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Abstract

Visual object detection is one of the most common research topics in the sphere of
computer vision research. It has a vast range of areas of application, from medical to
automotive. One such area is the detection of objects from videos and images taken
by unmanned aerial vehicles for both military and civilian purposes. With the start
of the latest phase of the Russo-Ukranian war, a great number of videos, taken both
military-grade and repurposed civilian drones, have begun appearing all over the
internet. In this paper, we collect a number of such videos to create a dataset and
train several object detection models with the goal of finding one best suited for the
task. The code used in this paper is available on GitHub.
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Chapter 1

Introduction

In recent years, commercially available options for unmanned aerial vehicles (com-
monly named drones) have increased in popularity due to both lowering prices and
increasing ease of use. Commercial drones are currently used in surveying, map-
ping, photography, entertainment, and other areas. However, one surprising av-
enue of use for such drones is in the military. Different militaries have employed
unmanned combat aerial vehicles (UCAVs) since the start of the 21st century for
both scouting and strike operations. However, they have a steep initial investment
cost and require extensive training and repairs to be used effectively. However, in
the most recent stage of the Russo-Ukranian war, both sides began to utilize com-
mercial drones as a cheap replacement for the previously mentioned UCAVs. They
have several advantages: with most important being their price and difficulty of
detection by enemy forces.

Most of the existing drone datasets focus on annotating cars and pedestrians.
However, no such dataset has been created for military vehicles at the time of the
writing. As such, our goal was to create such a dataset by using aerial war footage
and find the best method for working with this dataset.

1.1 Thesis structure

This paper is organized in the following way. We discuss related dataset works
in Chapter 2. In Chapter 3, we outline the process of creating the dataset and its
format. Chapter 4 contains an overview of chosen methods for object detection and
their metrics. In Chapter 5, we showcase our experiments’ results and summarize
our findings in Chapter 6.



Chapter 2

Related Works

2.1 Datasets

2.1.1 VisDrone

Detection and Tracking Meet Drones Challenge[25] is a large-scale benchmark for
a number of different computer-vision tasks. The benchmark dataset consists of
288 video clips formed by 261908 frames and 10209 images captured using drone-
mounted cameras. The dataset covers a wide range of locations, environments, ob-
jects, density, and weather and lighting conditions. The dataset features manually
annotated bounding boxes and additional contextual labels for each object, like oc-
clusion and visibility. We’ve ended up using a similar type of object labeling in our
dataset.

2.1.2 CARPK

Drone-based Object Counting by Spatially Regularized Regional Proposal Net-
work[10] is a large dataset containing over 90000 cars captured from different park-
ing lots using a drone. Each car is annotated as a bounding box.

2.1.3 TrajNet

An Evaluation of Trajectory Prediction Approaches and Notes on the TrajNet Bench-
mark[1] is a large forecasting benchmark containing 11448 trajectories of different
moving agents. The data we collected mostly featured stationary objects, as such
trajectory wasn’t tracked in the final result.

2.2 Object detection

Object detection is a computer vision task in which the goal is to detect an locate
objects of interest in images or videos. The task involves finding the positions and
bounds of objects and classifying them.

Currently, there are two main types of Object detection methods:

* One-stage - bounding boxes and their classes are predicted using a single net-
work pass.

* Two-stage - model proposes a set of regions of interest, then for each proposal,
bounding boxes and their classes are predicted
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Models that use two-stage detectors usually have higher accuracy than one-stage
models but perform much slower. For our experiments, we've decided to use both
types of models.

2.3 Models

2.3.1 Faster R-CNN

R-CNNJ6] family of models utilize a two-stage approach to object detection. First
published in 2013, R-CNN’s main contribution was the introduction of a Convo-
lutional Neural Network for feature extraction. The model works by first creating
region proposals - regions of original image that have the highest likelihood of con-
taining detectable objects. The model uses a Selective Search[22] method, though
other approaches can be used as well. It processes each region with a CNN model
which is then used passed to Support Vector Machine for classification.

Faster R-CNNJ19] is an improvement upon its predecessor, Fast-R-CNNJ5]. Fast-
R-CNN improved R-CNN by using a shared layer for the whole image and regions
instead of processing each region independently. Faster R-CNN further improves
on it by using a region proposal network instead of selective search to increase the
speed of the model.

Region
Proposal
Netwark

Regicn

Conv Layer | ——» Proposal ——»| ROIlpooling —— Classification
Network

FIGURE 2.1: Schematic diagram of Faster R-CNN

23.2 YOLO

YOLO is a family of one-stage object detection models. The model works by first
splitting the input image into an S x S grid[18]. Each grid cell is then used to predict
B bounding boxes, their confidence and C class probabilities which is then encoded
ina S xS x (Bx5+ C) tensor Figure 2.4[18].

YOLOvV5

YOLOv5[12] is a YOLO family object detection model released in 2020. It is built
on the base of YOLOV4[3], utilizing CSP-Darknet53[3] for the backbone. It improves
onits predecessor in a few ways by replacing the first three layers with a single Focus
layer and replacing the SPP[9] structure with SPPF[12] - a more efficient version of
SPP.

YOLOR

YOLOR][24], [23] expands on previous iterations by adding Explicit and Implicit
knowledge to the model. Implicit knowledge, i.e. knowledge that does not re-
quire an input, is modeled using a trainable vector representation, while the neural
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Final detections
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Class probability map

FIGURE 2.2: Example of YOLO model

network handles explicit knowledge. Like YOLOv5[12], YOLOR[24], [23] utilizes
YOLOv4[3] as its base model.
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Chapter 3

Dataset Overview

3.1 Data Collection

The dataset was composed of videos collected from two social media sites: Tele-
gram and Twitter. At the beginning stages of the work, Facebook was also consid-
ered as another potential source of data. However, due to difficulties with searching
for and downloading videos, it was ultimately decided to only use the two previ-
ously mentioned platforms. Example frames are shown in Figure 3.1.

FIGURE 3.1: Example frames of videos from the dataset

3.1.1 General Workflow

Computer Vision Annotation Tool was used to create the dataset - a free, open-
source image and video annotation tool. The creators of CVAT[4] provide a publicly
accessible instance of their tool with limited storage space, but we have decided to
use a private install of the tool. A Google Cloud Platform Virtual Machine was used
to host the tool.

CVAT[4] uses tasks to organize its workflow. A task is a collection of images or
video frames. A project is a collection of tasks containing annotation parameters,
such as label classes.

The newest available version of CVAT[4] at that time provided rudimentary sup-
port for working with tasks in the form of a Python-based Command Line Interface.
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FIGURE 3.2: Diagram of workflow

URLs Status Confirmation

FIGURE 3.3: Example spreadsheet

An API would not be added to CVAT until after the finalization of the dataset. The
main feature of CLI that we have ended up using is the creation of new tasks. Con-
tent for the task could be uploaded to CVAT[4] from local storage or from a URL.
We have decided to use the second option to simplify the workflow. Unfortunately,
CLI lacked a major function - access to the created tasks could not be specified and
would always default to the account of the uploader. This complicated the workflow
as annotation was done by third-party volunteers with accounts that lacked admin
privileges. Unfortunately, no workaround was found, and the distribution of tasks
between volunteer accounts had to be done manually.

3.1.2 Overview of Video Collection Process

A spreadsheet was created and hosted using Google Drive to manage the cre-
ation of new tasks. The spreadsheet would contain links to social media posts and
whether the link was processed, rejected, or waiting to be uploaded. A Google Cloud
Service account was also created and given editor privileges to the spreadsheet. We
have decided to automate the creation of new tasks using Google Cloud Run[7].
Google Cloud Run[7] allows users to run container instances, either as a service
(continually available code that responds to web requests) or as a job (scheduled
code that runs and quits after performing its function). We created a Python script
that would use the previously mentioned Service account to access the spreadsheet,
choose links that were marked to be processed, and extract the source of the video
to be added to the CVAT[4] project. The script could be launched at any time by
sending a GET request to the Cloud Run instance. Additionally, every 24 the script
would be launched automatically using a scheduled Google Cloud Run Job
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3.1.3 Twitter Video Collection

During research we’ve found two approaches for collecting videos from the Twit-
ter: Twitter API+Tweepy[8] and Twint.

Twitter API+Tweepy

Twitter provides users with the ability to access their API using a developer ac-
count. To gain access, a user must submit an application detailing the use case of
Twitter APIL. Tweepy|[8] is a Python library that provides a range of functions, some
requiring API access. As we did not need access to advanced tools, we ended up
using this Python library in our script as it provided an easy way to fetch video
sources. The script would extract the ID of a tweet from the provided URL and re-
turn the highest quality video source along with other miscellaneous information
like date of upload, number of views, and URL of the poster.

Pros Cons

Plentiful documentation Advanced features require a devel-
oper account

Wide range of functions Rate limitations

TABLE 3.1: Pros and Cons of Twitter API

Twint

Twint[21] is a tool designed for data collection from Twitter without using official
APIL It has no rate limitations and does not require a developer account. Unfortu-
nately, it lacks many of the advanced features of official API.

Pros Cons
Ease of use Lack of advanced features
No rate limit Lack of documentation

TABLE 3.2: Pros and Cons of Twint

3.1.4 Telegram Video Collection

For collecting videos from Telegram, we have settled on using Beautiful Soup[20]
- a Python package for parsing HTML and XML documents. A shared message from
an open Telegram channel could be viewed by unauthorized users as a separate web
page. This webpage would always retain the same HTML structure. As such, it was
easy to set up a consistent way to collect videos. The script would access the least
abstracted version of the web page and look for any <video> HTML elements. It
would then extract and return their source, along with other web page information,
like date of upload, number of views, and URL of the poster.
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3.2 Data annotation

3.2.1 Annotation Difficulties

The main difficulty when creating an image dataset is the process of annotation.
Each image requires a human volunteer to find and mark all required objects. The
effectiveness of an image dataset grows with its size. For example, the YOLOv4[2]
documentation recommends at least 2000 images per class. As such, even a simple
model that strives to detect three different classes of objects will need 6000 images
minimum for training, with results being improved by having images of objects with
different scales, rotations, lighting, sides, and backgrounds. Annotating this many
distinct images requires a lot of man-hours, even without additional time spent ver-
ifying annotations’ correctness.

Thankfully annotation can be made easier when working with videos as opposed
to distinct images. Instead of annotating each frame as a separate image, we can
arrange them in the order of appearance, annotate two frames and linearly interpo-
late the annotation in between them. The annotator can then go back and fix any
mistakes in the intermediate frames. This works best when either the camera or
the filmed object is stationary. Considering that most videos that we’ve collected
feature either UAV footage taken of disabled /non-moving vehicles or moving ve-
hicles taken by mostly stationary UAVs, this is the method that we’ve used during
annotation.

Start End
Frame Frame
0001272 0001406

Frame
0001352

FIGURE 3.4: Annotator manually positions bounding boxes in the
start and end frames. All frames between the two are linearly inter-
polated
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Another problem that we have run into during annotation is the image quality.
This manifested in a few different ways:

¢ Video Compression. The videos were not downloaded from the primary source
but instead from social media posts, so they had undergone compression. This
was not a problem for most of the videos we’ve annotated, but some did con-
tain objects that were hard to accurately identify.

¢ High altitude/zoom of the UAV. This usually was not a problem in most cases,
but in combination with the previous point, objects could blend in with their
surroundings.

One solution was to omit annotating hard-to-see objects entirely, but we have de-
cided to create a separate class for them instead.

Video Compression High UAV altitude or zoom

FIGURE 3.5: Example of image quality issues. Objects in these frames
were labeled as Unidentified Moving Objects

3.2.2 Object Class and Tags

During the annotation of the dataset, each object was assigned one of the following
classes:

¢ Vehicle
¢ Soldier
¢ Unidentified Moving Object

The Unidentified Moving Object class encompassed two other classes and was used
if the object’s total area was too small, caused either due to video compression, high
altitude of the UAV, or high zoom. Additionally, if more than half of the total area
of the object was obscured by foliage, debris, or smoke, it would be given an "Ob-
scured" tag. However, we ended up not using this tag in training the models.

3.2.3 Object representation

An annotated object’s location in the image can be represented in multiple differ-
ent ways. For our dataset, the two approaches that fit best with the type of objects
we were working with were Bounding Boxes and Polygons.
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Bounding boxes are rectangles that overlay the detected object. They can be rep-
resented in multiple ways:

e Two opposing corner points of rectangle (x1,11, x2,y2) (Pascal VOC[11])

* A center point of the rectangle and its width and height (x1, y1, w, ) (YOLOJ[18])

* A single point of the rectangle and its width and height (x1, y1, w, h) (COCO[13])
Additionally, a bounding box can have an additional parameter to represent its ro-

tation angle.

The main benefit of the bounding box is the ease of annotation - the annotator only
needs to mark two points of the bounding box. The required work is increased a bit
if a bounding box can have a rotation box. Another benefit is the ease of implemen-
tation of the model that utilizes a bounding box. The main problem of the bounding
box becomes apparent when marking a non-rectangular object as space inside the
bounding box is "wasted."

Pros Cons

Fast to annotate Does not represent objects with
complex shapes well

Easier to predict

TABLE 3.3: Pros and Cons of Bounding Boxes

Polygon, as opposed to a bounding box, can have an arbitrary number of points.
This allows for accurate annotation of complex objects but significantly increases the
difficulty of both annotation and detection.

Pros Cons

Accurately represents objects with Hard to annotate
complex shapes

Harder to predict

TABLE 3.4: Pros and Cons of Polygons

For this dataset, we decided to utilize bounding boxes. This was done due to the
rectangular shape of the vehicles and to simplify the annotation process. Figure 3.6
We exported the dataset in COCO format first and later converted it to YOLO for-
mat for further use in training. We’ve also ended up not using rotation to represent
objects to speed up both annotation and training. Each bounding box was posi-
tioned in such a way as to contain the main body of the object. If the object was
partially obscured, either by buildings or trees, the area of the bounding box was
estimated using contextual information. Examples of annotated frames are shown
in Figure 3.7.
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AR a1
Cidor Wihite

FIGURE 3.6: Comparison of Annotation shapes in CVAT interface

3.2.4 Collected Data

In total, the dataset contains 120 different videos, with 86360 labeled frames and
124691 bounding boxes. All frames are saved in JPEG format and are named per
the video and frame number (e.g., video_109-frame0000062.jpg). The dataset is split
into test/validation/train subsets with 80641/13163/13163 frames.
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FIGURE 3.7: Example of annotated frame
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Chapter 4

Experiments Overview

4.1 Experiments Setup

All models were trained using an Nvidia Tesla T4 GPU using Google Cloud VM.
For Faster R-CNNJ[19], we’ve used Pytorch[16] implementation of the models and
the official paper source code for YOLOR[23] and YOLOvV5[12]. We’ve used transfer
learning using pre-trained COCO 2017[13] weights to speed up the training process.
The training was done on the previously discussed dataset, with 80640 images. Per
the requirements in YOLO[17] images were resized to squares. Final dimensions
used were 640x640 px.

4.2 Performance Metrics

4.2.1 Mean Average Precision

Mean Average Precision[15], [14] is a measure of how close the predicted are is to
the ground truth. It is calculated by taking a mean of each class” Average Precision.
Per-class AP is calculated by the area under the precision/recall curve of predictions.

The first step in calculating the AP of a class is to map each detection to its most-
overlapping ground truth. This is done by calculating Intersection over Union for
each detection-ground truth pair. An IoU threshold is used to filter the detections;
those that do not pass it are discarded and counted as False Positives. The highest-
scored detection is counted as a True Positive; all others are instead counted as False
Positives. Next, Precision and Recall are calculated for each class. They are defined
as a ratio of the number of True Positives to the number of Total Predictions and
Total Ground Truths, respectively. Afterward, Precision/Recall values are plotted,
and the area under the precision-recall curve is calculated.

4.2.2 Frames per Second

FPS is a common measure of the model’s detection speed. It denotes the number
of inputs a model can process in a second. This is useful to measure the real-time
effectiveness of a model.
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FIGURE 4.1: Confusion Matrix (Blue bounding box - Ground Truth,
Red - prediction):
(a) TP - Detected correctly
(b) TN - Correct background detection
(c) FP - Wrong Bounding Box or Label
(d) EN - Wrong background detection
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Results

All models were tested on an Nvidia Tesla T4 GPU with a threshold of IoU = 0.5.

In total, 13162 images were used for testing, all scaled to 640x640 px.

| Model | mAP@0.5 | FPS |
Faster R-CINN + Resnet50 90.02% 12
Faster R-CNN + MobilenetV3 83.66% 52
YOLOv5 S 90.1% 106
YOLOR P6 80.4% 47

TABLE 5.1: Model Speed Comparison

Model | Soldier | Vehicle | Unidentified Object |
Faster R-CNN + Resnet50 76.53% | 96.86% 96.83%
Faster R-CNN + MobilenetV3 || 61.35% | 93.12% 96.51%
YOLOvV5 S 79.5% | 95.1% 72.6%
YOLOR P6 84.6% | 96.3% 60.5%

TABLE 5.2: Per class AP@0.5 Comparison

Model H MiB ‘
Faster R-CNN + Resnet50 1975
Faster R-CNN + MobilenetV3 || 1271
YOLOV5 S 1099
YOLOR P6 1281

TABLE 5.3: Model Inference GPU memory
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FIGURE 5.4: YOLOVS Precision/Recall Graph
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Chapter 6

Conclusion

In this paper, we’ve established an image dataset for detecting objects of military
equipment. It contains 86360 labeled frames and 124691 bounding boxes collected
from 120 videos. We’ve also trained and compared four detection models: 2 based
on the Faster R-CNN family of models and two based on YOLO. YOLOv5 showed
the best results in inference speed and memory usage. Both Faster R-CNN models
exceeded in detecting the Unidentified Object class but lacked in all other aspects.
YOLOR exceeded the accuracy of YOLOV5 in detecting Soldier and Vehicle objects
but performed almost twice as slowly. For the task of this work, YOLOVS5 is over-
all the best choice, trading a negligible accuracy difference for a very fast inference
speed.

Current work can be improved in several ways, namely, by increasing the size of
the dataset and training the models from scratch as opposed to transfer learning. The
next step would be the implementation of a multi-object tracker that would utilize
one of the trained models.
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