts for about 85%
of lung cancers. The basic characteristics analyzed during diagnosis are type and
stage. The stage of the disease depends on whether the cancer is local or has spread
from the lungs to the lymph nodes or even other organs. The staging system is dif-
ferent for non-small and small cell cancer. The treatment for these two types also
differs, hence, it is important to understand that they are very distinct. The ap-
proaches to treatment include surgeries, chemotherapy, radiation, targeted drugs,
immunotherapy. It is easier to deal with early-stage small tumors in lungs than
late-stage cancer which has spread to other parts of the body. For this, usually,
chemotherapy is used, alone or combined with radiation [1]. This approach pro-
vides remission for a large percentage of patients, but there are still big chances for
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the cancer to return. Therefore, detecting small nodules which can potentially be
tumors on the first stages can help in early diagnosis.

Lung nodules can be cancerous, though in most cases they are benign. A larger
lung nodule is more likely to be cancerous than a smaller one, but it’s a doctor who
is eligible to make a conclusion of how dangerous the particular nodule is. In many
cases, it is helpful to see if a nodule changes or grows over time, thus different types
of screening are often recommended.

24 Computed tomography screening

The detection and diagnosis of lung cancer have improved with the development of
computed tomography (CT). Screening with low-dose spiral computed tomography
(LDCT) has been shown to reduce lung cancer mortality by about 20% compared to
standard chest x-ray[1]. The screening process involves performing tomography on
the high-risk group, for example, current or former heavy smokers who seem to be
in good health. With the use of CT, doctors are capable to spot the dangerous nod-
ules in lungs when those are at the early stages providing enough time to perform
the treatment. Over 80% of the 5-year survival rate has been reported in surgically
treated peripheral lung cancer [33]. This same research reports that the advances
in screening with CT enabled doctors to detect lung tumors smaller than 2 cm in
diameter[33].

FIGURE 2.1: Examples of CT scans from LIDC-IDR data set [23]: im-
ages represent 2-D slices retrieved from the centers of separate scans

FIGURE 2.2: Nodules from the scans: images are 32x32 pixels regions
containing a tumor. Some nodules are smaller, others can’t fully fit
into 32x32 size




Chapter 3

Background

3.1 Neural networks

In 2017 according to PubMed neural networks were the most popular supervised
learning technique in medical applications. They have been successfully used to di-
agnose/detect or predict cancer, Parkinson’s disease, diabetes, diabetic retinopathy,
osteoporosis, nerve disorders, Huntington and other diseases.

So what is a neural network? A neural network consists of some number of hid-
den layers with neurons at each of them. Neuron represents a mathematical function
which translates its inputs using weights and an activation function into a single re-
sult and then sends it to another neuron in the next layer, see Figure 3.1.

An example of the neural network’s architecture on Figure 3.1 is an acyclic graph.
The outputs of some neurons are inputs to other neurons in the following layer (in a
fully connected network two adjacent layers are fully pairwise connected), but there
are no connections between neurons within a layer. This represents the most com-
mon layer type - fully-connected. However, there are plenty of other types of layers
which extract or translate features from their inputs in different ways. Those include
one, two and three-dimensional convolutional layers, recurrent layers, pooling lay-
ers, normalization layers, and other more specific ones.

FIGURE 3.1: Example of a 3-layer neural network with three inputs,
2 hidden layers of 4 neurons each and one output layer from [17]

l/}.“\
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% ‘w&e )
tput layer

input layer
hidden layer 1 hidden layer 2

To train the network means to estimate the best weights in all neurons to mini-
mize the error between the outcome and correct predictions. The problem of training
is equivalent to the problem of minimizing the loss function (function that measures
the deviation between a predicted value and actual label). The algorithm which is
used to optimize the loss function is chosen from the gradient-based algorithms, the
simplest example is Stochastic Gradient Descent.
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3.2 Convolutional neural networks and deep learning

As mentioned above, there exist several types of hidden layers, one of them is called
convolutional. This type of layers has neurons arranged in three dimensions: width,
height, and depth. It basically consists of a set of learnable filters.

The typical filter has 3 channels corresponding to the RGB image. Its size is also
called the receptive field and it defines the amount of a local region of the input
image which is assigned to the neuron. When performing convolution we slide each
filter across the image (input) vector and compute dot products between the entries
of the filter and the input at any position. This process produces a 2-dimensional
activation map. The set of the activation maps produced by all the filters is stacked
along the third dimension (responsible for depth) and passed ahead to the next layer.
The main idea is to learn filters that activate when they see some type of feature, for
example, an edge, a blotch, or even some kind of pattern. The further (deeper) filter
is situated in the network the more abstract and pattern-like feature it will be able to
catch.

To sum up, the convolutional layer requires four hyperparameters: number of
filters - K, receptive field - F , the stride - S (step of a filter), the amount of padding
- P . As the input we have an image or vector of shape: W x H x D . Stride and
padding control the size of the output volume: stride defines the size of the step
for moving the filters, padding increases the input volume by surrounding it with
certain numbers (usually zeros) around the border.

The output of the convolution operation has width equal to (W — F+2P)/S+1,
while height equals to (H — F +2P)/S + 1. The number of dimensions is the num-
ber of filters. The choice of hyperparameters is usually based on common conven-
tions and rules of thumb.

Convolutional neural networks show very effective results in image and video
detection, segmentation, localization, classification, natural language processing, and
even recommender systems. Deep learning can be referred to as the extension of the
classical neural network technique. Deep neural networks have many hidden layers
hence a very large number of parameters. Deep convolutional networks have been
commonly used in image classification tasks, reporting best performance even on
the most popular benchmark dataset - ImageNet [29]. Deep learning can explore
more complex non-linear patterns in the data.

FIGURE 3.2: Example of convolution operation

original image Convolution layer parameters: output image
K=1, F=3,S=2,P=1

o122 1]2 o0 X 2/lo0fa2| — | |1

o ofl2|1 of1] o0 dot product 1110

+padding 1 (7x7x1) filter (3x3) (3x3x1)
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3.3 3-D convolution

The main difference between 2-D and 3-D convolution is that the last one operates
not on single 2-D images, but on the voxels (cubes extracted from 3-d image). The in-
put to such a network requires the data to be presented in three-dimensional space.
Thus, this type of layers are often used on videos or medical images, for example,
computed tomography, X-ray, MRI scans. 3-D Convolution can be used to find pat-
terns across 3 spatial dimensions. This approach is commonly used for action videos,
because 3-D networks can be fed with multiple image frames which were concate-
nated across a temporal dimension, thus patterns are found across frames. The pro-
cess of kernel sliding in 3-D convolution operation is similar to regular convolution:
the kernel slides in 3 directions with a predefined stride and size of the kernel at
every step calculating the dot, however, the output is now three dimensional.

FIGURE 3.3: Example of 3-D convolution.(a)3-D convolution of a fea-
ture map with a filter.(b)Generation of the i-th feature map (F) in the
l-th layer src: https://doi.org/10.1371/journal.pone.0185844.g004
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Chapter 4

Related work

The task of nodule detection has been approached by many researchers in recent
years. It is a promising area of study. CAD (Computer Aided Detection) systems can
help radiologists in performing a better detection of nodules as it can offer a second
opinion on early diagnosis of lung cancer. Datasets of Computed Tomography (CT)
scans: LUng Nodule Analysis 2016 [24], LIDC [23], ANODEQ9 [38], TIME [7] have
been collected and annotated by specialists. Being publicly available they provide
convenient data samples for training and testing proposed CAD systems. However,
these datasets vary in number of patients, number of slices per scan, and scanning
configurations like slice thickness or slice spacing. The main task for all of them
remains the same: detect all the nodules present in the CT scan.

The process of solving this problem usually requires two steps: candidates detec-
tion and false-positive reduction (classification). This division proves to give better
results, rather than one-step nodule detection. The candidates detection step pro-
vides the system with a large number of false positives. This happens due to their
high sensitivity to such non-nodule structures like blood vessels, which they inter-
pret as nodules. This is why the second stage is required. Overall, it is the classi-
fication of candidates (nodules) that is responsible for the final performance of the
system. The evaluation is presented by the Free-Response Operating Characteristic
(FROC) analysis [32].

The performance metric was previously introduced in the ANODE(09 challenge
and is used in LUNA16 challenge. It calculates the sensitivity of the average num-
ber of false positives per scan, called FP rate. The final score is the average of the
sensitivity at seven false positive rates: 1/8,1/4,1/2,1, 2, 4, and 8 FPs per scan. By
measuring the metric score on each of the rates, FROC curve can be drawn. The 95%
confidence interval is achieved using bootstrapping with 1,000 bootstraps.

This work is focused on testing and comparison of different approaches to the
classification step through application of 2-D and 3-D Convolutional Neural Net-
works.

4.1 Nodule candidates detection

In this task both classical computer vision detectors and deep learning can be used
to detect potential regions of nodules” position. Many techniques for this task were
presented in the last years: application of hysteresis thresholding [26], usage of a
double-threshold density mask within the lung regions for mask generation fol-
lowed by morphological erosion and a connected component analysis in order to
obtain clustered candidates [15], a three-dimensional lung segmentation algorithm
along with a multistage process of thresholding and morphological operations [30],
nodules’ centers locations were found with nodule and vessel enhancement filters
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and a computed divergence feature in [35], Channeler Ant Model as a segmentation
tool was used in [37].

When generating proposed candidates for LUNA16, the organizers combined
different approaches. All the found ROIs were merged at the end and published for
their further use in false-positive reduction step [30]. They also prove that combina-
tion of several candidate detection methods improves the sensitivity of the system
comparing with the one algorithm (adapted from [35]) which showed the best per-
formance in LUNA16 challenge among the single methods.

CAD system proposed by [6] claims to achieve even better results than the win-
ner of LUNA16 challenge, it applies Faster Region-based Convolutional Neural Net-
work (Faster R-CNN [28]) for candidate detection.

4.2 Candidate classification

The false-positive reduction step depends a lot on the results of the candidates de-
tection because it operates on the found ROIs. Many approaches were proposed for
this task:

e 2-D CNNis: [22], [5], [39]
e 3-D CNNs: [40], [12]

e Other classifiers: SVM - [3], feed forward neural network - [37], asymmetric
AdaBoost - [9], novel classifier that evolves ANNs using genetic algorithms -
[36]

Some methods extract features from the candidates regions with help of thresh-
olding and morphological processing, then they apply statistical and boosting clas-
sifiers over this data. Others use deep learning and go either to two dimensional
or three dimensional convolution, in the second case interpreting each sample as a
voxel with a certain number of slices belonging to one example.

4,21 Standard classifiers

Approach presented in [9] obtained the candidates for classification by utilizing
thresholding and morphological image processing. Features were hand-crafted from
information about volume, shape and intensity [8]. It further applied asymmetric
and symmetric AdaBoost classifiers and was tested on several databases: TIME,
LIDC/IDRI and ANODEQ9. [20] used a binary decision tree as a classifier on au-
toencoder generated features. [3] used a SVM classifier for false-positive reduction.
It finished third in LUNA16 challenge.

4.2.2 2-D Convolutional neural networks

Inspired by the great achievements of convolutional neural networks in computer vi-
sion, especially in ImageNet classification benchmark, this type of models was used
for nodule detection. In [22] it was showed that even simple 2-D CNN layers can
produce promising results. Model consisted from only two convolutional followed
by downsampling and three fully connected layers with softmax at the output. This
algorithm produced 87.1% sensitivity for 4.62 FP/example rate. [31] created multi-
ple streams of 2-D ConvNets, for which the outputs are combined using a dedicated
fusion method in order to get the final classification. [39] shows how to combine



Chapter 4. Related work 11

dedicated detection system and off-the-shelf CNN features to succeed in the task of
false-positive reduction for nodule detection.

4.2.3 3-D Convolutional neural networks

The nodule detection in CT scans can be also approached as a 3-D object detection
problem, thus, it makes sense to use models which can find and work with all the
information present in three dimensional images. According to [12] the 3-D CNNs
can encode richer spatial information and extract more representative features than
2-D convolutional networks. Several completed experiments reported the efficiency
of using 3-D CNNs in medical imaging. It was previous usage of such networks that
inspired the idea of applying this technique to this particular task [16], [10], [11],
[41], [19]

For nodule detection problem [12] proposed an architecture with 3-D convolu-
tional layers CUMedVis (name was given by authors) which achieved the highest
performance metric score in LUNA16 challenge scoring 85.4% sensitivity at 1.0 false
positive/subject rate. This framework was developed by joining three 3-D CNNs
to produce final classification probabilites for each nodule candidate. Not one but
three networks were used to include multilevel contextual information: each CNN
has a different size of receptive fields. It is a receptive field which is responsible
for the amount of surrounding contextual information near the target region to be
included in training. The architecture consists of 3-D convolutional layers, 3-D max-
pooling, and fully-connected layers for feature extraction, with a softmax in the end
for obtaining probabilities.

There are other researches that explored 3-D networks and their potential ef-
ficiency. [40] proposed 3-D G-CNNs to solve false-positive reduction step. They
claim having received high classification accuracy along with sensitivity and more
efficiency in terms of performance.
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Chapter 5

Methods

5.1 2-D CNN from Li et al.

For the first approach we used a convolutional neural network with two-dimensional
convolution. Its architecture was proposed by [22]. The main idea is to use the op-
eration of convolution several times to retrieve features followed by fully-connected
layers and train the network to distinguish between two types of classes (nodule
and non-nodule) predicting the probability for each of them with softmax function
on the last layer. Two models are described below. Both networks might be com-
pared with LeNet-5 architecture proposed in [21] because of the similarities between
architectures. However, if one takes a closer look there are several differences: the
number of feature maps on the first convolutional layer for second model (CNN
T5), the number of neurons on each fully connected layer, the presence of additional
dense layer in both: CNN T4 and CNN T5 approaches.

51.1 CNN T4

The network’s structure depends largely on the input size of the images fed to it. The
paper [22] submitted a deep CNN, which is constructed on 32 by 32 pixels image
data. The network consists of two convolutional layers connected by a downsam-
pling (max pooling) layer, which reduces the spatial size of its input and the amount
of parameters, reducing the necessary computational power. Downsampling also
helps to prevent overfitting. The first convolution contains 6 feature maps. The ker-
nel size is 5 for every convolutional layer while the step (stride) of kernel is 1. For
downsampling layers: the kernel size equals to 2 and the step (stride) is 2. The sec-
ond convolution in this network has 16 feature maps and is followed by another
max pooling layer, outputs of which are passed to a dense layer. In total, there are
four fully connected layers with 150, 100, 50, and 2 nodes correspondingly. The last
two nodes are responsible for the output probabilities of nodule and non-nodule.
While we use convolutional layers with purpose of feature extraction, we need all
the dense layers to perform classification task. Basically, fully connected layers learn
non-linear combinations of the extracted features. This step makes the model end-
to-end trainable.

51.2 CNNT5

For experimental purposes the same network is modified: the convolutional map
size is set to 8 instead of 6. All the others parameters are kept the same, including
the size of the input data. To prevent overfitting we added dropout regularization
to CNN T4 and CNN T5, which was not present in the original architecture from
[22]. We placed dropout layer between first and second dense layers and one more
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between second and third fully connected layers. The proportion of the input units
to drop was set to 0.3.

The full architecture of this network is presented in Figure 5.1.

FIGURE 5.1: Architecture of deep CNN by [22]. The input data is ROI
image pixels (1024-dimensional vector). The output consists of two
neurons (nodule: 1 and non-nodule: 0) src: [22]
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5.2 VGGNet

With the development of Deep Learning emerged the need of a unified baseline
for measuring the efficiency of proposed frameworks. ImageNet ILSVRC challenge
presented [29], which became the most popular benchmark dataset for this purpose.
New convolutional neural networks architectures are usually tested on this bench-
mark which gives us an opportunity to compare their performance with each other.

In 2014 the network from Karen Simonyan and Andrew Zisserman known as
the VGGNet was in top-2 best performing networks in ILSVRC challenge after ob-
taining the error rate under 10%. This model is frequently used for classification or
feature extraction on different datasets. At the moment of its submission VGGNet
contributed into Deep Learning by showing that the depth of the network is a crucial
element for good performance. Nowadays there are many other models built on top
of VGGNet or based on its idea of using a 33 convolution layes, and these models
are applied to many domains.

FIGURE 5.2: VGG-11 network: 8 two dimensional convolution layers

and 3 fully connected, the last dense layer is followed by softmax

function for class prediction. The number of feature maps on each
layer is mentioned under each of them.
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There are several configurations to VGGNet. The most famous one contains 16
layers (including both: convolutional and fully connected layers). Other configura-
tions vary in the number of layers and are named correspondingly: VGG-11, VGG-
13, VGG-19. In this work we use VGG-11, its architecture is shown on Figure 5.2.

VGG architecture consists of ‘blocks” which have two convolution layers. They
apply same filter size - 3x3 2-D convolution with stride 1 and pad 1 multiple times in
order to extract more representative and complex features. The size of pooling kernel
remains the same on all layers and equals to 2x2 with stride 2 and no padding. The
biggest issues with VGG usage is that it has a large number of parameters - over 130
millions, is expensive to evaluate, and uses a lot of memory.

5.3 3-D LeNet

There is another characteristic of the data which can be useful and might influence
the choice of the approach: LIDC images are obtained from CT scans, which are
three dimensional in their nature. The nodules which the algorithm is trying to clas-
sify have three dimensional structure, meaning there is more important information
in the whole voxel which contains the nodule rather only its one slice. Using 3-D
neural network instead of 2-D in this case can produce better results as three di-
mensional convolution is able to retrieve features which are relevant for volumetric
data. However, the downside of this technique is the need of massive computational
power to train a 3-D model.

As it was mentioned above, the network proposed by [21] has similar architec-
ture to [22], which achieves 0.86 sensitivity at 5 FP rate on LIDC dataset which is a
good and competitive result. This means that, even though, LeNet has much less
layers than VGG, it can be used as a baseline in similar computer vision tasks. The
idea here is to improve the performance of [22] by expanding their network to train
on three dimensional data.

Before this step, we train and evaluate 3-D LeNet to see if this relatively sim-
ple but computationally lighter (comparing to deep nets like VGGNet) network can
produce meaningful results.

The structure of the model is shown on Figure 5.3.

FIGURE 5.3: 3-D LeNet: two 3-D convolutional layers with 5x5x5 ker-

nel 6 feature maps on the 1st layer and 16 on 2nd, connected by 3-D

maxpooling layer with kernel size equals 2 and stride 2, followed by
three fully connected layers with 120, 84, and 2 neurons on each.

input conv3d_1 conv3d_2 output

[ |
@
max pool 3d g
(kernel_size=2) =
— — T H BB
max pool 3d 'E
(kernel_size=2) E]
- =
32x32x32 kernel (5x5x5) kernel (5x5x5)

voxel 6 feature maps 16 feature maps dense layers



Chapter 5. Methods 15

54 3-D CNN T5

As mentioned above, we want to improve classification results by using three di-
mensional convolution on volumetric voxels rather than working with 2-D slices.
This approach has been already used in other studies, but in this work we provide
a comparison of several architectures, each of which is implemented independently
with 2-D and 3-D convolution to measure how much this adjustment can increase
the metric scores. After using LeNet in 3-D, we change network from [22] by adapt-
ing it to learn three dimensional data. Changed network consists of two 3-D con-
volution layers each having 5x5x5 kernel size with no padding and stride 1. First
convolution layer has 8 feature maps, while second one has 16. The number of neu-
rons on last four fully connected layers remain the same as in [22] architecture: 150,
100, 50 and 2.

5.5 3-D VGGNet

We also transform convolutional layers of VGGNet-11 to three dimensions. Now we
can test whether training two same architectures but with different convolution di-
mensionality would give very different results and if so, which configuration would
perform better.
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Chapter 6

Implementation

We divided the implementation into several stages. During this development we
built separate modules, each responsible for a particular task. We made repository
with the code! publicly available. Its short description is provided below:

1. Data preprocessing The module for operations on raw CT scan images. Those
include data reading, extraction of candidate patches, regions saving, augmen-
tation, train-test split and others. We wrote these functions with the idea to
make their usage possible at all stages of this work. For example, the module
responsible for loading the data can be used during training as well as during
prediction. The code is located in folder data_preprocessing on our github.

For instance, in our repository the folder named data_preprocessing/load_tools.py
contains the following modules: load tools (helper functions for reading im-
ages, converting them to different system of coordinates, extracting the needed
ROIs and saving them) and dataloaders pytorch (provides a variety of differ-
ent data loaders for training any network on pytorch framework). There are
also four ipython notebooks which show how to use mentioned modules for
data augmentation, LUNA16 exploration, visualization, and regions saving.

2. Modelling For each CNN architecture we have written a module on Keras
and a separate one on PyTorch. Therefore, it is possible to train models in dif-
ferent environments: either with installed Keras (on TensorFlow backend) or
PyTorch, or both of them. This allows us to compare the frameworks’ perfor-
mance and be more flexible in the process of building new networks or chang-
ing the existing ones. Read more about this in 6.1.

One can find implemented models in src_keras/models_keras.py and in src_pytorch
/models_pytorch.py .

3. Training and prediction We created two different modules for training and
testing one for Keras syntax and another for PyTorch. Both of them save the
trained models and their weights to files, so the test prediction step can be
launched separately from the training.

In our code folders src_keras and src_pytorch contain all the necessary modules
to train, save, and evaluate models implemented on both frameworks. For
instance, module src_pytorch/train_tools.py combines all the functions needed
for training a network, example of this process is shown in ipython notebook
named TrainCNNs.ipynb. In the same time, we have src_pytorch/test_tools.py
which provides similar functionality and allows to extract label predictions,
details are described in PredictCNNs.ipynb. Modules src_keras/train_tools.py and

Ihttps://github.com/MarichkaS/Lung_Nodule_Classification
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src_keras/test_tools.py are presented for training and testing using keras. These
processes can be followed through in Train2dCNNs.ipynb, Train3dCNNs.ipynb,
Predict2dCNNs.ipynb, and Predict3dCNNs.ipynb.

4. Evaluation In this step we used the module provided by LUNA16 competition.
It takes the csv file with predicted probabilities for each candidate and runs
FROC analysis to report the overall sensitivity of a system at the ten predefined
false positive rates. Code can be downloaded from a folder called "evaluation
script" on the Data page of LUNA16 challenge?.

File noduleCADEvaluationLUNA16.py launches FROC analysis, the only things
that are required to run it are the paths to csv files with annotations, names of
scans, output directory, and predicted results for each region (should include
scan name, x y z coordinates of the center of the region, and a probability of
being a nodule).

6.1 Frameworks

We use PyTorch [27] and Keras [4] deep learning frameworks with integration into
Python 3.6. Both of them are neural networks API which provide building blocks
for developing deep learning models. Keras is a high-level library which requires
a backend engine. From the three available backend implementations we chose
TensorFlow backend for this work. Pytorch, on the other hand, shares some C++
backend with the deep learning framework Torch.

PyTorch is more complex than Keras because it operates on a lower level and
requires more custom configurations. Nevertheless, it is best known for its flexi-
bility, short training duration and debugging capabilities. In our case, processing
a big dataset of 3-D images is very time consuming, so this framework is useful in
decreasing the training time. Moreover, PyTorch gives an opportunity to add some
custom changes to the networks, optimization, loss calculation providing a possibil-
ity to adjust the architecture for any experiment. The performance is comparatively
slower in Keras, however, its code readability is more clear. We chose to build meth-
ods using Keras because it is a fast and convenient way to develop models and test
a hypothesis. Furthermore, the written code can then be reusable by others due to
its simplicity.

We implement each approach described in section "Methods” using both frame-
works separately, except for VGGNet which is already included in Pytorch and thus
was used as an imported module.

6.2 Computational resources

In our experiments we train all the models on GeForce GTX 1080 Ti GPU which has
11,264 MB GDDR5X memory on the card.

For the models CNN T4 and CNN T5 100 iterations take about 22 seconds per
iteration to train on 30,000 two dimensional images with size 32x32 pixels and batch
size 64. With the same configurations one epoch of VGGNet-11 runs for approxi-
mately 42 seconds, which is twice longer than previous two networks. Computa-
tional time increases drastically when we use 3-D voxels. For example, on the same
amount of training data VGGNet-11 3-D takes 320 seconds for one epoch.

2https://lunal6.grand-challenge.org/Data/
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Chapter 7

Experiments

7.1 Dataset

Dataset includes 888 CT scans from LIDC/IDRI database [23]. This means that
from 1018 scans available in database selected were only those with a slice thick-
ness smaller than 2.5 mm. All nodules (positive samples) are greater than or equal
to 3 mm and were accepted by at least 3 out of 4 radiologists. The regions of interest
for us are 3-D voxels containing nodules, this is why we need to cut out chunks from
each scan. These extracted regions will be the input data for neural networks. To per-
form this step we take ROI candidates, which are proposed in LUNA16 challenge.
For each candidate we receive information about its location (x, y, and z position) in
world coordinates, and the annotation class. LUNA16 organizers claim in [32] that
they obtained this data using three candidate detection algorithms [26] [15] [30].

All in total we have 551,065 candidates which include 1,186 true nodules.

The three dimensional candidate contains a lesion positioned in the center but it
also has a lot of background around it. Since nodules can be of a different size, some
slices consist mainly of background and usually only the center three-five slices have
anodule. Big lesions, on the other hand, can appear on many slices through Z plane.
The largest nodule (Figure 7.3) is 32.27 mm in diameter while the tiniest is ten times
smaller - 3.25 mm (Figure 7.1). Thus, labeling all slices from the candidate with the
class given to its center is incorrect. To work with two dimensional data we need
to annotate as positive class only those slices from candidates that contain a nodule.
To be certain that no incorrectly labeled samples are present in our training dataset,
we use only middle slices to represent a volumetric candidate in two dimensions.
We have tried to use more slices from the voxel, but in many cases they appeared to
not have a nodule even on just two slices away from the center. In Figure 7.2 we see
that from the whole 3-D region only the middle 4 slices actually contain a nodule.
Nodules” position in the lungs varies a lot: some are attached to tissues, some are
surrounded by many artifacts, others have only dark background around them, for
examples see Figure 7.4.

7.2 Preprocessing

According to [22] the nodules whose sizes are less than 32x32 pixels account for
95.33% of the data, and less than 64x64 pixels represent 99.991% of nodules. We cre-
ated dataset which contains candidates of size 32x32x32, to be confident that using
3-D convolution on these images would fit into memmory limits.

Since there is a strong disproportion in the amount of positive to negative ROIs
we use augmentation to form a balanced training dataset. For each candidate with
a nodule we perform random rotations of the input by 90 degrees, transpose the
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FIGURE 7.1: Region of size 48x48x48 with the smallest nodule from
the dataset. Because the nodule is very small we can see it only on the
central slices (the ones in the bounding box), zoomed in Figure 7.2

FIGURE 7.2: Center slices of the region voxel with the smallest nodule
from the dataset. The whole ROI is shown in Figure 7.1
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image by swapping rows and columns, adjust brightness and contrast, vertically
and horizontally flip the input, and use scaling.
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7.3 Train-test split

We have noticed that the overall performance is largely dependent on the proportion
of classes. Because we work with a very unbalanced dataset, multiple configurations
for splitting the data have been tested.

1. D1 split

Before augmentation we select 15,000 non-nodules candidates for training and
8,000 for testing. To do this we group by scan all proposed candidates of non-
nodule class, then randomly choose 17 samples from each group saving them
for training and 9 samples for testing. This means that we receive 65% to 35%
train to test ratio. Those regions were previously saved as 3-D voxels, so when
2-D input data is needed we take only one middle slice of size 32 by 32 pixels
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from each candidate. D1 split is the way we divide data and not the way we
preprocess it, so 3-D D1 contains same images as 2-D D1 split, they differ only
in dimensionality of the images.

For each out of 1,186 3-D nodules we perform image augmentation, which are
listed above in Section 7.2, receiving around 20 generated samples from one
candidate. After this step we obtained an upsampled class of positives - 23,000
three dimensional nodules in total. Those are then split to 15,000 regions for
training and around 8,000 for testing to preserve 65% to 35% proportion. Next,
we retrieve one middle slice from each to have 2-D images for training (same
procedure as for non-nodules).

In conclusion, after all these operations we have a 30,000 images dataset for
training and 16,000 samples for test. We calculate test accuracy and test loss
during training to keep an eye on possibility of overfitting. In this thesis we
refer to this dataset split configuration as D1. It consists of D1 testing set and
D1 training set.

2. D2 split

CT scans, in general, contain more background information rather than regions
with nodules. This means that in real world we will always see more negatives

FIGURE 7.3: Candidate voxel of size 48x48x48 with the largest nodule
from the dataset
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FIGURE 7.4: 2-D 64x64 pixels candidates of different nodules
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than positives. For instance, candidates set provided by LUNA16 challenge
consists of 549,714 non-nodules samples and only 1,351 nodules. The idea in
this split is to give twice more negatives than positives for training and 10
times more non-nodules than nodules for testing, while keeping the number
of positives candidates the same as in D1. This would show whether the net-
work is capable to deal with data distribution which is closer to reality, in other
words on the unbalanced set. More importantly, we will see if training on this
split increases or decreases the model performance. We refer to this dataset
division configuration as D2.

To conclude, for training data D2 contains 15,000 nodules candidates (same as
in D1) and twice more non-nodules - 30,000. For testing 8,000 positives are
used along with 80,000 negative samples. Selection process for non-nodules
regions is identical to the one used in D1. This split consists of D2 testing set
and D2 training set.

7.4 Training details

We tried three different batch sizes: 32, 64, 128, and empirically it was proven that
64 samples per batch is the best for training through all experiments. In some train-
test split configurations we had more data for training than in others resulting in
decrease of a batch size. For optimization in some experiments we used Adam and
in others RMSprop with learning rate varying from 0.0001 to 0.0005 and momen-
tum=0.95. During training we reduce learning rate by multiplying it by 0.2 when
validation accuracy reaches plateau (doesn’t improve through 5 iterations).

We also tried setting the class weights inside the loss for the training on an imbal-
anced dataset. However, it did not give major improvements, this is why we don’t
report the experiments which had this adjustment.

7.5 Results

We report measured performance of all the methods in Table 7.1. The sensitivity
metric is the number of true positives divided by the sum of false positives and true
positives. Test sets from D1 and D2 differ in the proportion of positive class to neg-
ative, so the results in the upper part of this table should not be directly compared
with those in the lower part. This table, nonetheless, shows the performance of dif-
ferent networks. We can clearly observe the increase in accuracy and sensitivity after
going from 2-D convolution to 3-D convolution. The results also correlate with the
complexity and depth of the network, but the biggest influence lies onto the choice
of the training data. The fact that we see lower sensitivity on the highly imbalanced
data (10 to 1 proportion negatives to positives) is expected. We chose this split as
it is more consistent with the real world, so we can see a better image of what the
final score will look like at the 888 scans from LIDC dataset. However, real dataset is
even more unbalanced. After training we observed that networks learned to classify
nodules, but still make mistakes producing false positives.

To really measure which of the splits is better to use for training, we should eval-
uate them on one unified test set. Results on the whole LUNA16 data are reported
in Table 7.2. It shows that giving two times more negatives than positives for train-
ing (D2 configuration) produces better performance than training on the balanced
dataset (D1).
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TABLE 7.1: The performance summary. Each network in this table
was trained and tested on the data mentioned in column Dataset.
How those sets were obtained is described in 7.3.

Model name Dataset Test accuracy (%) Test sensitivity (%)
CNN T4 D1 85.7 85.2
CNN T5 D1 86.5 85.4
VGGNet-11 D1 88.2 88.6
LeNet 3-D D1 92.5 86.0
CNN T5 3-D D1 94.2 92.0
VGGNet-11 3-D D1 97.4 95.8
CNN T4 D2 92.1 77.3
CNN T5 D2 91.9 77.2
VGGNet-11 D2 96.0 82.7
LeNet 3-D D2 96.9 89.5
CNN T5 3-D D2 97.1 91.4
VGGNet-11 3-D D2 99.0 95.1

We want to compare achieved results with other studies. For those we pick
three works which showed state-of-the-art performance in LUNA16 challenge, for
instance, Dou et al. [12] finished top-1 in LUNA16 competition, Torres et al. [37]
was third runner-up, and van Ginneken et al. [39] entered top-5. Their approaches:
[12] - three different contextual 3D ConvNets architectures (Archi-a, Archi-b, Archi-
¢), [37] - a feed-forward neural network trained on a set of 13 features, including
spatial, intensity, and shape features, [39] - OverFeat, trained for object detection in
natural images. Another work which we used for comparison is Li et al. [22], whose
model architecture we implemented, trained, and took as a baseline. It is referred in
this thesis as CNN T4 and its slight alteration - CNN T5, more about them is in 5.1.

It is hard to compare performance of different researched works because most of
them do not perform evaluation on the whole LUNA16/LIDC dataset but select for
test only a certain number of scans. However, we chose for comparison the stud-
ies which have been tested on approximately the same quantity of data giving an
opportunity to see how well our implemented methods operate.

It is also very time consumptionnaly to run prediction step on a full testing set
from LIDC scans each time we perform an experiment, for example, CNNT5 evalu-
ation on 888 scans takes around 5 hours. This was another reason why we needed
to form D1 and D2 test sets.

Below we describe and explain evaluated scores achieved in our work.

751 CNN T4 & CNN T5

The performance of these two networks is very similar as it is expected due to their
architectures” resemblance [22]. However, CNN T5, which has more features maps
on the first convolution layer than CNN T4 performs slightly better on the test data
from D1 described in Section 7.3, but a little worse on the D2. For evaluation scores
comparison see Table 7.1. More important results are the results on the full LIDC
dataset in Table 7.2. It is clear that we did not achieve good results on 888 scans from
LIDC using CNN T5 trained on D1 split. We believe that more research is needed to
find the correct split for the training data to get better scores with this network.

Changes of training loss and accuracy for CNN T5 are shown in Figure 7.6. Dur-
ing the training and testing accuracy on both: D1 and D2 grows constantly.
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7.5.2 VGGNet

On the test set from D1, we observe that trained on D1 VGG-11 gives better accu-
racy than CNN T4 and CNN T5. Moreover, when comparing its sensitivity score it
becomes clear that this network performs better than other 2-D CNNs used in our
work. By applying VGGNet we achieved over 88.6% sensitivity on D1 test: 16,000
regions (balanced 8,000 positives, 8,000 negatives), while CNN T5 shows 85.4% of
sensitivity on the same data. When testing on D2 (imbalanced test set) with 88,000
images in total - D2 split, VGG-11 obtains 82.7% sensitivity.

When evaluating this network on LIDC data we find a big difference in results
predicted by same model which was trained on different data splits: for D2 we ob-
tained 72.1% recall at 8 FPs/scan rate, but for D1 only 42.0% at 8 FPs/scan. This
proves the need of more experiments about ways to choose data for training, espe-
cially if this is 2-D images that we deal with. Because in two dimensional case we
loose some information when we select only one slice to represent a 3-D candidate.
During prediction on 2-D data we also take the center, which might contain some
artifacts (like blood vessels), those can cause a false positive prediction. If we take a
3-D image of the same region, because of its shape, form and length the vessel starts
to look more distinct from the nodule.

7.5.3 LeNet3-D

LeNet 3-D yields much better test accuracy on both training datasets than any 2-
D network in this work, see Table 7.1. On the other hand, on D1 test set it fails
to outperform VGGNet-11 in sensitivity showing only 86% while deeper network -
VGG-11 gets above 88% of overall sensitivity on D1. This, nonetheless, does not hap-
pen with D2, where LeNet 3-D proves to perform better than any 2-D net achieving
89.5% sensitivity.

On LIDC testing this network shows better results when trained on imbalanced -
D2 training dataset - 78.1% sensitivity at 4 FPs/scan and 83% at 8 FP rate, which are
already good scores that can be compared to other studies. In Figure 7.5 the whole
FROC curve for LeNet 3-D is shown. We can also observe, that training on balanced
data gives worse results, however, it shows better performance than much deeper,
but 2-D network VGG-11.

754 CNN T53-D

Out of CNN T5 and CNN T4 we chose the first network to be converted to 3-D be-
cause it produced slightly better results in experiments on 2-D data. From this net-
work we received 94.2% accuracy and 92% sensitivity on the test data from D1. This
model shows similar performance to LeNet 3-D in terms of accuracy, but reports a
much higher recall score. Moreover, it is significantly better than 2-D version of this
same architecture. CNN T5 3-D outperforms CNN T5 by more than 6% on sensitiv-
ity score and 8% on D2 testing accuracy. Time evolution of the training process is
presented in Figure 7.6.

7.5.5 VGGNet 3-D

This network shows the best performance on D1 for both: accuracy and sensitivity,
97.4%, 95.8% correspondingly. When comparing these results to the ones obtained
by VGGNet-11 on the same test set (88.2% accuracy, 88.6% recall), we observe a
huge improvement. This means that application of a 3-D network rather than 2-D
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helped to achieve better results, same conclusion is derived from the performance of
CNN T5 and CNN T5 3-D. Change of the dimensionality, however, is not the only
factor of this method’s overall success. From Table 7.1 it is clear that the deeper
network receives better scores, while LeNet 3-D and CNN T5 3-D, although use 3-D

convolution, produce worse results than VGGNet 3-D.

VGGNet-11 3D receives best results on LIDC database: trained on D1: 82.1% at
4 FPs/scan and 87.0% on 8 FPs/scan rate; trained on D2: 90.6% at 4 FPs/scan and
91.9% on 8 FPs/scan rate. In Figure 7.5 the whole FROC curve for this method is

shown.
TABLE 7.2: The performance comparison of different studies on scans
from LUNA16/LIDC database (888 scans in total). The upper part of
the table shows the evaluation scores of the models which we used
and implemented, while the lower part consists of results reported
by other CAD systems in [32]. * the number of scans used by Tor-
res is bigger than size of LUNA16/LIDC because besides from the
LIDC/IDRI database they also took 50 scans from ANODEQ9 and
20 from ITALUNG-CT. *Contains whole LIDC database including
scans with slice thickness greater than 2.5 mm (those are not present
in LUNA16)
Method Training Data Cases (#scans) i(;n;;t;\e/;tgm ge;llf;t/lz)lgm
CNN T5 D1 888 28.0 36.0
VGGNet-11 D1 888 314 42.0
D2 888 63.4 72.1
LeNet 3-D D1 500 70.6 76.7
D2 888 78.1 83.0
VGGNet-11 3-D D1 888 82.1 87.0
D2 888 90.6 91.9
Dou et al. - 888 90.7 922
Torres et al. - 949% - 80.0
van Ginneken et al. - 865 76 -

Lietal. - 1010** 87.1



08

0.8

0.6

04

0.2

Chapter 7. Experiments 25

w

ensitivity
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888 scans from LUNA16/LIDC database. The metric scores are ob-
tained by running evaluation script from LUNA16 challenge. In Table
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Chapter 8

Conclusions

8.1 Results summary

From the obtained results we conclude that deeper 3-D convolutional network out-
performs all of the other used methods. For instance, VGG-11 3-D showed signifi-
cantly higher scores than CNN T5 3-D, LeNet 3-D, and each of their two dimensional
versions. Its superiority was proven on the prepared test sets from D1 and D2, as
well as on data from LIDC. Due to the evaluation on CT scans from LIDC, we could
compare the performance across others studies, which were not replicated in this
thesis, but reported their results in LUNA16 challenge [32]. Among all of our im-
plemented methods 3-D networks show promising and competitive scores at both 4
FPs/scan and 8 FPs/scan rates. Unfortunately, 2-D networks failed to succeed. We
believe that more time and research is required to find the best data configuration
and model architecture to receive results using 2-D convolution as good as while
using 3-D.

Nevertheless, we also conclude, how important it is to follow the proportion of
classes in the training dataset. Networks trained on D2 split (twice more negatives
samples than positives) proved to give better overall sensitivity score on LIDC data,
than the ones trained on D1 (balanced set).

In this thesis we achieved all the goals which were set in the beginning of the
project: explored and described previous works on nodule classification and de-
tection, applied three models with 2-D convolution and three with 3-D, evaluated
and tested their performance on different splits of the same dataset, and reported
the comparable FROC sensitivity scores for the used models. Moreover, we imple-
mented each neural network using two different frameworks separately. We also
published the source code in a public repository, so it could be used for future work.

8.2 Future work

Possible ideas for future work:

1. Test the models’ performance for different image sizes. In other words, prepare
larger regions of interest, for example, 64x64x64 for 3-D and 64x64 correspond-
ingly for 2-D.

2. Use 3-D convolutional neural networks which are deeper and more complex.
Those include ResNet-3D and similar architectures.

3. Use deep neural networks to extract candidates regions from raw images. Such
architectures as U-Net should be used.

4. Apply Multiple instance learning to use the entire scan as a bag of candidates
and thus be less dependent from having very precise annotations.
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8.2.1 Multiple instance learning

Not always it is possible to have annotations for each sample, even more, such label-
ing can take a lot of time and thus be expensive. Interpreting CT scans as bags and
instances can help improve results of nodule detection. Some have already applied
multi-instance learning to medical data: [2], [43], [14]. This is, however, not fully
explored field and a promising area of research.

MIL was used for nodule detection by [2] in a following order: 1) images process-
ing, 2) candidate ROI extraction, 3) adaptive bag construction, 4) feature extraction,
5) feature dimensional reduction by PCA, 6) classifier based on the proposed MIL-
CAND. In this case two MIL algorithms: Diversity Density (DD) [25] and a Multiple
Instance Learning with EM algorithm (EM-DD) [42] were applied.

We believe that applying Multiple instance learning combined with 3-D CNNs
can improve the results of nodule detection task. This hypothesis should be tested
in further research.
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