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Abstract

This research focuses on the topic of weakly-supervised tumor segmentation. The
proposed pipeline involves the usage of a classification model to make predictions
regarding the presence of a tumor in an image. Subsequently, the CAM (Class Acti-
vation Mapping) approach is employed to identify the most relevant regions within
the image as determined by the model. The underlying concept is that the model will
learn to identify tumor regions, resulting in higher activations in those areas. The
advantage of the weakly supervised approach is its ability to learn from a smaller
dataset, requiring only image-level labels in our case. By implementing the pro-
posed pipeline, specifically using the Score-CAM technique.
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Chapter 1

Introduction

In the medical field, the ability of doctors to accurately identify diseases can some-
times be compromised due to long working hours and stress. Important details
in medical images, such as computed tomography (CT) scans, may be accidentally
overlooked, leading to potentially harmful consequences. The increasing workload
on healthcare professionals further inflames this issue. In light of these challenges,
our solution aims to assist doctors in detecting and localizing tumors and cysts in
CT images. Early detection of even the smallest indications of cancer in organs like
the lungs, kidneys, or breast is crucial for timely intervention and improved patient
outcomes.

Our proposed solution involves the development of a model capable of detecting
and classifying cancer using a weakly-supervised approach. This approach requires
lower-quality data, specifically image-level labels indicating the presence of a tumor.
While segmentation requires the tumor’s mask, which is more challenging to obtain,
we demonstrate that the weakly-supervised approach can effectively train a classifi-
cation model for tumor segmentation without the need for pixel-level annotations.

Furthermore, we see the potential to collect additional information about a pa-
tient’s symptoms or familial illnesses, enabling better prediction and risk assessment
for individual cases.

1.1 Hypothesis

We put four of the following hypotheses for our research:

1. Weakly-supervised approaches have the potential for tumor segmentation and
can achieve promising results.

2. Score-CAM, a specific CAM approach, can outperform Grad-CAM approaches
in terms of performance.

3. Given the limited amount of available data, employing shallower network ar-
chitectures holds the potential for yielding improved results in our task.

4. Supervised approaches will outperform weakly-supervised approaches in terms
of segmentation accuracy, as they directly learn the correct segmentation.

1.2 Thesis structure

The structure of our thesis is outlined as follows:
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Background This chapter provides an overview of the medical and technical back-
ground, including computed tomography scans, tumor characteristics, computer vi-
sion tasks, class activation mapping techniques, relevant metrics, and previous re-
search conducted in the field.

Materials and methods This chapter describes the datasets utilized in our research,
including Deeplesion, Kits-19 and Kits-21. We outline the weakly-supervised ap-
proach adopted in our experiments.

Experiments and results This chapter presents the experiments conducted using
various Class Activation Mapping approaches and reports the corresponding re-
sults.

Conclusion In this concluding chapter, we summarize the findings and results of
our research. We also outline potential future steps that were not explored in this
work but hold promise for improving the results.
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Chapter 2

Background information

This chapter aims to provide a comprehensive overview of the medical and technical
backgrounds relevant to the research conducted. The medical background section
will focus on essential aspects related to CT and tumors. By examining CT imaging
techniques and their significance in tumor detection, a foundation will be estab-
lished for the subsequent research.

In the technical background section, the emphasis will be on computer vision
tasks and their relevance to the current study. This will involve a discussion of the
various tasks within computer vision, such as image classification and segmenta-
tion, which are crucial to tumor analysis and detection. Furthermore, a review of
related work in the field will be presented to highlight existing methodologies and
approaches.

Another key aspect addressed in the technical background section will be the
introduction and explanation of CAM (Class Activation Mapping) methods. These
techniques play a pivotal role in the research methodology and are instrumental in
identifying the most crucial regions within an image as determined by the model. A
thorough overview of CAM methods will be provided to ensure a clear understand-
ing of their significance and application within the context of the study.

2.1 Medical background

This chapter serves to provide an overview of the pivotal medical aspects that are
applicable to our research. Gaining an understanding of the medical background
is crucial for the data collection process in real-world scenarios. Our discussion will
primarily revolve around two significant topics: computed tomography and tumors.

The section dedicated to CT will dive into the principles and techniques em-
ployed in this imaging modality. In addition, we will direct our attention towards
tumors, a focal point of our research. This will involve an exploration of the charac-
teristics and types of tumors within the medical context. By delving into the diverse
aspects of tumors, we aim to establish a solid foundation for their detection and
segmentation.

2.1.1 Computed tomography

Computed tomography (CT) is an essential medical imaging technique employed
in radiology for diagnostic purposes. It involves directing a narrow beam of X-rays
towards a patient, which swiftly rotates around their body. These X-rays generate
signals that are subsequently processed by a computer to produce "slices" of the
body. By combining all the collected slices digitally, a three-dimensional (3D) image
of the patient is formed.



4 Chapter 2. Background information

FIGURE 2.1: The process of data collection through a CT scan. CT
scan 2023

The thickness of the tissue represented in each image slice can vary, depending
on the specific CT machine utilized, typically ranging from 1 to 10 millimeters.

The data obtained from this procedure is in the form of voxels, which represent
three-dimensional volumes of the human body. However, for our approach, we
focus on working with images, and therefore we need to extract horizontal slices
from the voxel data. Conceptually, we can envision each slice as a single circular
path of the X-ray source around the body. Consequently, a single slice may depict,
for example, both kidneys and a tumor in the same image. By leveraging these
horizontal slices, we can effectively analyze and interpret the medical images as part
of our research approach.

2.1.2 Tumor

A tumor refers to a collection or cluster of abnormal cells that manifest within the
body. It is important to note that not all tumors are cancerous; some are classified as
noncancerous or benign. Kidney Cancer 2023

Tumors typically emerge when cells undergo excessive division and growth within
the body. Ordinarily, the body maintains regulation over the growth and division of
cells. Aging cells are naturally replaced by new ones, ensuring the proper func-
tioning of bodily processes. Moreover, damaged cells are replaced by healthy ones.
However, when this regulatory process becomes disrupted or corrupted, healthy
cells may undergo changes and proliferate uncontrollably, ultimately forming a mass
commonly referred to as a renal cortical tumor.

There are indeed several types of kidney cancer. The most common types in-
clude:

• Renal cell carcinoma. One of the most common kidney cancer in adults, near
85% of diagnoses.

• Urothelial carcinoma. It accounts for 5% to 10% of the kidney cancers diag-
nosed in adults.
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• Sarcoma. Sarcoma of the kidney is rare. This type of cancer develops in the
soft tissue of the kidney.

• Wilms tumor. Wilms tumor is most common in children. Wilms tumors make
up about 1% of kidney cancers.

• Lymphoma. Lymphoma can enlarge both kidneys and is associated with en-
larged lymph nodes. Kidney Cancer 2023

Cysts, conversely, are mostly benign in nature. They do not exhibit any harmful
effects on kidney function and do not result in organ enlargement. Simple Kidney
Cysts 2019

Within the utilized dataset, labels were provided for both tumors and cysts.
While our primary objective does not revolve around differentiating between these
two conditions, our aim is to detect the presence of either of these diseases within
an image sample.

2.2 Technical background

Our main goal in this chapter is to examine the technical details of our project. We
will concentrate on diverse computer vision tasks, the use of class activation map-
ping (CAM) methods, the assessment of metrics, and a review of related research in
the area.

2.2.1 Computer vision tasks

Computer vision, a multidisciplinary field at the intersection of computer science
and image processing, plays a pivotal role in the medical domain. It incorporates a
range of algorithms, methodologies, and techniques designed to extract meaningful
information and insights from medical images, ultimately aiding in diagnosis and
disease monitoring.

Within the field of medicine, computer vision is used for advanced image anal-
ysis and pattern recognition algorithms to interpret medical images acquired from
diverse modalities such as X-ray, computed tomography (CT), magnetic resonance
imaging (MRI), ultrasound, and histopathology slides. By applying sophisticated
algorithms, computer vision enables the automated detection, segmentation, and
classification of anatomical structures, lesions, tumors, and other pathological ab-
normalities.

The application of computer vision in medicine holds substantial potential for
enhancing clinical decision-making and patient care. It can assist radiologists, pathol-
ogists, and other healthcare professionals by providing quantitative measurements,
aiding in the identification of subtle anomalies, and classification of diseases. More-
over, computer vision techniques can contribute to the efficient analysis of large-
scale medical image datasets, accelerating research.

This research is primarily centered around two fundamental computer vision
tasks: classification and segmentation.

Image classification

Image classification is a supervised approach in which a model is trained to catego-
rize objects within an image. The model receives an input image and is provided
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FIGURE 2.2: Residual learning: a building block

with specific, predefined classes as labels. The goal is to enable the model to accu-
rately assign the correct label to new, unseen images.

To train a robust classification model, it is essential to have a diverse and repre-
sentative dataset that includes examples from all the classes we aim to distinguish.
A greater variety of images for each class allows the model to learn generalized pat-
terns rather than focusing solely on specific features present in individual examples.

In our research, the focus lies specifically on the classification of images contain-
ing kidney tumors. We have narrowed our investigation to kidney tumor. How-
ever, it is important to note that the approach we develop and the insights gained
from our research may potentially be applied to other organs as well. The underly-
ing principles and techniques can be adapted and extended to address classification
challenges in different medical contexts, expanding the scope of our findings and
their potential impact.

Residual Network architecture The researchers in this study observed that in-
creasing the size of the models led to improved performance in their classifica-
tion task. However, they encountered a problem known as the vanishing gradient,
wherein the gradients propagated through the deep layers of the model became in-
creasingly small, making learning less effective.

To address this issue, the researchers proposed a solution: incorporating skip
connections within the model architecture. That allow information from earlier lay-
ers to bypass subsequent layers and directly influence the final prediction. This pro-
cess is visually represented in Figure 2.2.

The core building block of the Residual Network (ResNet) architecture He et al.,
2015 is the residual block, which consists of two convolutional layers and a skip
connection. The input to the block is denoted as x, and the convolutions produce a
transformed output denoted as F(x). Simultaneously, the skip connection directly
passes the original input x to the next layer. By introducing these skip connections,
the model can effectively address the vanishing gradient problem and accommodate
deeper network structures, thereby enabling the use of larger and more powerful
models.

ResNet-50, a variant of the ResNet, exhibits a similar structure to ResNet-34 but
incorporates an additional bottleneck design.
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FIGURE 2.3: ResNet arhitecture
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The inclusion of the bottleneck layer allows ResNet-50 to strike a balance be-
tween model depth, expressiveness, and computational efficiency. It enables the
model to capture both local and global features effectively, facilitating accurate and
robust predictions while optimizing computational resources.

In both ResNet-50 and ResNet-101 architectures, the authors incorporate 1x1 con-
volutions for reducing the number of features. Other great characteristic of 1x1
convolutions is that they are able to transform the number of channels in the in-
put tensor. It can be used to increase or decrease the number of channels, thereby
controlling the complexity and capacity of the network. Additionally, it helps to in-
troduce non-linearity through the activation function applied after the convolution
operation.

Semantic segmentation

Semantic segmentation is a fundamental task in computer vision that involves as-
signing a specific class label to each pixel in an image. In the context of our research,
these classes can represent various elements such as tumors, cysts, kidneys, lungs,
and more. When multiple elements overlap within a single image, our approach
does not differentiate between them; instead, the model generates a merged mask
that encompasses all detected instances.

The outcome of semantic segmentation is a detailed mask that designates the
specific pixels belonging to different classes. This not only allows us to determine
the presence of a tumor in an image but also enables us to predict its precise mask.
Using this mask, we can perform additional calculations, such as measuring the
size and intensity of the tumor pixels or counting the number of tumors present,
provided they are not overlapping. Alternatively, the prediction may manifest as a
single point at the center of the tumor, effectively highlighting the affected region.

By employing semantic segmentation techniques, we can achieve a more gran-
ular understanding of medical images, enabling us to extract valuable information
for diagnosis, treatment planning, and further analysis. This approach holds great
potential for advancing the field of medical imaging and improving patient care by
facilitating the accurate localization and characterization of various abnormalities
within the images.

Encoder-Decoder Architecture The architecture used in this study employs an
Encoder-Decoder framework, consisting of two primary components:

• Encoder: This component, represented by the left portion of Figure 2.4, is re-
sponsible for extracting essential information from the input image. By utiliz-
ing various layers and operations, the encoder produces a high-dimensional
feature vector that captures the salient features of the image.

• Decoder: The decoder, depicted by the right portion of Figure 2.4, performs
the reverse process by decoding the information from the bottleneck repre-
sentation and generating a semantic map. This map provides a detailed un-
derstanding of the image, highlighting different regions and their respective
classes.

The high-dimensional feature vector obtained from the encoder stage serves as a
valuable representation of the input image. It can be further utilized for tasks such
as image reconstruction in autoencoders or generating image segmentation masks.
By leveraging this architecture, we aim to enhance the understanding and analysis
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FIGURE 2.4: U-Net arhitecture

of images, enabling accurate and effective segmentation and mapping of various
elements within the image.

A prominent instance of the Encoder-Decoder architecture is the U-Net model
Ronneberger, Fischer, and Brox, 2015, as illustrated in Figure 2.4. The U-Net archi-
tecture incorporates skip connections, which effectively address the segmentation
of smaller objects and yield outputs with improved smoothness. Furthermore, the
model demonstrates a relatively low number of parameters, rendering it suitable for
training on limited datasets, particularly when combined with appropriate augmen-
tation techniques. Notably, the U-Net architecture has garnered significant success
and widespread adoption in the field of biomedical imaging, specifically for seg-
mentation tasks Ronneberger, Fischer, and Brox, 2015; Liu et al., 2022; Hollo, 2019.

2.2.2 Class Activation Mapping

Class Activation Mapping (CAM) Zhou et al., 2015 is a valuable technique applied
in convolutional neural networks (CNNs) to highlight regions of interest related to
specific classes. This approach offers insights into the decision-making process of
the model and serves as a powerful tool for model improvement, enabling a visual
understanding of the areas on which the model focuses. Even in cases where the
model is not explicitly trained in a supervised manner to localize specific classes, it
tends to capture patterns from images containing those classes. Consequently, the
model develops an understanding of where the objects of interest are likely to exist
within an image. These patterns can manifest as concrete features shared among
different class representations. For instance, when dealing with the "dog" class, the
model attempts to identify characteristic elements such as ears, eyes, nose, and tails.
Dogs may vary in terms of breeds, colors, and sizes, further highlighting the need for
the model to differentiate between different classes, such as "dog" and "cat," based
on distinct features like muzzle shape or ear appearance.

CAM techniques aim to stress the regions where the model identifies specific
cues related to the target class, making it a valuable tool for visual interpretation
and analysis. This is precisely why CAM is of significant interest in the field.
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However, it is important to note that the CAM method has a particular limita-
tion: the model architecture must incorporate global pooling as the final layer and
should not contain fully connected layers prior to that, similar to the VGG architec-
ture.

Let us denote f as the CNN model with global pooling. Given an input X,
the model produces a prediction Y, representing a probability distribution over all
classes C, with Yc indicating the confidence score for class c. Additionally, we denote
Al as the activation of layer l. In the case of a convolutional layer, the activation is
denoted as Ak

l , where k represents the channel. The weight between the k-th neuron
of layers l and l + 1 is denoted as wl,l+1.

Definition 1 (Class Activation Mapping)
Class activation mapping is a technique applicable to models featuring global

pooling. In this context, a model with global pooling at layer l uses the output of the
preceding layer, l − 1, as input and passes the pooled activation to a fully connected
layer, l + 1. Specifically, for a given class c, Lc

CAM can be defined as follows:

Lc
CAM = ReLU(∑

k
αc

k Ak
l−1)

, where αc
k = wc

l,l+1[k]

The ReLU is used for calculating only positive correlations with class c predic-
tion. The driving force behind CAM is the fact that each activation map Alk carries
some unique dimensional information about input X and the weight of each chan-
nel is linear combination of fully connected layer and global pooling. As we said
previously this approach can not be used to all architectures.

Grad-CAM is an approach that addresses the limitation of CAM. This method
was proposed by Selvaraju et al. in their paper "Grad-CAM: Visual Explanations
from Deep Networks via Gradient-based Localization" Selvaraju et al., 2019. The
key idea behind Grad-CAM is to capture the importance of each feature map in the
network by computing the gradients of the class confidence score with respect to
the feature maps. These gradients represent the sensitivity of the class prediction to
changes in the feature maps.

Grad-CAM redefines αc
k as a gradient of class confidence Yc . With such ap-

proach, we can use models that do not have global pooling.

Definition 2 (Grad-CAM)
For Grad-CAM, consider a convolutional layer lin a model f , and having class

of interest c:

Lc
Grad−CAM = ReLU(∑

k
αc

k Ak
l−1)

, where αc
k = GP( ∂Yc

∂Ak
l
)

Visual representation of Grad-CAM pipeline is visualized on Figure 2.5.

The Grad-CAM++ technique by Chattopadhay et al., 2018 is a variant of Grad-
CAM that introduces a redefined combination of gradients. It shares similarities
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FIGURE 2.5: Grad-CAM pipeline

with Grad-CAM but differs in the specific formulation used to combine gradients
for generating the sensitivity maps.

Smooth Grad-CAM++ by Omeiza et al., 2019 is an extension of Grad-CAM++
that aims to enhance the sharpness of gradient-based sensitivity maps. It achieves
this by introducing random sampling in the neighborhood of an input x and subse-
quently averaging the resulting sensitivity maps, thereby refining the overall quality
and clarity of the generated maps.

On the other hand, ScoreCAM by Wang et al., 2020 is a gradient-free method
that operates by producing heatmaps corresponding to different regions of an im-
age. It then uses only those specific areas during the model prediction process. This
approach allows researchers to identify the most crucial heatmaps that contribute
significantly to achieving optimal predictions. The measure of importance is cap-
tured through the concept of Increase of Confidence, which is incorporated within
the ScoreCAM methodology.

Definition 3 – Increase of Confidence
Given a general function Y = f (X) that takes an input vector X = [x0, x1, ..., xn]

and outputs a scalar Y . For a known baseline input Xb, the contribution ci of xi,
(i ∈ [0, n − 1]) towards Y is the change of the output by replacing the i-th entry in
Xb with xi . Formally,

ci = f (Xb ◦ Hi)− f (Xb)

where Hi is a vector with the same shape of Xb but for each entry hj in Hi ,
hj = I[i = j] and ◦ denotes Hadamard Product.

Definition 4 - CIC score
Given a CNN model Y = f (X) that takes an input X and outputs a scalar Y .

We pick an internal convolutional layer l in f and the corresponding activation as A.
Denote the k-th channel of Al by Ak

l . For a known baseline input Xb, the contribution
Ak

l towards Y is defined as

C(Ak
l ) = f (X ◦ Hk

l )− f (Xb)

where Hk
l = s(Up(Ak

l )),
Up(·) denotes the operation that upsamples Ak

l into the input size and s(·) is a
normalization function that maps each element in the input matrix into [0, 1].

Definition 5 (Score-CAM)
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FIGURE 2.6: Score-CAM pipeline

Consider a convolutional layer l in a model f , given a class of interest c, Score-
CAM Lc

Score−CAM can be defined as

Lc
Score−CAM = ReLU(∑

k
αc

k Ak
l )

where αc
k = C(Ak

l ),
where C(·) denotes the CIC score for activation map Ak

l .

It is evident that in the case of ScoreCAM, the importance of the class activation
maps is determined based on the class score rather than relying on the gradient
information.

The proposed pipeline is depicted in Figure 2.6, illustrating the key steps of the
approach:

• In the Phase 1, the input image undergoes processing by a CNN, resulting in
the generation of feature maps from the final convolutional layer.

• In the Phase 2, the class score is calculated for each specific class by utilizing
the heatmap as a mask. Notably, the importance scores are computed based
on the class score rather than gradients.

• These importance scores are then employed as weights to perform a weighted
summation of the activation maps obtained from the last convolutional layer.
Each activation map is multiplied by its corresponding importance weight and
subsequently added together.

• To focus on the positive contributions towards class prediction, ReLU activa-
tion is applied to the resulting weighted summation. This ensures that only
the positive aspects of the feature maps are considered.

2.2.3 Metrics

In this section, we will provide an overview of the metrics that are commonly em-
ployed for evaluating both classification and segmentation tasks. These metrics play
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a vital role as they enable quantitative comparison and assessment of different ap-
proaches.

Classification metrics

In the following sections, we will provide detailed descriptions of the main evalu-
ation metrics used in our study: precision, recall, and F1-score. These metrics play
a crucial role in assessing the performance of our models and understanding their
strengths and weaknesses.

Precision and Recall Precision and recall are indeed important metrics for evalu-
ating classification models. They provide valuable insights into the model’s perfor-
mance.

Precision is defined as the ratio of true positive predictions to the total number
of positive predictions made by the model. Mathematically, precision is calculated
as:

Precision = TP/(TP + FP)

where TP represents true positive predictions (correct prediction of positive class),
FP represent false positive predictions (incorrectly predicted positive instances).

Recall, also known as sensitivity or true positive rate, is defined as the ratio
of true positive predictions to the total number of actual positive instances in the
dataset. It measures the proportion of correctly predicted positive instances out of
all actual positive instances. Mathematically, recall is calculated as:

Recall = TP/(TP + FN)

where FN represents the number of false negative predictions (incorrectly pre-
dicted negative instances).

Precision focuses on the accuracy of positive predictions, indicating how precise
the model is in correctly identifying positive instances. A high precision value in-
dicates that the model has a low rate of false positives. Recall, on the other hand,
focuses on the completeness of positive predictions, measuring the model’s ability
to capture all positive instances. A high recall value indicates that the model has a
low rate of false negatives.

Both precision and recall are crucial metrics in evaluating the performance of a
classification model, and they often exhibit a trade-off relationship.

Finding the right balance between precision and recall depends on the specific
requirements and priorities of the classification task. For instance, in a medical diag-
nosis scenario, it may be more critical to have high recall to avoid missing potentially
positive cases, even if it comes at the cost of lower precision. On the other hand, there
exists cases when the precision is prioritized over recall.

F1-score The F1 score is a metric that combines both precision and recall into a
single value, providing an overall assessment of the model’s performance. It is cal-
culated as the harmonic mean of precision and recall. The harmonic mean is used
instead of a simple average because it gives more weight to lower values. This means
that the F1 score is particularly sensitive to cases where either precision or recall is
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low. It penalizes models that have a large disparity between precision and recall,
encouraging a balanced performance. Mathematically, F1 score is calculated as:

F1score = 2 · Precision · Recall/(Precision + Recall)

The F1 score will be high only if both precision and recall are high, and it will be
low if either precision or recall is low. It provides a balanced measure of the model’s
performance, considering both aspects of correct positive predictions and the ability
to capture all positive instances.

Segmentation metrics

In the following paragraphs, we will provide an overview of segmentation metrics
commonly used to quantify the performance of segmentation models, with a partic-
ular focus on the Intersection over Union (IoU) and Dice score.

Intersection over union The Intersection over Union (IoU) is a commonly used
metric for evaluating segmentation models. It provides a measure of overlap be-
tween the predicted and ground truth regions. The IoU score is calculated by divid-
ing the cardinality of the intersection of the predicted and ground truth regions by
the sum of the cardinalities of these regions.

Mathematically, the IoU score is expressed as:

IOU =
|X ∩ Y|
|X|+ |Y|

In this equation, X represents the predicted region and Y represents the ground
truth region. The cardinality of a region is the number of elements it contains.

The IoU score ranges from 0 to 1, where a score of 1 indicates a perfect over-
lap between the predicted and ground truth regions, and a score of 0 indicates no
overlap. By using the IoU metric, researchers and practitioners can quantitatively
assess the performance of segmentation models by measuring the extent to which
the predicted regions align with the ground truth regions.

Dice score The Sørensen–Dice coefficient (Dice score) is a widely used metric for
evaluating segmentation models. It measures the similarity or overlap between the
predicted and ground truth regions. The Dice score is calculated by taking twice
the cardinality of the intersection of the predicted and ground truth regions and
dividing it by the sum of the cardinalities of these regions.

Mathematically, the Dice score is expressed as:

DSC =
2|X ∩ Y|
|X|+ |Y|

DSC =
2TP

2TP + FN + FP
In this equation, X represents the predicted region and Y represents the ground

truth region.
The Dice score ranges from 0 to 1, with a score of 1 indicating a precise over-

lap between the predicted and ground truth regions, and a score of 0 indicating no
overlap.
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2.2.4 Related Work

In this section, we will explore various studies and research papers that focus on
working with CT scans for tumor detection in different organs. While the specific
focus of these studies may vary, they provide valuable insights and methodologies
that can be adapted for our proposed approach.

In a research conducted by Kaspar Hollo, 2019, the author investigated weakly-
supervised learning for artefact segmentation in brightfield microscopy images. A
comparison was made between a supervised approach using U-Net and YOLOv5,
and a weakly-supervised approach. The weakly-supervised pipeline involved train-
ing a ResNet50 architecture for binary classification of artefact presence, followed by
using Score-CAM predictions as pseudo-labels on the pixel level and feeding them
to the U-net model. The supervised approach achieved a pixel-wise F1-score of 0.92
and pixel-wise IOU of 0.86, while the weakly-supervised pipeline yielded a pixel-
wise F1-score of 0.64 and pixel-wise IOU of 0.48.

In the project by Xinyang Feng et al., 2017 and colleagues, the focus was on the
automatic segmentation of pulmonary disease in lung CT scans. Their proposed
model generated voxel-level segmentation using image-level labels, allowing the
model to identify areas of greater interest. This approach significantly reduced the
amount of labeled data required for training, achieving segmentation accuracy com-
parable to benchmark fully supervised methods, especially for larger nodules.

Jinzheng Cai et al., 2017 proposed a work titled "Improving Deep Pancreas Seg-
mentation in CT and MRI Images via Recurrent Neural Contextual Learning and
Direct Loss Function." The researchers leveraged LSTM to incorporate information
from not only the current image but also neighboring slices. The proposed method
utilized a deep learning model, with its output serving as input to the LSTM sub-
network. The deep learning model was trained to optimize a segmentation loss
function called Jaccard Loss. This approach outperformed other methods in the field
of pancreas segmentation.

Sarah Ryan et al., 2020 worked on "Cluster Activation Mapping with Applica-
tions to Medical Imaging" in 2020. The research focused on dividing voxels into
clusters and gaining insights into the differences between these clusters using Acti-
vation Mapping. The main characteristics identified for the clusters were the loca-
tion of abnormality and absence of abnormality. However, this approach currently
requires manual intervention to distinguish characteristics within each cluster.

Another relevant paper titled "Mixed-UNet: Refined Class Activation Mapping
for Weakly-Supervised Semantic Segmentation with Multi-scale Inference" Liu et al.,
2022, authored by Yang Liu, Ersi Zhang, Lulu Xu, and others, proposes an approach
to improve segmentations in methods utilizing CAM. The researchers developed
a new model called Mixed-UNet, which incorporates two parallel branches in the
decoding phase. Experimental results demonstrated that the model outperformed
other methods under the same supervision. This approach presents a potential av-
enue for further improving our pipeline.

In the paper "Weakly-supervised convolutional neural networks for renal tumor
segmentation in abdominal CTA images" Yang et al., 2020, the authors propose a
pipeline for segmenting renal tumors in abdominal computed tomography angiog-
raphy (CTA) images. The pipeline takes an image as input, along with a bounding
box around the tumor, and produces a tumor segmentation as output. The first step
of the pipeline involves generating pseudo-labels using convolutional conditional
random fields. This step helps in refining the initial segmentation by incorporating
contextual information. Next, multiple CNN models are trained using a split of the
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dataset into k subsets. Each model is trained on a different subset, resulting in k
predictions for each image in the dataset. Finally, a final model is trained using the
prepared masks obtained from the k predictions. This final model is then evaluated
to assess the performance of the approach. The authors report achieving a Dice score
of 0.826 using these methods. One notable difference between this approach and our
proposed approach is that it requires a bounding box as input. This bounding box
serves as a reference for the tumor region. This approach can be advantageous in
scenarios where bounding box annotations are readily available and can aid in the
labeling process.
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Chapter 3

Materials and methods

We propose a pipeline for tumor segmentation using an weakly-supervised learn-
ing model. The pipeline involves training a ResNet model for tumor classification,
where the model learns to classify images as either containing a tumor or not. Once
the classification model is trained, we focus on the regions of the image that were
most influential in the model’s decision-making process. By examining these re-
gions, we can determine the location of the tumor.

This pipeline offers a significant advantage as it allows us to process raw images
and pinpoint the precise location of the tumor, without requiring explicit segmenta-
tion labels during training.

In our task, the input image corresponds to a slice from a CT scan. Further de-
tails on the selection of these slices will be discussed in later sections. The model’s
objective is to classify each image slice as either tumor-positive or tumor-negative.
Following the classification, the CAM method is applied to highlight the areas of in-
terest. By setting an appropriate threshold, we can perform the tumor segmentation.

A visual representation of our pipeline is presented in Figure 3.1.

3.1 Datasets

When selecting the primary research area of kidney tumor segmentation, our first
step was to search for a suitable dataset that met our requirements. We needed
a dataset that provided tumor segmentation or, at the very least, bounding boxes
around the tumors. Additionally, we were interested in acquiring kidney images
without tumors for the purpose of training a classification model.

One dataset we came across was DeepLesion, which consisted of 10,594 CT scans
encompassing various organs. Although this dataset contained a substantial num-
ber of kidney tumors (495), it only provided the central image with a tumor and a
corresponding bounding box. Consequently, we determined that the Kits-21 dataset
would better suit our needs for kidney tumor segmentation, as it offered more com-
prehensive segmentation annotations.

3.1.1 Kits-19 and Kits-21

The Kits-19 and Kits-21 datasets Heller et al., 2020 are among the most widely used
datasets for kidney tumor segmentation. The Kits-21 dataset, in particular, provides
annotations for three labels: kidney, tumor, and cyst. In our research, we combine
the tumor and cyst labels into a single label. While it is possible to separate them in
the future, doing so may result in lower segmentation scores. This dataset consists
of 100 CT scans from different patients. Both datasets share an identical set of voxels,
ensuring consistency in the volumetric representation of the data. It is important to
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FIGURE 3.1: The proposed pipeline

mention that the Kits-21 dataset incorporates an update, specifically the inclusion of
a cyst class, which distinguishes it from the Kits-19.

Although the dataset provides voxel data, we need to convert it into image for-
mat for further processing. To simplify the task for the model and enhance its perfor-
mance, we split each image into left and right parts. By doing so, the model focuses
on one kidney at a time. Additionally, we position the kidney in the center of a 150
x 150 image. This approach can be replaced by another model that precisely locates
each kidney. However, using a smaller square ensures that the model’s attention
is primarily directed towards the kidney, even in cases where the kidney may have
another affected organ nearby. The visual representation of the split is on Figure
3.2. By employing this approach, we are able to obtain a dataset that consists of
26,409 samples without tumor and 10,870 samples with tumor, both are visualized
on Figure 3.3. In order to provide a comprehensive understanding of the data, we
have prepared a graph 3.4 that illustrates the percentages of tumor coverage within
the image. This graph serves as a statistical count, while for a visual representation
we compose a Figure 3.5, both of the visuals are offering valuable insights into the
extent of tumor presence in the dataset.

This approach allowed us to isolate and concentrate on individual kidney in-
stances within the dataset. The resulting smaller images maintained the same reso-
lution as the original images. This standardized size ensured consistency through-
out the dataset, enabling efficient model training and evaluation processes.

All the data samples in the dataset exhibit a similar appearance. The dataset
comprises CT scans collected from two hospitals over the period of 2010 to 2020, but
there is no explicit indication of the specific hospital or temporal splitting within the
dataset. Each patient in the dataset is represented by a unique number, and it is un-
known whether there are multiple scans available for each individual. Visually, the
scans appear distinct from one another, suggesting potential variations in imaging
characteristics across the dataset.
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FIGURE 3.2: The example from the dataset with the two smaller cuts
indicated by the black rectangles.
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FIGURE 3.3: An illustrative example extracted from the prepared
dataset, showcasing both tumor and healthy kidney samples.
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FIGURE 3.4: The tumor coverage within the image is measured by
representing the percentage of the image on the x-axis and the num-

ber of examples on the y-axis.

FIGURE 3.5: The area of tumor coverage within the image, repre-
sented as the percentage of the image.
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Chapter 4

Experiments and results

Our study employed Kits21 dataset for training. The dataset was divided into dif-
ferent groups of data, and we will outline the details of this division. Furthermore,
we will present a comprehensive comparison of the results obtained from various
supervised classification models, which will highlight the strengths and weaknesses
of each model. Finally, we will explore the most captivating aspect of our research:
the results derived from a weakly supervised approach, incorporating visual repre-
sentation.

4.1 Train data

The dataset was partitioned into distinct categories, with each category serving a
specific purpose within our study. The splitting process ensured that each patient
was assigned to only one split, eliminating any overlap between the training and
test sets. This division of the dataset was implemented as follows:

• Training data : This subset constituted the majority of the dataset and was
utilized to train our models. It played a crucial role in capturing patterns and
relationships within the data. The training data accounted for 60% of the entire
dataset.

• Validation data: To fine-tune the performance of our models during the train-
ing process, we allocated a portion of the dataset as validation data. This sub-
set, comprising 20% of the dataset, allowed us to monitor the models’ progress
and make necessary adjustments.

• Test Data: The final portion of the dataset, accounting for 20%, was desig-
nated as the test data. This set remained completely unseen by our models
during the training phase. We employed the test data to evaluate the models’
overall performance, ensuring that they could generalize well to new, unseen
instances.

Type of data Number of images Percent of images with tumor

Train 21816 28.96%
Validation 7510 28.50%

Test 7953 30.32%

TABLE 4.1: Detailed data split
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4.2 Classification model results

A classification model is a type of supervised approach that requires both the image
data and corresponding labels during training.

We conducted experiments using two different architectures, namely ResNet50
and ResNet101. Due to the difference in image dimensions, we were unable to lever-
age pretrained networks, as most pretrained models are designed for 3-dimensional
images, while our dataset consists of 1-channel images. Additionally, we explored
the impact of training data on our results. We pursued two approaches: firstly, em-
ploying every single image from the volume of the CT scan, and secondly, selecting
every 5th image from the scan.

We selected the ResNet architecture due to its ease of training and its suitability
as a foundational framework for various Class Activation Mapping (CAM) tech-
niques. The concept of using a subset of images from the scan, rather than all of
them, proved intriguing. Analogous to videos, where neighboring frames often ex-
hibit high similarity, the same holds true for volumetric scans. Consequently, our
objective was to direct the model’s attention away from the general background
and towards the organ and tumor regions of interest. By adopting this selective
approach, we aimed to refine the model’s focus and enhance its ability to discrimi-
nate between anatomical structures and pathological areas.

Default parameter values for both models are:

• learning rate is 1e-2,

• optimizer is Adam,

• batch size is 60,

• image train size is 150x150,

• decay rate is 0.1,

• decay epoch is 40.

These parameters were selected based on the results of the best performing ex-
periments.

Based on the learning curve depicted in Figure 4.1, it is evident that the model
begins to exhibit signs of overfitting after the 20th epoch. In general, the "ResNet101,
all data" experiment performed better than the "ResNet50, part of data" experiment.

Experiment Precision Recall F1-score

ResNet50, all data 75.69% 48.82% 59.35%
ResNet50, part of data 75.82% 57.36% 65.31%

ResNet101, all data 75.75% 57.53% 65.39%
ResNet101, part of data 78.26% 45.25% 57.35%

ResNet101, all data with augmentation 74.44% 55.45% 63.56%

TABLE 4.2: Experimental results of classification models

The experimental results indicate that ResNet50, being a shallower model, ex-
hibits superior performance when confronted with a more diverse range of images,
even when the available dataset is relatively smaller. On the other hand, ResNet101
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FIGURE 4.1: The learning curve plot illustrates the performance of
two experiments: "ResNet101, all data" (represented by the blue line)

and "ResNet50, part of data" (represented by the green line).

demonstrates a greater reliance on a larger quantity of images, even if they are rel-
atively similar in nature. Notably, the outcomes obtained from ResNet50, trained
on a reduced dataset, closely resemble those achieved by ResNet101 trained on the
complete dataset. It is important to clarify that all the experiments were conducted
using the same set of images over the entirety of the available data.

Due to the specific nature of the data and the presence of other organs, rotation
and flipping augmentations cannot be applied. The noise in the data, even with
minimal parameters, is too disruptive. Consequently, the only augmentation tech-
nique used was Gaussian blur, but it did not yield any improvements in the results,
visualized in Table 4.2.

The confusion matrix for ResNet101, trained on the entire dataset, reveals that
the model has a significant number of false negatives, indicating that it missed a
considerable number of tumor images. This limitation can be attributed to the rel-
atively small size of the available data, which may restrict the model’s ability to
effectively learn the underlying patterns. The findings emphasize the importance
of augmenting the dataset with additional samples to improve the model’s perfor-
mance in detecting tumors.

Figure 4.2 illustrates the areas where the model’s predictions deviate from the
ground truth, highlighting the instances where incorrect predictions occur.

For all subsequent experiments, unless otherwise specified, we will use ResNet101
trained on the entire dataset. The computations and analyses in these experiments
will be performed on the subset of correctly classified tumor images.
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FIGURE 4.2: The Confusion Matrix of the outcomes of the ResNet101
model trained on the entire dataset.

4.3 Weakly-supervised models results

Initially, we conducted a preliminary evaluation of our pipeline to ensure its func-
tionality and assess its performance on a simple and straightforward task. We intro-
duced a black square in the top left corner of each image with a tumor class. This
task served as an uncomplicated classification assignment, allowing us to verify the
effectiveness of our unsupervised approach. The model demonstrated the ability
to correctly classify images containing the square. In certain instances, our training
images already contained a black background in that region, which compelled the
model to focus on the tumor itself since it could not rely on the square’s edges. This
observation provided valuable insight into the model’s attention towards the tumor
region.

Subsequently, we proceeded with experiments using different approaches, namely
Score-CAM, Grad-CAM, Grad-CAM++, and Smooth Grad-CAM++. We carefully
configured these experiments to determine the optimal threshold for each approach
based on the validation set. The results of these experiments are presented in Ta-
ble 4.3, showcasing the performance of each approach with their respective chosen
thresholds.

Each of the approaches we employed in our experiments generates a heatmap as
its output, with values ranging from 0 to 1.3. It is important to note that a threshold
of 0 does not necessarily imply that the entire image is highlighted, but rather a
substantial portion of it. Based on the results obtained, we can conclude that Grad-
CAM and Score-CAM exhibit the most promising performance for our specific task.
However, there is still room for improvement in these approaches, as well as in the
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Approach Threshold IOU Validation IOU Test

Grad-CAM 0.15 0.367 0.316
Grad-CAM++ 0 0.303 0.251

Smooth Grad-CAM++ 0 0.303 0.251
Score-CAM 0.15 0.370 0.323

TABLE 4.3: Experimental results for various CAM approaches

other methods explored. Visual representations of the results are presented in Figure
N, providing a comprehensive overview of the heatmap outputs.

The presented Figure 4.3 showcases the results obtained from various unsuper-
vised CAM methods. The ground truth region is depicted by the white line, while
the blue line represents the prediction. The heatmap generated by each method pro-
vides insights into the focus and coverage of the predictions. In cases where a large
portion of the image appears red, it indicates that the approach has bounded a sig-
nificant area, but with some small values. The red color in the heatmap represents
the prediction, and the presence of holes indicates that certain regions have been
excluded from the prediction.

Examining the examples, we observe that in the first image, all the models cor-
rectly detected the tumor. However, in the second image, Grad-CAM exhibited the
poorest performance, although it still captured approximately half of the tumor. The
third example highlights that some methods focused either on the entire image or
solely on the entire kidney, failing to provide precise tumor localization. Moving to
the fourth example, we observe that Score-CAM demonstrated a strong focus on the
tumor, while Grad-CAM failed to detect it entirely.

In the subsequent images, we find a large tumor in the fifth example, which
was nearly fully detected by all the approaches. The sixth image exhibits a detected
tumor, accompanied by a substantial area of prediction surrounding it. The sev-
enth image showcases a small tumor that was successfully detected, although with
a wider focus. Lastly, the eighth image features a sizable tumor that was accurately
identified by all the employed methods.

Overall, the presented visual results demonstrate the performance and charac-
teristics of different unsupervised CAM methods, highlighting their strengths and
areas for improvement.

In Figure 4.4, it is observed that the model frequently detects the presence of the
tumor, indicated by a non-empty intersection. However, the model’s predictions
often lack precision in terms of the exact tumor region. In some instances, the pre-
dicted area is too small compared to the actual size of the tumor. Conversely, there
are cases where the model’s focus on the tumor results in a larger predicted region.

The results of the experiment, visualized on Figure 4.5, demonstrate a similar
trend to the Grad-CAM results. One of the large tumors exhibits a solid overlap
with the gt (first image in the second row), while on another (last image in the third
row) the heatmap generated by Score-CAM mostly misses the tumor. Locating small
tumors proves to be challenging as the model focuses on different regions of the im-
age.

In another experiment, we specifically tested on larger tumors. The rationale
behind this approach is that detecting small tumors in a single image can be difficult.
We anticipated improved results; however, it is worth noting that all the generated
heatmaps often cover a larger area than the tumor itself. Therefore, when excluding
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FIGURE 4.3: Comparison of Unsupervised CAM Methods: Ground
Truth Region (White Line) vs. Prediction (Blue Line)
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FIGURE 4.4: Visualization of Grad-CAM Results

FIGURE 4.5: Visualization of Score-CAM Results
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small tumors, whose regions are small and may result in a lower intersection over
union (IOU) score, our predictions still encompass the tumor region. We selected
tumors larger than 2% of the image for this experiment, and the results are presented
in Table 3.

Approach Threshold IOU Validation IOU Test

Grad-CAM 0.15 0.377 0.332
Score-CAM 0.1 0.382 0.338

TABLE 4.4: Experimental results for tumors with area > 2% of the
image

The observed improvements in the model’s performance were minimal, indicat-
ing that the issue with the heatmap persists, contrary to our initial assumption.

4.4 Comparison with Supervised Approach

We conducted a comparison between our weakly-supervised approach and a su-
pervised approach using the U-Net model. Both models were trained on the same
dataset consisting of images with and without tumors. Due to the fact that input
data is single-channel images, we are unable to utilize pretrained models that are
typically designed for multi-channel inputs. We used the original U-Net architec-
ture, where the lowest feature map size was adjusted to 64x64x512, in contrast to the
standard 30x30x1024 configuration. The evaluation scores are presented in Table 4.5,
and the visual results are displayed in Figure 4.6.

Model Test IoU

GradCAM 0.316
ScoreCAM 0.323

UNet 0.542

TABLE 4.5: Comparison of the results between the supervised and
weakly-supervised models

From Figure 4.6, we observe that the U-Net model performs well overall, al-
though it still struggles to detect small tumors. This difficulty in detecting small
tumors is also evident in the results of the CAM approaches. The CAM methods
generate larger heatmaps for small-sized tumors, resulting in some instances where
the tumor is not detected, such as the second row in the figure. In contrast, the U-
Net model produces more precise segmentation masks, as demonstrated in the last
example.

One possible explanation for the U-Net’s performance is that the classification
model focuses solely on detecting tumors in the image, allowing it to find the tu-
mor in at least one region and stop searching in other regions. In future work, we
could explore incorporating a loss function that encourages the model to examine
the entire heatmap, or explore alternative mechanisms to address this limitation.

The observed limitations in performance could potentially be addressed by mod-
ifying the model’s configurations, such as increasing the number of convolutions, to
enhance its ability to learn complex patterns. However, it is important to note that
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FIGURE 4.6: A comparison of the results between the supervised and
weakly-supervised models
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the lack of available data remains a significant challenge in achieving optimal re-
sults. The limited amount of data may slow down the model’s ability to generalize
effectively and capture the full range of tumor characteristics.

4.5 Hypothesis Results

In this chapter, we present the results obtained from testing the hypotheses formu-
lated at the beginning of our research. The hypotheses were designed to explore
various aspects of weakly-supervised tumor segmentation and compare it with su-
pervised approaches. The following sections provide a summary of the findings and
their implications.

Hypothesis 1: Weakly-supervised approaches have the potential for tumor seg-
mentation and can achieve promising results. Result: Our experiments confirm that
weakly-supervised approaches have the potential to effectively segment tumors.
The obtained results demonstrate the feasibility of utilizing weakly-supervised learn-
ing methods for tumor segmentation tasks.

Hypothesis 2: Score-CAM, a specific CAM approach, can outperform Grad-
CAM approaches in terms of performance. Result: Our analysis reveals that Score-
CAM indeed outperforms other Grad-CAM approaches in terms of performance.
It consistently demonstrates superior segmentation accuracy, highlighting its effec-
tiveness as a CAM technique for tumor segmentation. However, it should be noted
that Grad-CAM approach is also competitive and show comparable performance in
certain configurations.

Hypothesis 3: Given the limited amount of available data, employing shallower
network architectures holds potential for yielding improved results in our task. Re-
sult: Our findings suggest that these architectures, which prioritize the learning of
high-level features, exhibit promising performance in capturing important tumor
characteristics. However, it is worth noting that in our specific case, deeper models
demonstrate superior performance.

Hypothesis 4: Supervised approaches will outperform weakly-supervised ap-
proaches in terms of segmentation accuracy, as they directly learn the correct seg-
mentation. Result: The experiments confirm that supervised approaches gener-
ally outperform weakly-supervised approaches in terms of segmentation accuracy.
However, the difference in performance between the two approaches is relatively
small, with an IoU score difference of 0.23. This suggests that further improvements
can be made to enhance the performance of weakly-supervised approaches in tumor
segmentation.

The results of our hypothesis testing provide valuable insights into the strengths
and limitations of weakly-supervised tumor segmentation approaches. While weakly-
supervised methods show promise and can achieve competitive results, there is still
room for improvement. Future work should focus on refining weakly-supervised
techniques to bridge the performance gap with supervised approaches.
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Chapter 5

Conclusion

This research presents a comprehensive investigation into weakly-supervised tumor
segmentation using a pipeline that incorporates a ResNet101 classification model
and the Score-CAM approach. Through the use of higher activations to identify tu-
mor regions, the proposed pipeline showcases the benefits of learning from a full
dataset with image-level labels. The inclusion of the Score-CAM technique yields
a noteworthy IoU score of 0.323, underscoring the effectiveness of the weakly su-
pervised approach in tumor segmentation tasks. The research provides detailed
insights into implementation strategies and thorough qualitative and quantitative
evaluations to support the findings.

This approach has the potential to assist labellers by highlighting areas of high
interest, thereby labellers can focus their attention on these specific regions, making
the labelling task more efficient and effective.

In terms of future research directions, there are several important steps to con-
sider. Firstly, it is crucial to focus on enhancing the performance of Grad-CAM++
and Smooth Grad-CAM++, as well as exploring the potential of other CAM ap-
proaches.

Additionally, an alternative direction to pursue involves incorporating 3D Score-
CAM and leveraging voxel-based training. By using the sequential information
present in the input data, there is a potential for improved model performance.

Furthermore, an interesting avenue to explore is the combination of LSTM and
attention mechanisms to feed the model with voxel slices in a sequential manner.
This approach has the potential to capture temporal dependencies and further en-
hance the model’s segmentation capabilities.

These future steps hold promise for advancing the current research and poten-
tially improving the accuracy and effectiveness of tumor segmentation.

For those interested in the code used in this research, it will be made available
via email at zakharchenko@ucu.edu.ua. Moreover, the dataset used in this study is
open and accessible for further exploration.
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