
UKRAINIAN CATHOLIC UNIVERSITY

BACHELOR THESIS

Development of Frontend for a Podcast
Hosting Platform with the use of Reactive

Programming Paradigm

Author:
Roman BLAHUTA

Supervisor:
Pavlo BEREZIN

A thesis submitted in fulfillment of the requirements
for the degree of Bachelor of Science

in the

Department of Computer Sciences
Faculty of Applied Sciences

Lviv 2022

http://www.ucu.edu.ua
http://researchgroup.university.com
http://department.university.com

i

Declaration of Authorship
I, Roman BLAHUTA, declare that this thesis titled, “Development of Frontend for a
Podcast Hosting Platform with the use of Reactive Programming Paradigm” and the
work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

ii

“The beautiful thing about podcasting is it’s just talking. It can be funny, or it can be
terrifying. It can be sweet. It can be obnoxious. It almost has no definitive form. In that
sense it’s one of the best ways to explore an idea.”

Joe Rogan

“Podcasts free up, say, two hours a day for people to engage in educational activities that
they wouldn’t otherwise be able to engage in, and that’s about one eighth of people’s lives. So
podcasts hand people one eighth of their life back to engage in high-level education.”

Jordan Peterson

iii

UKRAINIAN CATHOLIC UNIVERSITY

Faculty of Applied Sciences

Bachelor of Science

Development of Frontend for a Podcast Hosting Platform with the use of
Reactive Programming Paradigm

by Roman BLAHUTA

Abstract

Over the course of the last several years, both humanity’s lifestyle and social trends
have changed drastically. One of many phenomena that appeared as a result of both
new social restrictions and new digital opportunities is the podcast genre’s extreme
rise to popularity.

There are two digital tools integral to creating podcasts: a streaming platform and
a hosting service. While the market is flooding with many well crafted audio and
video streaming services, there is a noticeable lack of podcast hosting services with
well crafted UI, thought through UX and user flow, and lack of features to either
affect a wider audience or to make the process of application’s usage more comfort-
able and productive.

In order to solve these problems, a careful research should be conducted and there
should be provided a new solution with both new nad reimagined old feature, a
carefully designed structure and functionality. These efforts are necessary in order
for this unique genre of content to thrive and serve people well, providing great en-
tertainment and education.

Links:

• Project Repository:
https://github.com/RomanBlahuta/Amphora-Podcast-Hosting

• Design File:
https://www.figma.com/file/Kis5gzAQxMfTcePSfcCTRd/Podcast_Host...

• Application Architecture Diagram:
https://drive.google.com/file/d/1PxZ6LGLTEEWHH6OWyCNiFJFr2ZxM...

HTTP://WWW.UCU.EDU.UA
http://department.university.com
https://github.com/RomanBlahuta/Amphora-Podcast-Hosting
https://www.figma.com/file/Kis5gzAQxMfTcePSfcCTRd/Podcast_Hosting_Design?node-id=0%3A1
https://drive.google.com/file/d/1PxZ6LGLTEEWHH6OWyCNiFJFr2ZxMJbcJ/view?usp=sharing

iv

Acknowledgements
First of all, I want to thank my thesis supervisor Mr. Pavlo Berezin for guiding me
and providing advice about both technical moments and ideas how to organize the
development and research in the most productive way. He was always available,
initiative, honest and critical of my work in the best way possible.

I would also like to thank Denys Ivanenko, a member of our development team
and a fellow student, whose thesis included the development of the Backend for
this platform, and Mr. Joe Lindsley – a good friend from the United States of Amer-
ica, a professional journalist and the host of the "Speak Freely" podcast for providing
important insights and allowing to personally experience a recording session.

I also want to express gratitude to the Flaticon website for providing free icons of
high quality for designing and developing this podcast hosting application.

v

Contents

Declaration of Authorship i

Abstract iii

Acknowledgements iv

1 Introduction 1
1.1 Task Definition . 1
1.2 Methodology . 2

1.2.1 Research . 2
1.2.2 Design . 3
1.2.3 Development . 3
1.2.4 Testing . 3

1.3 Contributions . 4
1.4 Thesis Structure Overview . 4

1.4.1 Chapter 2: Research . 4
1.4.2 Chapter 3: Proposed Solution . 4
1.4.3 Chapter 4: Perspective . 4
1.4.4 Chapter 5: Conclusions . 4

2 Research 5
2.1 Problem . 5
2.2 Market Research . 5

2.2.1 Anchor by Spotify . 5
2.2.2 Podbean . 5
2.2.3 Buzzsprout . 6
2.2.4 Libsyn . 6

2.3 Technical Research . 7

3 Proposed Solution 10
3.1 Idea . 10
3.2 Implementation . 11

3.2.1 Reimagined Data Management Design 11
3.2.2 User-Friendly UI/UX . 12
3.2.3 In-App Audio Recording . 12
3.2.4 Improved Performance and Optimization 12

3.3 Architecture . 13
3.3.1 Architecture of Angular Applications 13
3.3.2 Additional Architectural Approaches 14
3.3.3 State Management and the Reactive Approach 15
3.3.4 Additional Use Cases for Reactive Programming 17
3.3.5 Communication with Backend 18
3.3.6 Architecture Diagram . 19

vi

3.4 User Flow . 20

4 Perspective 23
4.1 Analytics . 23
4.2 Further Streaming Integration . 23
4.3 Notifications . 23
4.4 Advanced Promotion . 24
4.5 Improved Media Content . 24
4.6 Improved Design . 24
4.7 Hosting Service Migration . 24
4.8 Adaptive Design for All Device Types 24
4.9 Monetization . 25
4.10 Improved Search . 25
4.11 Tutorials . 25

5 Conclusions 26

Bibliography 28

vii

List of Figures

3.1 Angular Application Architecture . 14
3.2 "Amphora" Podcast Hosting Platform Frontend Architecture 19

viii

List of Tables

3.1 Architecture of an Angular Application 13
3.2 Details of "Amphora’s" architerctural approaches 15
3.3 State Management . 15

ix

List of Abbreviations

HTML Hypertext Markup Language
CSS Cascading Style Sheets
DOM Document Object Model
SCSS Sassy Cascading Style Sheets
SASS Syntatically Awesome Style Sheets
PWA Progressive Web Application
MVP Minimum Viable Product
CRUDL Create Read Update List
GUI Graphical User Interface
UX User Experience
UI User Interface
URL Uniform Resource Locator
DTO Data Transfer Object
RSS Really Simple Syndication
REST REpresentational State Transfer
API Application Programming Interface

x

In the loving memory of Yevhen Podoliuk and Orest Blahuta,
my dear grandfathers.

Dedicated To my family: Roman Blahuta (father), Roksolyana
Blahuta (mother), Roksolyana-Mariya Blahuta (sister), Mariya
Blahuta (grandmother), Halyna Podoliuk (grandmother), Ihor
Zhovtulia (godfather), Halyna Zhovtulia (aunt) for providing

me with best possible education and opening endless
opportunities in my life.

1

Chapter 1

Introduction

The recent years and the circumstances they brought upon the humanity have cer-
tainly changed the way of life of every single person on this planet. The lengthy
and sudden COVID-19 pandemic, Ukrainian-Russian War and the global crisis they
brought as a consequence made all of us adapt and come up with a new day-to-day
routine, different way to handle our hobbies, work, education and social life.

These drastic changes influenced the development of new trends in all areas of our
life. One of the results of our sudden change of lifestyle is the sudden growth of the
podcast genre’s popularity since it is a type of content that can be easily produced
while following all the new restrictions and even more so the lengthy nature of this
content format allows people to fill the suddenly great amount of free time with in-
teresting and usually educational information while not preventing them from per-
forming their daily tasks in parallel.

Consequently, any instruments and products meant to optimize the process of pro-
ducing and consuming podcasts have been in especially huge demand for the last
three to four years. Spotify, Google Podcasts and Apple Podcasts are only a few
examples of successful podcast streaming platforms that brought a safe and com-
fortable experience to all podcast listeners.

Yet the market (especially in Ukraine) for digital tools meant for podcast hosting
and management still has more than enough space for growth. Most of such ser-
vices have an extreme lack in quality of their respective user interfaces both from
the UI and UX perspectives, lack of automated features or could provide more func-
tionality for their users’ comfort.

1.1 Task Definition

It is important to outline the minimum viable functionality of the application for the
purposes of podcast hosting:

1. Complete user system;

2. User dashboard page with content overview and general settings;

3. Content management:

(a) Complete Podcast (or Show) CRUDL: Create form, edit form, delete, add
episode;

Chapter 1. Introduction 2

(b) Complete Episode CRUDL: Create an episode and add it to a show, re-
move an episode, edit episode data;

4. Streaming integration with most major listening platforms and generation of a
RSS streaming feed;

The goals of this thesis can be listed as follows:

1. Conduct a thorough research of the local and global market for digital podcast
hosting and distributing solutions;

2. Conduct research and interviews with the target audience for this service;

3. Provide a solution to common UI/UX problems of existing solutions;

4. Increase service’s Frontend productivity and decrease resource consumption;

5. Create a UI that keeps the information up-to-date as soon as the changes arrive;

6. Implement MVP version of the application;

7. Implement features that provide a rich functionality and improve the listed
downfalls of alternative services;

The application flow should be designed in a way that it does not require:

1. Unnecessary efforts from the user to navigate and use the application;

2. Lengthy investigation for the newcomers to the podcasting industry;

3. Additional efforts to see the result of their actions displayed on the GUI in real
time (page reload, extra navigation etc.);

The application should provide:

1. An intuitive navigation system;

2. Comfortable user flow;

3. Always up-to-date data to display, as soon as the changes arrive;

4. Acceptable loading times;

5. Up-to-date UI/UX design;

6. Hight customizability for content;

7. Well structured data display;

1.2 Methodology

1.2.1 Research

The research necessary for defining the application’s functionality was conducted in
the following way:

1. Interviews with podcast hosts, investigating videos and articles about podcast
hosting for further insight into the field;

Chapter 1. Introduction 3

2. Investigation of functionality of podcast streaming services;

3. Investigation of the existing podcast hosting services (including hands-on ex-
perience), their strengths and weaknesses, moments that can be improved and
processes that can be optimized;

4. Composing general plan of the application;

5. Reviewing the initial application flow structure and functionality with podcast
hosts;

1.2.2 Design

1. Investigation of free resources for GUI elements design;

2. Analysis and testing of the existing alternative services’ UX/UI design, their
applications’ navigation tree and user flow planning;

3. First design release and review of the user flow;

4. Iterative improvement cycles;

1.2.3 Development

1. Choosing technologies for development stack;

2. Project set up, configuring linter, redux devtools and other additional instru-
ments for development;

3. Architecture planning and setup;

4. Development of UI pages and components;

5. Utility code implementation: error handling, route guards, local storage wrap-
per etc.;

6. View logic implementation: adding state, callbacks, http requests etc.;

7. Final refactor and code clean-up;

1.2.4 Testing

1. Development Testing: during the course of system development, numerous
integration and system testing iterations were performed by the development
team.

2. Testing by associates: additional test were performed by our associates, who
are not a part of the podcasting community, but were familiarized with the
flow of this application and its purpose. The tests were performed to deter-
mine the quality of the UI markdown and the overall User Experience. Testers
were also involved in basic bug and error detection.

3. Testing by beta-version users: after the development of a significant part of the
application was done, we ran several tests with local podcast hosts in order to
determine the product quality on an industrial level.

Chapter 1. Introduction 4

1.3 Contributions

1. To our knowledge, this will be the first podcast hosting service on the Ukrainian
market;

2. Improved user flow and UI/UX for podcast hosting applications;

3. Record-and-host feature right inside the application;

4. Fast and easy integration with the major media streaming services;

5. Reimagined structure of data orgnaization for podcasts (Shows), episodes and
episode subsets (series) in a podcast;

6. Simplified user flow and automated functionality;

7. Ability to integrate with most popular streaming services with little effort;

1.4 Thesis Structure Overview

1.4.1 Chapter 2: Research

In this chapter, there are present problem formulation, details of the research process
and its results, currently existing solutions and the solution methods that were con-
sidered during the research phase of the thesis. These methods are compared with
each other in detail.

1.4.2 Chapter 3: Proposed Solution

This chapter contains the chosen solution option for this thesis, the methodology of
the solution is described. This part of the thesis also goes into the technical details
of the application, its architecture and overall implementation, and the restrictions
imposed on the development process.

1.4.3 Chapter 4: Perspective

This chapter describes the perspectives and future development of this project, list-
ing ideas for improvement or additional features which did not make it into the
current scope for a number of reasons which will be also stated in this part of the
thesis.

1.4.4 Chapter 5: Conclusions

Chapter 5 will be the ending chapter of the thesis, containing the main points of my
project and research, their current and future results.

5

Chapter 2

Research

2.1 Problem

In order to create podcasts, there are two essential tools that the content-makers
need: a streaming platform and a hosting service. The author needs to provide the
streaming platform with a RSS feed, that will pass the data of their podcast (audio,
cover image, podcast details such as category, description etc.) to the streaming plat-
form.

While the market for audio streaming platforms has been overrun with tons of care-
fully crafted services, the amount of well-made hosting platforms is surprisingly
low. Many of these services are severely outdated, both in terms of logic and UI/UX.

2.2 Market Research

Since the topic of this thesis is developing an improved UI for such platforms, a
corresponding research was conducted to outline the usual flaws in current solutions
for the outlined topic.

2.2.1 Anchor by Spotify

Anchor is a mobile application developed by the Spotify team. It includes tools to
both record a podcast on your mobile device and publish it to the audio streaming
platforms. It also integrates ads and podcast hosting features in addition to the onse
listed above. It is a very simple app for beginners with a reliable implementation.
Yet still, this application has several major flaws that should be pointed out:

1. All podcasts are published on Anchor’s profile instead of the author’s;

2. This service lacks configurability and detailed customization of content (and
UI for the corresponding purposes);

3. The application lacks integration with less known or local streaming platforms;

2.2.2 Podbean

Podbean is a web service that provides podcast hosting and integration with ma-
jor streaming platforms. Podbean also offers their own monetization platform, even
though it is limited by a pricing plan. The main issues with the frontend side of the
applications are slightly outdated UI/UX and weird user flow. Here is an example:
after signing up, the user is sent to their dashboard, but for some unknown reason,

Chapter 2. Research 6

just right after being authorized, if the user decides to create an episode, the appli-
cation promts them to authorize once again and completely blocks and disrupts the
user flow. The person using this application gets sent back to the signing in form
and has to enter their credentials once more. Such problems have been noticed sev-
eral times during the investigation of this service and could definitely be improved
upon. The main problems of this platform can be listed as follows:

1. Inconsistent and non-intuitive user flow;

2. Outdated UI/UX design;

3. Limited possibilites of monetization;

2.2.3 Buzzsprout

A podcast hosting service with a formidable UI and serious statistics functionality.
While definitely being a great choice for hosting your podcast there is still place to
grow. The main functionality pages slightly lack in UI design (especially in compar-
ison to their amazing landing page), the functionality is rather simplistic. While it is
a big advantage for beginners, there should definitely be some advanced features for
those who take their podcast content seriously. Also while providing functionality
for directories, the episodes and other content can be structured and displayed in a
better way: search system, advanced filters, splitting content into categories etc. The
following main issues were outlined during the investigation of this service:

1. Outdated UI design;

2. Low content customizability;

3. Confusing content management: lack of proper search and filters, non-intuitive
directories functionality;

2.2.4 Libsyn

Another service for podcast hosting and distribution. Overall the platform is well-
made and has a wide range of offers such as integration with several popular stream-
ing platforms, monetization and statistics. Yet some issues still came up after a
deeper investigation - the loading times on this particular web application are some-
what long and disrupt the flow with noticeable pauses.

1. Lengthy loading times;

2. Performance issues;

3. Full page rebuilds;

The main conclusions of this research about problems with existing solutions can be
listed as follows:

1. Lengthy loading times;

2. Constant necessity for page reload;

3. Lack of structure in the view of content, complicated directory configurations;

4. Outdated design;

5. Lack of customizability of content, lack of detailed settings;

6. Chaotic user flow;

Chapter 2. Research 7

2.3 Technical Research

After the conducted research the following technologies were chosen in order to
develop "Amphora":

• Angular – a TypeScript-based free and open-source framework for single-page
web applications. The other option that was considered is React.JS but there
are several reasons why Angular is an objectively better choice of a framework,
especially for this project:

– Angular imposes a very well composed architecture, that is easily scal-
able, well organized, and improved;

– Angular uses TypeScript by default which introduces numerous useful
development features such as static typing, enumerations and interfaces
etc.;

– Angular provides the possibility to use reactive programming straight
out-of-the-box. It includes the RxJS reactive programming library by de-
fault and many parts of the framework heavily rely on it;

– Lazy loading for higher performance;

– Angular provides a rich UI component library;

– Angular provides the possibility to use CSS preprocessors right out-of-
the-box, providing three stylesheet options on the project set up stage:
CSS, SASS and SCSS. CSS Preprocessors enrich the default stylesheet syn-
tax with a wide variety of features which minimize code duplication, un-
necessary repetitions of prefixed classnames, and of course features such
as reusable pieces of style such as mixins, extending one class with an-
other etc.;

– Angular applications’ single page nature has numerous advantages, such
as low band width use which allows the app to work well even with a
slow internet connection, quick loading time, SPA makes it easy to add
advanced features to a web application (content editing web app with
real-time analysis. Doing this with a traditional web app requires a total
page reload to perform content analysis). Using a SPA approach for this
projectis a big advantage, because, as stated in the previous section of this
chapter, some applications really suffer from lengthy loading times and
constant need to reload the page;

– Built-in form validation – Angular includes FormsModule and Reactive-
FormsModule by default, while other frameworks typically rely on addi-
tional packages;

– Easily-programmed brower animations – the framework provides an easy
method of decorating components with numerous animations to provide
a prettier user experience;

– Angular integrates extremely well with another technology – Ionic Frame-
work. Angular was the initial base framework for use with Ionic and pro-
vides numerous possibilities to expand the web application into a PWA
and even a web-view mobile application.

– While React.JS also has access to some of these features, none of them
come preinstalled during set up and require a lot of additional effort to
integrate into the project. React.JS’s default disorderly nature and lack of

Chapter 2. Research 8

architecture imposes a lot of risks during the beginning of the develop-
ment, especially when planning the project’s structure and dataflow.

• Ionic Framework – a complete open-source SDK for hybrid mobile and pro-
gressive web app development. It was included for its useful component li-
brary and the perspective of expanding the project into other fields of pro-
gramming without necessity to create a completely new project;

• NgRx – a state management library for Angular which uses the Redux architec-
ture and utilizes the reactive programming paradigm. It provides simple and
quick dataflow within the application and allows the user to see changes on
their screen in real time, as soon as the change is made. The reactive approach
and simple structure had the final say when choosing this state management
method instead of any alternatives;

• NgRx/Effects - an additional library for the beforementioned Redux-inspired
reactive state management solution for Angular. This library adds an addi-
tional layer of logic to the classical Redux approach consisting of actions, re-
ducers and selectors (or alternative ways of reading a needed value). This layer
is the store Effects - a sort of middleware that performs additional logic after
an action is dispatched and before it enters the reducer. The usage of Effects
is best described in the corresponding chapters of Farhi, 2017: "I like to think of
ngrx/effects as a layer that groups several actions as a specific chain of reactions. This
leads to organize the code in such a way that the logics for side effects are placed in a
dedicated directory- "effects" - while services are managed separatley in the "services"
directory."

• RxJS – a library for reactive programming using Observables, to make it easier
to compose asynchronous or callback-based code. It provides better perfor-
mance, better modularity and better debuggable call stacks;

• CryptoJS – a JavaScript library for encryption of sensitive data such as access
tokens and client secrets etc.;

Angular and its single page approach should solve the problem of unnecessary
consuming of extra resources. There will be no lengthy loading times during navi-
gation, entire page rebuilds and many other common flaws of traditional websites:
"Every web developer knows how problematic is page navigation in a web application, be-
sides of bandwidth wasting and process time rebuilding entire pages more problems make web
development painful like unwanted caching, back/forward buttons, desynchronized forms
caused by the "form auto-fill" feature of some browsers and so on." Santamaria, 2015.

Another important point of this technical research is how advantageous the reac-
tive approach really is. Using RxJS for handling all of the asynchronous tasks of the
proposed application is a great alternative to common Promise and callback based
tactics and other ways of handling requests, browser events etc. Reactive Extensions
library has a number of advantages that are well described in great detail in the 1.3
and 1.4 subchapters of Daniels, 2017.

In short, RxJS treats all its asynchronous tasks as data streams called Observables,
thus unifying both the way of developer’s thinking and the coding approach inside
the program.

Chapter 2. Research 9

"Reactive Extensions for JavaScript (RxJS) is an elegant replacement for callback or Promise-
based libraries, using a single programming model that treats any ubiquitous source of
events—whether it be reading a file, making an HTTP call, clicking a button, or moving
the mouse—in the exact same manner. For example, instead of handling each mouse event
independently with a call back, with RxJS you handle all of them combined." Daniels, 2017

This library provides easily readable and testable ways of managing complex asyn-
chronous work, by organazing it in a linear way using a wide range of functions
called operators. This is an amazing alternative to the usual nested callbacks that
turn the task of trying to test and understand a certain part of asynchronous code
into an entire journey.

RxJS also provides great performance due to a large number of optimizations con-
tributed to this project by a massive community of open-source developers across
the world. RxJS has a well organized memory leak management, easy methods of
unsubscribing from unnecessary streams to lower resource consumption and many
more noticeable advantages that easily convince one to use this library that is so rich
in functionality.

10

Chapter 3

Proposed Solution

3.1 Idea

The solution to the outlined problems is the creation of a new podcast hosting plat-
form titled "Amphora". This application’s goal is to provide the users with as many
automated functions as possible. The application will feature the MVP functionality
and many more features, listed in the following enumeration:

1. Email verification for extra security;

2. An intuitive password renewal process;

3. Detailed content customizability:

(a) Create form, edit form, delete, add episode, upload show cover and add
or remove Series (subcategory tag that groups a set of show’s episodes by
a common theme);

(b) Create an episode and add it to a show, remove an episode, edit episode
data, add an episode to a series, upload episode cover, upload audio-file
or record it on-the-fly inside the app;

4. In-app recording functionality for express podcasts;

5. Structurization of data by splitting the episodes between shows and series;

6. UI with modern design and up-to-date data display with no need to reload the
page;

7. Acceptable loading times for the application and data inside it;

8. Search system and display filters;

9. Intuitive and consistent user flow inside the application;

10. Select streaming options for a show with a single click and get the integration
link to a RSS-feed file that needs to be inputted into the streaming service. This
process will be automated with those services that support this feature;

11. User-friendly admin panels;

12. A mailing system - sending notifications, confirmation letters etc.;

13. Fully animated pop-up system;

14. Built-in media player;

15. Reactive data display and state management;

Chapter 3. Proposed Solution 11

16. Formidable optimization of productivity;

The following features will significantly improve the UX while providing a rich set
of features just like existing services and even more. The application will be com-
fortable to use for both newcomers and veterans of the podcasting community. The
application and its features will be described in greater detail in the next section of
this chapter.

3.2 Implementation

The implemented application provides a wide range of useful features for its users.
Many of those features are ment to solve the beforementioned problems of alterna-
tive services, improve the use experience and make sure the users can manage their
podcasts with ease and comfort.

3.2.1 Reimagined Data Management Design

This application features a major improvement - the episodes that the user uploads
are automatically associated with more general entities: Shows and Series. This is a
pretty intuitive and convenient way to approach the potentially massive amount of
content that the user may produce. A Show or a Podcast obviously features episodes.
Those episodes inside a show can be a part of a smaller content group called Series.
This way, the user can easily filter out all unnecessary data if they have a significant
amount of shows that they produce. Not only does this data organization help the
user navigate their content, it also requires almost no effort to set up, unlike the com-
plicated, unautomated and non-straightforward functionality of custom directories
of alternative services.

As it was stated, the application features three main entities that organize the data
and compose the main application flow: Shows, Episodes and Series. All of those en-
tities have a complete set of operations such as creation, editing, deletion and view.
The corresponding views are provided on the pages of the application with detailed
data display views, creation and editing forms. All parts of this functionality pos-
sess a reactive data flow in order to provide a great responsive experience, always
keeping the user up-to-date with their content information.

In order to effectively utilize the aforementioned data organization, several addi-
tional features were added to the application. While viewing their content the user
can filter out unnecessary data by searching the wanted piece of content via enter-
ing its title in the search bar. The user can filter out unwanted episodes using Series,
title, episode and season number.

All of the previously mentioned creation and edit forms provide detailed customiz-
abilty to the user’s content, ranging from basic properties such as title, description
and image cover, to more specific data such as episode type, season and episode
numbers, adding series, explicit content warning etc.

All of the content submitted by the user can be integrated with several major stream-
ing platforms with very little effort. "Amphora" ensures that the listeners will be able
to enjoy their favorite content, no matter what their preferred platform is.

Chapter 3. Proposed Solution 12

3.2.2 User-Friendly UI/UX

The application features a well thought-through UI design in order to provide a
great user experience while using the application. "Amphora’s" navigation is intu-
itive and the most important options are always present in the header of the page.
All main flows do not require a lot of actions and all functionality entry points are
positioned and labeled in a way so the user never gets lost. The UI pays attention
to detail and incorporates elements of Ancient Greek thematic elements to make the
UI design pleasant and interesting, so the users are aesthetically pleased and enter-
tained while traversing "Amphora".

An application that strives to build a big community of users definitely needs a
set of administrators to manage their clients’ needs. These people also need their
own UI in order to perform these important tasks and further improve the UX for
"Amphora’s" users while not lacking in great user experience themselves.

3.2.3 In-App Audio Recording

Another unique and useful feature that this app possesses is the ability to record
a podcast right in the application. When the user creates an episode, they have to
input a source file for their content. If the user wants to record a bonus episode or
they prefer an express format of content, the ability to record outside of their studio
where all of their usual equipment is located can be extremely useful. The user can
effortlessly record their content and immediately submit it and start hosting it with
the help of "Amphora", without ever exiting the application.

3.2.4 Improved Performance and Optimization

Due to a careful choice of technologies and tools for development of this platform,
the productivity of "Amphora" is noticeably greater. On the Frontend side, major ad-
vantages of Angular have significantly boosted the application’s performance. Sin-
gle page applications consume less bandwidth, load significantly quicker than tra-
ditional web applications and provide a more seamless user experience while also
removing unnecessary waiting time while navigating from one route to another. All
data is fetched asynchronously and delivered to the UI via Observable data streams.
The Backend part of "Amphora" also largely benefits from both its choice of technolo-
gies used and architectural design. The application’s backend is built with FastAPI
which provides great performance while offering a wide array of functionality. All
input-output operations on the Backend are performed asynchronously which no-
ticeably improves the performance.

Another important benefit from "Amphora’s" technical implementation is its always
up-to-date display of information. As soon as the user performs a corresponding
action in the application, the state management system implemented through the
NgRx library reacts to it and applies the changes to the UI, providing an incredibly
responsive experience for the user. The Store also fetches and posts data with the
help of Effects and provides the user with all of their information without the need
to reload the page.

Chapter 3. Proposed Solution 13

3.3 Architecture

The app utilizes the default Angular architectural approach while also expanding it
with several methods.

3.3.1 Architecture of Angular Applications

The architecture of Angular applications consists of the building blocks described in
the Table 3.1;

TABLE 3.1: Architecture of an Angular Application

Architecture
Part

Purpose Interacts With

Module Declares a compilation context for compo-
nents, associates them with related code,
services etc.

Components, Pages, Di-
rectives, Modules, Pipes

Component Defines a class that contains application
data and logic, and is associated with an
HTML template that defines a view to be
displayed in a target environment.

Components, Pages,
Directives, Modules,
Pipes, HTML templates,
Stylesheets

View/Page Sets of screen elements that Angular can
choose among and modify according to
your program logic and data

Components, Pages,
Directives, Modules,
Pipes, HTML templates,
Stylesheets

Service typically a class with a narrow, well-
defined purpose. Services separate
any additional logic from component’s
view logic for better ogranization and
reusablity. Services a re provided into
components, pages and other services via
Dependency Injection

Pages, Compontents,
Services, Modules

Directive Classes that add additional behavior to el-
ements in your Angular applications or
change the DOM layout

Components, HTML
templates, Styles

Pipe Simple function to use in template expres-
sions to accept an input value and return
a transformed value

Data

Router Enables navigation from one view to the
next. Defines the Route object that maps a
URL path to a component, and the Router-
Outlet directive that you use to place a
routed view in a template, as well as a
complete API for configuring, querying,
and controlling the router state.

Routing Modules, Com-
ponents, Services, Pages

The relationship between Angular’s architecture building blocks can be expressed
in the following diagram, taken from the official Angular documentation by Google
LLC, 2022:

Chapter 3. Proposed Solution 14

FIGURE 3.1: Angular Application Architecture

In short, module loads all declared elements, the page’s view itself is a compo-
nent consisting of other tags and components. Angular Injects a Service class into a
component in order to provide its logic in a reusable way. A component and its logic
interact with its HTML template through the following mechanisms: property bind-
ing - providing data from component class’ properties to the template, and event
binding - receiving user-initiated events from the template and handling them with
their respective callbacks. The template can be modified with a directive, which
either adds additional behaviours to the UI element or modifies DOM’s structure.
Each of these building blocks has their own respective metadata specified in decora-
tors (@Injectable(), @Component() etc.) so Angular knows the specific purpose and
behaviour of the class.

3.3.2 Additional Architectural Approaches

The application uses a modular architecture, meaning each page and component is
contained in a seperate module, which can be optionally included in a certain part
of the web application. This reduces the amount of recources that would be unnec-
essarily loaded, structures the application in a clear and concise way, and allows
lazy-loading - one of Angular’s important features. Lazy loading helps keep initial
bundle sizes smaller, which in turn helps decrease load times.The project also in-
cludes many interfaces, enumerations and other utility code.

"Amphora’s" architecture has several other elements that should be mentioned. A
detailed description is provided in Table 3.2.

Chapter 3. Proposed Solution 15

TABLE 3.2: Details of "Amphora’s" architerctural approaches

Architecture
Part

Purpose Interacts With

Model A configuration class for UI components.
Provides a unified way to transport all
necessary attributes to a component with-
out passing them seperately causing the
markdown to look extremely compli-
cated. All changes can simply be applied
to a class instance created in a Page Ser-
vice

Components, Services

HTTP Service Provides a wrapper class for Angular’s
HttpClient Service and contains all re-
quests needed for a certain part of the ap-
plication

State

State Consists of actions, reducer, selectors
and effects. Provides a single easily-
manageable data source for the entire ap-
plication

Services, Pages, Models

Page Service A regular service that provides compo-
nent model creation logic for a specific
page of the application

Modules, Pages, State,
Models, Components

3.3.3 State Management and the Reactive Approach

State management is implemented using the NgRx library. There are four main
NgRx Store parts of the state management part of the application. See Table 3.3
for further details.

TABLE 3.3: State Management

State manage-
ment

Purpose Interacts With

Action Triggers the reducer and effects in order to
modify state or perform side tasks

Reducer, Effects, Used in
callback and utility func-
tions/methods

Reducer Defines state in its initial and changed
forms, changes the state according to ac-
tions and their properties

Actions

Selector Provides an Observable stream of data no-
tifying changes to state, a part of it or pro-
duces values based on the state and its
properties

Services, Pages, Effects

Effect Middleware between the action and the
reducer, allows to execute additional code
before the action enters the reducer (trig-
gering HTTP requests, displaying pop-
ups etc.)

Actions, Selectors, Ser-
vices

Chapter 3. Proposed Solution 16

The NgRx Store heavily relies on RxJS and its Observables - a Producer of mul-
tiple values, "pushing" them to Observers (Consumers). Each Observable can be
subscribed to and processed with a callback function. The advantage of using Ob-
servables and RxJS is that each time a value that is used in the template is produced,
the UI is immediately updated. It allows the GUI to show the changes to the user
in realtime and provides great way to manage those values. In addition to RxJS’s
stream-like Observables and Subjects (Similar to observable, but allows multiple
subscriptions to a single stream), the library provides a rich variety of operators
to process, combine and alter those data streams in a easily manageable way. This
allows the developer to organize complex asynchronous tasks in a simple and read-
able way, avoiding callback hell etc. In order to use an Observable value in the UI,
the only thing we have to do is use the "async" pipe on it in the component’s tem-
plate like this: <h1> model.title | async </h1>. Or alternatively subscribe to the
Observable in the component’s code and set the emitted value to a property each
time. Then we use property binding and display that data on the UI.

As it was established earlier in this thesis, the NgRx Store is based on Observable
data streams. Here are a couple examples of use of reactive programming in the
application’s state management:

• When we want to retrieve a value from state, we use a selector. The selector
returns an Observable value with a generic type of whatever value you wish
to select, then you can optionally alter the Observable value with the use of
reactive operators such as map, filter etc. Then you can extract the value as
described in paragraphs above and receive an always up-to-date value with
each change straight to the UI. Here is an example of such case:

1 export const s e l e c t U s e r S t a t e = c re a teFea tureSe lec to r <fromUser . IState >(

2 fromUser . userFeatureKey ,

3) ;

4
5 export namespace U s e r S e l e c t o r s {

6 export const s e l e c t E m a i l = c r e a t e S e l e c t o r (

7 s e l e c t U s e r S t a t e ,

8 (s t a t e) => s t a t e . email ,

9) ;

10 // ...

LISTING 3.1: Selector code example

1 publ ic userEmail : Observable<s t r i n g >;

2 // some component code...

3
4 t h i s . userEmail = t h i s . s t o r e $. s e l e c t (U s e r S e l e c t o r s . s e l e c t E m a i l ()) ;

LISTING 3.2: Selector call example

1 <div c l a s s ="dashboard__section-profile-data">

2 . . .

3 <h3 c l a s s ="dashboard__section-profile-data-email font-profile-description"> { { (userEmail | async
) || ’ ’ } } </h3>

4 . . .

5 </div>

LISTING 3.3: Selector usage in template example

This is the simplest example of selecting a value. In the examples you can also
notice feature selectors and feature keys, which are also an important part of
state management. A feature key defines a string that is going to be a name of
the property on the big Store state management object, to which a piece of state

Chapter 3. Proposed Solution 17

corresponds. The overall application state is a big object that has nested objects
which correspond to a state of a part of the program. For example one of such
states can be a sign in page state with a feature key "signIn". When we want
to give a state base for a selector, so it knows which part of the application has
the properties to select in current use case, we define a feature selector, which
is provided with the feature key.

• In order to trigger some side effects to an action being dispatched, we use
NgRx Effects. This is a class with Observable properties which take an Ob-
servable stream of actions, and modify the input Observable through the use
of reactive operators. The usual structure of an Effect inside this application
can be described in the following way:

– Take the actions Observable and use a .pipe() function on it.

– Pipe the ofType() operator with an action which will trigger the effect as
an argument

– If necessary, call withLatestFrom() or similar operators with a selector as
an argument to get extra data from state

– Perform necessary tasks either by using a tap() operator or using other
operators such as switchMap() (On each emission the previous inner ob-
servable (the result of the function you supplied) is cancelled and the new
observable is subscribed.) for triggering http requests with Observable
responses etc.

– Perform any other alterations and mappings if necessary with RxJS oper-
ators

– Configure the effect (should the action trigerring the effect be dispatched
to the reducer etc.)

3.3.4 Additional Use Cases for Reactive Programming

Most of Observable values are used inside component models as a sort of value
controllers for inputs, paginations and other interactive UI elements. Additional
use cases of reactive programming are such as emitting a value after an event has
ocurred to alter the icon through an Observable model etc. Reactive approach allows
great interactivity with a readable and relatively simple implementation.

1 <amphora−icon [model]="profilePictureModel"></amphora−icon>

LISTING 3.4: Component Model Usage Example

1 publ ic prof i l eP ic tureModel : AmphoraIconModel ;

2 // Component code...

3 t h i s . pro f i l eP ic tureModel = t h i s . dashBoardService . c r e a t e P r o f i l e P i c t u r e () ;

4 // ...

LISTING 3.5: Component model instantiation Example

Chapter 3. Proposed Solution 18

1 export i n t e r f a c e IOpt ional {

2 inputType ? : InputFieldTypesEnum ;

3 onInputLis tener ? : (value : s t r i n g , inputModel : AmphoraInputFieldModel) => void ;

4 s i z e ? : I S i z e ;

5 placeholder ? : s t r i n g ;

6 }

7
8 export c l a s s AmphoraInputFieldModel {

9 publ ic value$: Observable<s t r i n g >;

10 publ ic opt iona l : IOpt ional ;

11 publ ic va l id : boolean ;

12 publ ic disabled : boolean ;

13
14 c o n s t r u c t o r (value$: Observable<s t r i n g > , opt iona l ? : IOpt ional) {

15 t h i s . value$ = value$;

16 t h i s . va l id = t rue ;

17 t h i s . d isabled = f a l s e ;

18
19 t h i s . op t iona l = {

20 onInputLis tener : opt iona l ? . onInputLis tener || undefined ,

21 inputType : opt iona l ? . inputType || InputFieldTypesEnum . TEXT ,

22 placeholder : opt iona l ? . p laceholder || ’’ ,

23 s i z e : {

24 width : opt iona l ? . s i z e ? . width || 480 ,

25 widthUnit : opt iona l ? . s i z e ? . widthUnit || UnitsOfMeasurementEnum . PX ,

26 height : opt iona l ? . s i z e ? . height || 56 ,

27 heightUnit : opt iona l ? . s i z e ? . heightUnit || UnitsOfMeasurementEnum . PX ,

28 widthDiff : opt iona l ? . s i z e . widthDiff || 0 ,

29 h e i g h t D i f f : opt iona l ? . s i z e . h e i g h t D i f f || 0 ,

30 widthDiffUnit : opt iona l ? . s i z e . widthDiffUnit || UnitsOfMeasurementEnum . PX ,

31 he ightDi f fUni t : opt iona l ? . s i z e . he ight Di f fUni t || UnitsOfMeasurementEnum . PX ,

32 } ,

33 } ;

34 }

35
36 publ ic s t a t i c c r e a t e (value$: Observable<s t r i n g > , opt iona l ? : IOpt ional) : AmphoraInputFieldModel {

37 return new AmphoraInputFieldModel (value$, opt iona l) ;

38 }

39 }

LISTING 3.6: Component Model Example

3.3.5 Communication with Backend

Another use case of reactive programming inside the application is the implementa-
tion of communication with the server. "Amphora" uses a backend with a REST API
implemented using FastAPI and Python.

All HTTP requests are grouped inside HTTP Services, each corresponding to the
part of application logic that needs the beforementioned requests.

All requests are called via a method of a HTTP Service and the response is returned
wrapped into a one-time firing Observable with a generic type of a corresponding
DTO interface. DTO interfaces are present for each request payload and response for
every request called within the application. The requests are initiated by dispatching
an action into the NgRx Store, which in its place triggers an effect which calls one
of the methods of a HTTP Service. Then the response Observable is mapped into
a different action which dispatches the received data into the corresponding part of
the application state. If an error occurres, an error pop-up will be shown.

After that, all necessary data is already present in the application’s state and the
components render correspondingly to the data which they receive through the state
selectors.

Chapter 3. Proposed Solution 19

3.3.6 Architecture Diagram

The diagram below is a visualization of "Amphora’s" architecture, its building blocks
and their relationships. The diagram portrays the architecture on an example of the
flow of Sign In page. The rest of the pages and other parts of the application follow
the same principles of architectural design.

FIGURE 3.2: "Amphora" Podcast Hosting Platform Frontend Archi-
tecture

In short, the root module of this application is called App Module. The launch
starts with bootstrapping the root module and rendering the root component - App
Component. The root component has an Application service injected into it. This
service provides necessary logic to properly initialize the application. App Compo-
nent also contains a Router Outlet which provides all further navigation and dis-
plays a page corresponding to the current URL.

All routing is described in the so-called Routing Modules. App Routing Module
has a defined set of routes with corresponding lazy-loaded NgModules that contain
the page that will be displayed while on this route. In this case we are talking about
the Sign In Module and the Sign In Page.

The page contains its markdown of components and elements in the HTML tem-
plate and an injected Sign In page service that instantiates all Component Models.
After instantiation they are stored in page’s properties and get passed down to the
corresponding Components. The page is displayed for the user to view it and to
interact with it.

Another role of the beforementioned services is providing communication with the
application’s data storages: mainly NgRx Store and in several occasions the Local
Storage. The communication with the Store is implemented via Actions to dispatch
values into the Reducer that will alter the state object, and Selectors that will return

Chapter 3. Proposed Solution 20

an Observable stream of data from the needed part of state. Actions also play an
important role in the communication with Backend. While getting dispatched to the
Reducer, that also may trigger NgRx Effects that will send a request from a HTTP
Service. The response is mapped to a corresponding Action and is dispatched to the
Store.

3.4 User Flow

Below there will be short descriptions of user’s experience while navigating through
the app to achieve a couple of all of the main goals.

User’s navigation while using the application can be described in the following way:

1. User enters the application and is directed to the Landing Page

2. From here, user can choose either "Sign In" or "Sign Up" options in the header.

3. Signing Up:

(a) User enters their data: First name, Last name, Email and Password.;

(b) The user sees a pop-up with a prompt to check his email for a confirma-
tion letter;

(c) The user copies a confirmation token;

(d) The user closes the pop-up or presses "Resend letter" button if he didn’t
receive one;

(e) The user is directed to a form with an input field for the token;

(f) If verification was successful, the user is redirected to the Sign In page, or
sees an error otherwise;

4. Signing In:

(a) The user enters their credentials: Email and Password;

(b) If signing in was successful the user can enter the application and is redi-
rected to the Dashboard page. If the credentials are invalid, an error pop-
up is shown;

(c) If the user does not remember their password then they can click a "Forgot
Password?" link and be redirected to the Forgot Password page;

(d) The user enters their email;

(e) The user sees a pop-up with a prompt to check his email for a confirma-
tion letter;

(f) The user copies a confirmation token;

(g) The user enters the token and a new password. If all data is correct the
user will reset their password and be redirected to the Sign In Page. An
error pop-up will be shown otherwise;

After the user is authorized, they can navigate the app and utilize the main function-
ality. The only exception is if the user skipped the verification stage during signing
up. Unverified users cannot create any shows or episodes. The user can verify their
email from their dashboard.

Next, we will look into the Shows functionality flow:

Chapter 3. Proposed Solution 21

1. Creation

(a) On the dashboard, the user can see paginated previews of all their shows.

(b) Near the preview heading there is a "New" button

(c) Clicking it will navigate the user to a show creation form

(d) After filling all of the input fields, uploading a cover image and optionally
adding Series to the Show, the user can submit their data and a show will
be created.

2. View

(a) On the dashboard, the user can see paginated previews of all their shows.

(b) If the user hovers the cursor over a preview card, a "See More" button will
be shown.

(c) Clicking on this button will navigate the user to a show’s full view page.

3. Deletion

(a) The user can delete the show by clicking the "Delete" button on show’s
view page.

(b) The user will see a prompt in a pop-up asking them if they are sure about
deleting this item.

(c) From here the user can either confirm or cancel the deletion by clicking
corresponding buttons on the pop-up.

4. Edit

(a) The user can edit the show by clicking the "Edit" button on show’s view
page.

(b) The user will be redirected to a pre-filled form with show data.

(c) After the user edits all necessary fields, they can submit the form and the
show will be updated.

Now let’s look into the Episodes functionality flow:

1. Creation

(a) On the dashboard, the user can see paginated previews of all their shows.

(b) If the user hovers the cursor over a preview card, a "See More" button will
be shown.

(c) Clicking on this button will navigate the user to a show’s full view page.

(d) By clicking the "Add Episode" button, the user can access the episode
creation form.

(e) After filling in all input fields, the user can optionally assign a series to
that episode.

(f) The user uploads a cover image and a source audio file for the episode.

(g) Another option to provide an audio source file is to record in right in the
app by clicking the corresponding option button.

(h) After all data has been provided, the user can press "Submit" and an
episode will be added to the Show.

Chapter 3. Proposed Solution 22

2. View

(a) On the dashboard, the user can see paginated previews of all their shows.

(b) If the user hovers the cursor over a preview card, a "See More" button will
be shown.

(c) Clicking on this button will navigate the user to a show’s full view page.

(d) On this page there will be a paginated list of episodes with all necessary
information and an audio player.

3. Deletion

(a) After navigating to a show’s view page, the user can hover their cursor
over an episode card.

(b) Two buttons will be showm: "Edit" and "Delete".

(c) The user can delete the episode by clicking the "Delete" button.

(d) The user will see a prompt in a pop-up asking them if they are sure about
deleting this item.

(e) From here the user can either confirm or cancel the deletion by clicking
corresponding buttons on the pop-up.

4. Edit

(a) After navigating to a show’s view page, the user can hover their cursor
over an episode card.

(b) Two buttons will be showm: "Edit" and "Delete".

(c) The user can edit the episode by clicking the "Edit" button.

(d) The user will be navigated to a pre-filled form and will be able to apply
any changes made by clicking "Submit".

(e) After submitting the data, the episode will be updated.

Any additional navigation can usually be performed in one click through a button
inside the header. Before authorization the buttons lead to "Sign In" and "Sign Up"
options. If an authorized user goes back to Landing Page by clicking the logo etc.
they can navigate back to dashboard through a corresponding header button. If an
authorized user wants to log out they also will click a button in the application’s
header component.

23

Chapter 4

Perspective

The solution to the described problem requires an application, rich in functionality,
complex in architecture and requires a lot of collaboration with the community, sup-
porting platforms and needs a lot of organizational work done. While many of the
planned features were implemented, this chapter will list some more features and
work with community of the application that did not make it into this thesis’ scope.

Some ideas and possible methods for their realization are listed in the subsections
below.

4.1 Analytics

In order for a podcast host to be able to see their growth or decrease in listeners, they
should be provided with a wide range of data on how, when, by who and to what
degree their podcast is consumed within a requested time frame. The data shall be
represented by corrseponding interactive UI elements. Possible libraries that could
be used here are Chart.JS and D3.JS. A choice between these two tools will be made
depending on the complexity of the visualizations. Chart.JS is great for common
types of charts with high need in interactivity (tooltips, pop-ups), while D3.JS pro-
vides us with a big set of building blocks for a data visualization of almost any com-
lexity. Yet Chart.JS is much more organized and esier to use. Even thought D3.JS
provides high customizability for the charts and other graphic elements, this library
usually requires complex code structures in order to set up a necessary visualization.

4.2 Further Streaming Integration

We plan to expand the list of streaming services which we plan to add integration
with. Such potential options include Deezer, Audible, Stitcher, Amazon Music and
many more. Episode submission and processing will be as automatic as technically
possible so the load of work on the user becomes decreased for a better experience.

4.3 Notifications

The process of submitting an episode to a streaming platform consists of several
steps, one of which is validation by the streaming platforms moderating system.
Sometimes the content does not pass the moderation for numerous reasons, yet the
content owners pretty much never get notified of such incidents and have to figure
out what happened either after seeing the absence of their episode on the streaming
platform or after getting bad feedback from their audience. Including notifications

Chapter 4. Perspective 24

and other ways of communicating these problems to the podcast host will drastically
reduce the risks in their career and will certainly improve the UX.

4.4 Advanced Promotion

Another complication for podcast content-makers lies in promoting their content on
social media. For each of their streaming platforms they need to add a seperate link
resulting in cumbersome posts all over their socail platforms. The solution here is
to create a customizable one-page promotion sheet at our platform, a link to which
the content-makers can provide in their promotion posts for a better view. The page
will contain all necessary links in a comfortable view so the listeners can navigate
with ease to all platform they wish to use for consuming their favourite content.

4.5 Improved Media Content

Other planned features include improved UI and logic for audio players and image
loaders. Improved recording settings and other luxury features are also essential for
a great user experience. Another idea that we have is a podcast cover image gener-
ator. If a user does not have their own cover design due to being a non-proffesional
podcast host and doing this as a simple hobby, or due to some financial complica-
tions, the host can access the cover generator to use Amphora’s own custom designs.

4.6 Improved Design

Due to budget restrictions, the current state of the application UI does not feature
original icons and artwork. The current version of this application provides a sim-
plistic yet thought-through UI/UX design which is going to be improved and en-
riched in the near future.

4.7 Hosting Service Migration

Another important feature to include is the service migration mechanism. If a user
wants to switch from some other service to Amphora, they should have an easy
way of doing so with all their data preserved and set up to work immediately. The
list of migration mechanisms should include most of the popular services such as
Buzzsprout, Podbean, RSS etc.

4.8 Adaptive Design for All Device Types

The usage of Ionic framework provides great potential to transform this web appli-
cation into a PWA or a mobile application. Given that we orient this app to provide
the possibility to record a podcast right on the platform, it provides great potential
for express-podcasts that are potentially recorded out of the studio. Sometimes the
user might not have a laptop on them while a mobile device is present in almost
every single person’s pocket. Thus an improved adaptive design for all viewports
will also fix many downsides of the existing services providing a great solution to
common problems.

Chapter 4. Perspective 25

4.9 Monetization

Another important thing to mention is podcast monetization. For this type of con-
tent to be profitable, our service will integrate itself with relevant monetization
providers, one of which is Podcorn. This service centralizes monetization and con-
solidates independent podcasters, agencies and brands under one roof, giving more
choice to brands and podcasters to find the right fit.

4.10 Improved Search

More options and filters are planned to improve the user’s experience if they have
lots of content hosted. Filtering the data by all parameters will help the user specify
the exact set of shows or episodes the wish to see.

4.11 Tutorials

The app will feature a wide range of media and articles with thorough explanations
about the details of application usage for both newcomers and veterans of the pod-
casting community. This will allow users to quickly immerse themselves into the
flow of this service and use it in the most efficient way possible.

26

Chapter 5

Conclusions

After a thorough research and detailed description of the solution proposed in this
thesis, the problems listed in chapter 2 were provided with solutions from both tech-
nical and design perspectives, described in great detail in chapter 3 and chapter 4.

In order for a service to be successful and comfortable in use, not just the function-
ality and business offers should be taken into account. Important technical details
such as tools and technologies used, the software architecture, the UI/UX approach,
productivity, scalability and resource consumption should be also kept in mind.

The existing alternative platforms contained the following problems and in this the-
sis following solutions are proposed:

1. Lengthy loading times - due to the framework of choice being Angular and
its SPA nature, the consumption of band width and other network resources is
decreased;

2. Constant necessity for page reload - an SPA with a data flow implemented with
the use of reactive approaches ensures that the user sees their updates as soon
as the changes are registered within the application;

3. Lack of structure in the content’s display, complicated directory configura-
tions - a reimagined data organization and its display allow the application
to present its users with a well organized set of data, while search options al-
low the user to filter out unnecessary options. The idea of associating episodes
with shows and series automatically structures the data without any need for
user’s configuration;

4. Outdated design - a more modern design approach with reusable and cus-
tomizable components that receive data reactively solves this issue. The mark-
down is thought-through so the data is arranged in a pleasant view so the user
is neither overwhelmed nor lost while traversing the UI;

5. Lack of customizability of content, lack of detailed settings - detailed forms and
DTOs allow the user to enter all necessary data for a pleasant user experience
for both the host and their listeners;

6. Chaotic user flow - a thorough UX planning with consistent user flows will
reduce the amount of unnecessary actions needed from the user;

While "Amphora" strives to fix the flaws of existing services, it is also meant to bring
a wide array of additional luxury features such as record-and-deploy functionality
for specific use cases for seperate parts of the target audience, such as beginner pod-
cast hosts, express podcast content makers etc. The marketplace still lacks modern

Chapter 5. Conclusions 27

digital podcast solutions and could certaily use some diversity and improvement, in
order for this amazing genre of content to thrive and serve the consumers well.

28

Bibliography

Daniels, P. (2017). RxJS in Action. Simon and Schuster. ISBN: 9781638351702. URL:
https://books.google.com.ua/books/about/RxJS_in_Action.html?id=
mjszEAAAQBAJ&source=kp_book_description&redir_esc=y.

Drifty Co. (2022). Ionic Framework V3 Official Documentation. URL: https://ionicframework.
com/docs/v3/ (visited on 05/29/2022).

Farhi, O. (2017). Reactive Programming with Angular and Ngrx: Learn to Harness the
Power of Reactive Programming with RxJS and Ngrx Extensions. Apress. ISBN: 9781484226209.
URL: https://books.google.com.ua/books/about/Reactive_Programming_
with_Angular_and_Ng.html?id=fzckDwAAQBAJ&source=kp_book_description&
redir_esc=y.

Google LLC (2022). Angular Official Documentation. URL: https://angular.io/docs
(visited on 05/29/2022).

Medium, Wes (2019). Managing File Uploads with NgRx. URL: https://medium.com/
angular-in-depth/managing-file-uploads-with-ngrx-9fe07b084c1b (vis-
ited on 05/29/2022).

NgRx Team (2022). NgRx Official Documentation. URL: https://ngrx.io/docs (vis-
ited on 05/29/2022).

Rx Team (2022). RxJS Official Documentation. URL: https : / / rxjs . dev / guide /
overview (visited on 05/29/2022).

Santamaria, Jose Maria Arranz (2015). The Single Page Interface Manifesto. URL: http:
//itsnat.sourceforge.net/php/spim/spi_manifesto_en.php (visited on
05/29/2022).

https://books.google.com.ua/books/about/RxJS_in_Action.html?id=mjszEAAAQBAJ&source=kp_book_description&redir_esc=y
https://books.google.com.ua/books/about/RxJS_in_Action.html?id=mjszEAAAQBAJ&source=kp_book_description&redir_esc=y
https://ionicframework.com/docs/v3/
https://ionicframework.com/docs/v3/
https://books.google.com.ua/books/about/Reactive_Programming_with_Angular_and_Ng.html?id=fzckDwAAQBAJ&source=kp_book_description&redir_esc=y
https://books.google.com.ua/books/about/Reactive_Programming_with_Angular_and_Ng.html?id=fzckDwAAQBAJ&source=kp_book_description&redir_esc=y
https://books.google.com.ua/books/about/Reactive_Programming_with_Angular_and_Ng.html?id=fzckDwAAQBAJ&source=kp_book_description&redir_esc=y
https://angular.io/docs
https://medium.com/angular-in-depth/managing-file-uploads-with-ngrx-9fe07b084c1b
https://medium.com/angular-in-depth/managing-file-uploads-with-ngrx-9fe07b084c1b
https://ngrx.io/docs
https://rxjs.dev/guide/overview
https://rxjs.dev/guide/overview
http://itsnat.sourceforge.net/php/spim/spi_manifesto_en.php
http://itsnat.sourceforge.net/php/spim/spi_manifesto_en.php

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Task Definition
	Methodology
	Research
	Design
	Development
	Testing

	Contributions
	Thesis Structure Overview
	Chapter 2: Research
	Chapter 3: Proposed Solution
	Chapter 4: Perspective
	Chapter 5: Conclusions

	Research
	Problem
	Market Research
	Anchor by Spotify
	Podbean
	Buzzsprout
	Libsyn

	Technical Research

	Proposed Solution
	Idea
	Implementation
	Reimagined Data Management Design
	User-Friendly UI/UX
	In-App Audio Recording
	Improved Performance and Optimization

	Architecture
	Architecture of Angular Applications
	Additional Architectural Approaches
	State Management and the Reactive Approach
	Additional Use Cases for Reactive Programming
	Communication with Backend
	Architecture Diagram

	User Flow

	Perspective
	Analytics
	Further Streaming Integration
	Notifications
	Advanced Promotion
	Improved Media Content
	Improved Design
	Hosting Service Migration
	Adaptive Design for All Device Types
	Monetization
	Improved Search
	Tutorials

	Conclusions
	Bibliography

