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Abstract

Development of technologies led to the adoption of new digital imaging solutions in
pathology field. One such innovation is whole slide imaging, the main purpose of
which is digitalizing the whole glass slide with tissue into a high-resolution image.
This image is then divided into sections, which are zoomed for further analysis. The
main focus of examination is tissue body, but other materials such as debris, dust,
and glass are also presented on the slide. In order to focus only on tissue and to make
the analysis process more time- and memory-efficient, tissue location on the slide is
predefined. Currently, tissue localization procedure is performed by segmentation
algorithms based on classical methods of computer vision. These algorithms require
manual tuning and might be inaccurate on images with a lot of debris. The issue
could be solved with more adaptive methods like deep neural networks. This thesis
presents tissue segmentation pipeline based on deep convolutional neural networks.
Proposed pipeline showed that deep learning is capable of segmenting tissue as ac-
curately as the currently employed approach.
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Chapter 1

Introduction

1.1 Motivation

Histopathology is the study of tissue structure, from the level of cells to the level of
individual organs (Hani A Alturkistani, 2015). Analyzing tissue slices contributes
to important areas in medicine, e.g. disease diagnostic (Farahani N, 2015). Anal-
ysis procedure typically consists of several stages. Firstly, researches take a low-
resolution photo of thin tissue slice on a glass. Then, by receiving this photo, the
specialized microscope focuses on all positions where the tissue is located and cap-
tures them. The focusing points microscope obtains from segmentation algorithms
that separate the tissue from the rest of the debris in the picture. As a result, re-
searchers gain a big amount of images with tissue sections at the level of individual
cells which are used for further analysis. If the algorithms that determine the focus-
ing points for the microscope do not work accurately, a lot of obtained images will
be useless and should be filtered.

Currently, semi-automated classical methods of computer vision are utilized.
Mostly, they are based on colors classification, edge detection, thresholding and re-
gion growing techniques. These methods have some disadvantages. They heavily
rely on parametric tuning and might work inaccurately when a lot of debris is pre-
sented on the image. One of the best such methods, which is utilized by Akoya
Biosciences has been compared with the proposed deep learning method in this the-
sis.

Relying on independence from manually choosing or tuning parameters (except
training procedure) of deep learning methods, full automatization of tissue segmen-
tation task seems promising. Moreover, deep learning showed very good perfor-
mance on the segmentation problem of natural objects on COCO (Lin et al., 2014)
and PASCAL (Mark Everingham, 2014) datasets (Garcia-Garcia et al., 2017). Seg-
mentation methods based on deep learning have been successfully utilized in var-
ious medical areas, for example they were shown to perform better than the state-
of-the-art traditional methods in brain MRI (Akkus Z, 2017) and cell segmentation
tasks (Medeiros, 2019; Ronneberger, Fischer, and Brox, 2015).

1.2 Goals

• Test the hypothesis that deep learning method is capable of solving tissue
segmentation problem in histopathological whole-slide images by developing
deep learning pipeline

• Evaluate whether even with a small number of images (81 samples) deep learn-
ing could reach the performance of the current leading approach
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1.3 Structure

Chapter 2: Related works
This chapter presents an overview of tissue segmentation algorithms used in histopathol-
ogy field. It starts with algorithms that rely on thresholds and concludes with cur-
rent deep learning methods.

Chapter 3: Background Information
This chapter introduces the main concepts and technologies used in this thesis: whole
slide imaging in histopathology, artificial neural networks, convolution neural net-
works, object detection, object segmentation, and performance evaluation metrics
for neural networks.

Chapter 4: Dataset description
In this chapter, an overview of the dataset is presented along with a description of
how data was acquired and a few visual examples.

Chapter 5: Methodology
Methodology chapter describes in details the proposed pipeline. Model architec-
tures, data preprocessing strategies, and training details are discussed.

Chapter 6: Experimental results
In this chapter, some intermediate results and the evaluation of the proposed pipeline
is presented along with the comparison to SOTA approach. Results are visualized
highlighting both strong and weak aspects of competing methods.

Chapter 7: Conclusions
Conclusions chapter summarizes the obtained results, discusses the importance of
the work and future improvements.
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Chapter 2

Background information

2.1 Whole slide imaging

Whole slide imaging is about producing digital images by scanning the glass slide. It
is becoming more and more popular among pathologist for diagnostic, research and
educational purposes. Whole slide imaging consists of two procedures. The first
one is about utilizing specialized hardware (scanners/microscopes) for producing
a high-resolution image by digitalizing glass slide. The second procedure is about
analyzing produced large images by specialized software. These whole slide images
are then used for medical purposes such as primary diagnostic, consultation, anal-
ysis, and researches. There are some difficulties with the adoption of whole slide
imaging which relates to cost, time, digital slides storage, limiting technology and
etc. (Farahani N, 2015)

One of the directions for solving faced difficulties is software algorithms devel-
opment. In this thesis, the algorithm for automative tissue segmentation is pre-
sented.

2.2 Artificial Neural Networks

Artificial Neural Network (ANN) is the mathematical model created by inspiration
of human brain structure. Mostly, such models are applied to pattern recognition
and data classification problems. The ANN consists of linked layers of nodes. There
are three types of layers: input layer - receives the initial information, output layer
- produces the network result and hidden layers - information processing layers be-
tween input and output. Each hidden layer in the network receives the output of the
previous layer and generates the input for the next layer. The layer itself is described
by one or more nodes. The node (neuron) receives the signal (information) from the
nodes of the previous layer, sums and computes this information with some non-
linear function and then transmit it forward to the nodes of the next layer. Each
connection between nodes is called an edge. Simple artificial neural network ar-
chitecture with fully-connected layers (every neuron of one layer is connected to
every neuron in another layer) is presented in Figure 2.1. Neurons and edges have a
weight that adapts for solving specific task during training. The signal strength on
the connection is regulated by those weights, which in general defines the influence
of the connection on the network’s performance.

The network training process is about teaching the model to distinguish the pat-
terns of data, by modifying the network’s weights. This is done in order to prepare a
model for solving a specific problem on specific data. Training data usually consists
of pairs - input and ground truth output. During the training, the network receives
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and processes the input information and return the output - prediction. Network er-
ror is evaluated by the comparison of correct ground truth values and networks pre-
diction. Errors are then propagated back through all network to update the weights
for further better performance. The procedure of forward and backward passes is re-
peated a lot of times in order to minimize the difference between the network output
and ground truth data.

Typically ANN consists of many layers which allow learning more complex pat-
terns. The large volumes of data are required to train model well. Usually, due to
memory limits, it is not possible to pass all data to the model at once, that why the
data is cropped into smaller portions called batches. The procedure of passing all
batches to the model is called one iteration of training or one epoch. The required
number of epochs for training depends on the model architecture and the size of the
dataset.

ANNs with multiple hidden layers are called Deep Neural Networks (DNNs).
Deep learning is the area of research which deals with DNNs.

FIGURE 2.1: A schematic example of an artificial neural network with
input, output, and two hidden layers

2.3 Convolutional Neural Networks

A Convolutional Neural Network (CNN) is a type of artificial neural networks pri-
marily applied for solving computer vision tasks. The main concept of the network
lies under convolution layers. Here each neuron is concentrated in own restricted
region of the input image, called receptive field. Weights of the neuron are pre-
sented in the form of a matrix called the filter or kernel. Those filters are utilized
for the feature extraction from the image by performing the mathematical operation.
This procedure takes two inputs - two matrices: a local region of an input image
and a filter, multiplies them and receives as an output the feature map - extracted
features from the image. This mathematical operation is called convolution. The
whole CNN consists of many convolutional layers. The first layer is responsible for
capturing low-level features on the image such as color, edges, gradient orientation.
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With added layers network combines the low-level features in order to learn more
complex (Figure 2.2).

FIGURE 2.2: An example of learned filters in convolution neural net-
work for face recognition problem. Shallow layers are responsible for
capturing low-level features such as lines and edges, middle layers
for more complex - eyes, nose, ears, and final layers for high-level

features such as facial structures (Image source)

2.4 Object Detection

Object detection is a problem that deals with finding individual objects in an im-
age. Detection is performed by predicting coordinates of the bounding box. The
bounding box is the rectangular area which fully covers the object (Figure 2.3).

Recently, deep learning methods have been proven to be a powerful tool for ob-
ject detection problems (Zhao et al., 2018; Ajeet Ram Pathak, 2018; Erhan, 2013).
Some of the most noticeable algorithms in this area are You Look Only Once (Red-
mon et al., 2015), Single Shot Multibox Detector (Liu et al., 2015), Faster R-CNN (Ren
et al., 2015). The latter is the state-of-the-art object detection approach used in this
thesis. Faster R-CNN is the system composed of three parts: Convolution Neural
Network, Region Proposal Network, and bounding box regressor and classifier. A
detailed description of all parts of the architecture is presented in the Methodology
chapter 5.5.1.

2.5 Semantic Segmentation

Semantic segmentation is one of the key problems in computer vision. In object de-
tection task the goal is to define the bounding box in which the object is located, but
for semantic segmentation task, each pixel on the image has to be assigned with a
class label (In this thesis two classes are presented: tissue and background - Figure
2.3). Some of the most distinct deep learning approaches for semantic segmenta-
tion are U-Net (Ronneberger, Fischer, and Brox, 2015), Seg-Net (Badrinarayanan,
Kendall, and Cipolla, 2015), FCNN (Long, Shelhamer, and Darrell, 2014) and Mask-
RCNN (He et al., 2017). In this thesis, the U-Net model is used, which has been
specifically designed for biomedical image segmentation and is capable to be trained
and work well with very few images.
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FIGURE 2.3: An example of the final result of solving two problems in
computer vision. The left image represents an object detection task by
defining the bounding box of the tissue. The right image represents a
segmentation task by labeling each pixel which corresponds to tissue.

2.6 ANN performance evaluation

For training the artificial neural network whole data set is divided into three parts:

• Training set - usually, this portion of data includes the biggest number of sam-
ples from the whole data set and is used for training the model.

• Validation set - this set is used for intermediate evaluation of the trained model.
Based on models performance on the validation set, the hyperparameters could
be tuned for model retraining.

• Test set - the sample of data used for the final evaluation of model perfor-
mance.

In this thesis segmentation task could be characterized as a binary classification
task with two target classes of prediction for each pixel: positive - tissue, negative -
background. For evaluation of binary classifier, a confusion matrix (Kohavi, 1995) is
used (Figure 2.6).

From the confusion matrix the following rates are often calculated:

• Accuracy = (TN + TP) / (TN + TP + FN + FP)

• Recall, true positive rate, sensitivity = TP / (FN + TP)

• Precision, predicted positive value, confidence = TP / (FP + TP)

• F1-score, harmonic mean of precision and recall = 2 * (Precision * Recall) /
(Precision + Recall)
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(A) Confusion matrix (B) Intersection over union metric

Also, for measuring the accuracy of an object detector or segmentor the inter-
section over union metric (Jaccard index) is used. It is described as a correlation be-
tween the area of overlap and area of the union of the predicted bounding box/mask
to ground truth bounding box/mask (Figure 2.6).

• Intersection over union = area of overlap / area of union
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Chapter 3

Related work

3.1 Tissue segmentation in medical imaging

Histopathology image analysis has been historically operated by a human expert ob-
serving the tissue body on the glass slide using a microscope. With the appearance of
whole slide imaging (Pantanowitz, 2010), it became possible to analyze histopathol-
ogy slides using digital algorithms. Special scanners first capture the entire slide
with tissue, then save it as a digital image and then the gained image could be pro-
cessed. At this point, new direction of computer-assisted diagnosis (CAD) algo-
rithms for histopathologist started to develop (Doi, 2007). These algorithms played
a huge role as additional help for histopathologist in detection, diagnosis and pre-
diction prognosis of diseases (Gurcan, 2009).

One of the digital analysis procedures for histopathology imagery is the detec-
tion and segmentation of the tissue body. This procedure is done in order to mini-
mize the surface that needs to be screened by the scanner. In this way, it is possible
to skip glass background or detritus present on physical slides. It saves researches
time and computer memory. Thus, a lot of effort has been invested into improving
and automating the tissue segmentation task (Pham DL, 2000).

At first, segmentation was done using semi-manual methods like colours clas-
sification, edge detection, and region growing (Banu, 2012; G. Evelin Suji, 2013).
These algorithms require manual tuning of input parameters such as threshold val-
ues of color, intensity, and texture of the pixels. But manual parameter search takes
a lot of time and effort from the users. Also, these approaches work well on images
that contain solid objects on contrast background, but poorly on the images with
a lot of noise. These disadvantages of “thresholding” methods (Banu, 2012) moti-
vated research and development of automated patterns recognition methods such
as Markov Random field models, Artificial Neural Networks, deformable models,
atlas-guided approaches (Pham DL, 2000; Chijindu, 2012; Tsechpenakis, 2011) and
machine learning techniques (Komura and Ishikawa, 2017).

Raja et al., 2009, proposed the method which combines machine learning and
traditional methods for feature extraction. The 21x21 pixel window was used to ex-
tract colour, pixel intensity, spatial and texture characteristics. These features were
normalized, cleaned and the dimensionality was reduced using Principal Compo-
nent Analysis (PCA, Jolliffe IT, 2016). Resulting feature vectors were classified into
background, tissue body or detritus using simple two-layer Neural Network Archi-
tecture. Segmentation mask was generated by grouping classified feature vectors.
Authors applied a median filter and border map on final mask to eliminate border
connected components. Results on 2 independent sets of 294 images have shown
general pixel segmentation accuracy of 96.5%.

After 4 years, Hazem Hiary with authors of the previous paper proposed an
unsupervised approach for segmentation (Hazem Hiary, 2013). The new solution
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was based on learning K-means cluster centers from the same set of features (colour,
pixel intensity, spatial, and texture) as they extracted before (Raja et al., 2009). The
whole slide image was divided into equal 5x5 pixel blocks and passed into K-means
for clustering. As a clustering result, all pixels inside the block were assigned one
of the three classes (background, tissue body or detritus). Than resulting mask has
been smoothed with a median filter. Results on 2 independent sets of 300 images
showed a general pixel segmentation accuracy of 95.5%. This method doesn’t need
a ground truth for training. Moreover, it has show better segmentation results on the
same data compared to previously proposed supervised learning approach. But the
quality of extracted features depends on data. Complex morphological structures of
some tissues may result in low-quality features which in its own turn may lead to
poor segmentation. Also, both supervised and unsupervised solutions algorithms
may be hard to reproduce due to closed source implementation.

Bug, Feuerhake, and Merhof, 2015, proposed Foreground Extraction algorithm
(FESI) for histological whole-slide images segmentation. In this paper, the fore-
ground and background segmentation were done by a combination of basic methods
like median filtering, thresholding, erosion, and dilation. The proposed algorithm
was compared to the more established methods like Watershed, which is commonly
applied in cell-segmentation (Veta et al., 2011) and GrabCut (Carsten Rother, 2004),
applied for image regions segmentation. FESI performed better than these techni-
cally more complex methods. It was used intersection over union area ratio (IoU,
Jaccard index) which measures the overlap of the calculated mask to the ground-
truth to evaluate the quality of segmentation of 43 test images. FESI achieved better
results with 95% IoU compared to 82.3% by Watershed and 85.9% by GrubCut.

In the last few years, deep learning has produced state-of-the-art results in the
domain of natural objects detection and segmentation (Yann LeCun, 2015; Garcia-
Garcia et al., 2017; Zhao et al., 2018). New complex but efficient frameworks were
developed like Faster R-CNN (Ren et al., 2015) for object detection and it’s exten-
sion Mask R-CNN (He et al., 2017) for instance segmentation. Therefore, researches
started to apply Deep learning for medical imaging to understand its capabilities
in medicine (Litjens et al., 2016; Jones et al., 2017; Rodenburg, 2016). For example,
Faster R-CNN was used for detection of glomeruli - network of capillaries located in
the kidney (Kawazoe et al., 2018) or U-Net (Ronneberger, Fischer, and Brox, 2015),
specifically developed model for biomedical image segmentation, was used for au-
tomatic brain tumor detection (Dong et al., 2017).

Bándi et al., 2017, compared state-of-the-art deep learning models for segmenta-
tion, FCNN (Long, Shelhamer, and Darrell, 2014) and U-Net (Ronneberger, Fischer,
and Brox, 2015) to FESI algorithm on tissue segmentation problem on 54 slides from
three different laboratories. Deep learning approaches performed better on differ-
ent tissue types and achieved a Jaccard index of 93.7% and 92.9% by FCNN and
U-Net respectively compared to 87% achieved by FESI. The study showed that deep
learning methods can outperform existing traditional image analysis algorithms.
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3.2 Tissue finding algorithm utilized by Akoya Biosciences

Data that has been used in the thesis was provided by Akoya Biosciences, Inc. Cur-
rently, to segment tissues on the slides, the combination of traditional methods are
used. Detection procedure calls three different tissue detection algorithms. All three
searches for regions which are brighter than their surroundings. The morphological
transform opening, closing, and watershed are used with an aim to discard artifacts
and form of the detected tissue region(s). These algorithms are not perfect and of
the generated segmentations needed to be manually corrected by a human expert.

As a conclusion of the review, we could observe that the deep learning approaches
are showing promising results in solving weaknesses of traditional algorithms in tis-
sue segmentation task. It was decided to apply state-of-the-art deep learning models
to our data and compare the results with performance of existing algorithm[s].
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Chapter 4

Dataset description

Dataset includes images of slides of formalin-fixed paraffin-embedded human and
animal tissue sections with chromogenic stains applied. The images were acquired
on Vectra Polaris Automated Quantitative Pathology Imaging Systems (Akoya Bio-
sciences, Hopkinton, MA, USA). They are low-resolution brightfield scans (13.8 mi-
crons per pixel resolution) of the entire slide. Each scan is one of the following three
sizes 521 x 1006, 2084 x by 4024, or 522 x 1009 pixels and represents slide marker
and the coverslip, on which, one or multiple tissues are located. For each scan, two
segmentation masks are provided: for coverslip area and for the tissue (Figure 4.1).

(A) Whole-slide image (B) Coverslip mask (C) Tissue mask

FIGURE 4.1: Each sample in the data is represented by the whole-
slide image and two segmentation masks of the coverslip and tissue

areas for this image

The whole data set consists of 81 images and represents variety of tissue types
(Figure 4.3). Images have been divided into train, validation and test sets with 48,
12 and 21 images respectively. Images with almost identical tissue slices (Figure
4.2) were kept in the same data partition in order to avoid overfitting during model
training.
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(A) Similar images in training set (B) Similar images in validation set

FIGURE 4.2: An example of similar images in data set

FIGURE 4.3: Presentation of a variety of tissue types in data set
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Chapter 5

Methodology

5.1 Akoya Biosciences algorithm

The existing algorithm, used by Akoya Biosciences consists of two steps:

1. Extraction of the region of interest on whole-slide image defined by coverslip

2. Segmentation of the tissue inside the extracted region

Detailed description of two steps is presented in the next subsections. In this
thesis, the algorithm has been used as a baseline and has been compared to the
proposed method.

5.2 Rectangular coverslip extraction

Coverslip is characterized by narrow dark straight lines on the image. By these
lines, two areas are defined: coverslip and bottom plate. The coverslip extraction
procedure is divided into three steps. At the first step, dark lines are detected using
convolution with line-kernels. At the second step based on the detected lines, a
rectangular coverslip region is formed. At the final step dark areas covered by paper
or holders are excluded from detected coverslip region (Figure 5.1).

5.3 Tissue segmentation on ROI defined by coverslip

Combination of three algorithms is used for segmentation. All three search for re-
gions which are brighter than their surroundings. The morphological transform:
opening, closing, and watershed are used with an aim to discard artifacts and form
of the detected tissue region(s). Next step is the finding of overlap between three
initially predicted regions. It has a concept of ‘confident’ tissue areas and ‘less confi-
dent’ tissue areas. In the mask, confident areas have a value of 3 (prediction overlap
among all three algorithms). The less confident areas are 1 and 2. In practice, re-
searches scan all the areas regardless of confidence (any value > 0) but only attempt
to acquire focus points on the confident areas (value = 3).

5.4 Proposed pipeline overview

At first, tissue segmentation in the coverslip area has been performed. This approach
led to two main disadvantages. First is the high level of false positive segmentations,
since there is a lot of dirt/detritus presented on the slide. Second is the missing of
some tissue parts. A model trained on the coverslip area learns not to segment the
debris. As a result, tissue false negative segmentation occurs in cases where tissue
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morphology is very similar to the debris.

Mostly, detritus (debris) particles are concentrated on the edges of the cover-
slip. Thus, to avoid above-mentioned issues, the area of segmentation should be
decreased. We decided to perform it in a way of firstly defining the bounding box of
the tissue and then segmenting the tissue on this smaller gained area. To accomplish
this task two models have been trained: object detector for predicting bounding box
area of the tissue and segmentor model for segmenting it. Also, the segmentation
model has been trained only on bounding box areas, which made the model more
sensitive to the tissue body and result in more accurate segmentation of tissue with
similar morphology to detritus.

By using the combination of the object detection and segmentation models we
present a novel approach for tissue segmentation on whole-slide images. The final
proposed deep learning tissue segmentation pipeline includes the following steps:

1. Rectangular coverslip area extraction (using rectangular coverslip extraction
part of the Akoya Biosciences algorithm 5.2)

2. Detection of the bounding box around the tissue

3. Generating patches for the segmentation step

4. Predicting probability maps from tissue patches

5. Merging and thresholding the probability maps

Each step is described in details below.

FIGURE 5.1: An example of coverslip area extraction from the whole-
slide image
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5.5 Tissue bounding box detection

5.5.1 Faster R-CNN

State-of-the-art object detection framework - Faster R-CNN has been used in this
work for detecting tissue. This framework was introduced as an improvement of
Fast R-CNN (Girshick, 2015) and consists of the following modules: feature extrac-
tion from the image, identification of candidate regions that are likely to contain
objects of interest, with the subsequent classification of these objects. Figure 5.2
presents an overview of the Faster R-CNN architecture. The whole framework in-
cludes such main modules:

FIGURE 5.2: An overview of the Faster R-CNN architecture

• Backbone neural network (Inception ResNet v2 network (Szegedy et al., 2016)
pretrained on COCO dataset (Lin et al., 2014)).
The first module is the neural network which plays a role as a feature extractor
from the image. In this thesis, Inception-ResNet v2 architecture backbone is
used. The network generates a feature map, which is the input for the next
module - Region Proposal Network.

• Region Proposal Network (RPN)
RPN is a convolutional neural network which is running over a feature map
with a sliding window. For each step/position, it analyzes 9 rectangular re-
gions of different sizes and scales, called anchors. As a result, the network
defines the possibility for each anchor being background or foreground and
refines the shape and position of the anchor to fit the objects perfectly. Pro-
duced anchors are called Regions of Interest (ROI).

• ROI pooling
As an output of RPN, regions of interest with different sizes are gained. But
for the last step of classification and regression, constant size for each region
is needed. ROI pooling solves this task by splitting the input feature map into
a constant number of equal regions and then applying max polling on those
regions.
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• ROI bounding box regressor and classifier
This is the las module consisted of several fully connected layers which gets as
an input ROI and for each of them returns the object class and bounding box
coordinates.

As a result, by getting an image as an input, Faster R-CNN returns an array of
n objects. Each of these n objects consists of 5 elements: object class and 4 integer
numbers representing coordinates of the bounding box around the object - minimum
values of x and y, width, and height.

5.5.2 Data set preparation

Dataset for Faster R-CNN training has been created in a manner of producing one
bounding box per image. It was done in order to encourage the model to predict
one bounding box, which covers all tissues parts on the slide. For each image, we
had only segmentation masks of coverslip and tissue. Thus, the bounding boxes co-
ordinates were generated by getting the x-axis and y-axis minimum and maximum
elements from the tissue ground truth segmentation mask. Examples of generated
bounding box could be observed in Figure 5.3. For model training, bounding box
coordinates has been normalized and transformed to special TFRecord format. The
format stores all useful information for training - coordinates of bbox, image width,
height and format, filename, object class, and other metadata. TFRecord format is
required for the training Faster R-CNN model implemented by Tensorflow library
(Abadi et al., 2015), used in this thesis.

FIGURE 5.3: An example of generated bounding box around tissue
mask

5.5.3 Training and evaluation

It has been used the implementation of Faster R-CNN framework based on Tensor-
flow library (Abadi et al., 2015) and created by Tensorflow team (Huang et al., 2016).
System training has been performed on Tesla P100 hosted by High Performance
Computing at the Institute of Computer Science, University of Tartu (Estonia). The
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system has been trained on coverslip area images (5.5) for detecting bounding boxes
for objects of one class - tissue. An evaluation has been performed on 21 test im-
ages by calculating accuracy, recall, precision, f1 score, and IoU metrics. In most
cases predicted bounding bboxes miss small parts of tissue on the edges. Since, each
tissue pixel is very important for this task and to avoid missing small parts of the
tissue, predicted bounding boxes are increased by 25 pixels from each side.

5.6 Tissue segmentation

Segmentation procedure of proposed pipeline consists of three steps:

• Cropping of detected bounding box by Faster R-CNN into patches

• Predicting probability maps for each patch

• Merging and thresholding probability maps

5.6.1 U-Net

U-Net is a fully convolutional neural network Long, Shelhamer, and Darrell, 2014)
specifically designed by Ronneberger, Fischer, and Brox, 2015 for biomedical image
segmentation. The main concept lies under encoder-decoder architecture with skip
connections. An encoder is used to capture the context on the image and it is ba-
sically a sequence of convolutional and max-pooling layers. The decoder is used
for learning localization features and it is a combination of convolution and upsam-
pling layers. Also, important role play skip connections between the downsampling
and upsampling layers. It allows transferring information among contracting and
expanding paths resulting in better information reconstruction. Figure 5.4 presents
an overview of the U-Net architecture.

FIGURE 5.4: An overview of the U-Net architecture

5.6.2 Data set preparation

Segmentation area
For segmentation procedure two types of datasets has been tested (Figure 5.5):

1. Coverslip data - data set consisted of extracted coverslips from each image

2. Bbox data - data set consisted of extracted bounding boxes around the tissue
from each image
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FIGURE 5.5: An example of two data sets consisted of coverslips area
and tissue bounding boxes area.

Patch extraction
By reason of having only 81 high-resolution images, training data has been prepared
by extracting patches from the images. Three methods for patch extraction have
been tested in this work (Figure 5.6):

• Random extraction - extracting predefined number of patches from random
locations on the image

• Grid-like extraction - gradually extracting patches from image in a grid man-
ner

• Grid-like extraction with overlap - gradually extracting patches from image
in a grid manner, but with overlap (same pixels appear on multiple patches)

Patch merging
After image is cropped into patches each patch goes as a separate input for U-Net
(Figure 5.4). As a result of U-Net performance, we get the probability map for each
patch. To get the probability map for whole tissue the small patch-like probability
maps should be merged. This procedure is also done in three different ways de-
pending on extraction way:

• For random cropped patches, coordinates for each patch are saved. After pre-
dicting, the probability maps are place on corresponding positions. For over-
lapped patches, average value for each pixel is calculated.

• For grid-like crop, patches are simply stacked in the same sequence they were
cropped

• For grid-like crop with overlap, patches are stacked in the same sequence they
were cropped. For overlapped patches, average value for each pixel is calcu-
lated.
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FIGURE 5.6: Patch extraction methods overview. From left to right:
random extraction, grid-like extraction and grid-like extraction with

overlap

All probability patches are merged into one probability map for tissue bound-
ing box/coverslip area. This probability map is then thresholded by 0.5 value and
placed on the right position on the final mask for whole-slide image.

Patch narrowing
As a result of patch merging procedure, the so-called patch border effect appears.
It is observed as small low probability lines around each patch on the final merged
probability map. In some cases, it negatively affects the final mask, by reducing
the probability of pixels where tissue is located. To decrease the influence of patch
border effect, ignoring perimeter of some size around the patch when merging could
be done. Figure 5.6.2 presents the example of patch narrowing method performance.
This technique could only be applied to the merging procedure with overlapped
patches.

(A) An example of narrowed patch
(B) An example of patch narrowing

method performance: left - before, right -
after
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5.6.3 Training and evaluation

U-Net model was implemented using Python library Keras (Chollet, 2015). For train-
ing and validation, each image was cropped into 2000 patches via random extraction
method. The following hyperparameters for training have been configured:

• Batch size - 512

• Maximum number of epochs - 500

• Optimizer Adam (Kingma and Ba, 2014) with starting learning rate 0.001 and
binary cross-entropy loss (Janocha and Czarnecki, 2017)

• Callbacks:

– Earlystopping - stops training if validation loss hasn’t been improving for
40 epochs

– ReduceLROnPlateau - reduce the learning rate for 0.5 factor if validation
loss hasn’t been changed for 10 epochs. The limit of minimum learning
rate has been configured for 0.000001 value

An evaluation has been performed on 21 test images by calculating accuracy,
recall, precision, f1 score, and IoU metrics
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Chapter 6

Experimental results

6.1 Intermediate experiments

This section describes intermediate experiments and results of segmentation proce-
dure considering patch sizes, segmentation areas, and patch extraction methods. All
experiments evaluation has been performed on 21 images by calculating accuracy,
recall, precision, f1 score and IoU metrics.

Patch size
At first, experiments for defining the best patch size has been executed. The U-Net
models have been trained on three different sizes of patches (32x23, 64x64, 128x128
pixels). The best results have been achieved with patches of size 64 by 64 pixels.

Segmentation area
Two U-Net models with similar architectures have been trained on different datasets:
coverslip data and bbox data (Figure 5.5). A model trained on the coverslip area
performed worse. The first disadvantage appears in the prediction of a big amount
of false positive segmentations since there is a lot of dirt/detritus presented on the
slide. The second disadvantage relates to inaccurate segmentation of tissue borders.

Data consisted of bounding boxes area automatically avoids most of the detritus
parts, since these particles are concentrated on the edges of the coverslip and the
tissue is placed in the center. It leads to a lower amount of patches with detritus and
bigger amount of patches with tissue body in data set, and encourage the model to
better predict boundaries of tissue body. Thus the model trained on bounding boxes
showed better segmentation results.

Test data for both models has been cropped into 64 by 64 pixels patches with
“grid with overlap” extraction method. Predicted probability patches have been
merged in the same way and then coverslips and bounding boxes areas have been
placed to the right position on the final mask. Comparison of both models per-
formance is described in Table 6.1, and some visual results are presented in Figure
6.1. (This experiment has been performed with assumption of knowing positions of
bounding box areas)

Data set type Accuracy Recall Precision F1 score IoU

Coverslip area 0.9877 0.8549 0.9029 0.8594 0.7776

Tissue bbox area 0.9952 0.9667 0.9345 0.9488 0.9050

TABLE 6.1: Experiments of segmentation coverslip and tissue bound-
ing boxes areas. The best results are highlighted
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FIGURE 6.1: Visual examples of tissue segmentation. From left to
right: whole-slide image, ground truth tissue mask, mask predicted
by a model trained on coverslip area, mask predicted by a model

trained on tissue bounding box area

Patch extraction
Five different techniques of patch extraction has been tested. Random extraction,
grid-like extraction and grid-like extraction with three diferent overlap sizes - 8, 16
and 32 pixels. The best result has been acieved with grid-like extraction method with
16 pixels overlap for recall value and 32 pixels overlap for others metrcis. Ealuation
metrics for this experiments is described in Table 6.2 and visual example is presented
on the Figure 6.2.

Patch narrowing
For patch narrowing experiment, patches were cropped in size for 8 pixels from each
side while merging. Narrowing result has been compared to the regular grid with
overlap merging method. Small improvements could be observed in Table 6.3.
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Patch extraction
way

Accuracy Recall Precision F1 score IoU

Random 0.9071 0.8257 0.9884 0.8927 0.8166

Grid-like 0.9443 0.9595 0.9370 0.9466 0.9012

Grid-like with
overlap (8px)

0.9424 0.9652 0.9296 0.9454 0.8990

Grid-like with
overlap (16px)

0.9460 0.9667 0.9345 0.9488 0.9050

Grid-like with
overlap (32px)

0.9473 0.9643 0.9389 0.9496 0.9062

TABLE 6.2: Patch extraction methods experiments. The best results
are highlighted

FIGURE 6.2: Visual example of model performance with different
patch extraction techniques on the bounding box area. From left to
right: tissue on the slide, ground truth mask, model performance
with random extraction, grid-like extraction and grid-like extraction
with 8, 16 and 32 pixels overlap. First row - binary masks, second -

probability maps

Patch extraction
and merging way

Accuracy Recall Precision F1 score IoU

Grid-like with
overlap (16 px)

0.946 0.9667 0.9345 0.9488 0.9050

Grid-like with
overlap (16 px) +
Narrowing (8 px)

0.946 0.9666 0.9351 0.949 0.9054

TABLE 6.3: Comparsion of model performance with and without
patch narrowing method. The best results are highlighted
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6.2 Proposed pipeline combinations

Based on all separate experiment for each procedure (data set creation, tissue bound-
ing box detection and segmentation) the following two pipelines variations has been
created:

• Pipeline 1: Coverslip extraction from WSI + extracted coverslip segmentation

• Pipeline 2: Coverslip extraction from WSI+ tissue bounding box detection on
extracted coverslip + detected tissue bounding box segmentation (If the Faster
R-CNN does not predict any tissue bounding box, then the whole coverslip
area is segmented)

Two proposed pipelines have been compared on 21 test images. Pipeline with
tissue bounding box detection module showed more precise results. Table 6.4 rep-
resents evaluation results for both methods. All steps of the more accurate pipeline
with object detection part are presented in Figure 6.3.

Pipelines Accuracy Recall Precision F1 score IoU

Pipeline 1 0.986 0.8436 0.92 0.86 0.78

Pipeline 2 0.985 0.949 0.916 0.929 0.874

TABLE 6.4: Two variation of proposed pipeline performance. The
best results are highlighted

FIGURE 6.3: An overview of final proposed pipeline
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6.3 Comparison with Akoya Biosciences approach

The final proposed pipeline has been compared to two variations of the current ad-
vanced algorithm (variation with overlap value = 3 and overlap value > 0 (1, 2, 3)).
Table 6.5 represents the evaluation results for three methods on test images. Relying
on Accuracy, F1 score and IoU metrics we beat current Akoya Biosciences algorithm
on 21 test images (Figure 6.4).

Approaches Accuracy Recall Precision F1 score IoU

Proposed pipeline 0.985 0.949 0.916 0.929 0.874

Current algorithm
(overlap value > 0)

0.958 0.961 0.806 0.864 0.785

Current algorithm
(overlap value = 3)

0.972 0.887 0.927 0.897 0.832

TABLE 6.5: Performance comparison on test set of proposed pipeline
and Akoya Biosciences algorithm. The best results are highlighted

FIGURE 6.4: Bar charts with error bars based on standart devia-
tion. F1 score and intersection over union comparison among two
variation of current Akoya Biosciences algorithm and proposed deep

learning pipeline

Figure 6.5 presents the visual results. Subfigures a) and b) present the cases
where proposed pipeline outperforms existing algorithm. Subfigure c) presents the
case, where object detector has mistakenly predicted two bounding boxes: true tis-
sue and detritus spot. The slide, where Faster R-CNN hasn’t detected any bounding
box and the whole coverslip has been segmented, could be observed on subfigure
d). The visual predictions of the whole test set could be found in the appendix A.
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(A) Example 1

(B) Example 2

(C) Example 3

(D) Example 4

FIGURE 6.5: Visual examples of tissue segmentation. From left to
right: WSI, ground truth tissue mask, mask generated by current
Akoya Biosciences algorithm with overlap value = 3 , overlap value
> 0, and mask predicted by proposed deep learning pipeline. In pre-
dicted masks visualization green color states for true positive, red for

false negative and white for false positive predictions
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Chapter 7

Conclusions

7.1 Contribution

We described the end-to-end pipeline for tissue segmentation from whole-slide im-
ages based on the combination of object detection and segmentation deep learning
models. Proposed pipeline reaches the performance of Akoya Biosciences approach
and seems promising due to its independence (almost complete absence of any man-
ual tuning) and capacity to improve with more data.

7.2 Future work

The following improvements could be performed:

1. Adding more data for training the models, which might result in better per-
formance. It would be very useful to include more complicated examples with
multiple piece of tissue on a slide.

2. Searching for more appropriate model architectures. Faster R-CNN has been
trained from scratch with default hyperparameters, thus tuning the model
could positively affect the results. Other state-of-the-art models could be trained
such as SegNet (Badrinarayanan, Kendall, and Cipolla, 2015) and Mask R-
CNN (He et al., 2017)

3. One more way for improvements could be done in capturing more accurately
the tissue boundaries by using recently published Enhancing Segmentation
Precision with Semantic Edge Aware Loss for segmentation model (Chen, Da-
pogny, and Cord, 2019).
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Appendix A

Visual results on whole test set

Visual examples of tissue segmentation in all test set images. From left to right:
whole-slide image, ground truth tissue mask, mask generated by current state-of-
the-art algorithm with overlap value = 3 , overlap value > 0, and mask predicted by
proposed deep learning pipeline. In predicted masks visualization green color states
for true positive, red for false negative and white for false positive predictions
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