
UKRAINIAN CATHOLIC UNIVERSITY

BACHELOR THESIS

Development of web platform "Story
Kids"

Author:
Vladyslav ZADOROZHNYI

Supervisor:
Serhii MISKIV

A thesis submitted in fulfillment of the requirements
for the degree of Bachelor of Science

in the

Department of Computer Sciences
Faculty of Applied Sciences

Lviv 2022

http://www.ucu.edu.ua
http://researchgroup.university.com
http://department.university.com

i

Declaration of Authorship
I, Vladyslav ZADOROZHNYI, declare that this thesis titled, “Development of web
platform "Story Kids"” and the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

ii

“Per aspera ad astra.”

Lucius Annaeus Seneca

iii

UKRAINIAN CATHOLIC UNIVERSITY

Faculty of Applied Sciences

Bachelor of Science

Development of web platform "Story Kids"

by Vladyslav ZADOROZHNYI

Abstract

The purpose of this bachelor’s thesis is to unite all the available knowledge, expe-
rience, and skills to create a web application, which will help children evolve at the
same time as entertain through watching educating media content, created by spe-
cialists, for setting behavior patterns and developing virtues.

Project resources links:

• Web component repository:
https://github.com/captainvlad/story_kids.git

• Payment component repository:
https://github.com/captainvlad/story-kids-payment-server.git

• Released website:
https://storykids-246f5.web.app/

• Demonstration video:
https://drive.google.com/file/d/1ZvmJMy-PRC3X_3uHYJ...

HTTP://WWW.UCU.EDU.UA
http://department.university.com
https://github.com/captainvlad/story_kids.git
https://github.com/captainvlad/story-kids-payment-server.git
https://storykids-246f5.web.app/
https://drive.google.com/file/d/1ZvmJMy-PRC3X_3uHYJ7sVUH9Vdm2Znoh/view?usp=sharing

iv

Acknowledgements
Primarily, I would like to thank the professors of Ukrainian Catholic University, who
have been helping, supporting, and encouraging me since my first day in Computer
Science program.

I would also like to express special gratitude to Serhii Miskiv, who influenced this
project significantly and made the application better using his experience and knowl-
edge.

Finally, I would like to thank everyone who is involved in the University in all ways,
making a huge positive impact on future and present life of the country.

v

Contents

Declaration of Authorship i

Abstract iii

Acknowledgements iv

1 Prerequisites 1
1.1 General context . 1
1.2 Naming conventions . 1

2 Introduction 2
2.1 Motivation . 2
2.2 Goals and project value . 3

3 Preparatory work 4
3.1 Competitors analysis . 4
3.2 Implementation plan . 5

3.2.1 Planning . 5
3.2.2 Researching . 5
3.2.3 Development . 5
3.2.4 Initial release . 6
3.2.5 User testing . 6
3.2.6 Final release . 6
3.2.7 Application support . 6

4 Requirements and restrictions 7
4.1 Product requirements . 7
4.2 Instruments restrictions . 8
4.3 Acceptance criteria . 8

5 Application structure 9
5.1 Introduction . 9
5.2 General architecture . 9
5.3 Payment server component structure . 9

5.3.1 Used technologies . 10
5.4 Website component structure . 10
5.5 User interface . 12

5.5.1 Conventions . 12
5.5.2 Detailed structure . 12
5.5.3 Screens roles . 13

5.6 Interim abstractions . 14
5.7 Backend . 15

5.7.1 Managers . 16
5.7.2 Content providers . 18

vi

5.7.3 BLoC components . 18

6 Testing 20
6.1 Unit testing . 20
6.2 Integration testing . 20
6.3 Manual testing . 20

7 Perspectives 22
7.1 Possible changes . 22
7.2 Application’s possibilities to improve 22

8 Conclusion 23
8.1 Progress overview . 23
8.2 Secret information . 23
8.3 Final words . 24

Bibliography 25

vii

List of Figures

5.1 "Story Kids" platform general architecture 9
5.2 "Story Kids" payment component structure 10
5.3 "Story Kids" web component file tree . 11
5.4 "Story Kids" user flow structure . 12
5.5 "Story Kids" screen displaying diagram 13
5.6 "Story Kids" backend structure . 14

viii

List of Abbreviations

PC Personal Computer
AES Advanced Encryption Standard
API Applicable Programming Interface
MVP Minimum Viable Prototype
RES Rivest Shamir Adleman
SDK Software Development Kit
SQL Structured Query Language
SSO Single Sign On
UML Unified Modeling Language
BLoC Business Logic Component
HTTP HyperText Transfer Protocol
JSON JavaScript Object Notation
REST Representational State Transfer
SAML Security Assertion Markup Language
NoSQL Not only SQL

ix

Dedicated to my dear family

1

Chapter 1

Prerequisites

1.1 General context

This project is a part of a commercial deal made between the author as a developer
and executant from one side and the startup team from the other.

• all the presented information in the scope of this document is verified by the
client’s team, represented by Volodymyr Chernyuk, and thus is not harmful in
any way to it.

• some sensitive information about project realization, business goals and busi-
ness value may not be revealed on the client’s demand. For this particular case,
there will be a relative informing message.

• a certain part of the work was done by the client’s management team. This
includes such aspects as customer investigation, prototyping and MVP real-
ization. Despite the fact that I was not particularly related to all mentioned
processes (except some discussions which led to minor changes), it is needed to
include the description of these modules for a better understanding of project
value, philosophy and destination. For this particular case, there will be a rel-
ative informing message.

1.2 Naming conventions

The product of this bachelor thesis will be referenced throughout the document by
the following names: application, portal, project and website. This is mentioned in
order to remove risk of misunderstanding throughout the document.

2

Chapter 2

Introduction

This chapter is intended to describe entry points of the project development: why
this idea was chosen, what are the goals and what impact the application is intended
to make, according to its creators’ ideas.

2.1 Motivation

As far back as I can remember, I always wanted to make the world a better place to
live in. Today’s world can be considered as a perfect place for doing this with the
use of computer science, its instruments and opportunities.

The reason for this is that digitalization processes expand constantly, quickly and
inevitably at the moment: not only teenageers and adults consume resultls of these
processes, but all age groups make Internet, smartphones and computers part of
their everyday lives. New generation for which Internet is not a new amazing in-
vention, but rather an integral part of the world, was grown and today even the
smallest children are not exception for this digitalization tendency.

This is why creating special services for them is not only opportunity, but also a
necessity, which was not actual in previous years. More explicitly this thesis will be
described below. As of now, the main point is to create an application, which will
make a positive impact on society, especially, the youngest part of it.

The main functionality of planned application includes:

• user authentification and login procedure

• subscription creation and managing

• educating video content supply

• serving brief description, which encourages user to watch the video

• providing a brief task in the end of every video

Taking mentioned functionality into account, positive impact on other people’s minds
is defined as providing an opportunity to get new interesting information and cul-
tivate such character features as curiosity, generosity, kindness and optimism and is
the main motivation for me as a collaborator of this project.

Chapter 2. Introduction 3

2.2 Goals and project value

The main goals are to provide values, which were defined at the stage of project
designing and planning. They were divided into three main categories to satisfy:
scientific, customer and social.

The categories are following:

• Scientific value

"Computer science is considered as part of a family of five separate yet in-
terrelated disciplines: computer engineering, computer science, information
systems, information technology, and software engineering." - Encyclopædia
Britannica online, 2012

Bearing mentioned quotation in mind, the following conclusion can be an-
nounced: a scientific value will be created as part of the work on the project
and added to computer science and, more specifically, its software engineering
subdivision.

• Customer value

Customer value can be stated as following: an application, which gives an
opportunity of getting interesting information at the same time as discovering
something new. The idea is that the videos are designed by specialists in the
psychology sphere and are intended to cultivate certain positive virtues and
behavior patterns.

It’s necessary to mention that the target audience for the application consists of
children of age about 3-7 years, which leads to good chances that the idea and
essence of each video will be kept in user’s mind, as in this age person is prone
to remembering new information closely and forming experience, which will
stay for a long time.

• Social value

Impact, made one certain separate user can be widely multiplied on condition
that application is popular and accessible by all means of this term: starting
from native language availability and finishing with service’s reliability.

The idea of application is considered to have potential of attracting big num-
ber of customers (exact numbers cannot be estimated certain specific research
processes taking place). As a result of numerous users, it can be expected that
virtues and values, transmitted via the application will spread all around the
world and quite possibly that some of them will help to form young user’s
personality. Multiplying described case, measurable effect on future society
will be determined.

One more value, left without a detailed description is business value. It is difficult to
estimate at the moment, because of a lack of acquaintance with some aspects, needed
for analyzing this area: number of videos planned to add, number of languages,
marketing strategy, etc.

4

Chapter 3

Preparatory work

This chapter is intended to describe preparatory work, made to define the project’s
perspectives, analyze competitors, briefly discuss strengths and weaknesses of each
and outline improvements space, which projected application may be able to fill.

3.1 Competitors analysis

Certain platforms across the internet posses similar functionality as the projected ap-
plication is going to provide. On the other side, it’s possible to define their strengths
and weaknesses to understand which new value can be presented to a user and
which special benefits can be delivered. It’s needed to say that this part of the job
was done solely by the client team.

1. Competitors list

Epic: an English-speaking educational platform, intended to provide high-quality
books for children and create special closed communities, joined under a special
’class room’ concept.

• Link: https://www.getepic.com/

• Strengths:

– a big number of customers (up to 1 billion reviews yearly)

– massive various content library (more than 45,000 items)

– long time on the market and thus, good reputation and respectable image
in eyes of newcoming users

• Weaknesses:

– service is restricted to English-speaking group of users only

Hopster: multilingual application, intended to provide video content, comics, audio
and text books.

• Link: https://www.hopster.tv/

• Strengths:

– free trial period for newcomers

– a big number of respectable partners, which supply the service with qual-
itative content to

– content is available in different languages

https://www.getepic.com/
https://www.hopster.tv/

Chapter 3. Preparatory work 5

– available both web and apple versions of application

• Weaknesses:

– content is restricted to relatively small number of categories (geography,
alphabet and arithmetic)

Vooks: an English-speaking educational platform, which provides educational video
content for children and teachers.

• Link: https://www.vooks.com/

• Strengths:

– free version for teachers available

– available on a big number of platforms: TV, web, Android, IOS, desktop

– certified TV channels, for example, Discovery Education and HappyKids

– multilingual applications and web versions

• Weaknesses:

– content is provided only in one language and is not translatable.

2. Possible improvement space

Possible improvement space consists of solving weaknesses of other services, men-
tioned before, trying to save alternatives’ strengths and trying to position the prod-
uct in such a way so that many users will see the proposed value and pay for it.

The fact that this application idea has received a grant for realization in Ukrainian
Startup Fund program leads to the following conclusion: at the moment, there is a
demand for new projects in this sphere and as a result - need of competition in the
area is also present.

3.2 Implementation plan

After competitors analysis process was finished, development plan was needed to
be created in order to keep track of progress and effective time management. As a
result following plan was created:

3.2.1 Planning

This stage includes model (presented by client side) analysis, defining main func-
tionality and surface components projecting.

3.2.2 Researching

This stage includes search of technologies, packages and SDKs, which provide needed
functionality and are most convenient to use.

3.2.3 Development

This stage includes all the development process and is the most massive one, con-
sisting of: coding, iterative testing and combining results of the two previous stages.

https://www.vooks.com/
https://usf.com.ua/
https://usf.com.ua/

Chapter 3. Preparatory work 6

3.2.4 Initial release

This stage includes performing hosting of the application and expected result is
working program, with all the functionality, stated at the very beginning of the plan.

3.2.5 User testing

This stage contains primary user testing, which are intended to be led by the client
side team and is intended to highlight all the moments, which should be modified
on users’ minds.

At the moment of creating this document, the implementation plan is in the very
beginning of this stage.

3.2.6 Final release

This stage includes applying changes and fixing problems, which were discovered
during user testing and hosting update codebase on the production server.

3.2.7 Application support

This stage includes fixing problems, if there are some applying updates and provid-
ing all services stable work.

7

Chapter 4

Requirements and restrictions

This chapter is intended to clarify expected requirements, state the imposed restric-
tions and define an acceptance criteria so that the fact of successful implementation
of the project can be either recognized or rejected.

4.1 Product requirements

Product requirements were defined in a separate document and were given by the
client side. Because of the juridic and commercial importance of the document con-
tent, only certain aspects can be described in this thesis in a slightly simplified way.

Product requirements consist of the following points:

• website must be multilingual and support following languages at the begin-
ning: Ukrainian, Russian, English, Spanish and Polish. The multi-language
principle must cover the content aspect as well so that content language changes,
as well as the website, does.

• website must include the functionality of authentification, creating a subscrip-
tion and storing certain user information (username, name, surname, subscrip-
tion plan chosen, etc).

• application must be able to work with following payment systems: Stripe, Liq-
Pay.

• website must be safe and all the stored data must be enciphered before trans-
portation processes.

• application must be available in satisfactory quality in the following browsers:
Microsoft Edge, Opera, Mozilla Firefox and Google Chrome.

• application must have an adaptive design that will provide satisfactory quality
design on following devices: computer, tablet, mobile.

• website must keep strict structure on all used devices, which includes: content
position logic on the screen, screen-filling, navigation logic.

• application architecture must be durable enough to satisfy usage of about 2,000
customers per week.

Chapter 4. Requirements and restrictions 8

4.2 Instruments restrictions

From the very beginning, Flutter framework was chosen as the main instrument by
the client side. It is condiered to be a good choice for fast, durable and unified de-
velopment, which also includes web applications development. In order to confirm
this opinion, following quotations can be introduced:

"Flutter is an open-source project hosted on GitHub with contributions from Google
and the community. Flutter uses Dart, a modern object-oriented language that com-
piles to native ARM code and production-ready JavaScript code." - Priyanka Tyagi,
2022

"Flutter has benefits that make space for itself, not necessarily by overcoming the
other frameworks, but by already being at least on the same level as native frame-
works:

• high performance

• full control of the user interface

• dart language

• being backed by Google

• open-source framework

• developer resources and tooling" - Marco L. Napoli, 2020

Together with developer side strengths, chosen framework bears some benefits for
the client side:

• a big number of ready-to-use elements makes development process cheaper
and faster compared to other alternatives.

• the client side is intended also to expand its applications network on other
platforms, mobile platforms, primarily. Taking this into considreation, choos-
ing Flutter as the core technology makes every developer maximally effective
and interchangeable, which leads to effective resource management.

Framework was the only instrument that was dictated to be used, in all other aspects
instrument choice was made by the developer. More explicit information about cho-
sen instruments, their alternatives, and choosing reasons of them will be given below
the document.

4.3 Acceptance criteria

Product requirements document was defined as the most important indicator of the
project success. Satisfaction rate of all the essentials stated in this document is de-
fined as the main acceptance criteria.

9

Chapter 5

Application structure

5.1 Introduction

As the presented application has a complex structure, it is necessary to provide a
unified description pattern to make the explanation as understandable as possible.

The description pattern is following:

• description will process be run from highest level of abstraction (modules, ma-
jor components) to lowest (manager, model, provider).

• before describing any component, there will be described stack of used tech-
nologies, if there are any.

5.2 General architecture

The whole solution consists of two main components: website and payment, which
serves as a separate application, hosted remotely. The reason for creating a payment
server as a separate component lies in the following fact: there are no available SDKs
to be used in Flutter applications. At the highest level the project structure can be
described with the following diagram:

FIGURE 5.1: "Story Kids" platform general architecture

5.3 Payment server component structure

The payment server component is a Flask application, intended to use HTTP re-
quests as communication instrument and exploit payment services APIs in order to

Chapter 5. Application structure 10

manage processes. In the most general level of abstraction, the component’s struc-
ture can be presented with the following diagram:

FIGURE 5.2: "Story Kids" payment component structure

5.3.1 Used technologies

1. Google Cloud Run

• Usage: component hosting.

• Benefits: qualitative support, big number of users, easy deployment.

• Alternatives: Amazon Elastic Container Service, Mirantis Kubernetes Engine,
SaltStack.

2. Gunicorn

• Usage: payment server component concurrent run.

• Benefits: easy setting process with Flask app and Google Cloud Run.

• Alternatives: uWSGI, Apache Tomcat, Waitress.

3. Flask

• Usage: carcass for payment server component logic

• Benefits: fast generation, easy development process

• Alternatives: Django

5.4 Website component structure

This chapter is intended to give an understanding of web application component
structure, main components classes, used approaches, and behavior of all the created
items. All the codebase will be split into sub-areas, each of which will be described
explicitly in its own subchapter.

Chapter 5. Application structure 11

To begin with, the project’s files tree visualization can be presented with the follow-
ing diagram:

FIGURE 5.3: "Story Kids" web component file tree

Codebase subareas are:

• User interface: includes screen files, their components and related aspects.

• Interim abstractions: includes models, created to operate with and tools, used
for localization implementation.

• Backend: includes managers and content providers, created to operate back-
end services and manage related processes.

Chapter 5. Application structure 12

5.5 User interface

This section is intended to describe all the components, practices, instruments and
approaches, used for implementing user interface subchapter of web application.
Explaining the organization of this aspect will be useful for project understanding.

To start with, all the created widgets form following user flow:

FIGURE 5.4: "Story Kids" user flow structure

5.5.1 Conventions

On all the scope of application following usage rules are spread:

• When any page is reloaded, website navigation is reset to Home Screen. This
is done in order to reduce the risk of hacking the service and may be changed
in case user testing will give negative feedback in this aspect.

• When trying to access a specific website page, except home screen, website
navigation is reset to Home Screen. Reasons for doing this and the possibility
of modifying this aspect are the same as for the previous point.

• When user changes language, website navigation is routed to home screen and
previous screens are popped out of navigation stack. This is done in order to
re-load website content: media and static strings.

5.5.2 Detailed structure

To implement adaptive design and provide valid rendering on different screen types,
responsive_builder package was used. Every screen consists of two parts: (header
and body) and has three variants (for desktop, tablet and mobile screens). Some
screen components are same on mobile and tablet screens, so they are used from
same files on mobile and tablet screens. Process of screen displaying is shown in
following diagram:

https://pub.dev/packages/responsive_builder

Chapter 5. Application structure 13

FIGURE 5.5: "Story Kids" screen displaying diagram

5.5.3 Screens roles

1. Already logged screen: accessed when user is already authenticated and tries to
log in again or register.

2. Detailed information screen: used for displaying information about chosen con-
tent, including description, metadata, authors and illustrations author. The screen
takes an argument during initialization, which makes it dependable from the previ-
ous screen: Library screen.

3. Failure screen: accessed in case of any operation failure and takes the following
arguments (if not passed from previous screens, defined as default): description
message and callback when affirmation button is pressed.

4. Forgot password screen: accessed when user tries to restore password, because
of losing access to it.

5. Home screen: accessed as application starting point and is the one, where user
starts website, redirected to when reloading other screens or trying to access to other
screens with special modified link (i.e. https://storykids-246f5.web.app/log_in).

6. Library screen: used to represent library content, consists of carousel view, which
represents content and category views, which represent content categories, their
names and cards of content, which it belongs to.

7. Log in screen: used to authenticate to already registered user, consists of few
input fields, and checkbox tile.

8. Not logged screen: accessed when trying to get access to library screen, being not
logged in.

9. Not payed screen: accessed when trying to navigate to the Library screen, being
logged in, but having a subscription expired or not paid.

https://storykids-246f5.web.app/#log_in

Chapter 5. Application structure 14

10. Payment screen: accessed after the registration form is filled (in Register Screen)
and is intended to get information from user for making payment: credit card data
and chosen payment service.

11. Progress screen: used to visualize to user loading process, and has two modes:
with header (if content is initialized) or without (otherwise).

12. Register screen: is accessed when creating new account, usually is given when
pressing ’30 days free’ button.

13. Success screen: accessed when any progress process is finished successfully. The
screen gets arguments for title, subtitle and confirms button pressed callback.

14. Video player screen: accessed when playback button was pressed (either from
Detailed information screen or Library screen).

5.6 Interim abstractions

This section is intended to acquaint the reader with abstractions, created for a better
operation process with data. These components’ descriptions improve comprehend-
ing and understanding of the application’s web component.

To start with, all the created abstractions form following structure:

FIGURE 5.6: "Story Kids" backend structure

1. MainApp: application model which provides all the application functionality and
states as the entry point of the website.

2. AbstractRequest: base class for describing modified HTTP request, which is made
to payment application component.

3. Application (Firebase): abstraction for initializing Firebase application and all its
services. Is organized according to Singleton pattern.

Chapter 5. Application structure 15

4. CheckRequest: implementation of AbstractRequest, intended to make checking
requests to payment server component on whether user already has subscriptions.

5. MediaContent: used for storing and manipulating media content related data.

6. PaymentRequest: implementation of AbstractRequest, intended to make pay-
ment requests to payment server component

7. Plan: abstraction, used for storing and manipulating with subscription plan re-
lated data.

8. UpdateRequest: implementation of AbstractRequest, intended to make checking
request to.

9. User: abstraction, used for storing and manipulating with user related data.

10. Utils: used to contain helper methods, which can be used across application

5.7 Backend

As the application is quite complex and demands different problems to be solved
(hosting, authentification data storage, etc), a sufficient number of technologies had
to be used. When choosing core services to be used, the following factors were the
main:

• user friendliness and time of study period

• reasonable price

• high number of supporting materials and large community scale

• reputation of a reliable and safe instrument

Taking following statement into consideration:

"Firebase is a Backend-as-a-Service (BaaS) app development platform that provides
hosted backend services such as a realtime database, cloud storage, authentication,
crash reporting, machine learning, remote configuration, and hosting for your static
files." - Flutter development team, 2022

It can be concluded that Firebase services is the best choice for solving given prob-
lems.

One more moment, needed to be described is usage of Singleton pattern, in major-
ity of the described components. Usage of this approach is clearly explained from
following statement:

"Use the Singleton pattern when:

• there must be exactly one instance of a class, and it must be accessible to clients
from a well-known access point.

• when the sole instance should be extensible by subclassing, and clients should
be able to use an extended instance without modifying their code. " - Erich
Gamma, 1994

Chapter 5. Application structure 16

5.7.1 Managers

Here is a brief description pattern, used for explaining role and appointment of each
manager:

1. Usage: functionality of a manager and main purpose of the item.

2. Technologies used: side services, used for solving manager’s problem and
brief principle of work.

3. Alternatives: other technologies, which can satisfy demand and help to solve
problem of the component as well.

4. Benefits: why chosen technologies were used among the alternatives and
describes strengths of the tool.

The managers are following:

1. AuthManager

1. Usage: providing log-in and registration processes, organized together with
Singleton pattern.

2. Technologies used: Firebase Authentication SDK, non-SAML, non-SSO au-
thentification service.

3. Alternatives: no ready to use alternatives were provided for solving the prob-
lem, except auth package, which is itself a simple superstructure over Firebase
Authentication SDK.

4. Benefits: plenty of studying material, a big number of users, regarded as a
typical choice for solving similar type problems.

2. DownloadManager

1. Usage: providing download process from FireBaseStorage and casting raw
data to models.

2. Technologies used: FirebaseStorage SDK.

3. Alternatives: Amazon Storage SDK, sqflite with hosting.

4. Benefits: directories and files storage paradigm, easy to use, flexibility, part of
Firebase SDK, files access via links.

3. EncryptionManager

1. Usage: encryption information before being used in side components

2. Technologies used: symmetric AES encryption system with predefined static
key, by using encrypt package.

3. Alternatives: dbcrypt, rsa_encrypt, simple_rsa2 packages.

4. Benefits: simple solution, easy to understand and exploit.

https://pub.dev/packages/auth
https://pub.dev/packages/encrypt
https://pub.dev/packages/dbcrypt
https://pub.dev/packages/rsa_encrypt
https://pub.dev/packages/simple_rsa2

Chapter 5. Application structure 17

4. InputValidationManager

1. Usage: validation input information and generating result and relevant error
message depending on special input problem.

2. Technologies used: own implementation

3. Alternatives: none were found

4. Benefits: the only possible solution

5. NavigationManager

1. Usage: navigating to screens and providing future screens with needed re-
sources and validity checks before redirecting to other screens

2. Technologies used: own implementation

3. Alternatives: none were found

4. Benefits: the only possible solution

6. NetworkManager

1. Usage: making requests to payment server component by executing Abstrac-
tRequest implementations (PaymentRequest, UpdateRequest).

2. Technologies used: simple HTTP package for making relevant calls was used
for solving the problems.

3. Alternatives: Dio, Retrofit, Chopper.

4. Benefits: most popular and widely used among Flutter developers, designed
and implemented by official Flutter team.

7. UiManager

1. Usage: gathering together font styles, defining views dimensions and provid-
ing valid views output on all screentypes.

2. Technologies used: own implementation

3. Alternatives: none were found

4. Benefits: the only possible solution

8. UserStorageManager

1. Usage: storing additional information about the user, which cannot be stored
as additional fields in AuthManager. Organized according to Singleton pat-
tern.

2. Technologies used: FirebaseDatabase SDK was used for solving the problem.

3. Alternatives: same to ones, mentioned before in DownloadManager descrip-
tion.

4. Benefits: is NoSQL database, which gives more flexibility in storing data, data
stored in simple JSON format.

Chapter 5. Application structure 18

5.7.2 Content providers

In order to operate downloading process effectively and reduce download time, data
segregation process was performed. The principle is following:

1. ’Local’ data: consists of static images, videos, which are used as background
elements and form visual style of the website (i.e. main icon on the header).
This type of data is not likely to be changed often.

2. ’Remote’ data: consists of media content which forms library and subscription
plans. This type of data is expected to be changed from time to time (i.e. when
content added or subscription plan was changed).

Content providers use FirebaseStorage SDK as the core technology and are imple-
mented according to Singleton pattern. The providers are following:

1. AbstractContentProvider: used as a basic class for content provider classes and
defines main method and fields which are going to be used in classes, which extend
it.

2. LocalContentProvider: used for downloading and initializing content which is
defined as ’Local’ from FirebaseStorage and providing the resources to screens.

3. RemoteContentProvider: used for downloading content which is defined as ’Re-
mote’ from FirebaseStorage and providing the resources to screens.

5.7.3 BLoC components

BLoC pattern is the main approach, used for state management inside the web ap-
plication component. Reasons for using BLoC usage in general are:

• effective state management

• strict code delimitation by its responsibilities on UI and non-UI parts

BLoC components description pattern is following:

• usage

• coverage scope

BLoC components are created with standard Flutter team package, available via link
and version 7.x.x was used instead of latest one, as it has more predictable and fa-
miliar to most of Flutter developers API, instead of modified yet non-familiar one in
8.x.x version. The components are following:

1. ForgotPasswordBloc

• usage: controlling forgot password input body and transmitting data to rele-
vant manager when processing input data.

• scope: screenBody widget, depending on screen type (ForgetBodyDesktop,
ForgetBodyTablet, ForgetBodyMobile).

Chapter 5. Application structure 19

2. HeaderBloc

• usage: ontrolling user tapping on buttons, located on the desktop and for pro-
viding current locale object, which is responsible for localization language.

• scope: whole application.

3. InitBloc

• usage: providing all the needed resources for displaying screen (local, remote
and checks if Firebase application is initialized). If not - provides initialization
process.

• scope: whole application.

4. LoginBloc

• usage: controlling log in screen input body and transmitting data to relevant
manager when processing input data.

• scope: screenBody widget, depending on screen type (LogInBodyDesktop,
LogInBodyTablet, LogInBodyMobile).

5. PaymentBloc

• usage: credit card information for managing subscriptions

• scope: screenBody widget, depending on screen type (PaymentBodyDesktop,
PaymentBodyTablet, PaymentBodyMobile)

6. InputFieldBloc

• usage: controlling one specific component, control input data visibility.

• scope: one specific widget (accurately: InputCustomField).

7. PlayerBloc

• usage: controlling media content playback process and adjacent operations.

• scope: whole application.

8. RegisterBloc

• usage: controlling registration input body and transmitting data to relevant
manager when processing input data.

• scope: screenBody widget, depending on screen type (LogInBodyDesktop,
LogInBodyTablet, LogInBodyMobile).

20

Chapter 6

Testing

This chapter is intended to cover Quality Assurance process, describe its structure
and idea. Quality assurance consists of following components:

• unit testing

• integration testing

• manual testing

6.1 Unit testing

Relevant files can be accessed in
test folder of the project. At the moment only one screen is tested in this way be-
cause manual and user testing were chosen as primary types of Quality Assurance.
The reason for this decision is that after the stage of a testing product via user test-
ing, there is a big probability that certain changes may be applied, which may have
a sufficient impact on the application, which in its turn will lead to the necessity
of modifying integration tests as well, which will take certain time and resources.
Because of this fact, manual testing was given the highest priority over other types.

6.2 Integration testing

Relevant files can be accessed in
test folder of the project. Following tests are designed to cover testing of main as-
pects of following components: AuthManager, DownloadManager, LocalContent-
Provider, RemoteContentProvider. As tested components are not so risky to be mod-
ified after user testing process, they are bigger and more extensive than unit ones.
Each component test has multiple test methods for its functionality.

6.3 Manual testing

This type of testing was chosen as the main direction of testing and is presented by
complex of tests, divided by following aspects:

• visual aspect: views displaying, depending on screen type and size

• functional aspect: testing application on the predictability of application work

For visual testing, three virtual devices (via Chrome debug service) with different
screen types were used: iPhone 12 Pro, iPad Air and Desktop screens. ALgorithm
for the testing was following: display each screen and check for display quality,
providing rotation actions.

Chapter 6. Testing 21

For functional testing same virtual devices were used as in visual testing. ALgorithm
for the testing was the following: display each screen, try all possible variants of
actions of usage as a user model: screen redirections, any buttons pressing in any
order and any input given to the fields.

22

Chapter 7

Perspectives

This chapter is intended to describe possible space for improvements, using avail-
able version of the application. It will be split on two parts:

• minor changes, which might be applied

• application’s possibilities to improve

It is needed to mention that all the stated improvements can (or cannot) be realized
due to client side team and due to its vision of the product’s future.

7.1 Possible changes

The minor changes, which may help the project develop, are following:

• adding new content to the library.

• adding new subscription plans.

• adding new payment methods for the customers.

• creating bigger number of website localization templates and expanding to
new countries.

• fixing current localization strings (as languages strings were not provided by
the client side team, Google Translate service had to be used until end of user
testing).

7.2 Application’s possibilities to improve

Application was planned and implemented that all of the mentioned improvements
can be done relatively easy and fast. This is achieved by qualitative services used
and opportunities, provided by the core framework Flutter.

23

Chapter 8

Conclusion

This chapter is intended to describe the progress, made during the time of the ap-
plication development, outline plans for the project’s future and state impact of
the project implementation on the author of this thesis (including experience, new
knowledge and skills).

In addition, it’s needed to mentioned, that some secret information is hidden from
public repository and because of this a simply cloned codebase from repository can-
not be run locally.

8.1 Progress overview

This document is result of 5 months hard work and resulted in a perspective appli-
cation which is going to go through certain stages in future. It’s needed to say that
certain job must be done over the project on its road to final release.

At the moment, the application has passed through initial release stage and is avail-
able through the link, published at the very beginning of the document.

During all the implementation process, big amount of information was extracted,
processed and used for project realization. Most important is considered to be about:

• full cycle of application development

• web application development

• projecting and implementing own APIs

• direct client and developer interaction

• Firebase SDK services integration into Flutter applications

Although some information from the mentioned topics was known before, this the-
sis project developed my knowledge, improved my skills and provided very useful
experience.

8.2 Secret information

As it was stated before, certain information was hidden from public repository be-
cause of its importance. This information consists of:

• configuration data

Chapter 8. Conclusion 24

• enciphering key

• payment application component link

Listed information is available only to client side team and the developer (during
the process implementation process).

8.3 Final words

Taking previous facts into consideration, as well as acceptance criteria, stated at the
very beginning of the thesis, this job can be regarded as a successfully implemented
project.

25

Bibliography

Alessandro Biessek (2019). Flutter for Beginners. Packt Publishing. ISBN: 9781788996082.
URL: https://www.amazon.com/Flutter-Beginners-introductory-cross-
platform-applications/dp/1788996089.

Encyclopædia Britannica online (2012). Computer Science. URL: https://www.britannica.
com/science/computer-science (visited on 05/30/2022).

Erich Gamma Richard Helm, Ralph Johnson John Vlissides Grady Booch (1994).
Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley
Professional. ISBN: 8601419047741. URL: https://www.amazon.com/Design-
Patterns-Elements-Reusable-Object-Oriented/dp/0201633612.

Flutter development team (2022). Flutter official documentation. URL: https://docs.
flutter.dev/development/data-and-backend/firebase (visited on 05/30/2022).

Marco L. Napoli (2020). Beginning Flutter: A Hands On Guide to App Development.
John Wiley Sons, Inc. ISBN: 9781119550822. URL: https://www.amazon.com/
Beginning-Flutter-Hands-Guide-Development/dp/1119550823.

Priyanka Tyagi (2022). Pragmatic Flutter. CRC Press. ISBN: 9780367612092. URL: https:
//www.amazon.com/Pragmatic-Flutter-Building-Cross-Platform-Android/
dp/0367612097.

https://www.amazon.com/Flutter-Beginners-introductory-cross-platform-applications/dp/1788996089
https://www.amazon.com/Flutter-Beginners-introductory-cross-platform-applications/dp/1788996089
https://www.britannica.com/science/computer-science
https://www.britannica.com/science/computer-science
https://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612
https://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612
https://docs.flutter.dev/development/data-and-backend/firebase
https://docs.flutter.dev/development/data-and-backend/firebase
https://www.amazon.com/Beginning-Flutter-Hands-Guide-Development/dp/1119550823
https://www.amazon.com/Beginning-Flutter-Hands-Guide-Development/dp/1119550823
https://www.amazon.com/Pragmatic-Flutter-Building-Cross-Platform-Android/dp/0367612097
https://www.amazon.com/Pragmatic-Flutter-Building-Cross-Platform-Android/dp/0367612097
https://www.amazon.com/Pragmatic-Flutter-Building-Cross-Platform-Android/dp/0367612097

	Declaration of Authorship
	Abstract
	Acknowledgements
	Prerequisites
	General context
	Naming conventions

	Introduction
	Motivation
	Goals and project value

	Preparatory work
	Competitors analysis
	Implementation plan
	Planning
	Researching
	Development
	Initial release
	User testing
	Final release
	Application support

	Requirements and restrictions
	Product requirements
	Instruments restrictions
	Acceptance criteria

	Application structure
	Introduction
	General architecture
	Payment server component structure
	Used technologies

	Website component structure
	User interface
	Conventions
	Detailed structure
	Screens roles

	Interim abstractions
	Backend
	Managers
	Content providers
	BLoC components

	Testing
	Unit testing
	Integration testing
	Manual testing

	Perspectives
	Possible changes
	Application's possibilities to improve

	Conclusion
	Progress overview
	Secret information
	Final words

	Bibliography

