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Abstract

In this study, we present a quantitative analysis of the Lviv and Bristol public trans-
portation networks (PTN) viewed as complex systems. We integrate methods in
statistical physics to investigate the correlation between PTN topological features
and their operational stability.

Initially, to present a PTN in the form of a complex network (i.e. a graph con-
sisting of vertices-nodes and edges-links), we perform a coarse-graining procedure.
We merge stations considered to be within a reasonable pedestrian walking distance
(e.g. stops across the street) by implementing a DBSCAN clustering algorithm to the
transport dataset.

Subsequently, we analyse the topological features of the resulting complex net-
works in various network representations reflecting PTN operational features. In
the second part of our analysis we assess the vulnerability of PTNs by removing
network constituents according to different protocols (attack scenarios). We observe
correlations between network topological features and its stability with respect to
random failures and targeted attacks.
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Chapter 1

Introduction

An efficient public transport network (PTN) is an essential factor in city planning.
The priority of public transport does not only concern itself with traffic congestion
but stretches into the realms of even urban economics affecting the ratio between
the rich and poor within a city. For example, in London, the priority of public trans-
portation in urban planning and the inconvenience of using personal cars makes
accommodation in the city attractive for the rich (Glaeser, Kahn, and Rappaport,
2008). In contrast, in many cities, e.g., Detroit, the inefficiency of the public trans-
port together with authomobilization policy was one of the contributing factors that
led to an increase in poverty in the city (Freeman, 2011). A sound transport system
must be able to provide efficient movement of passengers and quickly recover in
case of unpredictable, disruptive events. Therefore, the efficiency and resiliency of
public transport systems are an essential topic for analysis.

In many works considering public transport analysis PTNs are analyzed using
complex network science. With a recently growing interest in the features of natu-
ral and man-made systems, complex network science has acquired a broad range of
applications in different fields. The examples include not only transportation net-
works, but also social collaboration networks (Wasserman and Faust, 1994, Gra-
novetter, 1977), power grid networks (Amaral et al., 2000, Crucitti, Latora, and
Marchiori, 2004, Albert, Albert, and Nakarado, 2004), Internet (Dorogovtsev and
Mendes, 2013, Pastor-Satorras and Vespignani, 2007), ecological networks (Sole and
Montoya, 2001) etc.

The growth of interest in public transport systems started at the beginning of the
21st century. Figure 1.1 (de Regt et al., 2018) indicates locations where scientists have
analyzed public transport systems using a complex network science approach.

A transport system can be analyzed considering different features. Firstly, the
transport system is a network. Thus, one can explore the network topology features.
Secondly, the routes are embedded in 2D space. Therefore, one can consider their
spatial coordinates and Euclidean distances in the analysis. Finally, a transport sys-
tem contains the processes - transport and passenger movement over time. Thus,
one can study the system in terms of its dynamic changes.

The direction of this study is the exploration of the system topology. In this work,
we do not consider the spatial coordinates of the routes as well as dynamic processes,
e.g. load distributions over time. To this end, we have chosen for the analysis the
PTNs of Lviv and Bristol. The motivation behind such a choice is that Lviv, to the
best of our knowledge, has never been analyzed using a complex network approach.
Bristol was chosen because of the similarity of its size to Lviv.

The rest of this paper is organized as follows: in chapter 2 we describe the pre-
vious explorations related to our topic; in chapter 3 the structure of the datasets,
data processing flow and network simplification process are explained; chapter 4



2 Chapter 1. Introduction

FIGURE 1.1: Locations where city PTN have been analyzed within
the complex network approach (de Regt et al., 2018)

describes main local and global indicators of Lviv and Bristol PTNs; chapter 5 cov-
ers the analysis of the PTNs resilience to random and targeted failures of the nodes;
and finally, in chapter 6 the concluding remarks are given. Before proceeding to
the transport networks analysis, we would like to define the most important terms
related to our topic.

1.1 Main definitions

Graph G〈V, E〉 is a mathematical object represented by a set of nodes V = {vi|i =
1, 2, 3, ...N} and a set of edges E = {ei j|vi, vj ∈ V}. Each edge connects a pair of
nodes. If an edge connects two nodes, these nodes are called adjacent, or neighbors.
A graph is called complete if all of the nodes are pairwise adjacent. A graph is called
connected if a path exists between any pair of nodes. Otherwise, it is disconnected.
A random graph is a collection of nodes and edges that connect pairs of nodes at
random (Newman, Strogatz, and Watts, 2001). In this work by the term "random
graph" we refer to a random graph generated by Erdös-Rényi model G(N, M, p).
In this model a fixed set of nodes N and number of edges M are predefined. The
procedure of graph generation is as following:

1. Select two nodes at random and connect them with an edge.

2. Iterate through the previous step until a total of M edges are generated (de
Regt, 2018).

Giant Connected Component GCC is a connected subnetwork which in the limit of
an infinite network contains a finite fraction of the network (Berche et al., 2009). In
the particular case of finite networks, we indicate the GCC as the largest connected
component of the network.
Node degree ki of the node vi is a number of edges linked to this node. kmax stands
for the maximal node degree. 〈k〉 stands for the average node degree and is defined
as

〈k〉 = 2M
N

, (1.1)

where M and N are the number of edges and the number of nodes of the network,
respectively.
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Shortest path lij between the nodes vi and vj is the path with the smallest number of
the edges between them. The average shortest path length 〈l〉 of the whole network
is defined as

〈l〉 =
∑i 6=j li j

N(N − 1)
, (1.2)

where li j is the shortest path length between nodes vi and vj and N is the number of
the nodes in the graph.
Diameter D is the maximal shortest path length between any two nodes in the
graph.
Path length efficiency lη is a relative measure that compares the mean shortest path
of a particular graph with the mean shortest path of a random graph of the same
size. It is defined as

lη =
〈l〉
〈lrand〉

, (1.3)

where 〈l〉 and 〈lrand〉 are the mean shortest paths of a graph and of a random graph
of the same size, correspondingly.

FIGURE 1.2: Clustering coefficient of the node depending on the
number of links between its neighbors

Clustering coefficient Ci of the node vi provides information on how the neighbours
of this node are joined (von Ferber et al., 2009b). The clustering coefficient value is
defined as

Ci =
2yi

ki(ki − 1)
, (1.4)

where ki is the degree of node i and yi is the number of links between its neighbors
(von Ferber et al., 2007). Mean clustering coefficient C is defined as

C =
1
N ∑

i
Ci, (1.5)

where N is the number of nodes in the network. The clustering coefficient of random
graph is defined as

Crand =
〈k〉
N

, (1.6)

where 〈k〉 is the mean node degree.
Betweenness centrality Cβ(i) of a node vi is a measure that estimates the impor-

tance of a node in the network. It depends on the number of shortest paths which
go through a given node. Betweenness centrality is defined as

Cβ(i) = ∑
x 6=y

σxy(vi)

σxy
, (1.7)
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where σxy(vi) is the number of shortest paths between the nodes x and y that go
through the node vi and σxy is the number of all shortest paths between the nodes x
and y.
Assortativity r indicates whether the nodes of the same degree tend to be connected.
For any edge i, let Xi and Yi be the node degrees of the two nodes connected by this
edge. Then assortativity is defined as

r =
M−1 ∑i XiYi − (M−1 ∑i

1
2 (Xi + Yi))

2

M−1 ∑i
1
2 (X2

i + Y2
i )− (M−1 ∑i

1
2 (Xi + Yi))2

, (1.8)

where M is the number of links in the network (von Ferber et al., 2009b). If r > 0,
the nodes of the similar degree are likely connected and the network is called assor-
tative. Otherwise, if r < 0, the network is called dissortative. It means that nodes
with a high degree tend to link to nodes with a low degree. If r ≈ 0, no tendencies
are observed.
Molloy-Reed criterion is the criterion that can be used to determine the stability
of large scale transportation networks. The stability of a network depends on the
presence of a GCC. Molloy-Reed criterion states that the GCC is present in any un-
correlated network if

κ =
〈k2〉
〈k〉 ≥ 2, (1.9)

where 〈k〉 stands for mean node degree and 〈k2〉 is the mean square node degree
(Molloy and Reed, 1995).
Scale-free network is a network whose node degree distribution obeys a power law.
Whereby the name "Scale-free" was first coined by Barabási and Albert, 1999 to de-
scribe network exhibiting this property.
Small-world network is a network in which most of the nodes can be reached from
any other node with a small number of steps whilst still being highly clustered
(Watts and Strogatz, 1998). The explorations of transport networks have mainly con-
centrated on the question of whether these systems possess the features of a small-
world model.

1.2 Transport graph representations

With the development of transport network studies, various types of topology rep-
resentations have been developed. One can present a transport network as an undi-
rected graph where the nodes are the stations and links between are undirected
edges. Such a type of representation is called L-space. From another perspective,
one can display the stations as nodes and link any two stations if they serve the
same route. Such a type of representation is called P-space. The general ideas of
L- and P-space first appeared in the work of Sen et al., 2003. One can also present
the network routes as the nodes and link any two routes if they have at least one
common stop. Such representation type is called C-space (von Ferber et al., 2009a).
In another representation, B-space (von Ferber et al., 2007, Chang et al., 2007, Zhen-
Tao et al., 2008), a public transport network is represented as a bipartite graph with
the two types of nodes: the stations and the routes. If a station belongs to the route,
the route and the station are linked. One can also use L′- and P′-space. The only
difference from the classical representations ( L- and P-space) is that in the primed
versions multiple links between the nodes can exist (von Ferber et al., 2007). The
examples of the spaces mentioned above are presented in Figure 1.3.
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FIGURE 1.3: A piece of Lviv PTN and its representations in different
graph "spaces"



6

Chapter 2

Related works

In recent years, many scientists have used complex network theory in studies of
transport systems. The systems studied include not only urban public transport, but
also national railways, airlines, etc. It appeared that in spite of the differences in size,
transport networks possess certain similar features, for example, scaling behavior.

One of the first studies of public transport topology using complex network the-
ory was presented by Latora and Marchiori in the article "Is the Boston subway a
small-world network?" (Latora and Marchiori, 2002). The authors represented the
subway system with N stations and M tunnels as a graph with N nodes and M
edges. In the analysis, the authors considered such characteristics as the mean short-
est path and the clustering coefficient. Later Latora and Marchiori characterized the
network in terms of how efficiently it propagated the information. They assumed
that the efficiency in the communication between two nodes is inversely propor-
tional to the shortest path length between them. They also distinguished between
global efficiency - "the efficiency of the whole network" and local efficiency - "the av-
erage efficiency of the subgraph of a generic node i". Besides efficiency, the authors
defined the measure of the cost of a network - "the price to pay for the number and
length (weight) of edges". The cost is a relative measure, and Cost = 1 if the graph
is complete. In the case of an unweighted graph Cost = 2M

N(N−1) , where M is the
number of edges and N is the number of nodes.

Another exploration of network efficiency was considered by Gastner and New-
man (Gastner and Newman, 2004). In their work, the authors followed the idea that
in a "good" network the lengths of the paths between every two vertices should be
relatively short and the sum of lengths of the network edges should be low. The
efficiency of transport networks was also analyzed by Barthélemy and Flammini
(Barthélemy and Flammini, 2006). They presented a study where they described the
optimality of traffic networks.

Sen et al., 2003 analyzed the Indian railway system. As it was stated before, in
this work, the authors first presented a general idea of L-space. They investigated
the properties of the network to see if it possesses some general scaling behavior.
The analyzed topological features included degree distribution, clustering coeffi-
cient, and assortativity. The authors found that the Indian Railway Network has
a disassortative structure. They also concluded that this network possesses small-
world properties.

The explorations of airline networks were presented in the articles "Modeling
the world-wide airport network" (Guimera and Amaral, 2004) and "The worldwide
air transportation network: Anomalous centrality, community structure, and cities’
global roles" (Guimera et al., 2005). Here, the authors concluded that the world-wide
airport network also shares small-world properties. They analyzed the correlation
between node degree and betweenness centrality. Surprisingly, the explorations
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showed that in the airport networks the nodes with the highest degree are not al-
ways the nodes with the highest betweenness centrality. It meant that the cities with
the most significant number of connections are not necessarily those that belong to
the largest number of shortest paths. The authors concluded that the nodes with
higher betweenness centrality tend to be more important for the connectivity of the
network than those with a higher degree. Explorations of the airport networks are
also presented in the works of Li et al., 2006 and Guida and Maria, 2007.

The first exploration of the overall city transport system was presented by von
Ferber at al. in the article “Scaling in public transport networks” (von Ferber, Holo-
vatch, and Palchykov, 2005). In this study, they analyzed the public transport system
(trams, buses, and subways) of three big cities: Düsseldorf, Berlin, and Paris. The au-
thors found the node degree distribution of the networks. It appeared that the node
degree distribution obeys Zipf’s (power) law. Therefore, the authors concluded that
the explored transport networks were scale-free.

In contrast, the assortativity values in P-space were different: negative for small
towns and positive for big cities. As the authors explained, small towns usually have
a star transport network structure and only a few doubled routes, so there exist a lot
of connections between the nodes of high and low degree. Additionally, the authors
derived the plots of the dependence of graph nodes on the size and the population
of the cities. To end with, the authors concluded that despite the difference in the
sizes, considered networks share some common features. These features include
the behavior of degree and path length distributions. Another common property is
logarithmic dependence of distances on node degrees. All the explored networks
appeared to be hierarchically organized and exhibit small-world behavior.

von Ferber et al., 2007 analyzed the public transport systems of 14 major cities
of the world in P-, L- and L′-space. The exploration of P- and L-space included
such characteristics as mean and maximal shortest path lengths, mean clustering
coefficient, and the percolation value. One of the features found in L′-space is that
several routes can proceed in parallel on the same road for a sequence of stations. To
describe such behavior, the researchers presented a new characteristic - the harness
distribution P(r, s). The harness distribution shows the number of sequences of s
consecutive stations that are serviced by r parallel routes. The harness distribution
for most of the studied cities appeared to be scale-free. Knowing that PTNs possess
scale-free properties, the authors proposed a growth model for these networks. They
represented a grid of streets by a quadratic 2D lattice and modeled the routes as self-
avoiding walks on a lattice. Such an approach aims to find a balance between the
area coverage and traveling time.

von Ferber et al., 2009b analyzed the characteristics of PTNs of 14 cities in L-, P-
and C-space. The characteristics included the node degree distribution in L-space,
cumulative node degree distribution in P- and C-space and assortativity. The re-
sults showed that for about half of the cities node degree distribution in L-space
possessed an exponential tail while another part of the cities possessed power law
decay. In P-space power-law behavior, in general, is not observed. In C-space node
degree for the explored cities decays exponentially or even faster. Assortativity r
of nodes was analyzed considering their nearest neighbors (r(1)) and second near-
est neighbors (r(2)). The authors concluded that there was no linkage between the
network size and degree assortativity in L-space. In P-space most of the PTNs were
characterized by minimal negative or positive assortativity values. In C-space nearly
all the explored PTNs demonstrated clear assortative mixing (r = 0.1÷ 0.5). r(2) for
the nodes with high values of r(1), in general, appeared to be even stronger. The
authors further analyzed the betweenness-degree correlation of Paris in L-, P-, C-
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and B-space. The correlation in L- and C-space tends to obey a power law. The cor-
relations in B- and P-space show different behavior depending on the node degree
values.

One of the recent analyses of transport networks topology was presented in the
article "Public transportation in Great Britain viewed as a complex network" (de Regt
et al., 2018). To gain information about the robustness and efficiency of the networks,
the authors considered topological and spatial features of the PTNs of Greater Lon-
don, Greater Manchester, West Midlands, and Bristol, as well as the national rail
and coach networks of Great Britain. For the analysis, the L-space network rep-
resentation was chosen. The researchers used the Molloy-Reed criterion to define
network stability. In the research, the authors also studied the fractals properties of
these systems. The authors completed the study by analyzing the network load and
dynamics features. Interestingly, the exploration of network load during a sample
day showed that the load distributions of all the analyzed networks follow a similar
behavior pattern (Figure 2.1).

FIGURE 2.1: Distribution of the load in some of the UK transport sys-
tems as a function of time over 24 hours (de Regt et al., 2018). The

inset shows the London load for the entire week

Another important direction of complex network topology studies is an analysis
of the network vulnerability. The vulnerability studies considered different real-
world networks: Internet (Cohen et al., 2000, Albert, Jeong, and Barabási, 2000),
protein (Jeong et al., 2001), social networks (Yi et al., 2015) etc. Many vulnerability
explorations considered the influence of network topology on links and nodes fail-
ures. It appeared that complex networks are highly resilient to random failures but
vulnerable to targeted removals of the most important nodes or links.

Recently many studies considering public transport network vulnerability have
been conducted. The explorations of transport vulnerability include the works of
Berche et al. (Berche et al., 2009, Berche et al., 2010), Rodríguez-Núñez and García-
Palomares (Rodríguez-Núñez and García-Palomares, 2014), Cats and Jenelius (Jenelius
and Cats, 2015) etc.

Berche et al. considered the impact to network topology through simulated at-
tacks in L- and P-space (Berche et al., 2009. The study was based on two types of
attack scenarios: random failures and targeted attacks. In targeted attacks, the nodes
were removed according to the node lists sorted in order of decreasing node impor-
tance. For different scenarios such importance criteria were considered: degree k,
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closeness CC , graph CG, stress CS, and betweenness CB centralities, clustering co-
efficient C, and next nearest neighbors number z2. After the attack, the properties
of the present nodes in the network can change. Therefore, the authors conducted
the targeted attacks simulations in two modes: simulations using initial sorted list
and simulations with list recalculation after each step. At each step of the simula-
tion, 1% of nodes were removed from the network. After that, the authors analyzed
the network state. During the simulations the changes of three characteristics were
observed: the normalized size of the GCC (S = NGCC/N, where N is the initial
number of nodes in the network and NGCC is the number of nodes of the largest con-
nected component), the average shortest path 〈l〉 and the average inverse shortest
path 〈l−1〉. For the sake of uniqueness, the effectiveness of the attacks was mea-
sured with the value of S. To determine the percent of the removed nodes c at which
network stops to operate the characteristic concentration of removed nodes cs was
defined. cs is the percent of nodes at which S decreases to one half of its initial value:

S(cs) =
1
2

S(c = 0) (2.1)

As the simulations showed, the random attacks are the least harmful to the PTNs.
The most effective scenarios are usually removals by stress and betweenness central-
ities, node degree and next nearest neighbors number (Figure 2.2). Also, differences
between "initial" and "recalculated" scenarios were observed. These differences are
significant for centrality-based attack strategies but smaller for scenarios based on
local characteristics (the node degree, the number of second nearest neighbors, etc.).

FIGURE 2.2: Typical attack simulation results on example of Paris
PTN. S - normalized GCC size, c - fraction of removed nodes. The
lists of nodes for removal were prepared according to degree k, close-
ness centrality CC, graph centrality CG, stress centrality CS, between-
ness centrality CB, - clustering coefficient C, next nearest neighbors
number z2. Subscript i denotes vertices removal from the initial lists.
RV and RN indicate removal of random vertex and removal of its

randomly chosen neighbor

The authors also observed the correlation in L-space between resilience and the
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node degree distribution exponent γ. It appeared that in a random attack and node-
degree recalculated scenario the PTNs with the smaller value of γ tend to be more
resilient.

von Ferber, Holovatch, and Holovatch, 2009 analyzed the resilience of 14 PTNs
to the attack in L-space. The random attack scenarios included random vertex re-
moval and random neighbor removal (removal of a randomly chosen neighbor of
random vertex). In directed attack scenarios nodes were removed according to the
lists sorted by decreasing node degrees k, centralities (closeness centrality, graph
centrality, stress centrality, betweenness centrality), the number of second nearest
neighbors and increasing clustering coefficient. The directed attacks were imple-
mented in two modes: removal according to the original sorted list and removal
with list recalculation after each step. The network degradation under the attacks
was judged by the changes in the normalized GCC value S, the inverse shortest
path 〈l−1〉, maximal shortest path lmax and the mean shortest path 〈l〉. In simula-
tions these four attack scenarios appeared to be the most harmful: attacks by degree
(with recalculation), attack by the largest number of second neighbors, attacks by be-
tweenness centrality and attacks by stress centrality. The analysis showed that lmax
as function of the removed node concentration displays a sharp maximum (Figure
2.3). This maximum can indicate the breakup of the network. In contrast, behavior of
S and 〈l−1〉 is smooth. Therefore, lmax appeared to be a better criterion to indicate the
breakup of a network. Another direction in vulnerability studies considers network

FIGURE 2.3: 10 instances of Paris PTN recalculated highest degree
attack scenario (von Ferber, Holovatch, and Holovatch, 2009). Verti-
cal axis: a) the normalized GCC size S, b) the maximal shortest path
length lmax, c) the mean shortest path length 〈l〉. Horizontal axis: per-

cent of removed nodes.

capacity limits. In this approach, load changes during the simulations are observed.
One of the works in this direction was presented by Cats and Jenelius (Cats and
Jenelius, 2018). Here, the authors analyzed the partial capacity reduction in service.
They defined capacity as the number of transport units that traverse a particular part
of the network under normal conditions. The authors simulated the network disrup-
tions for the morning peak period. Two types of events were considered: planned
line-level and unplanned link-level outages. The latter disruptions occurred at the
most central links based on the passenger load in the network. The authors assessed
the network performance by the changes in passenger waiting time, walking time,
in-vehicle time and the number of transfers.

Zhang, Fu, and Li, 2016 and Zhang et al., 2018 presented studies of cascading
node failures. In the research, they modeled a weighted PTN in a modified L-space,
which describes passenger flow. The edge weights depend on the bus route density
and departure frequency of the two stations adjacent to the edge. They considered
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the network capacity changes during the attack. Due to the attack, the load distribu-
tion from the removed node redistributed to its neighbors. Sometimes it exceeded
the capacity limit of these neighbors and caused their failure. Therefore, after the
removal of a node from the network, the consequently cascading failure of other
nodes occured.

Recently Candelieri et al., 2019 presented a vulnerability study of the PTNs of
two Italian cities. The PTN networks were modeled as directed multi-graphs. Firstly,
the authors simulated targeted attacks at the nodes with the highest degree and be-
tweenness centrality. Secondly, they conducted cascading failure simulations for the
network. The cascading failures started from the node with the highest betweenness
centrality. In the simulations, authors used the strategy of maintaining the routes
passing through an unavailable station. Thus, a real transport situation was mod-
eled. In such a situation it is possible to bypass the removed station and move to
other stations on the route.
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Chapter 3

Data processing

The dataset for Bristol urban and suburban public transport is taken from National
Transport Data Repository (National Transport Data Repository). The original dataset
is presented in ATCO-CIF timetable format. The data represent the logs of all jour-
neys with their stops during one observed week in 2011. For each stop, the geospa-
tial coordinates, name, and departure and arrival times are specified. Figure 3.1
shows an example of ATCO-CIF structure.

FIGURE 3.1: One journey snapshot in ATCO-CIF timetable file. A
line starting with QS represents route information, the last character
in the route information row defines whether the route is incoming
(I) or outcoming (O). Lines starting with QO, QI, QT define the infor-
mation about start, intermediate and terminal stations. The following
12 characters are unique station identifiers. The next 4 characters in-
dicate arrival and departure time at the station. QL and QB denote

lines with the information about station coordinatesand name.

The Lviv static dataset was taken from UA-Gis Track system. The original dataset
has GTFS (General Transit Feed Specification) format (GTFS Static Overview). The
Lviv original dataset includes files with the following information:

• agency.txt contains information about transport agencies.

• stops.txt contains information about stop IDs, names, spatial coordinates, etc.

• routes.txt contains information about route IDs, names, route vehicle types,
etc.

• trips.txt contains information about trip IDs, directions, the route IDs that they
belong to, etc.

• stop_times.txt contains information about stop IDs, trip IDs, arrival and de-
parture times, etc.

• calendar.txt indicates weekdays of transport service availability.
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• calendar_dates.txt indicates dates of transport service availability.

• feed_info.txt contains general information about the dataset.

For purposes of reproducibility, the original Lviv and Bristol datasets are presented
in public repository (Original Datasets, GitHub).

Before the analysis, we process the datasets into one universal form. Firstly, we
convert the datasets from their original formats into JSON form. To process the
Bristol dataset, we use ATCO-CIF parser (ATCO-CIF parser). Secondly, we convert
the datasets into the form of two files:

• stops.json. Contains information about stop id, label, spatial coordinates, stop
vehicle type, ids of the routes that the stop serves, ids of adjacent stops (neigh-
boring stops on the routes).

• journeys.json. Contains information about route id, name, stops, direction (in-
coming or outcoming), and route vehicle type.

In the Bristol dataset, there are logs of the city as well as outskirt routes. There-
fore, to compare only the city networks, we consider the city boundaries 1 (Figure
A.1) and filter the datasets according to these boundaries. The information about the
explored cities is indicated in Table 3.1.

City Population Area N R Vehicle types
Lviv 721 301 182km2 768 77 BET
Bristol 535 907 110km2 1474 143 BF

TABLE 3.1: General information about the cities. N - considered stops
number, R - considered routes number, B - bus, E - electric trolley, T -

tram, F - ferry.

A lot of the stops in the city networks were close to each other (e.g., stops across
the street). To traverse between two close stops a passenger often needs less than
a minute. In that case, there is no need to consider such stops separately, and one
can simplify the network. In the previous exploration of Bristol PTN de Regt et
al., 2018, used reducing of the routes of the network. In most of the Bristol routes,
outgoing routes approximately duplicate incoming. Therefore, the authors rejected
the outcoming routes. In Lviv, more than 50% of the routes have differences in in-
coming and outcoming routes. Thus, we cannot use such an approach. Gallotti
and Barthelemy, 2015 connected different layers of the multilayer network by ag-
gregating the stops associated with different modes of public transport into a single
network of nodes with the help of a coarse-graining procedure. In our work, we
also apply coarse-graining to merge the stops that fall within a small distance of
each other. For this purpose, we use a density-based clustering algorithm DBSCAN
(Ester et al., 1996). DBSCAN algorithm considers clustering radius R and a mini-
mal number of points MinPts for creating the clusters of the points that are tightly
packed together. The algorithm divides all points, in a dataset, into a few categories:

• Core points. A point p is a core point if at least MinPts points are within radius
R from it.

1To filter Bristol dataset, we used Bristol county boundaries which consist of Bristol city area and a
part of the river. However, it does not affect the results of the PTN data filtering.
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• Directly density reachable points. A point p is directly reachable if it is within
radius R from a core point c.

• Density reachable points. A point p is reachable from a core point q if there
exists a chain of points p1, p2, ...p, p1 = q and pi+1 is directly density-reachable
from pi

• Noise points. A point is a noise point if it does not belong to any cluster.

Core points together with their reachable points form clusters.
To apply the algorithm to the transport datasets, one should choose the reason-

able R. In the selection of R such factors are important:

• R should be at a reasonable pedestrian walking distance

• if R is too small no stops in the network will be clustered (Figure 3.2)

• if R is too large all stops in the network will be grouped in one cluster (Figure
3.2)

FIGURE 3.2: Dependence of the stops number N on the clustering
radius R (in meters)

We assume that a reasonable pedestrian walking distance should not exceed 100m.
One spends around one minute to pass such a distance on foot. Figure 3.3 indicates
cumulative distributions of maximal distances in the clusters for Lviv and Bristol
PTN. With R = 40m the maximal cluster distances for both cities are high, but do
not exceed 100m. Therefore, R = 40m is considered as an optimal clustering radius
for these particular datasets. The heatmaps of the clustered Lviv and Bristol PTNs
are shown on the Figure A.2.

To simplify the network, we also ignore the route directions. Thus, we can con-
struct an undirected graph from our transport network. If a few edges are present
between two vertices, we leave only one of them. Therefore, we can build a simple
graph. Figure 3.4 shows the whole process of network simplification.
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(A) R=30m (B) R=40m

(C) R=50m (D) R=60m

FIGURE 3.3: Cumulative distribution of maximal distances (in me-
ters) between the stops in each cluster. R is the clustering radius, d is

the maximal distance in the
cluster.

FIGURE 3.4: Network simplification process. Firstly, we do coarse-
graining procedure for the stops that lay in radius R=40m from each
other. Secondly, we reject directions. Thirdly, we reject parallel edges

in the graph.
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Chapter 4

Main network indicators of several
PTNs

In this study, we use L-, P- and C-space topology to represent Lviv and Bristol
PTNs as a complex network. In such way we can make conclusions about networks
from different aspects: analyze connections between the stops (L- and P-space) and
connections between the routes (C-space). To explore the topology of a network we
define its local and global characteristics (Eqs. 1.1 - 1.8).

4.1 Local network characteristics

Local network characteristics are determined by the immediate neighborhood of the
nodes (von Ferber et al., 2009b). The local characteristics include the node connec-
tivity, the number of neighbors of the nodes and the tendencies in building the con-
nections between the nodes. The numerical values of local characteristics for PTNs
in L-, P- and C-space are listed in Table 4.1

City 〈kL〉 kmaxL CL CrandL rL 〈kP〉 kmaxP CP CrandP rP 〈kC〉 kmaxC CC CrandC rC

Lviv 2.558 10 0.047 0.004 -0.03 90.605 411 0.637 0.152 -0.06 38.805 65 0.745 0.511 -0.05
Bristol 3.372 25 0.104 0.003 0.31 100.483 620 0.622 0.089 -0.03 34.014 85 0.623 0.24 0.06

TABLE 4.1: PTNs local characteristics in L-, P- and C-space. 〈k〉 and
kmax - mean and maximal node degrees of a PTN, C and Crand - clus-
tering coefficient of a PTN and of a random graph of the same size, r

- assortativity. The subscripts L, P, and C indicate the spaces.

4.1.1 Node degree

Node degree k is one of the characteristics that indicate the importance of the node in
the network. The nodes with high node degree are called hubs. To analyze the over-
all network we use mean node degree 〈k〉 (Eq. 1.1). The analysis of PTNs showed
that in P- and C-space mean node degrees are relatively high. In these representa-
tions the networks usually possess high connectivity. The values of 〈k〉 in L-space
are much lower: 〈k〉 = 2.558 for Lviv PTN and 〈k〉 = 3.372 for Bristol PTN. Mean
node degrees in L-space are usually close to 2. Such tendency can be explained by
the common structure of the PTNs. The number of terminal stops with one connec-
tion as well as hubs is usually small. Most of the stations are intermediate stops with
degree k = 2.

Additionally, we determine kmax, the maximal node degree in the network. Inter-
estingly, the maximal node degrees of Bristol in L-, P- and C-space are much higher
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than those of Lviv. The strongest difference occurs in L-space: kmax = 10 for Lviv
PTN and kmax = 25 for Bristol PTN. It means that the largest transport hub of Bristol
has 2.5 times more connections than the one in Lviv.

Typical real-world networks usually have slow decaying node degree distribu-
tions p(k). As von Ferber et al., 2009b state, these distributions obey power-law or
exponential behavior. Power law decay is described by

p(k) ∼ k−γ (4.1)

Exponentially decaying distributions can be defined as:

p(k) ∼ exp (−k/k̂), (4.2)

where k̂ is the scale of the order of mean node degree. Such decays are also observed
in the particular case of Lviv and Bristol. Figure 4.1 shows the node degree distribu-
tions for Bristol and Lviv PTNs in L-, P- and C-space. Nota that the continuously
decreasing curves represent cumulative distributions defined as

P(k) =
kmax

∑
c=k

p(c) (4.3)

As the plots show, in L-space and P-space in both PTNs the distributions possess
exponentially decaying tails. The distribution for Lviv PTN in C-space possesses
an exponential decay as well. The distribution of Bristol PTN in C-space (Figure
4.1d) possesses a large gradient, which could indicate the truncated power law or
exponential decay.

4.1.2 Clustering coefficient

Clustering coefficient C of a network (Eq. 1.5) defines the average connectivity
within the neighborhood of a graph node. Interestingly, the correlation between
Lviv and Bristol clustering coefficients differs in each of the spaces. The value of
C for Bristol PTN in L-space is more than twice higher than that of Lviv PTN. In
P-space the values of C are almost equal, while in C-space Lviv PTN possesses a
higher clustering coefficient.

A useful characteristic is the relation c between the clustering coefficient of a
graph and the clustering coefficient of a random graph of the same size:

c =
C

Crand
(4.4)

The values of c (Table 4.4) are derived considering the clustering coefficients pre-
sented in Table 4.1. Although the ratios for Bristol PTN representations are con-
siderably higher than those for Lviv, both PTNs possess large values of c. These
correlations can indicate the small-world structure of the PTNs.

City cL cP cC

Bristol 34.67 6.99 2.6
Lviv 11.75 4.19 1.46

TABLE 4.2: The ratio of the mean clustering coefficient of the graphs
to the clustering coefficient of the random graphs of the same size
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(A) Bristol and Lviv, L-
space. The lines show the
fits to exponential func-

tion.

(B) Bristol and Lviv, P-
space.

(C) Lviv, C-space. The line
shows the fit to exponen-

tial function.

(D) Bristol, C-space.
The line shows the fit to

power-law.

FIGURE 4.1: Cumulative node degree distributions

4.1.3 Assortativity

Assortativity r (Eq. 1.8) indicates the correlations between the node degrees of the
neighboring nodes. The observed assortativity values show that only Bristol PTN in
L-space has a clear preference for assortative mixing (r = 0.31) meaning that links
tend to connect nodes of similar degree. Lviv PTN in L-, P- and C-space and Bristol
PTN in P- and C-space possess very small negative or positive assortativity values.
Thus, in these cases, there are no clear preferences in node linkages.

4.2 Global network characteristics

Global characteristics characterize a network as a whole. They include the shortest
path length and betweenness centrality. The numerical values of global characteris-
tics for PTNs in L-, P- and C-space are listed in Table 4.3.
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City 〈lL〉 lrandL DL 〈lP〉 lrandP DP 〈lC〉 lrandC DC

Bristol 12.281 5.186 37 2.088 1.736 5 1.854 1.854 4
Lviv 14.287 5.849 40 1.966 1.624 5 1.498 1.514 3

TABLE 4.3: PTNs global characteristics. 〈l〉 and 〈lrand〉 - mean shortest
path length of a PTN and of a random graph of equal size. 〈D〉 -

diameter. The subscripts L, P, and C indicate the spaces.

4.2.1 Shortest paths

Shortest path li j measures the smallest number of edges between nodes i and j. For
the whole network we calculate mean shortest path length 〈l〉 (Eq. 1.2). Shortest
path length can be well defined only for the nodes that belong to the same connected
component (von Ferber et al., 2009b). Thus, the further calculations related to short-
est path length (mean shortest path, diameter, path length efficiency, betweenness
centrality) will be calculated for GCC.

In L-space shortest path length defines the smallest number of stops to pass from
one station to another. The shortest path lengths of Lviv and Bristol are almost sim-
ilar in each of the spaces.

Of particular interest are the shortest path values in P- and C-space. In P-space
shortest path is related to the number of transfers T between the stops. li j = 1 if stop
vi has at least one common route with stop vj. In C-space shortest path is related
to the number of changes between the routes. li j = 1 if route vi has at least one
common stop with route vj. Therefore, in P- and C-space the number of transfers
between two nodes can be described as Ti j = li j − 1. Therefore, mean number of
transfers can be defined as 〈T〉 = 〈l〉 − 1. In P-space 〈l〉 ≈ 2 for both Lviv and
Bristol PTNs. Considering this value, in both PTNs the average number of changes
between any two stops is 〈T〉 ≈ 1. In C-space 〈l〉 = 1.498 and 〈l〉 = 1.854 for Lviv
and Bristol PTN, accordingly. Therefore, the number of changes between any two
routes is 〈T〉 ≈ 0.5 in Lviv PTN and 〈T〉 ≈ 0.9 in Bristol PTN.

One can also compare two PTNs by their diameters D. The diameters of Lviv
and Bristol are approximately the same in all three spaces.

To conclude, we have estimated path length efficiency lη (Eq. 1.3). Path length
efficiency is a useful criterion that indicates the ratio of the mean shortest path of a
network to the mean shortest path of a random graph of the same size. The smaller
lη , the more efficient a network is. The results show that in terms of path lengths
Bristol PTN is more efficient than Lviv PTN in L- and P-space, but less efficient in
C-space. All the lη values are relatively small. Together with the high clustering
coefficient values, it indicates that the observed PTNs are small-world networks.

City lηL lηP lηC

Bristol 2.368 1.203 1.224
Lviv 2.443 1.21 1.131

TABLE 4.4: The ratio of the mean clustering coefficient of a graph to
the clustering coefficient of a random graph of the same size

As in von Ferber et al., 2009b, the shortest path length distributions Π(l) of the
explored cities in L- (Figure 4.2a), P- (Figure 4.2b) and C-space (Figure 4.2c) can be
described by an asymmetric unimodal distribution:

Π(l) = Al exp(−Bl2 + Cl), (4.5)
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where A, B, and C are parameters.

(A) L-space

(B) P-space

(C) C-space

FIGURE 4.2: Shortest path lengths distributions. Solid lines represent
the fits to Equation (4.5).
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Chapter 5

Analysis of PTNs resilience

To be stable, a network must maintain its overall connectivity: there should exist a
path between any two nodes. Generally, a network is considered functional, if it has
a significantly large component that remains connected (Ferber et al., 2012).

Unpredictable events in some parts of a network can influence its operational
properties and consequently harm connectivity. In critical cases, they can cause the
overall network collapse. Such events include random failures in the network and
targeted attacks. Random failures might be caused by car accidents, weather condi-
tions, substantial traffic jams, etc. Targeted attacks include terrorist acts, strikes, etc.
Targeted attacks usually occur at the most important parts of the network.

In our work we analyze resilience of the network in L-, P- and C-spaces. One
of the measures of a network resilience is Molloy-Reed criterion (Eq. 1.9). It states
that a network is stable if the value κ related to mean node degree and the average
variance of node degree is κ ≥ 2. The higher κ is, the more stable the network. This
criterion is normally used to define stability of infinite uncorrelated networks under
random failures. Although in our exploration the PTNs are finite and correlated
networks, Molloy-Reed criterion can be nicely applied to determine their stability to
random failures as well. The value of κ is the most useful for network comparison in
L-space, as the networks in P- and C-space are strongly connected. Their κ values
are high by default and do not differ sharply. By Molloy-Reed criterion both Lviv
and Bristol PTNs in L-space are resilient to random failures, and the Bristol PTN
seems to be more stable (Table 5.1).

City κL κP κC

Bristol 4.493 145.456 43.104
Lviv 3.099 138.413 44.245

TABLE 5.1: Molloy-Reed criterion k for PTNs in L-, P- and C-space

For assessing the network vulnerability under different scenarios, the attack sim-
ulations are often used. In such simulations, network behavior is analyzed under
successive removal of its constituents. In our work, we consider attacks with node
removal.

Attack simulations have different interpretations in each of the spaces. In L-
space deletion of a node usually causes disconnection of the routes that pass through
it. In the real world it corresponds to the situation when the stop and the road near
it are unavailable (e.g., due to the traffic jam) and one should choose another way
to reach the destination. In P-space, if a node is removed the other nodes on the
same route are still connected. It can correspond to the situation when the transport
still uses the same road, but one of the stops was canceled (Berche et al., 2009). In
C-space removal of a node corresponds to the removal of the whole route.
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5.1 Attack simulation scenarios

The influence of the attack on the network depends on initial network characteristics
and the attack scenario. There are many scenarios of nodes removal in the simula-
tions. While in random attacks the nodes are removed at random, in targeted attacks
they are removed according to the node lists sorted by decreasing node importance.
The authors of other PTNs explorations defined the node importance in terms of
node degrees, closeness, graph, stress and betweenness centralities, increasing clus-
tering coefficient etc. (von Ferber, Holovatch, and Holovatch, 2009, Berche et al.,
2010, Berche et al., 2012). In our work we examine nodes removal considering the
three different scenarios:

• random node removal

• removal by decreasing node degree values

• removal by decreasing betweenness centrality values

Removal by degrees and removal by betweenness centrality have different mean-
ings. The former type of attack aims to remove a maximal number of edges, while
the latter aims to cut a maximal number of shortest paths (Berche et al., 2009).

On each step of a simulation, we delete 1% from the initial number of the nodes
in the network. We repeat the procedure until network destruction. To assess the
changes in the size of the network we observe the decay S(c), where c is the ratio
of the number of removed nodes to the overall number of nodes, and S (von Fer-
ber, Holovatch, and Holovatch, 2009) is the normalized giant connected component
(GCC) size. S is defined as follows

S =
NGCC

Ninit
, (5.1)

where NGCC is number of the nodes of GCC and Ninit is initial number of the nodes
in the network.

The failure of one node can cause changes in the properties of another node. The
order of the nodes in the node degrees and betweenness centrality lists can change.
Thus, for targeted attacks we consider two simulation modes:

• removal of the nodes from original sorted list

• removal of the nodes with recalculation of the sorted list after each simulation
step

5.2 Numerical results

The results of simulations (Figure 5.1) showed that Bristol and Lviv PTNs‘ behavior
under different attack scenarios is close to similar. One can see that the networks in
L-space (Figures 5.1a, 5.1b) deteriorate rapidly, while in P-space (Figures 5.1c, 5.1d)
and C-space (Figures 5.1e, 5.1f) the size S of GCC under removal of fraction c of
nodes decays slower. It can be explained by the higher connectivity of the networks
in the latter two spaces.

To numerically compare the stability of PTNs under different attack scenarios,
we have used the value of the area A under different S(c) curves:

A =
∫ 1

0
S(c)dc (5.2)
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The area A captures the network reaction over the whole attack sequence (Berche
et al., 2012). The higher is the value of A, the more robust is the network under a
particular type of attack. The choice of such parameter to monitor network robust-
ness under attack sequences was suggested by Schneider et al., 2011. The values of
A are given in Table 5.2.

Space City RA 〈ki〉 k Ci
β Cβ

L-space
Bristol 0.304 0.125 0.109 0.159 0.095
Lviv 0.234 0.087 0.075 0.159 0.059

P-space
Bristol 0.498 0.438 0.439 0.416 0.31
Lviv 0.497 0.423 0.403 0.4 0.321

C-space
Bristol 0.481 0.432 0.404 0.395 0.343
Lviv 0.498 0.47 0.464 0.465 0.426

TABLE 5.2: The area A (Eq. 5.2) under the S(c) curves for different
attack scenarios. S(c) - the function of the the size S of GCC under
removal of fraction c of nodes. RA - random attack, k - recalculated
node degrees, ki - initial node degrees, Cβ - recalculated betweenness

centrality, Ci
β - initial betweenness centrality.

In all the explored representations the most inefficient for both PTNs is random
attack scenario. It possesses the slowest decrease of S and, accordingly, the high-
est values of A. S in P- and C-space under random attack decreases linearly for
both PTNs. The results of the simulations in L-space confirmed the analysis of κ
values presented earlier: Bristol PTN appeared to be a bit more stable to random
attacks comparing to Lviv PTN. Note that the results of random attacks are repre-
sented by single random sequences. However, as in Ferber et al., 2012, we observed
a "self-averaging" effect. Due to the large size of the PTNs, the averaging over many
sequences of random attacks gives results almost identical to those presented on the
plot.

The most harmful for PTNs in all three spaces is node removal by recalculated
betweenness centrality.

The attack simulation results also indicated that scenarios of targeted attacks
based on recalculated lists are more harmful than the same scenarios based on initial
lists.
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(A) Bristol, L-space (B) Lviv, L-space

(C) Bristol, P-space (D) Lviv, P-space

(E) Bristol, C-space (F) Lviv, C-space

FIGURE 5.1: Attacks on PTNs in L-, P- and C-space. RA - random
attack, k - recalculated node degrees, ki - initial node degrees, Cβ - re-
calculated betweenness centrality, Ci

β - initial betweenness centrality.
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Chapter 6

Conclusions

This analysis of public transport networks was driven by two main goals. Firstly,
we wanted to define the main statistical properties of Lviv and Bristol PTNs and
compare them. Secondly, we aimed to assess the vulnerability of both PTNs to un-
predictable events, namely, to random and targeted attacks. To achieve this goal we
conducted a set of simulations of various attack scenarios.

The results of the analysis showed that Lviv and Bristol PTNs share a lot of com-
mon features. The observed patterns of the PTNs behavior under attack simulations
give strong evidence of the similarity of the networks in terms of stability. Both
Lviv and Bristol PTNs are highly resilient to random failures of the nodes. The most
dangerous for the networks are attacks (with recalculation) at the nodes with the
highest betweenness centrality. Most of the global characteristics of the two PTNs,
such as path length efficiency, diameters, and mean shortest paths in some of the
spaces have no sharp differences. Furthermore, Lviv and Bristol PTNs appear to be
small-world networks as they possess relatively low path lengths values and large
clustering coefficients. Also, all the path length distributions can be described by
an asymmetric unimodal function. Most of the node degree distributions possess
exponential tail.

However, there are considerable diversities in the local network characteristics.
Namely, Bristol PTN possesses higher values of mean and maximal node degrees.
The most substantial difference is observed in kmax values in L-space: kmax of Bristol
PTN is 2.5 times higher than the of Lviv PTN.

The future research on the properties of PTNs might be extended by investiga-
tion of the dynamic features of the networks. These include analysis of passenger
and transport load, changes of average commuting times during a sample period,
etc. Besides that, the load capacity of the nodes might be considered in further explo-
rations of resilience. After the attack, the load redistributes and exceeds the capacity
limits at some of the nodes. Therefore, cascading failure simulations might prove an
important area for future research.



26

Appendix A

Maps

(A) Bristol

(B) Lviv

FIGURE A.1: City boundaries used to crop the datasets
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(A) Bristol

(B) Lviv

FIGURE A.2: The Heatmaps of PTNs
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