
UKRAINIAN CATHOLIC UNIVERSITY

BACHELOR THESIS

The Management System of Network
Switch Based on an Embedded Nano Pi

Platform

Author:
Danylo SLUZHYNSKYI

Supervisor:
Anton PUTRYA

A thesis submitted in fulfillment of the requirements
for the degree of Bachelor of Science

in the

Department of Computer Sciences
Faculty of Applied Sciences

Lviv 2022

http://www.ucu.edu.ua
http://www.johnsmith.com
http://www.jamessmith.com
http://researchgroup.university.com
http://department.university.com

i

Declaration of Authorship
I, Danylo SLUZHYNSKYI, declare that this thesis titled, “The Management System of
Network Switch Based on an Embedded Nano Pi Platform” and the work presented
in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

ii

“God helps those who help themselves”

Algernon Sidney

iii

UKRAINIAN CATHOLIC UNIVERSITY

Faculty of Applied Sciences

Bachelor of Science

The Management System of Network Switch Based on an Embedded Nano Pi
Platform

by Danylo SLUZHYNSKYI

Abstract

The purpose of this bachelor’s thesis is to design and implement devices that can
address the problem of managing ethernet and power paths, with scheduling and a
modern security authentication policy.

Code can be found here:
Github repository

HTTP://WWW.UCU.EDU.UA
http://department.university.com
https://github.com/sluzhynskyi/managed_switch

iv

Acknowledgements
I am thankful to my family for their emotional, personal, and financial support that
they provided me with throughout all four years of my study. I want to thank my su-
pervisor Anton PUTRYA and Andrew DOBUSH for mentoring me, for their guidance
and advice during my research, and for all the consultations they provided.

I am deeply grateful to all my teachers from university, especially Oleg FARENYUK

for all the knowledge that came in handy in this bachelor’s thesis.

v

Contents

Declaration of Authorship i

Abstract iii

Acknowledgements iv

Contents v

List of Figures vii

List of Tables viii

List of Abbreviations ix

1 Introduction 1
1.1 Motivation . 1
1.2 Goals . 1
1.3 Thesis Structure . 2

2 Background Information 3
2.1 OSI Model . 3
2.2 Network Devices . 4
2.3 Types of Network Devices . 4

3 Market Overview 6
3.1 Industry Research . 6
3.2 Cisco MS-Series . 6
3.3 Zyxel GS1900 Series . 7

4 Hardware Overview 8
4.1 Device Set Up . 8
4.2 Switch . 8
4.3 Nano Pi . 11

5 Technology overview 13
5.1 Web Framework . 13
5.2 Database . 13
5.3 Computing build framework . 13

6 Proposed Approach 15
6.1 Architecture . 15
6.2 Database Tables . 16
6.3 Application . 17

6.3.1 Authorization . 18
6.3.2 Home . 19

vi

6.3.3 Scheduling . 19
6.3.4 Terminal . 20
6.3.5 Settings . 21

7 Summary 23
7.1 Future work . 23

Bibliography 24

vii

List of Figures

3.1 GUI for scheduling on Cisco devices . 7
3.2 GUI for scheduling on Zyxel devices . 7

4.1 Device setup diagram . 8
4.2 Switch pinout diagram . 9
4.3 Debug headers diagram . 10
4.4 STM32 programmation header . 10
4.5 Nano Pi headers diagram . 11
4.6 NanoPi pinout diagram . 12

6.1 Architecture of a project . 15
6.2 Users table types and properties . 16
6.3 Users table . 16
6.4 Ports table types and properties . 16
6.5 Ports table . 17
6.6 Jobs table types and properties . 17
6.7 Jobs table . 17
6.8 Access control Screen . 18
6.9 Login Screen . 19
6.10 Home Screen . 19
6.11 Scheduling Screen . 20
6.12 Terminal Screen . 21
6.13 Nano Pi’s management Screen . 21
6.14 Switch Settings Screen . 22

viii

List of Tables

2.1 OSI Model . 3

ix

List of Abbreviations

GUI Graphical User Interface
UI User Interface
MAC Media Access Control
LLC Logical Link Control
VoIP Power Voice Over Internet Protocol
QOS Quality Of Service
STP Spanning Tree Protocol
IOT Internet Of Things
OSI Open Systems Interconnection
PoE Power Over Ethernet
UART Universal Asynchronous Receiver Transmitter
SBC Single Board Computer
GSM Global System for Mobile
MII Media Independent Interface
SGMII Serial Gigabit Media Independent Interface
RGMII Reduced Gigabit Media Independent Interface
HSGMII High Serial Gigabit Media Independent Interface
CMOS Complementary Metal Oxide Semiconductor

x

To my Father, Markiyan Sluzhynskyi

1

Chapter 1

Introduction

1.1 Motivation

Decades ago, saying a command to turn music on, or asking "will it rain today?" and
getting an actual answer from the speaker was nothing short of a pipe dream.

Today, however, it is common to say: "Siri, set a timer for 45 minutes" or "Alexa,
turn on bedroom lights." Nevertheless, nowadays smart devices have developed
and expended far beyond smart speakers. From energy-saving thermostats to re-
mote control devices, like smart bulbs, or intelligent yoga mats, all of them need an
internet connection, or they at least need to be connected to a local network. Some
of them support a Wi-Fi connection, but some of them support only wired ethernet
connectivity, like cameras, printers, or even intelligent ovens. Here, the smart switch
comes in front, and the main idea is to control some devices or nodes of devices be-
ing connected to ethernet and power, because if they are connected all the time, it
will cause security issues or could damage to devices or even the whole home, office,
factory. Also it is reasonable from an energy-saving perspective.

1.2 Goals

Provide software control based on the Nano Pi platform for a multiport network
switch. Achieving this goal in this bachelor thesis is associated with solving the
following tasks:

1. Configure the Armbian operating system to run on the Nano Pi platform;

2. Implementation of the authorization subsystem in the port status management
system (email, phone);

3. Implementation of the Nano Pi network settings subsystem;

4. Implementation of the module of direct control of a condition of ports of the
switch;

5. Implementation of the module of planning of tasks on the management of a
condition of ports;

6. Implementation of the command interpreter that controls switch;

7. Implementation of the basic functionality for managing Nano Pi;

8. Implementation of the module of scanning Nano Pi in local area network.

Chapter 1. Introduction 2

1.3 Thesis Structure

The remainder of the thesis is structured as follows. Chapter 2 reviews the required
knowledge for project understanding and essential information related to its topics.
In Chapter 3, we review the relevance of the project, existing related works, solu-
tions, and competitors. In Chapter 4, we present used hardware, including details of
setup. Used frameworks and software modules we present in Chapter 5. In Chap-
ter 6, we present our approach, including the details of the implementation of flows
and main functionalities. Finally, we make conclusive remarks in Chapter 7 with a
discussion of future work that would be applied.

3

Chapter 2

Background Information

2.1 OSI Model

One of the best ways to understand the purpose of different network devices is to
understand the layers of the OSI model (Petryschuk, 2021).

The OSI Model is a conceptual framework used to describe the functions of a
networking system. This model characterizes computing functions into a universal
set of rules and requirements in order to support interoperability between different
products and software (Froehlich, 2021). In the OSI reference model, the communi-
cations between a computing system are split into seven different abstraction layers:
Physical, Data Link, Network, Transport, Session, Presentation, and Application.

Table 2.1 shows the venerable OSI model in all its seven-layer glory, along with
major functions for each layer (Harry Reynolds, 2009; Emmett Dulaney, 2011)

TABLE 2.1: OSI Model

OSI Layer Major functions
Physical (Layer 1) Defines the physical structure of the network and the topol-

ogy.
Data link (Layer 2) Provides error detection and correction. Uses two distinct

sublayers: the MAC and LLC layers. Identifies the method
by which media are accessed. Defines hardware address-
ing through the MAC sublayer.

Network (Layer 3) Handles the discovery of destination systems and address-
ing. Provides the mechanism by which data can be passed
and routed from one network system to another.

Transport (Layer 4) Provides connection services between the sending and re-
ceiving devices and ensures reliable data delivery. Man-
ages flow control through buffering or windowing. Pro-
vides segmentation, error checking, and service identifica-
tion.

Session (Layer 5) Synchronizes the data exchange between application on
separate devices.

Presentation (Layer 6) Translates data from the format used by applications into
one that can be transmitted across the network. Handles
encryption and decryption of data. Provides compression
and decompression functionality. Formats data from the
application layer into a format that can be sent over the
network.

Application (Layer 7) Provides access to the network for applications.

Chapter 2. Background Information 4

2.2 Network Devices

A network device is an individual component of the network that participates at one
or more of the protocol layers (McCabe, 2007).They are required for communication
and interaction between hardware on a computer network (Netwrix, 2019), which
includes end devices, routers, switches, firewalls, hubs, modems, etc. These devices
may be in a local network or internetwork. To put it another way, a network device
is a node in the wireless mesh network. It can transmit and receive wireless HART
data and perform the basic functions necessary to support network formation and
maintenance (McCabe, 2007).

2.3 Types of Network Devices

There are different types of network devices used in a computer network which
include the following:

• Firewall - is a network security device that monitors and either blocks or al-
lows traffic based on a set of rules. Firewalls can be software, hardware, or
a combination of both. Additionally, the rules that firewalls use can be based
on something straightforward like ports and IP addresses or use heuristics to
identify malicious behavior (iPass.Inc, 2021; Petryschuk, 2021);

• Routers - are the network devices that route packets between networks. These
Layer 3 devices enable everything from communication between multiple sub-
nets within the same WAN to the internet connection that allows you to read
this article. A good way to think of routers is this: They are the network device
that deals with IP addresses;

• Switch - The textbook definition of a network switch is a Layer 2 device that
sends and receives frames. These switches are the basic building block of Eth-
ernet networks. By sending the data to a specific device, the switch is breaking
up collision domains and greatly reduces network congestion when compared
to network hubs. That breaking up of collision domains is the basic benefit of
a Layer 2 switch. However, this basic example of a Layer 2 switch is just one of
the many types of network switches. Here is a list of common types of network
switches:

– Unmanaged switches - simply provide Layer 2 switching of Ethernet
frames. They do not offer any additional management or configuration
features;

– PoE switches - switches that provide PoE functionality can provide both
network connectivity and power to connected devices. For example, it is
common to VoIP phones using PoE switches. And also it is common to
have low power consumption cameras. PoE switches can be Layer 2 or
Layer 3 switches and can be managed or unmanaged;

– Managed switches - switches that vary greatly in their features and func-
tionality. For example, some managed switches are targeted to gamers for
use at home while others are targeted to large enterprises for use on cor-
porate networks. One of the most important aspects of a managed switch
is the ability to create VLANs. Other popular managed switch features in-
clude QoS to prioritize certain types of traffic and STP to prevent network
loops. Managed switches can be either Layer 2 or Layer 3 switches;

Chapter 2. Background Information 5

– Layer 3 switches - these switches offer the same Layer 2 functionality as
other switches, but add Layer 3 routing to the mix. Layer 3 switches are
aware of IP addresses and can route packets between networks;

– Stackable switches - dome network switches can be “stacked.” These
stackable switches can be connected to one another to operate as a sin-
gle logical switch. Stacking switches can be a useful way to increase the
capacity of a network. For example, stacking two 24-port switches would
create a single 48-port switch from a management and functionality per-
spective (Petryschuk, 2021).

6

Chapter 3

Market Overview

3.1 Industry Research

The global home networking devices market is foreseen to portray stable continual
growth in all the regions around the world, driven by surging customer broadband
penetration and increased network device adoption. By regulating various systems
at home through network devices, end users can create a contented and gratifying
environment, while decreasing energy consumption and aligned expenditures. This
knack is expected to upkeep the revenue growth of the home networking devices.
Consequently, market accomplices would pursue innovations that allow homeown-
ers to integrate all their systems and reduce energy consumption.

The North American market is expected to portray a stable growth rate due to
the presence of prominent manufacturers and maximum adoption of smart home
systems utilizing full networking functionality. The European market is expected
to grow faster than the global average in the coming years due to its debauched
economic repossession. In the Asia Pacific region, the market is predicted to grow
substantially due to increasing consumer income, higher technological adaptation,
and increasing consumer awareness (GrandViewResearch, 2019).

The enterprise network equipment market was valued at USD 9.83 billion in
2020 and is expected to reach USD 15.48 billion by 2026, at a CAGR of 7.85% forecast
period 2021 to 2026 (IndustryResearch, 2020)

3.2 Cisco MS-Series

Cisco provides port schedules feature in their MS series switches, the cheapest de-
vice example of that series would be the Cisco Meraki MS220-8 gigabit switch with
layer 2 access switching, that has 8 PoE+ ports. The price starts from $434.90 on
Amazon (Cisco, 2020a; Cisco, 2020b).

The "Port schedules" screen (Figure 3.1) shows how Cisco gives users control on
scheduling should be mentioned that they offer users to use templates and show it
on a separate diagram enabled ranges of each port.

Chapter 3. Market Overview 7

FIGURE 3.1: GUI for scheduling on Cisco devices

3.3 Zyxel GS1900 Series

Zyxel provides port schedules (time-controlled) features in their GS1900 HP Se-
ries, the most congruent competitor would be the 8-port GbE Smart Managed PoE
Switch. The 1900 Series consists of nine (9) models—the GS1900-8, GS1900-8HP,
GS1900-10HP, GS1900- 16, GS1900-24E, GS1900-24, GS1900-24HP, GS1900-48 and
GS1900-48HP. Providing GbE switches with power-saving functions. In addition,
the PoE models GS1900-8HP/10HP/24HP/48HP Gigabit switch complies with the
IEEE 802.3at PoE+. The price starts from $159.99 (Zyxel, 2019b; Zyxel, 2019a).

The "Time Range Group" setting (Figure 3.2) allows also the use of scheduling,
but in that type of UI, users do not have access to create several schedulings on each
port. It is only applicable for all ports or nothing, and scheduling jobs is only one.

FIGURE 3.2: GUI for scheduling on Zyxel devices

8

Chapter 4

Hardware Overview

4.1 Device Set Up

The hardware part of this project consists of 3 modules: board with switch and stm32
(Section 4.2), Nano Pi (Section 4.3), and gsm module. The diagram (Figure 4.1)
shows how modules are connected (with black lines) and how network cable is con-
nected (blue lines) to devices. Also it represents how buttons work on board, and if
a button is lighted up, that port is turned on, but if the light is off, the port is turned
off. PC1, PC2, and PC3 represent connected devices, but they could be any other
nodes or switches, etc.

FIGURE 4.1: Device setup diagram

4.2 Switch

The board is manually developed based on layer 2 Realtek switch (Figure 4.2)
RTL8367S-CG that has 3 ethernet ports and stm32.

The RTL8367S-CG is an LQFP-128, high-performance 5+2-port 10/100/1000M
Ethernet switch featuring a low-power integrated 5-Port Giga-PHY that supports
1000BaseT, 100Base-TX, and 10Base-T.

For specific applications, the RTL8367S supports one extra interface that could
be configured as RGMII/MII interface. The RTL8367S also supports one Ser-Des
interface that could be configured as SGMII/HSGMII interfaces. The RTL8367S in-
tegrates all the functions of a high-speed switch system; including SRAM for packet

Chapter 4. Hardware Overview 9

buffering, non-blocking switch fabric, and internal register management into a sin-
gle CMOS device.

Short Features list:

• Single-chip 5+2-port 10/100/1000M nonblocking switch architecture;

• Embedded 5-Port 10/100/1000Base-T PHY;

• Each port supports full duplex 10/100/1000M connectivity (half duplex only
supported in 10/100M mode);

• Extra Interface (Extension GMAC1) supports:

– SGMII (1.25GHz) Interface;

– High SGMII (3.125GHz) Interface;

• Extra Interface (Extension GMAC2) supports:

– Media Independent Interface;

– Reduced 10/100/1000M Media Independent Interface;

• Full-duplex and half-duplex operation with IEEE 802.3x flow control and back
pressure (Realtek, 2019).

For debugging used Debug header port (Figure 4.3), and for updating MCU
used the stm32 prog header (Figure 4.4) with link v2 to the USB adapter. Nano
Pi and stm32 are connected by bus (Figure 4.5), that is for UART connection, and
power supply for Nano Pi.

FIGURE 4.2: Switch pinout diagram

Chapter 4. Hardware Overview 10

FIGURE 4.3: Debug headers diagram

FIGURE 4.4: STM32 programmation header

Chapter 4. Hardware Overview 11

FIGURE 4.5: Nano Pi headers diagram

4.3 Nano Pi

NanoPI NEO (Figure 4.6) is a single-board system from FriendlyARM with an RAM
memory of 256 MB. It is equipped with the Allwinner H3 system offering 4 Coretex-
A7 cores. Each core can operate at a frequency of 1.2 GHz. In addition, the board has
a Mali400MP2 graphics processor clocked at 600 MHz. The board is equipped with,
among others, an RJ45 port, 2 USB ports (1 USB 2.0 port and 1 micro-USB 2.0 connec-
tor), a micro SD memory card slot, and interface ports such as USB (2 additional USB
2.0 ports), UART (2 ports RS232), I2C, SPI, PWM, GPIO and audio (microphone in-
put and line audio output). The system is powered by 5V, and power consumption
according to the manufacturer does not exceed 2A. The system’s operation is re-
sponsible for the Ubuntu Core distribution, specially prepared by the manufacturer,
based on the Linux kernel version 3.4. The system is not factory installed (kamami,
2016).

Nano Pi has as reference the Raspberry Pi Zero but it is faster and 12% smaller,
and it is sold at about $7, so it is comparable with its benchmark board (Ruggeri,
2016).

Chapter 4. Hardware Overview 12

FIGURE 4.6: NanoPi pinout diagram

13

Chapter 5

Technology overview

5.1 Web Framework

There are two most popular types of web frameworks for Python: Flask and Django.
While Django is a high-level python web framework, Flask is much easier to under-
stand and learn. It is used for small applications compared to Django; therefore, it is
more suitable for this project.

Flask is a Python microframework (Backend) that has the principle of having as
little tech as possible to get a website up and running. It uses Jinja2 templating, is
RESTful, and has a built-in debugger (Livingston, 2017). "Python", "Lightweight"
and "Minimal" are the key factors why we considered Flask in this project. Along
with Bootstrap and JQuery, it allows the development of simple lightweight web
applications that are perfect for this type of project.

5.2 Database

In Flask applications, to manipulate databases, can be used SQL and Object Rela-
tional Mapping, the most popular and developed is SQLAlchemy.

SQLAlchemy is the Python SQL toolkit and Object Relational Mapper that gives
application developers the full power and flexibility of SQL. It provides a full suite
of well known enterprise-level persistence patterns, designed for efficient and high-
performing database access, adapted into a simple and Pythonic domain language.

SQLAlchemy is most famous for its object-relational mapper (ORM), an optional
component that provides the data mapper pattern, where classes can be mapped to
the database in open ended, multiple ways - allowing the object model and database
schema to develop in a cleanly decoupled way from the beginning.(SQLAlchemy,
2019).

The main reason for using the database in this project is to save authorization
and scheduling data even after the device reboot.

5.3 Computing build framework

For the creation of modified custom builds with pre-installed scripts and modules
for single-board computers, there is no other alternative than Armbian.

Armbian is a base operating system platform for single-board computers that
other projects can be trusted to build upon (Armbian, 2015).

• Lightweight Debian or Ubuntu-based Linux distribution specialized for ARM
development boards;

• Each system is compiled, assembled, and optimized by Armbian Build Tools;

Chapter 5. Technology overview 14

• It has powerful build and software development tools to make custom builds;

• It is a vibrant community.

Armbian gives access to create custom builds, with custom scripts pre-installed
for this. Using this, we pre-installed our project, closed all Nano Pi ports, and started
several services on autostart. The first service starts flask on Nano Pi, and the other
starts a python module that through UDP shares nano-pi’s IP. In the output, we get
an iso file that we can flash on any Nano Pi.

15

Chapter 6

Proposed Approach

6.1 Architecture

This project is not such a large one because when it just started, it has architecture
from documentation of Flask (Flask, 2020), but as the project grew , it became over-
whelming to keep all the code in such a hierarchy. We then moved it to another
structure (Figure 6.1) with jinja2 templates and blueprints for reusing and easier
developing (Soheili, 2020; Birchard, 2021).

wsgi.py (App starting point)
config.py (Flask configurations)
managed_switch

__init__.py (Flask application factory)
db_utils.py
models (All database models)

__init__.py
network_configuration.py
...
users.py

routes (Backend logic)
auth

auth.py
...
terminal

terminal.py
services (3-rd party modules)

__init__.py
controller.py
...
scheduler.py

static
css
fonts
js

templates (Templates jinja2)
utils.py

requirements.txt
app.sqlite

FIGURE 6.1: Architecture of a project

Chapter 6. Proposed Approach 16

6.2 Database Tables

The main tables in the project are: users table schema (Figure 6.2) and correspond-
ing example of data (Figure 6.3) - saves all data for authorizations and also separates
not privileged users from admin, ports table (Figures 6.4, 6.5) - that saves the sta-
tus of each port, and jobs table (Figures 6.6, 6.7) which consist necessary data for
scheduling.

create table users
(

id INTEGER not null primary key,
is_admin BOOLEAN,
username VARCHAR(100),
email VARCHAR(345),
phone_number VARCHAR(10),
password_hash VARCHAR

);

FIGURE 6.2: Users table types and properties

+--+--------+--------+----------------------+-------------+-------------+
|id|is_admin|username|email |phone_number |password_hash|
+--+--------+--------+----------------------+-------------+-------------|
1	1	admin	test.admin@example.com	+380999999999	260000$54...
2	0	user1	test.user1@example.com	+380777777777	260000$Xg...
3	0	user2	test.user2@example.com	+380555555555	260000$Hr...
4	0	user3	test.user3@example.com	+380333333333	260000$Tr...
+--+--------+--------+----------------------+-------------+-------------+

FIGURE 6.3: Users table

create table ports
(

id INTEGER not null primary key,
port_number INTEGER,
active_state BOOLEAN

);

FIGURE 6.4: Ports table types and properties

Chapter 6. Proposed Approach 17

+--+-----------+------------+
|id|port_number|active_state|
+--+-----------+------------+
1	1	0
2	2	1
3	3	0
+--+-----------+------------+

FIGURE 6.5: Ports table

-- auto-generated definition
create table apscheduler_jobs
(

id VARCHAR(191) not null primary key,
next_run_time FLOAT,
job_state BLOB not null

);

create index ix_apscheduler_jobs_next_run_time
on apscheduler_jobs (next_run_time);

FIGURE 6.6: Jobs table types and properties

+---+-------------+---------+
|id |next_run_time|job_state|
+---+-------------+---------+
start-310135080133478500525072967368264111427	1654070400	’8059...’
end-310135080133478500525072967368264111427	1654079400	’8059...’
start-315005264597650459634753023606679655747	1654338600	’8059...’
end-315005264597650459634753023606679655747	1654347600	’8059...’
start-322171166675680617618473737156349646147	1654500600	’8059...’
end-322171166675680617618473737156349646147	1654016400	’8059...’
start-327968827701509560769758856294978540867	1654174800	’8059...’
end-327968827701509560769758856294978540867	1654209000	’8059...’
+---+-------------+---------+

FIGURE 6.7: Jobs table

6.3 Application

This application needs only to be accessible from the local network, on any platform.
But to reach that website, the user needs to know the IP address of the Nano Pi,
which controls the switch. The popular solution is to nmap the local network and
find a device that has a name associated with "Nano Pi." Another popular solution
is to go to a specific IP address that is reserved for that device, but it works only

Chapter 6. Proposed Approach 18

for routers. Cisco, in their products, recommends running their application on a
Windows PC and connects by serial to switch.

But our solution is based on sockets, UDP broadcasting, first on autostart on
Nano Pi starts UDP broadcast server program that sends it an IP by specific port,
and the client program listens to that specific port and gets the IP address of Nano
Pi.

6.3.1 Authorization

This project has two types of users: admin and regular user. The admin can add
new users with email and phone; it is almost like family control. Access control
Screen (Figure 6.8) shows forms that are optional and required to help create or
edit user data. On the login screen (Figure 6.9), you can only be authorized using
username/password flow, or use email or phone flow, but only if that email or phone
number has already been added by the admin.

FIGURE 6.8: Access control Screen

Chapter 6. Proposed Approach 19

FIGURE 6.9: Login Screen

6.3.2 Home

On the home screen (Figure 6.10) users can check the status of ports, and turn them
on or off. But if there was a disconnect where a physically lighted button differs
from a web page, they have to press on the "Resync button" that is in the up-right
corner of the page, in the navigation bar.

FIGURE 6.10: Home Screen

6.3.3 Scheduling

For scheduling, users can add a job or several jobs on the Scheduling page (Figure
6.11), those recurring jobs control the status of ports, and users can add any job on a

Chapter 6. Proposed Approach 20

separate port. For example (Figure 6.11) on port 2 added two jobs:

• On working days the port is enabled only from 9:00 to 20:30;

• On weekends the port is enabled only from 21:00 to 23:00.

FIGURE 6.11: Scheduling Screen

6.3.4 Terminal

On the terminal page (Figure 6.12), a user can write commands that send to STM32
by UART, which is connected to the switch. For now, there are two types of com-
mands, first, they tell stm32 to change port status on switch (//PXRY) where X - is
a port number, and Y is 1 or 0, to turn port on or off. The second type tells which
ports are on (//Q1) or which ports are off (//Q0).

Chapter 6. Proposed Approach 21

FIGURE 6.12: Terminal Screen

6.3.5 Settings

On the management screen (Figure 6.13), users can reboot Nano Pi if it is necessary.
Also on the settings screen (Figure 6.14), users can change the number of ports that
are on the switch, it is now for testing and in the future, and it would be replaced by
the automated discovery of ports by Nano Pi.

FIGURE 6.13: Nano Pi’s management Screen

Chapter 6. Proposed Approach 22

FIGURE 6.14: Switch Settings Screen

23

Chapter 7

Summary

In this work, considered how to provide software control of a multiport network
switch. Also, this project covered the listed goals in the Introduction of this bachelor
thesis, specifically:

• Configuration of the Operation system for Nano Pi, with taking into account
security gaps that could be existed;

• Implementation of the web application for controlling and observing the switch
ports.

This project required knowledge of Web development, IoT, Networking, Oper-
ation systems, and for good quality project maintenance - OOP. The current appli-
cation is user-friendly and optimized for a good mobile experience. As a result,
there is a complete device set up with a custom modified operation system based
on Ubuntu Linux, with a web application that gives access for users to control that
device by Web application.

7.1 Future work

• Improve the Hardware part of the project, replace the switch device with that
one that has PoE+ ports;

• Add async services to always listen to manual button changes and update au-
tomatically webpage.

24

Bibliography

Armbian (2015). What is Armbian? URL: https://docs.armbian.com/.
Birchard, Todd (2021). Organize Flask Apps with Blueprints. URL: https://hackersandslackers.

com/flask-blueprints/.
Cisco (2020a). MS - Switches. URL: https://documentation.meraki.com/MS.
— (2020b). Port Schedules. URL: https://documentation.meraki.com/MS/Access_

Control/Port_Schedules.
Emmett Dulaney, Michael Harwood (2011). CompTIA Network+ N10-005 Exam Cram.
Flask (2020). Project Layout. URL: https://flask.palletsprojects.com/en/2.1.x/

tutorial/layout/.
Froehlich, Andrew (2021). OSI model (Open Systems Interconnection). URL: https://

www.techtarget.com/searchnetworking/definition/OSI.
GrandViewResearch (2019). Networking Devices Market Size, Share & Trends Reports,

2019 To 2025.
Harry Reynolds, Doug Marschke (2009). JUNOS Enterprise Switching: A Practical

Guide to JUNOS Switches and Certification.
IndustryResearch (2020). Networking Equipment Market 2020 | Global Industry Trends.

URL: https://www.mordorintelligence.com/industry-reports/enterprise-
network-equipment-market.

iPass.Inc (2021). iPass Glossary. URL: http : / / help . ipass . com / doku . php ? id =
glossary.

kamami (2016). NanoPi Neo LTS 256MB single board computer. URL: https://kamami.
pl/en/nano- pi- board/578222- nanopi- neo- lts- 256mb- single- board-
computer.html.

Livingston, Matt (2017). “Full Stack Web Development”. In: Becoming Human: Arti-
ficial Intelligence Magazine. DOI: https://becominghuman.ai/full-stack-web-
development-python-flask-javascript-jquery-bootstrap-802dd7d43053.

McCabe, James D. (2007). Network Device. URL: https://www.sciencedirect.com/
topics/engineering/network-device.

Netwrix, Ryan (2019). Network Devices Explained. URL: https://community.spiceworks.
com/topic/2191428-network-devices-explained.

Petryschuk, Steve (2021). What Are the Types of Network Devices? URL: https://www.
auvik.com/franklyit/blog/network-devices/.

Realtek (2019). LAYER 2 MANAGED 5+2-PORT. URL: https://www.realtek.com/
en/products/communications-network-ics/item/rtl8367s-cg.

Ruggeri, Luca (2016). NanoPi NEO – Smaller and faster than Raspberry Pi Zero. URL:
https://www.open- electronics.org/nanopi- neo- smaller- and- faster-
than-raspberry-pi-zero/.

Soheili, Arash (2020). Structuring a Large Production Flask Application. URL: https:
//levelup.gitconnected.com/structuring- a- large- production- flask-
application-7a0066a65447.

SQLAlchemy (2019). The Python SQL Toolkit and Object Relational Mapper. URL: https:
//www.sqlalchemy.org.

https://docs.armbian.com/
https://hackersandslackers.com/flask-blueprints/
https://hackersandslackers.com/flask-blueprints/
https://documentation.meraki.com/MS
https://documentation.meraki.com/MS/Access_Control/Port_Schedules
https://documentation.meraki.com/MS/Access_Control/Port_Schedules
https://flask.palletsprojects.com/en/2.1.x/tutorial/layout/
https://flask.palletsprojects.com/en/2.1.x/tutorial/layout/
https://www.techtarget.com/searchnetworking/definition/OSI
https://www.techtarget.com/searchnetworking/definition/OSI
https://www.mordorintelligence.com/industry-reports/enterprise-network-equipment-market
https://www.mordorintelligence.com/industry-reports/enterprise-network-equipment-market
http://help.ipass.com/doku.php?id=glossary
http://help.ipass.com/doku.php?id=glossary
https://kamami.pl/en/nano-pi-board/578222-nanopi-neo-lts-256mb-single-board-computer.html
https://kamami.pl/en/nano-pi-board/578222-nanopi-neo-lts-256mb-single-board-computer.html
https://kamami.pl/en/nano-pi-board/578222-nanopi-neo-lts-256mb-single-board-computer.html
https://doi.org/https://becominghuman.ai/full-stack-web-development-python-flask-javascript-jquery-bootstrap-802dd7d43053
https://doi.org/https://becominghuman.ai/full-stack-web-development-python-flask-javascript-jquery-bootstrap-802dd7d43053
https://www.sciencedirect.com/topics/engineering/network-device
https://www.sciencedirect.com/topics/engineering/network-device
https://community.spiceworks.com/topic/2191428-network-devices-explained
https://community.spiceworks.com/topic/2191428-network-devices-explained
https://www.auvik.com/franklyit/blog/network-devices/
https://www.auvik.com/franklyit/blog/network-devices/
https://www.realtek.com/en/products/communications-network-ics/item/rtl8367s-cg
https://www.realtek.com/en/products/communications-network-ics/item/rtl8367s-cg
https://www.open-electronics.org/nanopi-neo-smaller-and-faster-than-raspberry-pi-zero/
https://www.open-electronics.org/nanopi-neo-smaller-and-faster-than-raspberry-pi-zero/
https://levelup.gitconnected.com/structuring-a-large-production-flask-application-7a0066a65447
https://levelup.gitconnected.com/structuring-a-large-production-flask-application-7a0066a65447
https://levelup.gitconnected.com/structuring-a-large-production-flask-application-7a0066a65447
https://www.sqlalchemy.org
https://www.sqlalchemy.org

Bibliography 25

Zyxel (2019a). PoE switch on / off by schedule for GS1900 HP Series. URL: https://
support.zyxel.eu/hc/en-us/articles/360011460199--PoE-switch-on-off-
by-schedule-time-controlled-for-GS1900-HP-Series.

— (2019b). Zyxel GS1900-10HP. URL: https://www.zyxelguard.com/GS1900-10HP.
asp.

https://support.zyxel.eu/hc/en-us/articles/360011460199--PoE-switch-on-off-by-schedule-time-controlled-for-GS1900-HP-Series
https://support.zyxel.eu/hc/en-us/articles/360011460199--PoE-switch-on-off-by-schedule-time-controlled-for-GS1900-HP-Series
https://support.zyxel.eu/hc/en-us/articles/360011460199--PoE-switch-on-off-by-schedule-time-controlled-for-GS1900-HP-Series
https://www.zyxelguard.com/GS1900-10HP.asp
https://www.zyxelguard.com/GS1900-10HP.asp

	Declaration of Authorship
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Motivation
	Goals
	Thesis Structure

	Background Information
	OSI Model
	Network Devices
	Types of Network Devices

	Market Overview
	Industry Research
	Cisco MS-Series
	Zyxel GS1900 Series

	Hardware Overview
	Device Set Up
	Switch
	Nano Pi

	Technology overview
	Web Framework
	Database
	Computing build framework

	Proposed Approach
	Architecture
	Database Tables
	Application
	Authorization
	Home
	Scheduling
	Terminal
	Settings

	Summary
	Future work

	Bibliography

