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Abstract

Load balancing algorithms play a crucial role in enhancing system scalability, op-
timizing resource utilization, and improving overall performance. However, the
effectiveness of load balancing depends on selecting the appropriate strategy that
aligns with the specific requirements of the system. With a wide range of avail-
able options, it is essential to consider various parameters and system needs when
making the choice. By carefully evaluating these factors, an optimal load balancing
strategy can be selected to achieve the desired outcomes.The goal of this research is
to compare the performance of various load balancing algorithms in different met-
rics. The test results are able to highlight specific performance metrics in which each
algorithm outperformed others, as well as identify the traffic parameters that affect
these metrics. The test environment was carefully designed to ensure consistent and
reliable performance data in each test case. The test system consisted of one load
balancing node and three servers responsible for handling requests, along with a
traffic loader(also a performance testing node). The majority of the data was gener-
ated by a traffic loader implemented using the Locust load testing framework. The
testing environment was developed using the Python programming language and
employed the RSocket transport protocol.GitHub Repository. . .

HTTP://WWW.UCU.EDU.UA
http://apps.ucu.edu.ua
https://github.com/JanusDG/rsocket-performance-testing
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Chapter 1

Introduction

The increasing need for high-performance and scalable network applications has
led to a demand for efficient traffic and resource management. Satisfying the per-
formance requirements simply can be achieved by enhancing capacities or opti-
mizing the software, among other factors. However, software optimization has
its limits and the high cost of scaling the system may not always justify the de-
sired results. The same performance with a lower cost could be established by
introducing load balancers to the system.

Load balancers allow for horizontal scaling of the system. This scalability enables
the system to handle increasing loads and accommodate growing user demands
without sacrificing performance or experiencing bottlenecks.Additionally, load
balancers contribute to cost-effectiveness by optimizing resource utilization, re-
ducing the need for expensive hardware upgrades, and maximizing the efficiency
of existing infrastructure.

Load balancing techniques have undergone significant evolution in response to
the increasing demands of modern network applications. Traditional approaches,
such as round-robin and random load balancing, have paved the way for more
sophisticated algorithms and adaptive strategies that consider factors like server
capacities, network conditions, and user demands. Moreover, novel approaches,
including machine learning-based load balancing and application-aware routing,
have emerged to address the complexities of modern network environments and
deliver enhanced performance, scalability, and resource utilization.

Distributing traffic across servers, load balancing algorithms aim to prevent over-
loading of any single server, minimizing response times and increasing the avail-
ability of network services. However, the effectiveness of these enhancements
depends on a wide range of system parameters. A wide variety of application
architecture surely makes finding the universal approach difficult. Fortunately,
many different load balancing algorithms exist. Choosing the appropriate algo-
rithm is sensitive to various factors such as the type of application, available re-
sources, network topology, and performance requirements. To determine the most
suitable load balancing algorithm for a given scenario, it is necessary to conduct
performance testing and analysis.
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Chapter 2

Background Information

2.1 Load balancing

Load balancing is an approach to manage the processing of incoming requests
among the existing resources with a purpose of acquiring better performance-
based characteristics of the system. The basic concept is as follows: the unit
receiving the initial task (load balancer) decides with a forehand set algorithm,
to which unit the job will be passed and then handled.

The logic behind selecting the node responsible for handling each request may
be based either on a real-time state of the system (load, capacity and number of
connections of the individual nodes), or a static algorithm(i.e. random selection
of pre-defined order). The architecture of load balancers also plays its role. One
approach is to design the system with hierarchical load balancing, which involves
multiple layers of balancing nodes. Each layer balances the traffic among nodes,
which may not necessarily process the requests. This may be particularly use-
ful for large-scale applications where there are a large number of servers and the
load is not evenly distributed. Contrary to this is the flat or non-hierarchical load
balancing, where all nodes are considered equal and traffic is distributed evenly
among them.

Performance testing of the algorithms is usually conducted on different setups
and configurations and then the measurable data are compared based on param-
eters such as latency, throughput and low packet loss. In subsequent analysis,
cogent conclusions can be drawn, including recommended approaches (such as
a specific load balancing algorithm) for desirable performance requirements in a
given environment.

2.2 RSocket

A relatively new binary protocol for use on different byte stream transports. It is
designed to provide reactive and scalable communication between applications
running on different systems. It is worth a mention that this paper focuses more
on the load balancing algorithms, rather than the RSocket protocol itself. How-
ever, it is also recommended by the author not to assume applicability of any
results of this paper to other transport protocols. Meanwhile, some protocols may
show similar performance, but the difference of their under-the-hood implemen-
tations is without question, significant enough not to expect similar approaches
to result in the same.
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Chapter 3

Load balancing strategies

This section provides a concise overview of the theoretical details of each load
balancing algorithm tested in this research. While the descriptions provided offer
a necessary understanding of the concepts behind each algorithm, it is important
to acknowledge that the suitability and performance of these algorithms can vary
based on specific system requirements. Factors such as server capacities, traffic
load, performance goals, and desired levels of fairness or resource utilization may
significantly impact their effectiveness. Therefore, the actual properties and po-
tential use cases of these algorithms may differ from the descriptions provided,
underscoring the need for this research to assess their performance in real-world
scenarios.

Load balancing algorithms are commonly divided into two main categories: static
and dynamic. Static algorithms offer a straightforward implementation approach
and maintain consistent behavior regardless of any changes in the system or traf-
fic. On the other hand, dynamic algorithms provide a more flexible method to
balance traffic, performing differently, based on various parameters, however be-
ing relatively complex to implement.

3.1 Round Robin (RR):

• Concept: RR operates by evenly distributing incoming requests across avail-
able servers in a sequential manner, looping back to the first server once all
servers have received a request. Algorithm is static.

• Pros:: Simple implementation, fair distribution of requests among servers,
suitable for systems with similar server capacities.

• Cons: Does not consider server load or capacity, may result in imbalanced
resource utilization, not suitable for systems with varying server capacities.

• Perfect scenario:: A system with multiple servers of equal capacity, moderate
traffic load, and where fairness in request distribution is a priority.

3.2 Weighted Round Robin (WRR):

• Concept: WRR assigns a weight to each server based on its capacity or per-
formance, and requests are distributed in proportion to these weights. Servers
with higher weights receive a larger share of requests. Algorithm is static.

• Pros:: Allows for better utilization of server capacities, enables prioritization of
higher-performing servers, suitable for systems with varying server capacities.
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• Cons: Static weight assignment may require fine-tuning, does not dynamically
adjust weights based on real-time server conditions.

• Perfect scenario:: A system with servers of different capacities or performance
levels, high traffic load, and the need to allocate requests proportionally to
server capabilities.

3.3 Least Connection (LC):

• Concept:LC directs new requests to the server with the fewest active connec-
tions, aiming to distribute the load evenly across servers based on connection
counts. Algorithm is dynamic.

• Pros:: Balances load based on active connections, suitable for systems with
varying connection loads, avoids overwhelming a single server.

• Cons: Ignores server capacities or performance, may result in imbalanced re-
source utilization based on varying connection durations or workloads.

• Perfect scenario:: A system with varying connection durations, high traffic
load, and the requirement to evenly distribute load based on active connec-
tions.

3.4 Dynamic Weighted Round Robin (DWRR):

• Concept:DWRR dynamically adjusts weights assigned to servers based on real-
time server performance metrics, such as CPU usage or response times. It
aims to optimize load distribution by considering server capacities and perfor-
mance. Algorithm is dynamic.

• Pros:: Dynamically adapts to changing server conditions, improves resource
utilization, suitable for systems with varying server capacities and performance.

• Cons: Requires monitoring and adjustment of performance metrics, additional
complexity compared to static algorithms.

• Perfect scenario:: A system with servers of different capacities and perfor-
mance levels, fluctuating traffic loads, and the need for load balancing that
adapts to real-time server conditions.

3.5 Random (R):

• Concept: R randomly selects a server from the available pool to handle each
incoming request. Algorithm is static.

• Pros:: Simple implementation, distributes requests randomly among servers.

• Cons: Does not consider server load or capacity, may result in imbalanced
resource utilization, not suitable for systems with specific load balancing re-
quirements.

• Perfect scenario:: A system where equal distribution of requests among servers
is not a priority, and load balancing requirements are not critical.
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Chapter 4

Test Design

4.1 Approach

Specifics of performance testing different load balancing algorithms required lay-
ing out all the performance parameters, as well as system configurations that ef-
fect those parameters.

The Performance metrics were selected to be:

• Response Time

• Failure Percentage

• Traffic rate

• Servers’ CPU usage:

System’s performance and behavior depends on:

• Specific load balancing algorithm.

• System capacity

– Variety in hardware specifications of each server

– Amount of nodes/servers

• System Load :

– Spawn rate of requests

– Maximum number of requests/s

• Request parameters

– Size of package(request being transferred) in bytes

– Volume of work in a single request (Complexity of operation)

The capacity and workload of a system are interdependent parameters. When
designing or scaling the system, it is imperative to consider the necessity of addi-
tional capacity. Without sufficient capacity at your disposal, you will be unable to
process higher workloads. Likewise, loading the system significantly lower than
its processing capability is unnecessary. This conclusion has led to the approach
of designing performance tests that neglect various combinations of system capac-
ities and loads, focusing solely on request parameters and types of load balancing.
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4.2 Test parameters

The type of work selected for the test was data serialization and deserialization
(in json format). The final test set for each load balancing algorithm consisted of
combinations of different package sizes and volumes of work per request (Figure
1.). To to simulate a load, similar to real-world scenarios and capture the diverse
conditions, in the last test, the workload and package size was randomly selected
for each new request from a pool of all possible combinations.

small request medium request large request
(10kb) (100Kb) (1MB)

small package(100b) sp+sr sp+mr sp+lr

medium package(10Kb) mp+sr mp+mr mp+lr

large package(1Mb) lp+sr lp+mr lp+lr

Figure 1. Different package sizes and work volumes used in performance tests

Each test run was designed to last 20 minutes, with 3 replications(repetition), to
mitigate the influence of anomalous data.

4.3 System configurations

The testing was performed on a system composed of three server nodes, a load
balancing node, and a traffic loader node, each running on separate machines,
using the Google Cloud platform. Two of the server nodes were configured with
identical hardware specifications, specifically 0.25-2 vCPU (1 shared core) and 1
GB of memory. The third server node had 2 vCPU and 8 GB of memory. The traffic
loader node was responsible for spawning up to 50 concurrent user instances,
which sent requests to the load balancer. It was developed using Locust load
testing framework. .

FIGURE 4.1: Performance testing architecture
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Chapter 5

Test Results

The following section presents an analysis based on a comprehensive set of met-
rics, including failure rates, response time, and proper usage of available capacity
data, in all test cases. Each metric not only provides specific performance infor-
mation but also offers valuable insights into other key parameters within each
test scenario. By carefully examining the patterns and trends in these parameters,
we can uncover underlying factors and relationships that significantly influence
the behavior of the system. This approach allows us to evaluate system efficiency,
and uncover opportunities for improvement. In the subsequent sections, we will
delve into the detailed analysis of each metric, in all five proposed load balancing
algorithms, highlighting possible interdependencies, patterns and potential ways
to change implemented load balancing algorithms to further increase system per-
formance. .

By evaluating performance of each load balancing algorithm in various metrics,
alalysis aims to define strong and weak sides of each load balancing algorithm in
said metrics. This information guides the selection of the most suitable load bal-
ancing approach for specific performance requirements, depending on parameters
of data, such as package size and complexity of opperation per request. .

Consequent sections about each performance metric will not include graphs for
all load balancing algorithms. However, all the data and visualizations generated
during the research can be found in the appendix. The appendix provides access
to the complete dataset and accompanying visual representations.
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5.1 Request Count

The following section focuses on the analysis of the number of processed re-
quests within a specified time period, a crucial performance metric that provides
insights into the system’s efficiency and throughput. The number of processed
requests serves as a fundamental indicator of the system’s ability to handle in-
coming workload and meet user demands. By examining patterns in the number
of processed requests, depending on a requests parameters and load balancing
algorithm, we can gain a deeper understanding of opportunities of different load
balancing strategies .

In this parameter, performance of DWRR and LC strategies was almost identical,
except than LC outperformed DWRR in variation test by 12%. R and RR were
also quite similar in this metric, differing only slightly in 10kb load test, where
RR processed 34% more requests, which were transported as 100b packages, but
R processed 25% more requests in 10Kb package test. .

(a) Request Count, using DWRR strategy (b) Request Count, using RR strategy

FIGURE 5.1: Side to side comparison of the Request Count data

When considering the comparison between dynamic and static algorithms (ex-
cluding WRR) in terms of the number of processed requests, static algorithms
demonstrate superior performance in small and medium loads. This disparity
arises from the increased complexity of dynamic algorithms compared to static
ones, resulting in a slightly longer average duration for each request. However, in
large load tests, dynamic strategies significantly outperform them. .
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FIGURE 5.2: Re-
quest count, de-
pending on load
and package size
using WRR strat-

egy.

WRR exhibits comparable performance
to DWRR in large load and/or package
size tests, as well as in variative tests.

However, it surpasses dynamic
algorithms by processing 16-21% more

requests in scenarios involving small and
medium loads and package sizes. WRR

excels in handling small and
medium-sized requests more effectively
than other static algorithms, while also

demonstrating comparable performance
to dynamic algorithms in processing
large requests. Consequently, WRR
emerges as the most effective static

algorithm overall in terms of the number
of requests processed per unit of time..

The observation that both dynamic load balancing algorithms presented in this
research process fewer requests than WRR suggests that they may not fully ex-
ploit the capacity of the servers. Consequently, there is potential for further re-
finement and improvement of dynamic algorithms, which could lead to different
performance outcomes when compared to WRR. Furthermore, it is worth noting
that the weights assigned to server nodes in the WRR approach were roughly es-
timated, implying that WRR has the potential to achieve even better performance
with more accurate weight assignments.

5.2 Conclusion of Request Count

In systems prioritizing throughput, but where the requests are not excessively
time-intensive (up to a complexity of processing 100KB of data) sent in packages
of up to 10KB, the system could opt for either the R or RR algorithm. By conduct-
ing performance testing and appropriately configuring a WRR load balancer, the
system can achieve slightly better performance in this metric. However, in the
event of a potential high workload, it becomes crucial to implement a dynamic
load balancer or WRR that can effectively utilize system capacities. .
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5.3 Average Response Time

In this metric, RR and R performed similarly, except RR had up to 30% slower
response time with small and medium load and package size tests. Conversely,
R algorithm performed faster by up to 30% in the large load category. Similarly,
among the dynamic algorithms, the statistical differences were relatively similar,
with variances of up to 20%, except for the variation test, where DWRR displayed
a 50% shorter response time compared to LC. This is directly linked to difference
between approaches to utilize system capacities in these dynamic algorithms, on
which we will focus later. .

(a) Average Response Time, using DWRR
strategy

(b) Average Response Time, using RR strat-
egy

FIGURE 5.3: Side to side comparison of the Request Count data

In terms of latency, the static algorithms demonstrate similar performance to the
dynamic ones, except that the dynamic algorithms have a huge advantage when
it comes to processing a large number of requests. Interestingly, both R and RR
algorithms yield a slightly 20% smaller average response time in the variation
test then dynamic strategies. This difference in performance can be attributed to
the fact that dynamic algorithms are more complex, resulting in additional time
required for determining the appropriate node to handle each response. As a
consequence, dynamic algorithms tend to have slightly longer average response
times compared to static algorithms. .
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FIGURE 5.4: Aver-
age response time
using WRR algo-

rithm

In small and medium processing load
tests, there is minimal difference in

performance between WRR and DWRR.
However, in large processing tests, WRR

exhibits a significantly better average
response time compared to DWRR,

outperforming it by 30-70%. This contrast
can be explained by the difference

between WRR and DWRR algorithms,
with the former employing a more

complex node selection algorithm than
the latter. However, the average latency

in WRR for the variation test is more than
twice as long as that of DWRR. Despite

also working similarly to RR, but
effectively utilizing server capacities,

WRR performs worse than R or RR in the
variation test. This observation suggests
that there may be specific rare scenarios

that need to be further investigated
through prolonged testing. Although the
median response time in WRR is 17ms,
the 90th and 95th percentiles are 433ms
and 3726ms, respectively. These higher
percentiles indicate the existence of rare

scenarios that requires further
investigation upon running longer tests.

5.4 Conclusion on latency data

• Static Solution: In terms of shortening average response time in small and
medium complexities of operation per requests, as well as variative traffic,
both R and RR result perform similarly. Alternatively, WRR is much more
capable of managing traffic with larger requests.

• Dynamic Solution: As was stated before, in variation test, DWRR showed 50%
shorter average response time, then LC. Howerver, up to 90th percentile, data
is very similar. Therefore there exist scenarios, where LC, not taking into con-
sideration capacity of the individual server in any way(by constant as WRR,
or dynamically by RT as DWRR), overloads server/s with less capacities with
many large requests. In which case, variation of capabilities of nodes in a sys-
tem suggests DWRR being better option than LC in scenario with large varia-
tion in size of package and complexity of operation per request.

• Dynamic and Static Comparison: Despite the fact, that WRR is great with all
types of package sizes and operation complexity, dynamic algorithms give de-
cent responce time on average in all categories, which make them be percieved
as more flexible.
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5.5 Resource utilization

This section aims to compare how different load balancing algorithms use avail-
able server capacity. Desirable parameters are equivalency in usage amoung nodes
and smoothness. .

FIGURE 5.5: CPU utilization chart during processing large amount of
data per request, using RR algorithm

CPU usage in RR and R test proved these algorithms to be uncapable of utilizating
the available capacity of the system properly, as they aren’t designed for it. .

FIGURE 5.6: CPU utilization chart during variation test using LC al-
gorithm

FIGURE 5.7: CPU utilization chart during variation test using WRR
algorithm

WRR, LC, and DWRR demonstrated the ability to effectively utilize the diverse
capacities of the system(Figure 5.6 and 5.7). However, both WRR and DWRR con-
sistently distributed the workload evenly across all nodes, regardless of the pack-
age size or operational complexity. In contrast, LC did not load the node with
higher capacity when the traffic could be handled by the first two servers. In
other words, traffic is infrequent enough and consists of relatively small requests,
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LC could completely neglect nodes with more capacities.This occurred due to the
absence of a priority-based selection mechanism for assigning requests to nodes.

.

(a) Latency distribution by server in WRR al-
gorithm

(b) Latency distribution by server in LC algo-
rithm

FIGURE 5.8: Side to side comparison of latency distribution by server
in WRR and LC alorithms(aggregated across all tests)

Figure 5.8 provides further evidence supporting the previous statement regard-
ing the difference in approach to resource utilization between the LC and WRR
strategies. From LC algorithm perspective, 6 out of 9 tests involved traffic that did
not require the utilization of the third server. As a result, the majority of requests
in all of these tests were handled by the first two servers in the LC strategy. Con-
versely, in both WRR and DWRR strategies, the node with the highest capacity
handled the majority of requests across all tests. .

FIGURE 5.9: CPU utilization chart during processing requests requir-
ing processing of larger amount of data using DWRR algorithm

A peculiar observation(Figure 10) was the unexpected decrease in CPU usage on
the third server in tests involving a high complexity of operations per request for
DWRR, LC, and WRR. In the case of DWRR, this led to an increase in CPU us-
age on the first two servers during several replications, while LC did not exhibit a
similar pattern. Further investigation is needed, requiring additional prolonged
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tests. It is possible that this phenomenon is connected to the previously observed
higher failure rates, comparing to static algorithms in tests involving large re-
quests. .

5.6 Conclusion on resource utilization section

• Static Solution: In resource utilization, R and RR algorithms perform terribly,
which indicates that they are not designed for systems with variation in ca-
pacities of nodes. On the other hand, WRR demonstrates resource utilization
comparable to dynamic algorithms. However, it is crucial to carefully config-
ure static weights for nodes, which necessitates thorough research into the sys-
tem’s performance. It is important to note that in scenarios involving dynamic
resources, such as the ability to add/remove servers from the load balancer’s
pool or server downtime, any static load balancing algorithm will result in sig-
nificantly higher failure rates, response times, and overall degradation of the
user experience.

• Dynamic Solution: Both DWRR and LC effectively utilize system resources
despite variations in node capacities. However, they demonstrate contrasting
approaches for distributing traffic among servers. LC’s approach may be con-
sidered a disadvantage compared to DWRR. Nevertheless, by establishing the
correct static order for node selection and conducting prolonged tests, it could
help identify unnecessary nodes for a given traffic loadthrough further analy-
sis of individual node capacities.

• Dynamic and Static Comparison: In systems where nodes have equal capaci-
ties and there is moderate traffic with a high demand for small response time,
static load balancing strategies such as RR or R can provide significant ben-
efits. On the other hand, in environments where there is a large variation in
node capacities, dynamic load balancing algorithms and properly configured
WRR are better choices.
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5.7 Failure rate

The section focusing on server failure rates provides an analysis of the occurrence
of server failures in the context of the studied system. This metric is crucial to
determing system reliability and performance, as server failures can lead to ser-
vice disruptions, data loss, and compromised user experience. Understanding the
patterns and underlying causes of server failures is essential for devising effec-
tive strategies load balancing. Examinination of server failure rates, depending
on a load balancing algorithm, aims to shed light on potential ways to enhance
the reliability and availability of existing load balancing algorithms.

Dynamic strategies exhibit remarkably similar failure rates across all test cases.
Round Robin and Random algorithms also demonstrate a significant degree of
similarity in terms of failure rates. Therefore, based solely on this metric, there is
limited differentiation between the RR and R algorithms. .

(a) Failure rate, using LC strategy (b) Failure rate, using RR strategy

FIGURE 5.10: Side to side comparison of the failure rate data

The results obtained from the analysis indicate that all five algorithms exhibited
nearly identical failure rates when 1Mb of data per request. However, there was
a notable increase in failure rates for the dynamic algorithms when processing
1Mb of data. Despite this, the dynamic algorithms demonstrated superior perfor-
mance in processing larger volumes of such requests within a given time period,
exhibiting lower average response times. Further details regarding these findings
will be discussed in subsequent sections of the paper. .
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FIGURE 5.11: Fail-
ure rate in WRR

load balancer

WRR had comparable performance to
dynamic algorithms in scenarios

involving small to medium package
request complexities. However, it

showed slightly poorer performance in
requests that processed 1Mb of data
compared to dynamic algorithms.

Additionally, WRR had twice as many
failures as DWRR in the variation test.
Considering that the WRR relationship

was derived from analyzing the statistics
of DWRR (based on the number of

requests processed by each server), this
case requires further research and

running more prolonged tests to better
understand the cause of it.

5.8 Conclusion of Failure rate

• Static Solution: The failure rate between RR and R algorithms does not ex-
hibit a significant difference. However, WRR can yield a failure rate that is
more than twice as high in certain scenarios. It is important to note that WRR
is capable of processing a larger volume of traffic, including operations with
greater complexity. However, when considering failure rate alone, WRR falls
behind R and RR algorithms.

• Dynamic Solution: Dynamic algorithms resulted in almost identical perfor-
mance in failure rate metric.

• Dynamic and Static Comparison: While dynamic algorithms excel in pro-
cessing large request volumes, they may experience increased failure rates in
scenarios with more complex operations, however providing better avarage
response time. Conversely, WRR demonstrates comparable performance in
smaller-scale scenarios but exhibits limitations when processing 1Mb data re-
quests. Therefore, for systems with a high demand for a low failure rate, im-
plementing R and RR algorithms would be the appropriate solution. How-
ever, as mentioned earlier, dynamic algorithms and WRR have potential for
improvement. With further enhancements, they could demonstrate reduced
failure rates, as well as efficient utilization of system capacities, and the ability
to process larger requests effectively.
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Chapter 6

Research conclusions

6.1 Balancing Algorithm Comparison

The Round Robin (RR) and Random (R) algorithms performed almost identically
in every metric, which was expected. Despite their different node selection meth-
ods for individual requests, over time, there is an equal average number of re-
quests handled by each node in both RR and R. These static algorithms are best
suited for environments where node capacities are equally or quite similarly dis-
tributed, with a moderate level of traffic consisting of relatively small package
sizes and low complexity per request. In such systems, they ensure better system
performance in terms of response time, failure rate, and the number of responses
per time unit compared to other considered algorithms. However, the improper
utilization of system capacity leads to poorer performance compared to dynamic
algorithms when the traffic intensity increases. Additionally, the writer suggests
that this paper may not have showcased every flaw of R and RR algorithms due to
the relatively short test duration, which does not fully represent real-world sce-
narios. This also applies to dynamic algorithms, but due to inability to utilize
system capacities properly, R and RR have much higher risk of potential pitfalls
in this matter.

LC and DWRR are quite similar in the majority of performance metrics. However,
LC, being a faster algorithm than DWRR, results in slightly faster performance,
particularly in scenarios with low traffic. This makes LC capable of performing
well even with larger traffic. Therefore, LC is a desirable algorithm for systems
with unequal capacities and varying traffic, including variations in package size
and complexity of operations, as long as the majority of the requests are relatively
simple. On the contrary, DWRR specializes in handling heavier loads, despite
its slower selection algorithm compared to LC. Nonetheless, DWRR still provides
good performance and can effectively handle lighter traffic.

WRR exhibited mixed performance compared to other algorithms. It showed su-
periority in certain metrics, such as average response time, particularly in traffic
with large complexity of requests, despite a slightly higher failure rate in this cat-
egory. However, unexpectedly, it performed slower in variation tests compared
to all other algorithms. WRR demonstrates effectiveness in handling consistently
large workloads, properly utilizing resources, and processing more requests per
time unit, particularly with consistently small to medium package size and re-
quest complexity. Nevertheless, its unpredictable behavior in specific cases sug-
gests that it is difficult to make definitive recommendations regarding the system
configurations where it would be most suitable.
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Research confirmed expected differences in performance among different static
and dynamic load balancing algorithms. The evaluation provided empirical ev-
idence that each algorithm has its own strengths and weaknesses, which align
with the theoretical expectations. These findings reinforce the importance of care-
fully selecting the appropriate load balancing algorithm based on specific traffic
parameters and performance requirements. Furthermore, the research highlights
the need for continuous evaluation and comparison of load balancing techniques
to optimize system performance.

6.2 Other findings

• WRR performance: As mentioned in previous analysis sections, WRR exhib-
ited a higher failure rate compared to dynamic algorithms and slower response
time in the variation test, particularly when compared to DWRR (on which
WRR’s weights were based). However, it showed superior performance in
other tests compared to DWRR. While potential explanations for these obser-
vations were discussed in the corresponding sections, further investigation is
needed. Retesting the WRR strategy with more precisely chosen weights for
nodes, preferably in a similar environment but with longer test cases, would
be beneficial in gaining deeper insights into its behavior and performance.

• Possible WRR, DWRR, LC decrease of consistent balance in utilizing capac-
ity: Possible scenarios for WRR, DWRR, and LC resulting in a decrease in con-
sistent capacity utilization were observed during the tests. CPU usage graphs
indicated a point in time where the overall usage of all nodes dropped (except
for DWRR). Upon further investigation, no significant drops in requests per
second or an increase in failure rate were observed during that period. This
suggests that there was no apparent impact on the overall performance of the
system. However, this remains an open case that requires further investiga-
tion to understand the underlying reasons for the observed behavior and its
potential implications.

• LC alternative usage: LC takes a different approach to capacity utilization
compared to DWRR. Instead of prioritizing the more capable nodes, LC fo-
cuses on utilizing nodes that are sufficient for achieving competent perfor-
mance. This unique characteristic of LC enables it to be used as an analytical al-
gorithm that aids in identifying unnecessary nodes in the system for handling
specific traffic. With the suggested enhancements, the analysis performed by
LC can become even more beneficial in optimizing resource allocation and im-
proving overall system efficiency.
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Appendix A

Appendix

FIGURE A.1: CPU utilization chart during small request complexity
test using LC algorithm

FIGURE A.2: CPU utilization chart during medium request complex-
ity test using LC algorithm

FIGURE A.3: CPU utilization chart during large request complexity
test using LC algorithm
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FIGURE A.4: CPU utilization chart during variation test using LC
algorithm

FIGURE A.5: CPU utilization chart during small request complexity
test using wrr algorithm

FIGURE A.6: CPU utilization chart during medium request complex-
ity test using wrr algorithm

FIGURE A.7: CPU utilization chart during large request complexity
test using wrr algorithm
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FIGURE A.8: CPU utilization chart during variation test using wrr
algorithm

FIGURE A.9: CPU utilization chart during small request complexity
test using dwrr algorithm

FIGURE A.10: CPU utilization chart during medium request com-
plexity test using dwrr algorithm

FIGURE A.11: CPU utilization chart during large request complexity
test using dwrr algorithm
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FIGURE A.12: CPU utilization chart during variation test using dwrr
algorithm

FIGURE A.13: CPU utilization chart during small request complexity
test using rr algorithm

FIGURE A.14: CPU utilization chart during medium request com-
plexity test using rr algorithm

FIGURE A.15: CPU utilization chart during large request complexity
test using rr algorithm
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FIGURE A.16: CPU utilization chart during variation test using rr
algorithm

FIGURE A.17: CPU utilization chart during small request complexity
test using r algorithm

FIGURE A.18: CPU utilization chart during medium request com-
plexity test using r algorithm

FIGURE A.19: CPU utilization chart during large request complexity
test using r algorithm
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FIGURE A.20: CPU utilization chart during variation test using r al-
gorithm

FIGURE A.21: Average responce time, using dwrr algorithm, depend-
ing on traffic parameters
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FIGURE A.22: Failure rate, using dwrr algorithm, depending on traf-
fic parameters
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FIGURE A.23: Number of request in a time unit , using dwrr algo-
rithm, depending on traffic parameters
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FIGURE A.24: Average response time, using lc algorithm, depending
on traffic parameters
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FIGURE A.25: Failure rate, using lc algorithm, depending on traffic
parameters
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FIGURE A.26: Number of request in a time unit , using lc algorithm,
depending on traffic parameters



Appendix A. Appendix 30

FIGURE A.27: Average response time, using wrr algorithm, depend-
ing on traffic parameters
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FIGURE A.28: Failure rate, using wrr algorithm, depending on traffic
parameters
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FIGURE A.29: Number of request in a time unit , using wrr algorithm,
depending on traffic parameters
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FIGURE A.30: Average responce time, using rr algorithm, depending
on traffic parameters
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FIGURE A.31: Failure rate, using rr algorithm, depending on traffic
parameters
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FIGURE A.32: Number of request in a time unit , using rr algorithm,
depending on traffic parameters
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FIGURE A.33: Average response time, using r algorithm, depending
on traffic parameters
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FIGURE A.34: Failure rate, using r algorithm, depending on traffic
parameters
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FIGURE A.35: Number of request in a time unit , using r algorithm,
depending on traffic parameters
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FIGURE A.36: Distribution of response time by server in dwrr algo-
rithm
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FIGURE A.37: Distribution of response time by server in wrr algo-
rithm
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FIGURE A.38: Distribution of response time by server in lc algorithm
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FIGURE A.39: Distribution of response time by server in rr algorithm



Appendix A. Appendix 43

FIGURE A.40: Distribution of response time by server in r algorithm
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