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Abstract

Motion blur is a common issue in image processing and video production. It is cru-
cial to have a profound pre-processing method to address this obstacle for various
image processing applications, e.g., object detection. Many existing state-of-the-art
methods are limited to their computational complexity and memory requirements
if one wants to use them in practice on mobile devices. This work proposes sev-
eral ideas to overcome this issue and optimize existing solutions via architectural
changes and graph optimizations. Moreover, we introduced an adapted version of
Soft Attention inside skip connections and achieved a PSNR raise of 0.22 (dB) for
the selected baseline. Finally, we derived the optimized model for mobile real-time
applications without a significant drop in accuracy, e.g., obtaining 31.36 dB PSNR on
GoPro (for image deblurring) with 24 FPS on the mobile application.
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Chapter 1

Introduction

Motion blur is a frequent issue in image processing and video production when
the camera or subject moves during exposure time. It leads to a blurry image that
can obscure important details, making it hard to analyze or recognize objects. It
can significantly diminish the image quality and hinder its usefulness for diverse
applications.

FIGURE 1.1: Redmon et al., 2016 detections on the blurred image
(left), the Kupyn et al., 2018 restored (middle) and the sharp ground

truth image (right)

For example, a motion blur makes it difficult for most object detection approaches
to detect and identify objects precisely, as shown in Figure 1.1. Removing motion
blur through image restoration strategies can enhance object detection accuracy and
make locating and tracking objects in the scene simpler.

A wide variety of Image restoration strategies can be utilized to tackle the issue
of motion blur. However, this work will be focused only on the DNN approaches for
this task. One of the advantages of DNNs, compared to the classical computer vision
algorithms, is that they can abstractly process complicated motion blur patterns.
Typical methods usually assume the motion blur follows a definite mathematical
formula, which may not be valid for all cases — especially if it needs to be modified
for a specific production application. Also, the deep learning approaches firmly
rammed the SOTA for motion image deblurring.

1.1 Motivation for optimization

Over the last few years, one has seen the deep learning tendency to increase the
number of parameters, as well as the computational complexity of architectures, as
shown in Figure 1.2.

Many approaches tend to use too heavy and complex DNN models for the com-
petitions without explicit justification of the selected architecture, e.g., fully-connected
architecture Zeng et al., 2022 outperforms the existing CNN/Transformer-based ap-
proaches for the Time Series Forecasting on ETTh1/2 datasets, introduced in Zhou
et al., 2021. Moreover, the top 100 models, which achieve SOTA accuracy for Image
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FIGURE 1.2: Villalobos et al., 2022 global (below-gap) trends in deep
learning

classification on ImageNet, Russakovsky et al., 2015, have at least 100M of train-
able parameters. This trend raises a limitation of the usage of such approaches in
production. Thus they cannot be applicable to edge devices or mobile phones.
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Chapter 2

Background Information

2.1 Image Restoration

Image restoration involves the recovery of a degraded image by using prior knowl-
edge of the degradation process. This process entails estimating the model and using
inverse filtering to restore the original image as accurately as possible. As the model
aims to estimate the degradation process and find inverse transformation for the
corrupted image, it always results in the approximation of the degraded image.

FIGURE 2.1: Khan et al., 2018 image degradation and restoration pro-
cedure outline

Generally, the process of degradation and restoration procedure can be mathe-
matically formulated as follows, as shown in Figure 2.1:

g(x, y) = h(x, y) ∗ f (x, y) + n(x, y) (2.1)

where (x, y) denotes spacial pixel coordinates, f (x, y) - original image signal, h(x, y)
- function of degradation, and n(x, y) - noise. In order to restore the original image,
our algorithm or DNN should estimate the f̂ restoration function (filter).

2.2 Convolutional Neural Networks

The vanilla fully-connected neural network has some serious limitations for com-
puter vision: if one changes the object’s location, rotates, or shifts, it struggles to
extract features correctly. The CNN architecture comes in handy, as it guarantees
equivariance with respect to the translation. Also, it tends to learn better generaliz-
able image priors from large-scale images, as well as, shows better performance in
computer vision as it has a lower risk of overfitting and requires fewer parameters
to train.
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2.2.1 Simple CNN architecture for the image-classification problem

FIGURE 2.2: O’Shea and Nash, 2015, a simple CNN architecture, com-
prised of just five layers

Generally, the CNN architecture is composed of Convolutional, Pooling, Fully-
connected layers, as shown in Figure 2.2 The purpose of trainable convolutional
layer is related to extracting features from the image, like shapes, and edges. By
stacking multiple convolutions, a CNN is able to learn abstract and complex features
in the deeper layers.

The pooling layer has no trainable parameters and carries the purpose of reduc-
ing the size of feature maps, thus leading to less chance of overfitting and better
generalization. For the image restoration tasks, the works tend not to use fully-
connected layers, as it projects features maps to the space, from which further restora-
tion is difficult.

Over the years, the CNN-based approaches achieved SOTA performance in mul-
tiple fields of computer vision. Starting form ResNet He et al., 2015, VGG16 Si-
monyan and Zisserman, 2015, AlexNet Alom et al., 2018. However, nowadays, prac-
tical use of vanilla CNN architecture is rare and attention-specific mechanisms are
common in SOTA approaches.

2.2.2 Problems

Each convolutional kernel is operated upon a small neighborhood of pixels (or fea-
tures); thus, it struggles to model long-range pixel dependencies. Increasing the ker-
nel size (filter) or adding more depth to the CNN can put off the problem; however,
it increases the model complexity, thus increasing the chances of overfitting.

Also, it applies filters to features without taking into consideration their impor-
tance, as usually, not all features are equally important. For example, the beauti-
ful tree in the background can be less important than a cat’s whiskers in case of a
cat/dog classification problem. In addition, vanilla CNN architecture cannot deter-
mine which features are more relevant to each other, e.g., a cat’s whiskers crop of
feature maps should be closer to the corresponding feature of the cat texture itself
than the background tree feature.
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The above problems result in a limited receptive field and a lack of global un-
derstanding. That is why the attention mechanisms (or the Transformer blocks) are
widely used to overcome these issues.

2.3 Transformer architecture

As the CNN architecture was developed due to limitations of Fully-connected, the
same happened to Transformers, as it came after RNNs and CNNs. Among other
advantages, It was designed to handle long-range dependencies in sequence models
like RNNs more effectively and be computationally faster.

The Transformer architecture introduces the self-attention mechanism as a key
innovation, allowing the model to take into account different parts of the input se-
quence when predicting the output. This is unlike RNNs, which must consider pre-
ceding elements sequentially. Additionally, multi-head attention further enhances
this process and enables the model to capture intricate correlations between ele-
ments of the sequence more successfully than other architectures. Overall, the Trans-
former architecture has been shown to be highly effective for several natural lan-
guage processing tasks, such as machine translation and language modeling, and it
is now being applied to other areas, e.g., computer vision.

In this section will be described the usage of Transformer for NLP tasks, as some
works in the image restoration field modify the Transformer block differently and
the further application of this architecture will be discussed in the section of Related
works.

2.3.1 Transformer attention block example for NLP case

FIGURE 2.3: Vaswani et al., 2017 (left) Scaled Dot-Product Attention.
(right) Multi-Head Attention consists of several attention layers run-

ning in parallel

The whole process can be split into 3 steps, as shown in Figure 2.3:

• Obtain tokens: encode the words of the sequence to the Embeddings space,
along with its location in the sentence

• Obtain Q, K, V vectors: for each token, multiply it with three weights matrices
(WQ, WK, WV) obtained from the training process. This will yield three vectors
for each of the inputs: a key vector, a query vector, and a value vector.



Chapter 2. Background Information 6

• Apply attention via formula:

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V (2.2)

For the Multi-Head attention, the only difference is in step 2: one needs to stack
h such matrices; thus, it results in multiple outputs of length = h.

Originally, authors affirmed that adding a Linear layer after Attention raises bet-
ter generalizability in terms of features. The Transformer architecture has demon-
strated remarkable proficiency in various natural language processing applications,
as well as computer vision tasks, e.g., classification on ImageNet, where most part
of Top 100 approaches used ideas of Transformer architecture.

2.3.2 Problems

However, the primary obstacles are the high computational cost and memory re-
quirements which are particularly problematic for larger models and datasets. This
is due to the self-attention mechanism used in the Transformer that necessitates each
input token to attend to all other tokens - resulting in a quadratic complexity with
regard to the number of tokens. Thus, the computational cost and memory require-
ments of the Transformer can become challenging to manage as sequence length
increases.

Also, Transformer architecture learns long-range dependencies well. Thus, in
practice, training on a large dataset was required to show good performance.
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Chapter 3

Related Works

In this chapter will be described approaches and ideas, which are settled towards
the goal – making the models more lightweight and preserving accuracy.

3.1 Multi-stage architectures

In this section will be discussed types of models, which use multi-scale inputs and
output multi-scale outputs.

3.1.1 MPRNet

The proposed approach, Zamir et al., 2021 consists of the first two stages - encoder-
decoder networks and the third stage - feedforward network. The two early stages
help the third with scale-based supervision, thus resulting in better accuracy.

FIGURE 3.1: MPRNet architecture overview

The earliest two stages extract multi-scale features using classical UNet and prop-
agate the features to the third stage via CSFF (cross-stage feature fusion) blocks and
SAM (self-attention module), as shown in Figure 3.1. Also, the authors apply CAB
(channel attention block) to encode more useful features.
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3.1.2 MIMO-Unet

The previous approach 3.1.1 shows SOTA performance. However, it is limited to its
computational complexity, as it has multiple stages with UNet architecture. That is
why the authors of MIMO-UNet Cho et al., 2021 explored the issue of computational
complexity in MPRNet and proposed the method, which uses only one U-shaped-
like architecture with a modification of AFF (asymmetric feature fusion), as shown in
Figure 3.2. After conducting the experiments, they proved that SOTA performance
could be achieved without the need to use multi-cascaded U-Nets.

FIGURE 3.2: MIMO-Unet architecture overview

3.2 Vision Transformer Architectures

CNNs have been widely used for image deblurring due to their aptitude for learning
generalizable image priors from large datasets. On the other hand, Transformers
have demonstrated impressive performance in NLP and tasks involving long-range
feature dependencies.

However, while Transformers address some of the issues associated with CNNs
(e.g., limited receptive fields and inadequacy to input content), their computational
complexity increases quadratically as the spatial resolution increases, making them
unfeasible for most image restoration problems requiring high-resolution images.
The major computational overhead in Transformers comes from the self-attention
layer, and it results in O(W2H2) for images of HxW.

The following three approaches apply different ideas of how to deal with the
problem stated above. In this section, we will discuss only the proposed ideas that
optimize the standard self-attention mechanism in Transformer architecture.

3.2.1 Uformer

The authors of Dosovitskiy et al., 2021 have utilized the power of Transformer ar-
chitecture for computer vision, specifically, image classification. On the other hand,
motivated by previous work authors of Wang et al., 2021 adapted this idea – using
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non-overlapping window-based self-attention instead of global self-attention to gen-
erate tokens, as shown in Figure 3.3. They achieved the computational complexity
O(M2HW), where M is the size of a window.

FIGURE 3.3: Uformer self-attention block overview

3.2.2 Restormer

Authors of Zamir et al., 2022 raised an alternative ingredient – apply self-attention
across channels rather than the spatial dimension in MDTA (self-attention module),
as shown in Figure 3.4. Thus, they achieved linear complexity rather than quadratic.

FIGURE 3.4: Restormer architecture overview. a) MDTA: Self-
attention module b) Gated-Dconv Feed Forward Network

3.2.3 Stripformer

The authors of Tsai et al., 2022 aim to create a fast strip Transformer that achieves
SOTA accuracy for different Image Restoration benchmarks. In order to fasten the
attention mechanism, they apply attention layers in the horizontal/vertical axis sep-
arately (as shown in Figure 3.5).

The intra-strip tokens carry local pixel-wise blur features, while the inter-strip
tokens – global region-wise blur information. By combining Intra-SA and Inter-SA
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FIGURE 3.5: (a) Horizontal intra-strip attention (Intra-SA-H) – encode
pixel dependence within the same horizontal strip. Vertical intra-
strip attention (Intra-SA-V) is symmetrically constructed. (b) Hori-
zontal inter-strip attention (Inter-SA-H) – capture stripwise correla-

tions. Inter-SA-V is similarly established for vertical strips.

blocks, the authors got a hybrid Transformer architecture that gathers both global
and local features inside their self-attention, as well as the model, operating in a
linear complexity of image size.

3.3 NAFNet

The authors of Chen et al., 2022 have called into question the use of heavy mod-
els for Image Restoration and proposed a simple, lightweight baseline architecture,
which outperforms existing solutions in terms of accuracy, along with providing a
fast lightweight model for Image Deblurring on the GoPro dataset. Specifically, they
exceed the previous SOTA of 0.38 dB with only 8.4% of their computational costs.

Starting with the plain U-Net block, as shown in Figure 3.6, they made two main
modifications, as shown in Figure 3.7:

• Adding SCA, named “Simplified channel attention”

• Replacing ReLU activation with Simple Gate, which is a simple feature map
multiplication:

Simple Gate(X, Y) = X ⊙ Y (3.1)

This work is precious for our goal, as it is not problem-specific and provides
ideas that can be used for optimization network architecture itself.
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FIGURE 3.6: NAFNet U-Net block modifications

FIGURE 3.7: Illustration of (a) Channel Attention, (b) Simplified
Channel Attention, and (c) Simple Gate

3.4 TLC

Image restoration models are commonly trained on cropped patches from images
and test the performance directly on full-resolution images. The process of training
is made in this way due to memory and time constraints, as well as the ability of
CNN models to be automatically scaled with regard to the input size.

FIGURE 3.8: The effectiveness of TLC on MPRNet 3.1.1
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The authors of Chu et al., 2022 began with the analysis of train-test distribu-
tions of feature maps inside global information aggregation modules(as shown in
Figure 3.8), and they have found a significant difference between them. Thus, they
proposed a tentative solution – Test-time Local Converter that modifies such aggre-
gation modules in a way that they compute the aggregation function inside some
local window (kernel).
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Chapter 4

Methods

In this chapter will be described approaches and ideas, which are settled towards
the goal – making the models more lightweight and preserving accuracy.

4.1 Proposed Approach

Overall, our pipeline infrastructure consists of steps illustrated in Figure 4.1:

FIGURE 4.1: Pipeline Infrastructure Diagram

• Convert the trained pytorch model to the .onnx format.

• Quantize the model graph to the QInt8 data type.

• Deploy on the target mobile device the quantized .onnx (or .ort) model.

• Select the execution provider for the device. By this time, in case the model is
successfully converted to .onnx, we do not expect any issues with further exe-
cution on the mobile CPU. Onnx Runtime currently supports only one backend
for GPU – NNAPI, and it is in the experimental phase of development.

• Apply all graph optimizations, including the hardware-based, by executing
the model with Onnx Runtime once and saving the optimized version on the
specified device storage.
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• Deploy the optimized version of the model on the target device for a previ-
ously selected execution provider.

After these steps, one should be able to obtain the model output with a fully opti-
mized model.

In case one desires to use the pipeline for non-tested in this work architecture,
we recommend one should check the success of the quantization step and the list of
NNAPI layers, which are supported. The overview of the proposed pytorch model
architecture will be in Section 4.3.

4.2 Onnx Runtime Optimization

4.2.1 Quantization

The API offers a scheme of 8-bit linear quantization, where the floating point values
are mapped into 8-bit quantization space using the formula:

value f p32 = scale ∗ (valuequantized − pointzero) (4.1)

, where scale is a positive real number that maps the float point space to a quantiza-
tion space. pointzero is used to represent the zero point of float space in the quantiza-
tion space.

There are actually two types of quantization in Onnx Runtime: static and dy-
namic. As the static one doesn’t use computational overhead during inference to do
quantization steps, we propose its use for all of our experiments. For the static quan-
tization, we need to pass to the API the calibration data, which is used to determine
values pointzero and scale. During this process, the algorithm computes the quan-
tization parameters for each activation in a way that the difference metric between
activations of the original model and quantized will be minimal.

Empirically we have chosen that the 1000 samples from the training dataset are
enough not to have a significant drop in accuracy. If some layers are not supported
by Onnx Runtime in the architecture, the algorithm automatically covers it with
DeQuant and Quant layers so that the full model can be converted.

4.2.2 Graph Optimization

We have used all available Onnx Runtime optimizations for a model graph by de-
fault, including general:

• Operator fusion – combining multiple consecutive operations (like Relu, Con-
volution, Batch normalization) into a single one, thus resulting in fewer inter-
mediate tensors and leading to less computational/memory overhead.

• Constant folding - evaluating constant graph expressions and replacing them
with values before the runtime.

• Removing unused layers from the graph, e.g., Dropout or Identity.

Also, it is worth mentioning that Onnx Runtime offers a set of optimizations
that aim to select the best kernel, i.g., operation implementation, based on the input
shape and available mobile hardware. However, this feature can only be used on the
target hardware, e.g., we cannot apply an efficient optimization in advance on the
PC (offline) in order to use an optimized model on the mobile device (online). There
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are other optimization tricks, which are used, but we noted here the most important
ones.

4.3 Network Architecture

The network architecture diagram can be seen in the Figure 4.2.

FIGURE 4.2: Proposed network architecture diagram

FIGURE 4.3: Modified Soft Attention Gate

The degraded blurry I ∈ HxWx3 image is firstly propagated through the 3x3
convolution to get the embedded activation map ∈ HxWxC; then, it is passed to
the series of encoder blocks and middle (bottleneck) blocks. Afterward, the features
are passed to the series of decoder blocks, following the U-shape strategy with the
modified Soft Attention Gate (Figure 4.3) inside each skip connection. The SA Gate is
used to propagate the most representative spacial features. After the decoder phase,
3x3 convolution is used to get back to the image space, obtaining B̂ (estimated blur
factor). The B̂ is then added to the input image I to estimate the deblurred image
Î = B̂ + I.

For the training, we propose using the combination of Charbonnier and Focal
Frequency loss.
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4.4 Datasets

For training and testing, we selected the GoPro open-source image dataset, as it is the
most popular for the motion image deblurring benchmark and provides the largest
number of non-synthetic training and testing images. It contains 3214 blurred im-
ages with the original size of 1280x720, which are divided into 2103 training images
and 1111 test images. Originally, the dataset was obtained by capturing the sequence
of sharp frames of a dynamic scene with a GoPro camera and then averaging them to
create a blurred image. As the ground truth, i.e., restored image, the authors use the
middle frame of the sharp frames sequence. The samples from the training dataset
are visuallized in the Figure 4.4.

During training, we apply a crop of size 256x256 for the training set in a slid-
ing window manner, thus obtaining 16824 blurry and restored image pairs for one
epoch. Also, we apply flip and rotate augmentations during the training process.

FIGURE 4.4: Training Samples Example. Left - blurry image, right -
sharp (ground truth) image
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4.5 Metrics

Suppose we have the ground truth sharp image S and the predicted Ŝ. For the peak
memory consumption and inference time, we measure them for the crop patches of
256x256.

4.5.1 PSNR

Peak Signal-to-Noise Ratio (dB) is a frequently used metric to evaluate the degra-
dation of the signal, e.g., the quality of the deblurred image compared to the sharp
ground truth image. The higher value refers to the higher quality and performance
of the deblurring model.

PSNR(Ŝ, S) = 10 ∗ log10(
MAX(S)2

MSE(Ŝ, S)
) (4.2)

, where MAX is related to the maximal value of input signal, e.g., 255 in case of 8-bit
image, and MSE - Mean Squared Error.

4.5.2 SSIM

The Structural Similarity Index is a score metric that evaluates the similarity between
two images by taking into consideration luminance, contrast, and structural differ-
ences. In general, the calculations for the samples x and y can be splitted into:

Luminance = l(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1
(4.3)

Contrast = c(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2
(4.4)

Structure = s(x, y) =
σxy + C3

σxσy + C3
(4.5)

In these equations, µ refers to the mean value, σ - standard deviation, and C-s are
the constants to avoid division by zero. Suppose that maximal value of a sample
is MAX, then C1 = (0.01 ∗ MAX)2, C2 = (0.03 ∗ MAX)2, and C3 = C2

2 Finally, the
formula for the SSIM:

SSIM(x, y) = l(x, y) ∗ c(x, y) ∗ s(x, y) (4.6)

4.5.3 MACs

The number of Multiply-Accumulate operations is the metric that measures the com-
putational complexity of an algorithm – provides a way to estimate the speed of the
model. A single MAC operation computes a multiplication and adds it to the accu-
mulator. This metric is not hardware based, thus allowing the authors of the research
to compare their results to other works. However, the lower MACs metric does not
guarantee less computational time, as we proved in some of our experiments.
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4.5.4 Peak Memory Consumption

Another essential criterion for selecting a model for mobile deployment is related
to the memory constraint. We propose to benchmark RAM consumption, especially
peak value, during execution. This metric can give the lower bound of the RAM
size, which device should have available to perform the deblurring.

We discard the model storage size metric. Usually, the storage size is not a defin-
ing criterion for the model selection due to the easy use of flash drives, e.g., external
storage of various sizes.

4.6 Loss Functions

4.6.1 PSNR

The basic idea behind this loss type is quite simple – optimize the PSNR metric
directly by using backward propagation through the tensor. Moreover, the authors
of NAFNet use the PSNR loss for all their experiments. Thus we had to use this loss
for further architecture comparisons. The formula is described in the 4.5.1

4.6.2 Charbonnier

This type of loss is a smoothed version of the well-known L1 loss that has a con-
tinuous gradient near zero. Also, it was practically proved more useful than the
standard L1, as it is more robust to outliers and noisy images. Thus it is better for
image restoration and suitable for our dataset, as GoPro contains real, slightly noisy
images.

Loss(S, Ŝ) =

√
∑ ((S − Ŝ)2 + ϵ2)

N
(4.7)

, where N - is the size of the image and ∑ is over pixels.

4.6.3 FFT loss

Motivated by the recent results of work Jiang et al., 2021 for the image restoration
task, we explored the possible usage of focal frequency loss for our task. In general,
we use the basic version of this loss, which can be prescribed in the form:

Loss(S, Ŝ) = F(Ŝ)− F(S) (4.8)

, where F - the mapping function from the image to the real frequency domain. The
loss is the distance between blurry and restored image in the frequency domain.
It was also proved to be highly effective for learning motion blur kernels, as the
authors Mao et al., 2022 stated.

4.6.4 Full Objective

For the final tuning of the model, we made a set of experiments with the following
loss combinations:

• Single PSNR loss (as in the baseline setup) L = LPSNR

• Charbonnier, FFT losses combined L = LCharbonnier + λ1 ∗ LFFT

• PSNR, FFT losses combined L = LPSNR + λ2 ∗ LFFT
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Note that λ1, λ2 are the trade-off hyperparameters empirically set to 0.01 and 0.01,
respectively.

4.7 Default Training Setup

We follow the experiment’s setting of original NAFNet authors to compare the changes
for architecture to the original easily. More specifically, we train modified models
with Adam optimizer (β1 = 0.9, β2 = 0.9, weight decay 1e-3) for a total of 200K
iterations.

We started with a learning rate of 1e-3 that gradually decreased to 1e-6 using a
cosine annealing schedule. The size of image patches used for training is 256x256
pixels. We use a batch size of 32. In case the GPU limitation does not allow us to
set up the exact same batch size for a memory-intensive architecture, we use the
accumulate gradient batch strategy without any simplification.

However, there is one important modification to the training setup: we have
changed the training environment from BasicSR to Pytorch Lightning because we
encountered many hidden issues, the codebase was not well documented and tested,
as well as didn’t provide easy scalability. We did previous modifications to retrain
the original model in our new setup, and all metrics coincided with the author’s
results.



20

Chapter 5

Experiments

5.1 Specifications

For our further experiments, we use OnePlus 8 Pro as the mobile device for bench-
marking. It is equipped with GPU - Adreno 650, CPU - Snapdragon 865 5G, and 8
GB of available RAM. Moreover, as the PC GPU, we use NVIDIA RTX 4090 with 24
GB of VRAM.

5.2 Baseline Selection

Our initial goal was to achieve a fast model for further mobile deployment. Thus we
have benchmarked most of the SOTA methods for the Image Deblurring on GoPro
in terms of metrics and inference time on both platforms: a PC GPU and a mobile
CPU. Due to the issue of the limited number of supported layers for the NNAPI GPU
execution backend, not all current SOTA architectures can be used on the mobile
without a drastic change in the architecture. Therefore, we provide our comparison
only for mobile CPUs instead of mobile GPUs.

Analysis of both Figures 5.1 and 5.2 clearly shows that NAFNet architecture
offers the best tradeoff between metrics results and inference speed. Moreover, it
achieves the best results in terms of metrics. Thus we have chosen as the baseline
the lightweight version of NAFNet, where the width and the number of blocks are
32 and 36, respectively. It should be noted that NAFNet’s authors have already
adopted the TLC (3.4) (NAFNetLocal version) for their model architecture. We have
used this modification out of the box, as it mainly avoids the training by patches and
testing by full resolution inconsistency.

FIGURE 5.1: SOTA
methods inference
time on PC GPU

FIGURE 5.2:
SOTA methods
inference time on

Mobile CPU
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5.3 Optimizing the Architecture Strategy

Firstly, we started with an ablation study of the selected baseline. After the goal of an
acceptable inference time and low memory consumption on the mobile device was
reached, we started the second phase by replacing and combining additional ideas to
the architecture, which could result either in better metrics or a faster model. Also,
we tuned the obtained final model architecture by introducing different combina-
tions of loss functions.

5.4 Baseline Ablation Study

We began our ablation study, by reducing the C - width and E4 – number of the
last encoder’s NAFBlocks of our baseline model, illustrated in Figure 5.3. All the
missing information regarding the NAFblock is described in Section 3.3.

FIGURE 5.3: Selected Baseline Architecture

5.5 Depth-wise Separable Convolutions

Our baseline model has a CNN architecture with many 2d Convolutions inside, so
we replaced them with Depth-wise Separable Convolutions, which are illustrated in
Figure 5.4.

This type of layer decomposes the standard 2d convolution into two separable
sequential operations:

• Depth-wise convolution: single convolution is applied for each input channel
separately

• Point-wise convolution: 1x1 convolution is applied for input channels

This computational trick offers better computational complexity compared to the
usual convolutional operation. Also, it can lead to a better generalization of the
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FIGURE 5.4: Depth-wise Separable Convolutions. Left - usual convo-
lution, right - Depth-wise Separable Convolution

model due to decreasing the number of trainable parameters in the Image Classifi-
cation, as the authors of Guo et al., 2019 stated.

5.6 Soft Attention

Motivated by the authors of Oktay et al., 2018, who managed to improve the ac-
curacy of the standard U-Net architecture for the medical image segmentation task,
we added the original Attention Gate (Figure 5.5) inside the skip connections for our
baseline architecture. Moreover, we improve its performance by making engineer-
ing replacements for more modern layers.

FIGURE 5.5: Original Soft Attention Gate

The idea behind the soft attention inside the skip connection is majestic and sim-
ple at the same time: the later activation maps have a higher level of feature rep-
resentation compared to the starting ones, thus propagating the low-level spacial
features related to the corresponding high-level features inside the skip connections,
can improve the performance.

Also, the authors stated that this approach can be applied to a variety of com-
puter vision tasks, e.g., image restoration in our case.
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Chapter 6

Results

In this section, we present the metrics from our experiments and unclose the de-
tails of the experiments. For each of the experiments, we proceeded with all of the
pipeline steps of the proposed approach, thus providing CPU/GPU (mobile) infer-
ence time, memory consumption, metrics, etc.

In all Sections, we use the quantized and fully optimized model to calculate the
inference time, except only one Section – Onnx Runtime Quantizations.

Also, as the memory consumption for the GPU and CPU runtime may differ,
we benchmarked both values. The memory consumption is evaluated via Android
Studio Runtime Profiler for the whole application, which executes the model several
times. From the profiler, we took only the peak value from the “Native” category,
which relates to the memory objects executed in C/C++, as it is an exact place where
the built Onnx Runtime lives. Unfortunately, as some of the buffers for the model
execution are preallocated in the initialize phase, we could not determine the exact
peak memory consumption during the model execution, as the difference between
the peak value and the memory before the execution would not give us the whole
memory, which the model used. However, this approach correctly estimates the
upper bound of this value and is acceptable for our goal.

The optimization methodology we present for architecture optimization can be
reused for any other architectures that are U-shape-like. However, one should not
forget that only a small number of layers are supported by Onnx Runtime quantiza-
tion, especially the GPU Executor - NNAPI backend.

6.1 Baseline Ablations Comparison

After composing several experiments with the modifications of the baseline and
training each model from scratch with a similar default training setup, we achieved
the following results in Table 6.1. In the column “Model name,” the entry “Model-
X-Y” has the following description: X and Y refer to the width and the total number
of NAFBlocks, respectively.

One can see that the target PSNR and inference time on GPU lie between [32.87,
29.00] (dB) and [293, 19] (ms), respectively. The goal was to achieve at least 24 fps,
so we chose the NAFNetLocal-16-18 as the baseline for our future experiments. We
did not select more lightweight versions due to a much more significant drop in
accuracy, e.g., the decrease in PSNR between NAFNetLocal-16-9 and NAFNetLocal-
16-18 is 1.06 (dB), which is a bad trade-off for 9 (ms) in our opinion.

After selecting the baseline for future experiments, we got another 6.7 millisec-
onds to spare for changing it for modification. In general, we achieved a speedup
of x4.45 for CPU, and x8.37 for GPU, while a PSNR accuracy drop of 1.72 (dB) com-
pared to the original NAFNetLocal-32 to NAFNetLocal-16-18. The following Section
will give a more detailed analysis of inference time and memory consumption.



Chapter 6. Results 24

Model name Metrics Inference time Inference time
(PSNR, SSIM) Mobile CPU (ms) Mobile GPU (ms)

Original NAFNetLocal-32-36 (32.87, 0.960) 423 293
NAFNetLocal-32-18 (32.17, 0.951) 170 95
NAFNetLocal-16-36 (31.80, 0.948) 147 89
NAFNetLocal-16-18 (31.14, 0.942) 95 35
NAFNetLocal-16-9 (30.08, 0.931) 75 24
NAFNetLocal-8-9 (29.00, 0.915) 43 19

TABLE 6.1: Baseline modifications inference time on mobile device

6.2 Onnx Runtime Optimizations impact

This section aims to observe the impact of the Onnx Runtime quantization from
FP32 to QInt8 and hardware-based graph optimizations. To do so, we measured the
inference time and memory consumption on the mobile device for various models
from the previous section.

Also, one can clearly see from Table 6.2 and Table 6.3 (“Default” column means -
without appliance of any optimizations and quantization): with the Onnx Runtime,
we managed to achieve a speedup of x3.6 on average (Default, CPU vs Quantized
+ Optimized, GPU), as well as less memory usage x2.33 for GPU runtime and x2.95
for CPU runtime.

During the analysis of the peak memory consumption in Table 6.3, we found out
that the memory consumption for the GPU’s execution provider was higher than
for the alternative - CPU. We expect this happens because the preloader allocates
more RAM, as the GPU executor is faster than the CPU. Also, after optimizations,
all models have relatively low peak memory consumption, which is acceptable for
our mobile device.

Model name Default, Quantized QInt8, Optimized FP32, Quantized + Quantized +
CPU (ms) CPU (ms) CPU (ms) Optimized, Optimized,

CPU (ms) GPU (ms)

NAFNetLocal-32-36 930 540 780 423 293
NAFNetLocal-32-18 455 222 321 170 95
NAFNetLocal-16-36 310 183 220 147 89
NAFNetLocal-16-18 150 121 140 95 35

TABLE 6.2: Impact on inference time after optimizations for baseline
modifications
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Model name Default, Default, Quantized + Quantized +
CPU (MB) GPU (MB) Optimized, Optimized,

CPU (MB) GPU (MB)

NAFNetLocal-32-36 630 740 190 305
NAFNetLocal-32-18 321 380 95 148
NAFNetLocal-16-36 220 253 84 121
NAFNetLocal-16-18 140 211 75 103

TABLE 6.3: Impact on memory consumption after optimizations for
baseline modifications

6.3 Depth-wise Separable Convolutions Modifications Im-
pact

For the selected modification of baseline - NAFNetLocal-16-18, we conducted a se-
ries of experiments:

• Replace the Convolutions inside the first two encoders and the last two de-
coders. For these layers, the activation map’s number of channels exceeds at
most 2C - 32 in our case, and - the highest operated resolution - at least H

2 x W
2 .

• In the opposite way to the first experiment, replace the Convolutions inside the
last two encoders and the first two decoders, as well as in all middle blocks.

• Replace all Convolutions inside the model architecture when possible (e.g.,
if the number of groups for the Conv2d is larger than 1, we cannot make a
replacement).

The above modifications are named “High resolution,” “Low resolution,” and
“All,” respectively in the Table 6.4 (Original states for no modification applied).

Modification Metrics MACs Inference time Inference time
(PSNR, SSIM) Mobile CPU (ms) Mobile GPU (ms)

Without (31.14, 0.942) 2.27 35 95
High resolution (30.62, 0.937) 2.23 45 120
Low resolution (30.85, 0.938) 2.25 41 112
All (30.51, 0.935) 2.22 52 130

TABLE 6.4: Depth-wise Separable Convolutions Modifications speed
performance

We found an inconsistency between the MACs number and the inference time
during the experiments: after the replacement, we observed a drop in inference
speed. It seems like parallelization inside the convolution took action, and even
though the overall time complexity is higher, the inference time remains lower. Un-
fortunately, the performance dropped in our case. We believe it happened due to
the specifics of the image restoration task – the model should not only encode the
signal as accurately as possible in some space but also decode from this space into
the restored signal accurately, in contradistinction to the image classification.
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6.4 Soft Attentions Modifications Impact

The accuracy metrics dropped after adding the naive Soft Attention (SA) inside the
NAFNetLocal-16-18. Thus, we did several experiments to encounter this issue by
replacing operations:

• Activation: ReLU -> GELU

• Normalization: Batch Normalization -> Layer Normalization

• Upsample: Bilinear interpolation -> Transpose Convolution

Ideally, it would be better to experiment with different interchanges of these re-
placements. However, due to limited resources, we set the experiment in the way of
adding consecutive changes.

Modification
Metrics,
(PSNR, SSIM)

Inference time
Mobile GPU (ms)

Memory consumption
Mobile GPU (MB)

Without (31.14, 0.942) 35 103
Naive SA (30.85, 0.940) 38 110
Activation (31.10, 0.941) 39 112
Activation + Normalization (31.24, 0.943) 42 120
Activation + Normalization +
Upsample

(31.16, 0.942) 45 139

TABLE 6.5: Soft attention modifications impact on performance

One can see from Table 6.5 that replacing the activation function and normal-
ization gives us the PSNR increase of 0.10 (dB) with an inference time increase of 7
ms 20% relative to the initial, which is acceptable for our goal. On the other hand,
replacing the Upsample operation raises the accuracy drop and inference time in-
crease. Thus we discard this exact modification.

For the final model, we select "NAFNetLocal-16-18-SA," which stands for NAFNetLocal-
16-18 with the modified Soft Attention, as it offers a great trade-off between accuracy
and mobile inference time.

6.5 Losses tuning

For this experiment we select different types of training losses for our final model.
One can see from the Table 6.6, that the training with a combined Charbonnier and
FFT loss gives the best performance in terms of accuracy metrics.

Model name Loss type
Metrics,
(PSNR, SSIM)

NAFNetLocal-16-18-SA PSNR (31.24, 0.943)
Charbonnier + FFT (31.36, 0.944)
PSNR + FFT (31.25, 0.942)

TABLE 6.6: Final model performance for different training losses
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6.6 Conclusions

We have selected two models for the final comparison:

• Original baseline: "NAFNetLocal-32" (NAFNetLocal-32-36)

• Final model: "NAFNetLocal-16-18-SA"

We have accomplished a 23.8 ≈ 24 frames per second (FPS) speed on a mobile de-
vice while maintaining an acceptable peak memory consumption (120 (MB)) for the
entire application (Table 6.7). Our proposed approach resulted in a PSNR drop of
1.51 and a speedup of x6.7 times faster than the original architecture.

Although there was a slight decrease in accuracy, the visual performance of the
model remained sufficient, as one can see in the Figure 6.1. Therefore, this approach
can be utilized for various tasks such as the pre-processing algorithm for object de-
tection, semantic segmentation, and more.

FIGURE 6.1: The proposed final model visual performance
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Model name
Metrics,
(PSNR, SSIM)

Inference time
Mobile GPU (ms)

Memory consumption
Mobile GPU (MB)

Original
NAFNetLocal-32

(32.87, 0.960) 293 305

Proposed
NAFNetLocal-16-18-SA

(31.36, 0.944) 42 120

TABLE 6.7: Final model performance comparison
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Chapter 7

Summary

7.1 Contributions

The main contributions of this thesis are as the following:

• Conducted an investigation into the practical application of state-of-the-art
(SOTA) solutions for mobile devices designed to deblur images.

• Proposed an efficient U-Net-like approach for a real time mobile application.

• Assessed the effectiveness of Onnx Runtime optimizations for the mobile ap-
plication.

• Reintroduced the use of Soft Attentions in skip connections for U-shaped ar-
chitectures.

• Highlighted the issues related to using MACs metric for comparing model
speed, using depth-wise separable convolutions as an example.

7.2 Future Work

• The single blurry image has infinite possible solutions; thus, learning the dis-
tribution can improve visual performance, as the training process is not so
strict.

• Use the Tensorflow-Lite for graph optimizations for better speed acceleration
and more supported layers.

• Investigate the attention maps inside the Soft Attentions to achieve better per-
formance.

• Use the modern encoder pre-trained on a large dataset.

• Improve the model generalization by using various augmentation methods.
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