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Abstract

This study is motivated by the Ocean Decade declared by the United Nations. We
employed machine learning techniques to detect and delineate areas of pollution in
the coastal zone of Great Britain, utilizing pollution reports from the Department for
Environment Food And Rural Affairs (DEFRA) and the ocean monitoring datasets
from the European Space Agency (ESA).

In this study, feature engineering was performed on chlorophyll concentration
data. Two datasets were constructed: one with statistical metrics (mean, median,
standard deviation, and percentiles) as features, and another with individual cells
of the chlorophyll concentration matrix as features, utilizing different matrix n sizes,
where n is from 3 to 11, where each element or pixel of the matrix represented a
1km × 1km area. Logistic regression, decision trees, random forest classifier, gra-
dient boosting classifier, and LeNet models were applied. Hyper parameter tuning
was conducted to optimize the performance of each model. Among the models,
the gradient boosting classifier achieved the highest accuracy of 95.21%. Addition-
ally, the F1 score was determined to be 0.2445, the ROC AUC was 0.7659, and the
precision-recall AUC (PR-AUC) was found to be 0.1821.

Detecting and delineating areas of pollution can greatly assist cleaning services
in efficiently carrying out their job, resulting in improved remediation and restora-
tion efforts. The identification of pollution areas holds significant implications for
the fishing industry, as it enables informed decision-making regarding fishing prac-
tices and resource management, ensuring the sustainability and viability of the sec-
tor. Moreover, the accurate detection and delineation of pollution areas have the po-
tential to generate substantial economic, social, and environmental benefits by facil-
itating targeted interventions, protecting ecosystems, preserving marine resources,
and fostering a healthier and more resilient environment.

The findings of this study provide valuable insights into the efficacy of classifica-
tion approaches in identifying and mapping pollution sites in coastal regions using
pollution reports from DEFRA.

HTTP://WWW.UCU.EDU.UA
http://department.university.com


v

Acknowledgements

I would like to express my heartfelt gratitude to Dmytro Karamshuk for his excep-
tional supervision throughout this research project. His invaluable feedback, inspi-
ration, and encouragement have been instrumental in shaping the outcome. I am
deeply thankful to the Ukrainian Catholic University and the Faculty of Applied
Sciences for organizing the Master’s Program in Data Science, which has provided
me with an enriching educational experience. I would like to wholeheartedly ex-
press my sincere gratitude to Oleksii Molchanovsky and Ruslan Partsey for their
exceptional leadership of the program and their remarkable ability to resolve orga-
nizational matters. My deepest gratitude goes to my family, whose unwavering mo-
tivation has been a constant source of strength and encouragement throughout this
endeavor. I would also like to express my profound thanks to my friends and col-
leagues, whose assistance and inspiration have been invaluable during the two years
of study. Furthermore, I am immensely grateful to the Armed Forces of Ukraine for
ensuring a secure environment that allowed me to complete this work. Without the
collective support and contributions of all those mentioned, this accomplishment
would have remained beyond reach.



vi

Contents

Declaration of Authorship ii

Abstract iv

Acknowledgements v

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Thesis Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Related Work 6

2.1 Monitoring of Water Pollution in Diyala River using High Resolution
Satellite Image (A.H.Kadhim, 2012) . . . . . . . . . . . . . . . . . . . . . 6

2.2 A new approach to monitor water quality in the Menor sea (Spain)
using satellite data and machine learning methods (Casanova, 2021) . 7

2.3 Detection and Monitoring of Marine Pollution Using Remote Sensing
Technologies (Nichol, 2018) . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 A Review of Remote Sensing for Water Quality Retrieval: Progress
and Challenges (Chen, 2022) . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Use of the Sentinel-2 and Landsat-8 Satellites for Water Quality Mon-
itoring: An Early Warning Tool in the Mar Menor Coastal Lagoon
(Navarro, 2022) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.6 Overview of the Application of Remote Sensing in Effective Monitor-
ing of Water Quality Parameters (Godson Adjovu, 2023) . . . . . . . . 13

2.7 Satellite-assisted monitoring of water quality to support the imple-
mentation of the Water Framework Directive (Directive, 2020) . . . . . 14

2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Datasets 19

3.1 Geographical region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Remote sensing datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.1 Global Ocean Colour . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.2 Bio-Geo-Chemical indicators . . . . . . . . . . . . . . . . . . . . 20
3.2.3 Atlantic Ocean Colour . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.4 Temporal and spatial indices . . . . . . . . . . . . . . . . . . . . 21
3.2.5 Datasets collection . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Pollution label dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.1 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.2 Dataset size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Data preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4.1 Data preprocessing pipeline . . . . . . . . . . . . . . . . . . . . . 24
3.4.2 Data merge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24



vii

3.4.3 Processing missing records . . . . . . . . . . . . . . . . . . . . . 25
3.4.4 Analysis and Exclusion of Datasets with Different Spatial Res-

olutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4.5 Result of data preprocessing . . . . . . . . . . . . . . . . . . . . 31

4 Methodology 33

4.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Feature engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.4 Train test split . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.5 Dataset balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.6 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.6.1 Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.6.2 Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.6.3 Decision Trees classifier . . . . . . . . . . . . . . . . . . . . . . . 35
4.6.4 Random Forest Classifier . . . . . . . . . . . . . . . . . . . . . . 36
4.6.5 Gradient Boosting Classifier . . . . . . . . . . . . . . . . . . . . . 36
4.6.6 Convolutional Neural Networks (LeNet) . . . . . . . . . . . . . 37

4.7 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.7.1 ROC AUC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.7.2 Average precision . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.7.3 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.7.4 F1 score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.8 Cross validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.9 Tuning hyper parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.9.1 DecisionTreeClassifier model . . . . . . . . . . . . . . . . . . . . 40
4.9.2 LogisticRegression model . . . . . . . . . . . . . . . . . . . . . . 41
4.9.3 RandomForestClassifier model . . . . . . . . . . . . . . . . . . . 41
4.9.4 GradientBoostingClassifier model . . . . . . . . . . . . . . . . . 41
4.9.5 LeNet model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Experiments 43

5.1 What is the optimal shape of data (3×3, 11×11, etc.) and statisti-
cal features to detect water pollution based on the concentration of
chlorophyll? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.1.1 Statistical features of chlorophyll concentration dataset . . . . . 43
5.1.2 Each pixel of chlorophyll concentration as a features dataset . . 43

5.2 Which machine learning model performs best at detecting water pol-
lution based on the concentration of chlorophyll? . . . . . . . . . . . . . 46
5.2.1 11x11 dataset with the best hyper parameters . . . . . . . . . . . 46
5.2.2 DecisionTreeClassifier model . . . . . . . . . . . . . . . . . . . . 46
5.2.3 LogisticRegression model . . . . . . . . . . . . . . . . . . . . . . 47
5.2.4 RandomForestClassifier model . . . . . . . . . . . . . . . . . . . 47
5.2.5 GradientBoostingClassifier model . . . . . . . . . . . . . . . . . 47
5.2.6 LeNet model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3.1 Comparative Analysis of F1 Score, Pollution Incidents, and

Average Chlorophyll Level by Month . . . . . . . . . . . . . . . 49
5.3.2 Comparative Analysis of F1 Score, Pollution Incidents, and

Average Chlorophyll Level by Region . . . . . . . . . . . . . . . 52
5.3.3 Confusion matrix and precision-recall curve . . . . . . . . . . . 53



viii

6 Conclusions 57

6.1 Future research directions . . . . . . . . . . . . . . . . . . . . . . . . . . 58

A Links to materials 60

A.1 Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
A.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Bibliography 61



ix

List of Figures

2.1 The Supervised Classification Result . . . . . . . . . . . . . . . . . . . . 6
2.2 7-Class Unsupervised Classification . . . . . . . . . . . . . . . . . . . . 6
2.3 9-Class Unsupervised Classification . . . . . . . . . . . . . . . . . . . . 7
2.4 Threshold Value Pollution Detection . . . . . . . . . . . . . . . . . . . . 7
2.5 The Menor sea is an hypersaline coastal lagoon located in the south-

east of Spain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.6 Spread of green algae along the coast of Qingdao in 2008, when sum-

mer Olympics was planned in this coast (source Corey SheranFlickr)
(right) and algae visible in MODIS false color image (shortwave, NIR,
and Red) (source MODIS rapid response project at NASAGSFC) (left) . 9

2.7 Satellite Graphical Workflow . . . . . . . . . . . . . . . . . . . . . . . . 11
2.8 RGB (Red-Green-Blue) composite image on 3 August 2021 of (a) Sentinel-

3 satellite (300 m spatial resolution), (b) Landsat-8 satellite (30 m spa-
tial resolution), and (c) Sentinel-2 satellite (10 m spatial resolution). . . 12

3.1 Area of interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Copernicus Marine Service API Workflow . . . . . . . . . . . . . . . . . 22
3.3 Bathing Water Quality DEFRA API . . . . . . . . . . . . . . . . . . . . . 23
3.4 Data preprocessing pipeline . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5 Histogram of NaN Percentages Across Unique Coordinates Pairs . . . 27
3.6 Empirical Cumulative Distribution Function of NaN Percentage For

Unique Coordinates Pairs . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.7 Histogram of Unique Pair Percentage by NaN Values. . . . . . . . . . . 28
3.8 Chlorophyll Concentration by Day in 2021 for spatial resolution 0.1×0.1km 28
3.9 Chlorophyll Concentration by Day in 2021 for spatial resolution 1×1km 29
3.10 Distorted Chlorophyll Concentration for spatial resolution 1×1km . . 29
3.11 Sea Chlorophyll Concentration in the England over Time . . . . . . . . 30
3.12 The red marked point on the Chlorophyll Concentration map . . . . . 30
3.13 The red pollution detecting points on the Chlorophyll Concentration

map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.14 The 15 points on the Chlorophyll Concentration map with correspond-

ing matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1 Decision Trees Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1 LeNet accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2 F1 score for different models . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.3 ROC AUC score for different models . . . . . . . . . . . . . . . . . . . . 49
5.4 PR AUC score for different models . . . . . . . . . . . . . . . . . . . . . 50
5.5 Accuracy score for different models . . . . . . . . . . . . . . . . . . . . 50
5.6 The F1 score metric for each month . . . . . . . . . . . . . . . . . . . . . 51
5.7 Pollution incidents by month . . . . . . . . . . . . . . . . . . . . . . . . 51
5.8 Average chlorophyll by month . . . . . . . . . . . . . . . . . . . . . . . 51



x

5.9 The F1 score metric for each region . . . . . . . . . . . . . . . . . . . . . 53
5.10 The number of pollution incidents by region . . . . . . . . . . . . . . . 53
5.11 The average chlorophyll by region . . . . . . . . . . . . . . . . . . . . . 54
5.12 Confusion Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.13 Precision Recall Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56



xi

List of Tables

2.1 Summary of the Papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Summary of the Papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Variables of the Bio-Geo-Chemical Dataset . . . . . . . . . . . . . . . . 20
3.2 Variables of the Bio-Geo-Chemical, L4, 0.1 × 0.1 km Dataset . . . . . . 20
3.3 Variables of the Bio-Geo-Chemical, L4, 1 × 1 km Dataset . . . . . . . . 21
3.4 Dataset‘s dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.5 Variables in different subsets of the dataset . . . . . . . . . . . . . . . . 24
3.6 Summary of processing times for different spatial resolutions. . . . . . 25
3.7 Missing data percentage for different spatial resolutions. . . . . . . . . 25
3.8 Percentage of unique coordinates pairs with NaN values in different

ranges for 0.1km×0.1km spatial resolution . . . . . . . . . . . . . . . . 26
3.9 Percentage of unique coordinates pairs with NaN values in different

ranges for 1km×1km spatial resolution . . . . . . . . . . . . . . . . . . 26

5.1 Models metrics for different matrix sizes of statistical features dataset . 44
5.2 Models metrics for different matrix sizes of Each pixel as features dataset 45
5.3 Final Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.4 F1 Score for Each Month . . . . . . . . . . . . . . . . . . . . . . . . . . . 50



xii

This research is dedicated to the world. It is my sincere hope
that the findings and outcomes of this study will serve as a

contribution to future research endeavors aimed at monitoring
water pollution on a global scale. May this work inspire and

motivate further studies, leading to timely detection and
effective response to contaminants present in water surfaces

worldwide. By dedicating our efforts to this cause, we aspire to
foster greater awareness and instigate positive change in

safeguarding the precious resources of our planet for current
and future generations.



1

Chapter 1

Introduction

The United Nations (U.N.) has designated the period between 2021 and 2030 as the
"Decade of Ocean Science for Sustainable Development." (UNESCO, 2021) The pri-
mary objective of this initiative is to promote "the science we need for the ocean
we want." (UNESCO, 2021). In pursuit of this goal, the U.N. has invited scientists
worldwide to propose ideas for Decade Actions. These collaborative projects seek to
facilitate the creation of a healthier, more sustainable ocean by 2030 (Minogue and
King, 2021).

Seawater pollution poses a substantial threat to the health and sustainability of
marine ecosystems, impacting aquatic organisms and human populations reliant on
these resources. Traditional methods for monitoring seawater quality rely on in-situ
measurements such the one provided by the UK Department for Environment, Food
and Rural Affairs (DEFRA) (Merchant, 2017). In-situ measurement refers to the pro-
cess of collecting data directly from the location or environment of interest, typically
through physical sensors or instruments deployed on-site. It provides real-time, ac-
curate, and context-specific measurements, allowing for precise analysis and under-
standing of the phenomenon being studied. DEFRA (Department for Environment,
Food and Rural Affairs) monitors approximately 400 seaside locations across the
United Kingdom for various environmental factors, including bathing water qual-
ity. These monitoring activities aim to assess and maintain the cleanliness and safety
of coastal areas for recreational purposes. The data collected by DEFRA includes
measurements and reports related to pollution incidents, water quality parameters,
and other relevant environmental indicators. The monitoring covers a wide range
of factors, such as bacterial contamination, chemical pollutants, nutrient levels, and
other potential sources of pollution.

While in-situ pollution monitoring is limited in spatial and temporal coverage,
advancements in satellite remote sensing technology have provided a promising al-
ternative for ocean monitoring on a much larger scale.

According to the (Agency., 2023), one of the symptoms of degraded water qual-
ity condition is the increase of algae biomass as measured by the concentration of
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chlorophyll a. It would validate the application of machine learning to detect pollu-
tion: chlorophyll is visible from space and chlorophyll indicates pollution. Accord-
ingly, we can detect pollution by detecting chlorophyll on satellite images.

Remote sensing of chlorophyll concentration has been used as an indicator of
water quality and primary productivity affected by water pollution incidents (Lu,
2022). Chlorophyll is a pigment found in phytoplankton, which form the base of
the marine food chain. Chlorophyll concentration can be remotely monitored from
space using European Space Agency (ESA) satellites, which provide data at a spa-
tial resolution of 1km. This monitoring capability allows for the daily assessment of
chlorophyll concentration levels, enabling continuous tracking of changes and pat-
terns in chlorophyll distribution over time.

This master’s thesis aims to develop and evaluate a novel approach for monitor-
ing seawater pollution using satellite data from the European Space Agency (ESA).
The study will leverage machine learning techniques and the remote sensing data
from ESA to detect and map areas of pollution in the coastal zone of Great Britain,
utilizing pollution reports from the UK’s Department for Environment, Food and
Rural Affairs (DEFRA) (Merchant, 2017).

In this study, we pose the following research questions to investigate and address
our objectives:

1. What is the optimal shape of data (3×3, 11×11, etc.) and statistical features to
detect water pollution based on the concentration of chlorophyll?

2. Which machine learning model performs best at detecting water pollution
based on the concentration of chlorophyll?

In this work, various machine learning models including Logistic Regression (re-
gression, 2016), Decision Trees (tree, 2016), Random Forest (forest, 2016), Gradient
Boosting Classifier (boosting, 2016), and LeNet (Y. Lecun, 1998) were used detect the
cases of water pollution by classifying the segments of an image as polluted or not
polluted. These models were chosen for their suitability in classification tasks and
their ability to provide insights into the research objectives. The best model we con-
sidered achieved an F1 score of 0.24, Receiver Operating Characteristic Area Under
the Curve (ROC AUC) of 0.76 and the accuracy of 95.21%.

My contributions can be:

1. Collected a dataset of pollution and chlorophyll concentration in seawater
around England.

2. Compared multiple machine learning models across multiple dimensionality
of data, to find the approach most suitable for early detection of seawater pol-
lution.

3. Presented first results obtained from a machine learning model trained to de-
tect pollution of seawater based on the concentration of chlorophyll and dis-
cussed its practical applicability Furthermore, there has been a notable absence
of studies that have conducted a direct comparison between chlorophyll con-
centration and cases of contamination in the context of seawater pollution.
This research seeks to address this gap by examining the relationship between
chlorophyll concentration and contamination incidents within England’s sea-
water.

Effective monitoring and management of seawater pollution require a multidis-
ciplinary approach, involving the integration of various data sources and the collab-
oration of scientists, policymakers, and stakeholders.
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1.1 Motivation

The development of a classification model utilizing satellite data to predict pollution
incidents based on chlorophyll concentration can generate substantial economic, so-
cial, and environmental benefits. Firstly, the model can help identify areas and times
where pollution is most likely to occur, enabling proactive measures to prevent in-
cidents. This can mitigate economic losses experienced by local industries, such as
fishing or tourism. (Directive, 2020). From an economic perspective, early detection
allows for prompt intervention and mitigation measures, minimizing the economic
impact of pollution. For example, industries located downstream from a potential
pollution source can take immediate actions to protect their water supply, reducing
the risk of costly production disruptions or damage to equipment.

Secondly, the model can assist in the development of effective pollution reduc-
tion strategies. Policymakers can implement targeted policies by identifying regions
and periods most susceptible to pollution, resulting in efficient resource use and
cost savings related to cleanup efforts. In terms of environmental benefits, early
identification of pollution incidents can prevent or minimize ecological damage. For
instance, in a marine ecosystem, the early detection of an oil spill enables the de-
ployment of containment measures, reducing the spread of the pollutants and mini-
mizing harm to marine life, habitats, and coastal ecosystems.

Furthermore, the model’s development can enhance environmental monitoring
and regulation, promoting sustainable development practices, and attracting envi-
ronmentally conscious investors to stimulate sustainable industry growth. Socially,
early identification enables timely communication and public awareness, promoting
public health and safety. For instance, in the case of a chemical spill in a community,
early detection allows authorities to issue timely warnings, facilitating evacuation
procedures and minimizing potential health risks to residents.

The early identification of pollution incidents can lead to substantial economic
benefits by minimizing financial losses, social benefits by safeguarding public health,
and environmental benefits by preventing or mitigating ecological damage. These
examples illustrate the multi-faceted advantages that arise from timely action and
proactive measures in response to pollution incidents.

The future outlook for integrating satellite-based Earth observation into water
quality monitoring for the Water Framework Directive (WFD) is promising. Cur-
rently, 40% of surface waters meet the good status, and efforts are being made to
improve the status of the remaining waterbodies by 2027. Satellite products offer
significant advantages, including monitoring the effectiveness of management mea-
sures, providing comprehensive assessments of waterbody structure and function,
and extending monitoring to currently unmonitored waterbodies.(Directive, 2020)

The model’s predictions can also optimize water quality monitoring staff by free-
ing up resources to allocate to areas with insufficient staff. This can ensure efficient
and comprehensive water quality monitoring, leading to the timely identification
and mitigation of pollution incidents.

Moreover, the model can identify the source of pollution by wind direction when
pollution has already occurred, allowing for prompt action to contain and mitigate
its effects. This can significantly benefit industries reliant on clean water, such as
aquaculture and recreational water sports.

The EU Copernicus space program has invested €7.5 billion between 2008 and
2020 to generate terabytes of land and ocean observations daily. The program’s con-
stellation of satellites is guaranteed until at least 2030, with plans to replace aging
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sensors. This ensures that member states can rely on satellite assets for their monitor-
ing requirements. Over the years, national expertise and international collaboration
in translating satellite data into water quality metrics have grown, with scientifically
rigorous methods published in peer-reviewed papers.(Directive, 2020)

In conclusion, the development of a classification model predicting pollution in-
cidents based on chlorophyll concentration from satellite data can yield significant
economic benefits. This includes identifying pollution hotspots, reducing economic
impacts, promoting sustainable practices, optimizing water quality monitoring staff,
enhancing recreational water activities, and preventing damage to the eco-fauna in
the water.

1.2 Thesis Goal

The aim of this study is to construct a classification model that can predict pol-
lution incidents in specific points based on chlorophyll concentration using open
data from pollution reports and satellite data from Copernicus Marine Service. The
study emphasizes the potential benefits of such a model, including efficient use of
resources and cost savings related to cleanup efforts, the ability to identify pollu-
tion sources promptly, and the optimization of staff who measure water quality. By
accurately predicting pollution incidents, the model can aid in formulating effective
pollution reduction strategies and in implementing targeted policies to reduce pollu-
tion in vulnerable areas, ultimately promoting sustainable practices and enhancing
the quality of life for people who rely on clean water. The objective of this thesis
is to devise a methodology for identifying the existence of pollution by utilizing
data on chlorophyll concentration. This will involve building classification models
to classify instances as either polluted or non-polluted based on their chlorophyll
concentrations. The performance of these models will be evaluated using appropri-
ate metrics to identify the best-performing model. Furthermore, this research aims
to gain insights into the relationship and interaction between pollution incidents
and chlorophyll concentrations to enhance our understanding of this complex phe-
nomenon.

1.3 Thesis Structure

1. Chapter 1 This chapter serves as an introduction to the thesis, providing an
overview of the topic, justification for the research’s significance, motivation
behind the study, and the goals to be achieved and explains the novelty of our
study.

2. Chapter 2 provides a summary of the related works in the field, offering an
overview of existing papers, studies, and research that are relevant to the sub-
ject of the thesis. This chapter serves to situate the current research within
the broader context of existing knowledge and helps identify gaps or areas for
further exploration.

3. Chapter 3 provides a detailed description of the datasets used in the research,
including information on their sources, acquisition methods, and relevant char-
acteristics. This chapter also covers the process of obtaining and merging the
datasets, as well as the necessary data preprocessing steps.
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4. Chapter 4 presents the methodology employed in the research, outlining the
approach to feature engineering, the types of models utilized, the metrics used
for evaluation, dataset balancing techniques, cross-validation procedures, and
the process of splitting and tuning hyperparameters.

5. Chapter 5 focuses on conducting experiments with different datasets, specif-
ically exploring their varying dimensionalities. This chapter provides a sum-
mary and insights gained from these experiments.

6. Chapter 6 serves as the conclusion of the master thesis, summarizing the key
findings, contributions, and implications of the research. Additionally, this
chapter outlines potential avenues for future research and areas that could ben-
efit from further exploration.
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Chapter 2

Related Work

2.1 Monitoring of Water Pollution in Diyala River using High

Resolution Satellite Image (A.H.Kadhim, 2012)

The article "Monitoring of Water Pollution in Diyala River using High Resolution
Satellite Image" (A.H.Kadhim, 2012) discusses the use of remote sensing technology
to monitor water pollution in Diyala River, Iraq. The study aimed to increase the
capability of detecting and monitoring the quality of water resources affected by
wastewater treatment plant disposal or industrial pollution.

The authors used high-resolution satellite imagery to discriminate several spec-
trally different classes of water using digital image processing methods, includ-
ing supervised and unsupervised classification. They also used Landsat 8 imagery
and the Water Quality Index (WQI) method to detect changes in water quality be-
tween 2013 and 2019. The study found that remote sensing analysis provides sev-
eral advantages over traditional methods, allowing for effective and quantitative
results.The WQI(Water Quality Index) value decreased from 76.29 in 2013 to 63.95 in
2019, indicating a decline in water quality. The authors also identified specific areas
of the river where water quality was particularly poor. They suggest that the use
of high-resolution satellite imagery can help identify areas where water pollution is
most severe, allowing for targeted intervention to improve water quality.

FIGURE 2.1: The Su-
pervised Classification

Result

FIGURE 2.2: 7-Class
Unsupervised Classifi-

cation
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The Water Quality Index (WQI) uses the four water quality indicators: chlorophyll-
a, TN, TP, and turbidity. The WQI was calculated for each sublagoon area by con-
verting annual offsets to a percentage scale, resulting in a final score ranging from
0% to 100% (A.H.Kadhim, 2012).

The study identified areas of the river where water quality was particularly poor
and recommended the use of high-resolution satellite images for water pollution
detection and monitoring. The findings can be useful for policymakers and envi-
ronmental agencies to monitor and manage water resources more effectively. Over-
all, remote sensing analysis methods can play a vital role in investigating global
resources, estimating land use, and monitoring environmental quality such as wa-
ter pollution. The use of high-resolution satellite imagery provides a cost-effective
and efficient method for monitoring water quality and identifying areas that require
intervention to protect human health and the environment.

FIGURE 2.3: 9-Class
Unsupervised Classifi-

cation

FIGURE 2.4: Threshold
Value Pollution Detec-

tion

In contrast to the present study, our research centers on a different geographical
region and incorporates data from the Copernicus Marine Service alongside DEFRA
data, providing a more comprehensive perspective on pollution incidents. Addi-
tionally, we use alternative feature engineering techniques to incorporate and ana-
lyze the zone of chlorophyll concentration derived from the Copernicus data.

2.2 A new approach to monitor water quality in the Menor

sea (Spain) using satellite data and machine learning meth-

ods (Casanova, 2021)

In the study (Casanova, 2021) by Casanova, a machine learning approach utilizing
Sentinel-2 data was proposed to estimate the concentration of chlorophyll-a in the
Menor Sea, a coastal lagoon in Spain. The authors used Random Forest, support
vector machine, Artificial Neural Network, and Deep Neural Network algorithms
under three feature selection scenarios and several spectral indices in combination



8 Chapter 2. Related Work

with Sentinel 2 bands. The study aimed to provide cost-effective and near-real time
information for monitoring the water quality of the Menor Sea, which is declared
as a sensitive area to eutrophication due to human activities. The results demon-
strated the possibility of estimating chl-a concentration in a cost-effective manner
and providing near-real time information for local authorities, tourism, and fishing
industry. Remote sensing techniques using satellite data can improve insights about
water quality, distribution of toxin-producing algae, and aquatic biogeochemical cy-
cling. The study showed the suitability of Sentinel-2 satellite data for mapping dif-
ferent water quality parameters and the application of machine learning methods to
measure marine or lake events such as primary production, harmful algal blooms or
algae blooms. The methodology may contribute to improving the predictability of
chlorophyll-a concentrations to mitigate the negative effects of high concentrations
of phytoplankton and algae over the local populations.

FIGURE 2.5: The Menor sea is an hypersaline coastal lagoon located
in the south-east of Spain

The study compared the performance of four machine learning algorithms (ran-
dom forest, support Vector Machine with Radial Basis Function kernel, ANN, and
DNN) in predicting chl-a concentration in the Menor sea, Spain. The best results
were achieved by the rf model without feature reduction, with an R2 of 0.92 and
RMSE of 0.82 mg/m3. Feature reduction significantly decreased the performance of
random forest and support vector machine with radial basis function kernel for one
scenario, while the ANN method performed the best under another scenario.

In contrast to the present study, our research centers on a different geographical
region and incorporates data from the Copernicus Marine Service alongside DEFRA
data, providing a more comprehensive perspective on pollution incidents. Addi-
tionally, we use alternative feature engineering techniques to incorporate and ana-
lyze the zone of chlorophyll concentration derived from the Copernicus data.
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2.3 Detection and Monitoring of Marine Pollution Using Re-

mote Sensing Technologies (Nichol, 2018)

The article (Nichol, 2018) discusses the use of remote sensing technology for moni-
toring marine pollution, which has become a major concern due to human activities.
The article highlights the benefits of using aerial and spaceborne sensors for mon-
itoring oil and chemical spills, sewage, high suspended solids, algal blooms, and
solid waste in coastal areas. The article also discusses the technical limitations of the
technology, such as the dynamic nature of pollutants and the limited information on
the specific spectral response of pollutants. The use of active and hyperspectral air-
borne sensors is considered superior to spaceborne sensors for monitoring coastal
and estuarine pollutants due to their real-time and detailed monitoring capability.
Estuarine pollutants are substances or contaminants that are introduced into estu-
arine environments, leading to adverse effects on water quality and the ecological
balance of these semi-enclosed coastal systems. These pollutants can include indus-
trial waste, agricultural runoff, sewage, heavy metals, pesticides, and other harmful
substances that have the potential to harm aquatic life and impact the overall health
of estuarine ecosystems. In our work, we opt to use spaceborne sensors due to their
accessibility in the public domain and their capability to provide coverage over a
broader geographical expanse. This choice allows for easier access to data. Ma-
rine managers and researchers have expressed significant concern regarding heavy
metal pollution, prompting studies to explore the use of airborne hyperspectral data
for addressing this issue. Recent advancements in software and computation power
have facilitated the wider utilization of remote sensing systems in managing ma-
rine resources and pollution. The article concludes that remote sensing technology
offers valuable insights into pollution events in environmentally sensitive marine re-
gions. Furthermore, with the continuous progress of remote sensing sensors, more
advanced methods are anticipated to emerge for effectively monitoring marine pol-
lution in the future.

FIGURE 2.6: Spread of green algae along the coast of Qingdao in 2008,
when summer Olympics was planned in this coast (source Corey
SheranFlickr) (right) and algae visible in MODIS false color image
(shortwave, NIR, and Red) (source MODIS rapid response project at

NASAGSFC) (left)

Aerial and spaceborne sensors provide comprehensive information about ma-
rine pollutants, but there are technical limitations in assessing detailed information
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about pollutants. Active and hyperspectral airborne sensors are considered supe-
rior for monitoring coastal and estuarine pollutants, while spaceborne sensors are
reliable for large-scale ocean monitoring. The article highlights the importance of
collaboration between the research community and government for using the full
potential of remote sensing data in marine pollution management. Recent devel-
opments in software and computation power have led to increased use of remote
sensing data for managing marine resources and pollution. Based on the findings,
the article concludes that the continuous advancement of remote sensing sensors
will drive the development of sophisticated methods in the future, specifically tai-
lored for monitoring marine pollution. In contrast to the present study, our research
centers on a different geographical region and incorporates data from the Coperni-
cus Marine Service alongside DEFRA data, providing a more comprehensive per-
spective on pollution incidents. Additionally, we use alternative feature engineering
techniques to incorporate and analyze the zone of chlorophyll concentration derived
from the Copernicus data.

2.4 A Review of Remote Sensing for Water Quality Retrieval:

Progress and Challenges (Chen, 2022)

Chen (Chen, 2022) aims to discuss the use of remote sensing data for estimating wa-
ter quality parameters, particularly Total Suspended Matter (TSM) and Chlorophyll-
a (Chl-a) concentration. Different methods have been developed to estimate these
parameters using hyperspectral data and multispectral data, and remote sensing
has been proven to be an effective tool for monitoring water quality parameters on
a regional scale.

Various satellites and sensors are available for remote sensing of water qual-
ity, and four different modes of water quality parameter retrieval are commonly
used: empirical, analytical, semi-empirical, and artificial intelligence (AI) modes.
The empirical mode uses statistical regression formulas to establish a correlation be-
tween ground-measured water quality parameter values and the reflectance of spe-
cific bands or combinations of bands. Bio-optical models and radiation transmission
models are employed in the analytical mode to simulate the propagation of light in
water bodies. In contrast, the semi-empirical mode integrates the simplicity of the
empirical mode with the accuracy of the analytical mode. The artificial intelligence
mode is based on machine learning algorithms that can handle complex and nonlin-
ear relationships between the water quality parameters and remote sensing data.

However, these models face challenges in terms of spatial dependency, temporal
limitations, and spectral interaction, which affect their applicability. Possible solu-
tions to these challenges include developing new methods and data, such as regional
generalized additive models, machine learning-based models, and environmental
variables dependence. Additionally, airborne data and multisensory satellite data
can be used to enhance the models’ applicability. Combining different methods is
also a solution to improve the models’ applicability. Overall, remote sensing data
combined with these different modes of water quality parameter retrieval can pro-
vide a powerful tool for monitoring and managing water quality on a regional scale.

The hybrid spatio-temporal-spectral fusion model for identifying water pollu-
tion includes several techniques such as principal component analysis (PCA) (analy-
sis, 2016), non-negative matrix factorization (NMF) (factorization, 2016), and regres-
sion analysis. The model integrates spatial, temporal, and spectral data to improve
the accuracy of water pollution identification. PCA (analysis, 2016) is used to reduce
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the dimensionality of the data, while NMF (factorization, 2016) is used for source
separation and to identify different pollution sources. Regression analysis is used to
predict the concentration of pollutants based on the identified pollution sources. The
model also includes a data fusion step that integrates the results from different tech-
niques to provide a more comprehensive understanding of water pollution. Overall,
the hybrid spatio-temporal-spectral fusion model is an effective tool for identifying
water pollution sources and can aid in the development of targeted pollution control
strategies. Overall, the article provides a comprehensive understanding of remote
sensing water quality monitoring and sets the groundwork for future research in the
field.

In contrast to the present study, our research centers on a different geographical
region and incorporates data from the Copernicus Marine Service alongside DEFRA
data, providing a more comprehensive perspective on pollution incidents. Addi-
tionally, we use alternative feature engineering techniques to incorporate and ana-
lyze the zone of chlorophyll concentration derived from the Copernicus data.

2.5 Use of the Sentinel-2 and Landsat-8 Satellites for Water

Quality Monitoring: An Early Warning Tool in the Mar

Menor Coastal Lagoon (Navarro, 2022)

Navarro (Navarro, 2022) aims to demonstrate the suitability and consistency of us-
ing a joint constellation of Landsat-8 and Sentinel-2 satellites for estimating indica-
tors of water quality in the Mar Menor coastal lagoon, which is highly vulnerable to
eutrophication. The study used biogeochemical parameters, such as turbidity and
chl-a, to validate the satellite imagery’s performance in estimating water quality.

FIGURE 2.7: Satellite Graphical Workflow
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The evaluation of the atmospheric and sunglint correction was performed using
the ACOLITE (RBINS, 2021) software for both satellites. The study found that using
both satellites in tandem can improve mapping strategies and provide appropriate
information on a systematic basis and in a cost-effective way. Due to time constraints
in our study, we do not incorporate data from multiple satellites. The satellite im-
agery was capable of early detection of chl-a levels above 3 mg/m3, which gener-
ally triggered subsequent blooms during recent years. Multitemporal maps were
produced, and the highest turbidity and chl-a levels were consistently located in
the western section of the lagoon, particularly at the mouth of the draining Albujon
watercourse.

FIGURE 2.8: RGB (Red-Green-Blue) composite image on 3 August
2021 of (a) Sentinel-3 satellite (300 m spatial resolution), (b) Landsat-
8 satellite (30 m spatial resolution), and (c) Sentinel-2 satellite (10 m

spatial resolution).

The article "Use of the Sentinel-2 and Landsat-8 Satellites for Water Quality Mon-
itoring: An Early Warning Tool in the Mar Menor Coastal Lagoon" (Navarro, 2022)
focuses on the use of remote sensing technology for water quality monitoring in
the Mar Menor coastal lagoon. In this study, the MODIS Standard (OC3) algorithm
was used to estimate the concentration of chlorophyll-a from satellite measurements
of ocean color obtained by Sentinel-2 and Landsat-8 satellites. The study demon-
strated the potential of the OC3 algorithm in providing early warning of harmful
algal blooms and other water quality issues in the Mar Menor lagoon. The results
showed a significant correlation between the chlorophyll-a concentration and wa-
ter quality parameters such as dissolved oxygen, pH, and temperature. This study
highlights the usefulness of the OC3 algorithm in conjunction with satellite data for
real-time monitoring of water quality in coastal areas, which can help in the timely
detection of environmental hazards and the implementation of appropriate manage-
ment strategies.

The MODIS Standard (OC3) (Gathot Winarso, 2014) algorithm is a method for
deriving the concentration of chlorophyll-a in ocean waters from satellite measure-
ments of ocean color obtained by the Moderate Resolution Imaging Spectroradiome-
ter (MODIS). This algorithm uses blue and green spectral bands to estimate the ab-
sorption of phytoplankton pigments and the scattering by particles in the water col-
umn. The concentration of chlorophyll-a is then calculated based on empirical rela-
tionships between the absorption and scattering coefficients and the concentration
of chlorophyll-a.
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The study highlights the potential of using satellite imagery as an innovative
tool to support decision-makers in implementing a joint monitoring strategy and
characterizing water quality distribution in the lagoon. The findings of this study
could have significant implications for managing water quality in coastal regions
vulnerable to eutrophication. In contrast to the present study, our research centers
on a different geographical region and incorporates data from the Copernicus Ma-
rine Service alongside DEFRA data, providing a more comprehensive perspective on
pollution incidents. Additionally, we use alternative feature engineering techniques
to incorporate and analyze the zone of chlorophyll concentration derived from the
Copernicus data.

2.6 Overview of the Application of Remote Sensing in Ef-

fective Monitoring of Water Quality Parameters (Godson

Adjovu, 2023)

In the work by Godson Adjovu (Godson Adjovu, 2023), the objective is to provide an
overview of remote sensing (RS) applications in accurately retrieving and monitor-
ing various water quality parameters (WQPs) such as chlorophyll-a concentration,
turbidity, total suspended solids, colored dissolved organic matter, and total dis-
solved solids. The study discusses the techniques utilized, as well as the limitations
and advantages associated with RS for effectively assessing and monitoring water
quality. Remote sensing (RS) allows for the effective retrieval of water quality pa-
rameters (WQPs) by categorizing them as either optically active or inactive based on
their impact on the optical characteristics measured by RS sensors. RS applications
provide decision-makers with the opportunity to accurately quantify and monitor
WQPs on a spatiotemporal scale. Numerous studies have explored the use of RS
for water quality monitoring, employing empirical, analytical, semi-empirical, and
machine-learning algorithms. Optical RS, in particular, has been extensively used
for estimating WQPs, while microwave sensors have also been employed in certain
cases.

The article discusses how remote sensing (RS) can be used for monitoring wa-
ter quality parameters (WQPs) through the measurement of optical active parame-
ters. The RS techniques involve measuring changes in empirical or analytical mod-
els to WQPs by relating them to remotely sensed reflectance. The optimal wave-
length used in WQP measurement depends on the constituent being measured and
the sensor characteristics. The article outlines different approaches used to extract
WQPs from remotely sensed spectral data, including the empirical, analytical, semi-
empirical, and artificial intelligence (AI) methods. AI methods capture both linear
and nonlinear relationships and have been applied in water quality retrieval, pro-
ducing satisfactory results compared to conventional statistical approaches. The ar-
ticle concludes that RS can provide valuable insights into the changes in water qual-
ity and aid in the development of management strategies for maintaining healthy
ecosystems.

The article explores various approaches to employing remote sensing (RS) for
the monitoring of water quality parameters (WQPs) including chlorophyll-a con-
centration, turbidity, total suspended solids, colored dissolved organic matter, total
dissolved solids, and more. The four approaches outlined include the empirical
method, analytical method, semi-empirical methods, and artificial intelligence (AI)
methods.
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The empirical method uses statistical relationships between measured RS spec-
tral values and measured water quality, established using regression techniques. The
analytical method involves modeling reflectance using inherent optical properties
(IOPs) and apparent optical properties (AOPs), with physical relationships derived
between the WQP, underwater light field, and the remotely sensed radiance.

The semi-empirical method combines the empirical and analytical methods by
using the spectral characteristics of the parameters, with the appropriate combina-
tion of wavebands used as correlates. The spectral radiance is then recalculated to
above the surface irradiance reflectance and related to the WQP through regression
techniques.

Lastly, the AI method is an implicit algorithm approach that captures both linear
and nonlinear relationships using various AI applications such as neural networks
(NN) (network, 2016) and support vector machines (SVM) (machine, 2016). AI meth-
ods are useful for dealing with complications from various water surfaces, WQP
combinations, and sediment deposits. Studies have shown that AI methods, partic-
ularly the ANN, outperform regression models in water quality retrieval. (T.Vakili,
2020) (Y.Zhang, 2002)

In contrast to the present study, our research centers on a different geographical
region and incorporates data from the Copernicus Marine Service alongside DEFRA
data, providing a more comprehensive perspective on pollution incidents. Addi-
tionally, we use alternative feature engineering techniques to incorporate and ana-
lyze the zone of chlorophyll concentration derived from the Copernicus data.

2.7 Satellite-assisted monitoring of water quality to support

the implementation of the Water Framework Directive

(Directive, 2020)

The EU Water Framework Directive (WFD) aims to achieve good ecological and
chemical status for surface waters and groundwater by 2027.(Directive, 2020) How-
ever, there are challenges in monitoring and assessing water quality across Member
States. This paper proposes the use of satellite observations to complement conven-
tional monitoring methods and improve the effectiveness of the WFD. Satellite ob-
servations can provide better spatial and temporal coverage of waterbodies, quan-
tify elements of environmental status, and enhance the classification of ecological
status. The paper recommends the following:

• Recognize satellite observation as an assessment method under the revised
WFD and encourage its use to complement national monitoring.

• Establish a satellite observation expert group to harmonize metrics, ensure
comparability with existing methods, and advise Member States on best prac-
tices.

• Reference the use of satellite-derived metrics, particularly for assessing phy-
toplankton biomass and bloom frequency, in the Reporting Guidance of the
revised WFD.

• Convene a conference to agree on common practices and reporting standards
for using satellite-based water quality metrics to support the WFD.

The paper emphasizes the advanced satellite-based instruments available in the
EU, such as those within the Copernicus framework, and the significant investments
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already made. It highlights ongoing research and innovation actions and EU invest-
ment in the Copernicus program. The recommendations are supported by experts,
stakeholders, and relevant organizations. Implementation of the recommendations
requires support from policy makers, national monitoring authorities, and advisory
bodies. The formation of an advisory body, potentially within the ECOSTAT work-
ing group, is suggested to develop a strategy for the use of satellite-derived water
quality products.

To facilitate this integration, agreement at the European level is needed regard-
ing the role of satellite products in supporting the WFD. This would lead to the
development of data standards and harmonization criteria. At the national level,
investment in the capability to use satellite observation products is necessary. Con-
sistency across member states would require agreement on methodologies, poten-
tially supplied by specialized satellite Earth observation service providers. These
methodologies should be transparent and widely accepted to ensure their contribu-
tion to reporting environmental status.

It’s important to note that satellite observation should not replace existing mon-
itoring practices but complement them. The inclusion of satellite products in statu-
tory reporting may involve additional costs. However, these costs are likely to be
small compared to the investment already made in the Copernicus program. Direct
cost savings can be expected when satellite data aid in prioritization, more efficient
catchment management, and strategic design of in situ sampling programs. Further-
more, satellite-based monitoring of algal blooms can provide early warnings and
reduce risks and mitigation costs for various sectors.

In order to enhance the incorporation of satellite-based Earth observation into
national and regulatory monitoring for the Water Framework Directive (WFD), sev-
eral recommendations have been put forward. The European Commission, member
states, and water management authorities are urged to acknowledge satellite-based
Earth observation as a viable method in the revised Common Implementation Strat-
egy (CIS) guidance for the WFD. This can be achieved by establishing a working
group within the CIS ECOSTAT group to deliver guidance on how member states
can use satellite observation for robust and cost-effective monitoring while harmo-
nizing metrics across countries.

Furthermore, it is recommended to convene a conference involving the European
Commission, member states, and pertinent water authorities to formally acknowl-
edge and endorse the utilization of satellite-based Earth observation metrics for the
implementation of the Water Framework Directive (WFD). The goal of the confer-
ence would be to design a joint plan of action for harmonized use of satellite data
and building institutional capacity.

Overall, integrating satellite-based Earth observation into water quality monitor-
ing can enhance the effectiveness, efficiency, and coverage of the monitoring process.
Through the implementation of the suggested measures, the European Commission
and member states can effectively leverage the potential of satellite data to enhance
water management practices and successfully achieve the objectives outlined in the
Water Framework Directive.

2.8 Summary

We summarise this previous literature in Table 2.1 and Table 2.2. Our study differs
from these previous works in few important respects.
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We leverage a unique fusion of in-situ pollution records and remote sensing data
from CMEMS. Unlike other in-situ datasets in the literature, the former constitutes
a longitudinal view (multiple years) on the problem across a relatively wide geogra-
phy (covers all major recreational seaside locations in the country of England) and
is conducted with relatively high frequency (once every several days).

Our research focuses on an another geographic area and integrates data from
both the Copernicus Marine Service and DEFRA. Furthermore, we use another fea-
ture engineering techniques to incorporate and analyze the zone of chlorophyll con-
centration derived from the Copernicus data.

By focusing on water quality monitoring in the coastal areas of England, our
work has practical applications and implications. The North Sea and Celtic Sea are
important coastal regions with significant ecological and economic value. Effective
monitoring and management of water quality in these areas are crucial for environ-
mental preservation and sustainable resource utilization. Our work can contribute
to the development of early warning systems, mitigation strategies, and decision-
making tools that aid in the protection and preservation of these coastal environ-
ments.

In our study, we focus exclusively on the England region and use data from
DEFRA to identify pollution incidents. Additionally, we incorporate chlorophyll
concentration data obtained from the Copernicus Marine service, which provides a
spatial resolution of 1 km × 1 km. We also explore various dimensions of the chloro-
phyll concentration coverage zone to enhance our analysis.
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TABLE 2.1: Summary of the Papers

Study Title Model Methods Data Features

(A.H.Kadhim, 2012)

Minimum-Distance
Mean Classifier,

Parallelepiped Classifier,
Gaussian Maximum
Likelihood Classifier,

K-Mean Classifier

Chlorophyll-a,
turbidity

(Casanova, 2021)

Random forest,
Support vector machine,

Artificial Neural Network,
Deep Neural Network

Chlorophyll-a

(Nichol, 2018)
Artificial Neural Network,
Support Vector Regression,

Random Forest

Chlorophyll-a,
diffuse attenuation

coefficient,
water-leaving

radiance spectra

(Chen, 2022)

Support Vector Machines,
Artificial Neural Network,

Band Ratio Model,
First Order

Differential Model,
Three-band Model,

Hybrid Spatio
temporal
Spectral

Fusion Model

Total suspended
matter,

chlorophyll-a,
colored dissolved

organic matter,
chemical oxygen

demand,
total nitrogen,

total phosphorus

(Navarro, 2022) OC3 algorithm chlorophyll-a

(Godson Adjovu, 2023)
Support Vector Machines,
Artificial Neural Network

chlorophyll-a,
turbidity,

total suspended solids,
colored dissolved

organic matter,
total dissolved solids
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TABLE 2.2: Summary of the Papers

Study Title Geography Surface type Data source

(A.H.Kadhim, 2012)
Diyala River,

Iraq
River Landsat 8 imagery

(Casanova, 2021)
Menor sea,

Spain
Sea Sentinel-2 data

(Nichol, 2018)
Yellow

Sea coast
Qingdao, China

Coast
Sentinel-2

Copernicus Open
Access Hub

(Chen, 2022)

Zhuhai estuary
river China,

shallow lakes,
lakes in

eastern Nebraska

River

USA’s Hyperion data,
China’s HJ-1

satellite HIS data,
MERIS imagery data,

Sentinel-2 images

(Navarro, 2022)
Mar Menor

coastal lagoon,
Spain

Lagoon
Landsat-8,

Sentinel-2 satellites,
Sentinel-3 satellite

(Godson Adjovu, 2023)

Rivers and streams
in the Great Plains

of Central
North America

Rivers

Landsat 9 OLI/TIRS,
Landsat 8 OLI/TIRS,

Landsat 7 ETM+,
Landsat 5 TM,

RapidEye images,
ASTER, MODIS,
Sentinel-2 MSI
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Chapter 3

Datasets

3.1 Geographical region

In this research project, we selected England as the geographical region of interest for
monitoring seawater quality. Our choice was dictated by the prominence of public
discourse around seawater pollution in the England on the one hand (Laville, 2023),
and by the availability of detailed in-situ and remote sensing datasets for english
coastal waters on the other hand.

To collect the datasets from the coastal waters of England, we set the bounding
box (BBox) with the following coordinates:

Boundary Value

Northern 59.26106184235473
Western -8.485977552106107
Eastern 3.216552695395291

Southern 49.45085563487484

It should be noted that while this BBox captures the majority of the waters around
England, it may also include some data from the landmass of Ireland.

FIGURE 3.1: Area of interest

3.2 Remote sensing datasets

To collect remote sensing water quality datasets, we used high-resolution biochem-
ical ocean measurements from the Copernicus Marine Service (CMEMS) (Service,
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2014). The Copernicus Marine Service (CMEMS) is a brunch of the European Union
Space Programme which provides free global and regional-scale satellite ocean data
to enhance and broaden the understanding of the global oceans and to promote the
development, protection, and restoration of marine environments for all maritime
industries.

This research paper employs three remote sensing datasets from CMEMS.

3.2.1 Global Ocean Colour

The first dataset used is the cmems_obs-oc_glo_bgc-plankton_my_l4-gapfree-multi-4km
dataset, which is the Global Ocean Colour (Copernicus-GlobColour) Bio-Geo-Chemical,
L4 (monthly and interpolated) from Satellite Observations (1997-ongoing) with a
spatial resolution of 4 × 4 km.

Table 3.1 displays the variables of the dataset.

Variable Description

Time Time of observation
Latitude Latitude of observation location
Longitude Longitude of observation location
CHL Mass concentration of chlorophyll a in sea water
ZSD Secchi depth of sea water
CDM Volume absorption coefficient of radiative flux in sea water due
KD Volume attenuation coefficient of downwelling radiative flux in sea water
BBP Volume backward scattering coefficient of radiative flux

TABLE 3.1: Variables of the Bio-Geo-Chemical Dataset

3.2.2 Bio-Geo-Chemical indicators

The second dataset used is the cmems_obs_oc_nws_bgc_geophy_nrt_l4-hr_P1D-m

dataset, which is the North West Shelf Region, Bio-Geo-Chemical, L4, monthly means
and interpolated daily observation with a spatial resolution of 0.1 × 0.1 km. The
variables of this dataset are depicted in Table 3.2.

Variable Description

Time Time of observation
Latitude Latitude of observation location
Longitude Longitude of observation location
CHL Mass concentration of chlorophyll a in sea water
SPM mass concentration of suspended matter in sea water
TUR sea water turbidity
BBP Volume backward scattering coefficient of radiative flux

TABLE 3.2: Variables of the Bio-Geo-Chemical, L4, 0.1 × 0.1 km
Dataset
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3.2.3 Atlantic Ocean Colour

Finally, the cmems_obs-oc_atl_bgc-plankton_my_l4-gapfree-multi-1km_P1Ddataset
was used, which is the Atlantic Ocean Colour (Copernicus-GlobColour) Bio-Geo-
Chemical, L4 (daily interpolated) from Satellite Observations (1997-ongoing) with a
spatial resolution of 1 × 1 km. The variable included in this dataset is mass concen-
tration of chlorophyll a in sea water (CHL).

Variable Description

Time Time of observation
Latitude Latitude of observation location
Longitude Longitude of observation location
CHL Mass concentration of chlorophyll a in sea water

TABLE 3.3: Variables of the Bio-Geo-Chemical, L4, 1 × 1 km Dataset

3.2.4 Temporal and spatial indices

The variables included in each dataset are measured at fixed locations specified by
latitude and longitude pairs. The CHL time series is defined for each location and
is represented as {CHL(s)}T

t=1, where the location s is defined by a pair of (lat, lon)
coordinates, t represents the variable for day, while T represents the observed period
of one year.

In this study, we analyzed a one-year time window of CHL measurements, specif-
ically from January 1st, 2021, to December 31st, 2021. We inputted the data length
and the coordinates into the Copernicus website for the dataset with product_id

OCEANCOLOUR_GLO_BGC_L4_MY_009_104, which resulted in a total dimension of 365×253×327,
referring to day, latitude, and longitude, respectively. The ZSD, CDM, KD, BBP time
series is defined for each location and is represented as {ZSD(s)}T

t=1, {CDM(s)}T
t=1,

{KD(s)}T
t=1, {BBP(s)}T

t=1, where the location s is defined by a pair of (lat, lon) coor-
dinates, t represents the variable for day, while T represents the observed period of
one year.
For the dataset with product_id OCEANCOLOUR_NWS_BGC_HR_L4_NRT_009_209, which
resulted in a total dimension of 365×8640×3435, referring to day, latitude, and lon-
gitude, respectively. The CHL, SPM, TUR, BBP time series is defined for each loca-
tion and is represented as {CHL(s)}T

t=1, {SPM(s)}T
t=1, {TUR(s)}T

t=1, {BBP(s)}T
t=1,

where the location s is defined by a pair of (lat, lon) coordinates, t represents the
variable for day, while T represents the observed period of one year.

3.2.5 Datasets collection

CMEMS datasets are available through the graphical UI as well as through an API.
Despite the advantages of using the API, our experience has revealed some chal-
lenges. One of the issues encountered was that the data size for some of the datasets
exceeded the maximum import size allowed by the API. Additionally, the API has a
timeout for authentication and queries, which means that if the retrieval of data from
the Copernicus Marine database takes too long, the dataset may become unusable
due to the API timing out.

However, for the subsequent datasets, we encountered problems. Due to the
large dataset size of 18.2 Gb for the product_id OCEANCOLOUR_NWS_BGC_HR_L4_NRT_009_209,
the Copernicus UI did not provide the option to download the data, so we used FTP
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FIGURE 3.2: Copernicus Marine Service API Workflow

to download the entire dataset. Unfortunately, there was no option to select the re-
gion of interest using FTP, so we had to download the full dataset and later slice the
area of interest for England using the BBox coordinates. Inputting the data length
and the coordinates for this dataset resulted in a total dimension of 365×8640×3435,
referring to day, latitude, and longitude, respectively.

Similarly, for the dataset with product_id OCEANCOLOUR_ATL_BGC_L4_MY_009_118,
the dataset size was 5.97 Gb. Unfortunately, the Copernicus User Interface (UI) did
not offer a direct download option for this particular dataset. Consequently, we re-
sorted to utilizing the FTP (File Transfer Protocol) method to acquire the dataset.
Copernicus Marine Service provided us with the necessary credentials to access and
download the dataset. We inputted the data length and coordinates, which resulted
in a total dimension of 365×4416×5664, referring to day, latitude, and longitude,
respectively. The final dimensions of all datasets are presented in Table 3.4.

Product ID Dimension

OCEANCOLOUR_ATL_BGC_L4_MY_009_118 365X4416X566

OCEANCOLOUR_NWS_BGC_HR_L4_NRT_009_209 365X8640X3435

OCEANCOLOUR_GLO_BGC_L4_MY_009_104 365X253X327

TABLE 3.4: Dataset‘s dimensions

3.3 Pollution label dataset

In addition to remote sensing datasets, we also used the in-situ water quality mea-
surements provided by the England’s Department for Environment Food Rural Af-
fairs (DEFRA) 3.3.

DEFRA monitors water quality indicators across seaside location in England
which includes the information on: Bathing water site details, History of in-season
sample results, History of annual bathing water classifications, History of abnormal
situations, and History of pollution risk forecasts. After careful examination, we
determined that we only required the Bathing water site details and History of pol-
lution risk forecasts subsets, which we merged using the unique identifier EUBWID.
The full summary of all variables in the dataset are summarised in Table 3.5.

DEFRA provides an API to accesss the datasets.
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FIGURE 3.3: Bathing Water Quality DEFRA API

3.3.1 Variables

We used variables EUBWID, label, predictedAt, riskLevelLabel, warning, sample-
PointID, pollutionRiskForecasting indexed by time and location from DEFRA dataset.
The samples in the dataset were collected once a day. The variables were indexed
based on two dimensions: time and location. The time dimension corresponds to
the day of the sample, while the location dimension was indexed by latitude and
longitude coordinates.

In addition, we created a new is_pollution variable, which takes binary values
{true, false}. This feature is based on the riskLevelLabel feature, which can have
the values no-prediction, normal, or increased. If the riskLevelLabel value is
increased, it means that there is pollution, otherwise, there is no pollution.

3.3.2 Dataset size

The DEFRA dataset contains 333394 rows and 28 columns spanning from 2013 to
2022. However, there are a few rows in the dataset where several water quality mea-
surements were made during the day, resulting in duplicate values in columns such
as "EUBWID," "predictedAt_year," "predictedAt_month," and "predictedAt_day." The
total number of rows with several water quality measurements is 3081×28. This indi-
cates that there are several measurements of chlorophyll for a single day. To address
this, we applied a rule that if there was contamination within a single day, then
there would be only one record with the is_pollution label set to true. Otherwise,
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Subset Variables

History of pollution risk forecasts

- EUBWID
- label
- predictedAt
- warning
- riskLevelLabel

Bathing water site details

- EUBWID
- samplePointID
- lat
- long
- pollutionRiskForecasting

TABLE 3.5: Variables in different subsets of the dataset

it would be set to false indicating no contamination. We have excluded the "no-
prediction" label from our investigation due to its potential to introduce bias into
our model. Therefore, our study focuses solely on the prediction of relevant labels
within the defined scope of our research.

After applying the aforementioned data preprocessing steps and selecting the
measurements from 2021 year alone, the resulting dataset shape is 331735×28.

3.4 Data preprocessing

3.4.1 Data preprocessing pipeline

All the steps involved in the data preprocessing are summarized into a pipeline for
preprocessing. The data preprocessing pipeline is displayed in Figure 3.4.

FIGURE 3.4: Data preprocessing pipeline

3.4.2 Data merge

In order to combine the pollution label dataset from DEFRA and the chlorophyll
concentration dataset from Copernicus marine service, we first extracted the longi-
tude and latitude coordinates from the pollution label dataset. Then, we searched
for these coordinates in the chlorophyll concentration dataset. If we did not find an
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exact match, we selected the nearest coordinates as a replacement. This mapping
allowed us to link the coordinates between the two datasets.

We also mapped the time feature using the predicted year, predicted month, and
predicted day from the pollution label dataset. If we could not find an exact match
for the time in the chlorophyll concentration dataset, we selected the smallest nearest
time.

The execution time for obtaining data for different spatial resolutions is dis-
played in Figure 3.7.

Spatial Resolution Execution time

1km 22.85 mins - 0.38 hours

4km 707.525 mins - 11.79 hours

0.1km 25.47 mins - 0.42 hours

TABLE 3.6: Summary of processing times for different spatial resolu-
tions.

The missing data percentage for different spatial resolutions is illustrated in Fig-
ure 3.7.

Spatial Resolution Missing data(%))

1km 64.26

4km 78.12

0.1km 87.28

TABLE 3.7: Missing data percentage for different spatial resolutions.

The term "missing data" refers to corrupted data in the context of our study, indi-
cating that certain information was not provided by the Copernicus Marine Service
satellite due to weather-related issues or technical problems with the satellite itself.
This results in gaps or absence of data in our dataset, which can impact the com-
pleteness and reliability of the information available for analysis.

The final dataset consists of 64566 rows and includes the following features:
chl_level_0 to chl_level_120, latitude, longitude, and a binary indicator for pollu-
tion (is_pollution). These features provide information about chlorophyll levels at
various depths and the corresponding geographical coordinates, along with the pol-
lution status.

3.4.3 Processing missing records

To calculate the percentage of missing data in the dataset, we first flatten the dataset,
which means we calculate the total number of elements in each pixel. Each pixel
represents a 3×3 matrix. Then, we count the number of missing elements in each
pixel. The percentage of missing data is then calculated by dividing the total number
of missing elements by the total number of elements in the dataset and multiplying
by 100%.

Having observed a high percentage of missing data (78.12%) for the spatial reso-
lution of 4km×4km, we have decided to exclude this dataset and focus on datasets
with a higher spatial resolution. We have chosen the dataset with a higher spatial
resolution primarily because it exhibits a lower percentage of missing data. The
missing data refers to information that is not provided from the Copernicus Marine
Service satellite due to technical issues or other reasons. By utilizing the dataset
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with fewer missing data points, we can ensure a more comprehensive and reliable
analysis with a richer set of high-resolution information.

For each unique pair of longitude and latitude, we collected all chlorophyll con-
centration data for all days and computed the total number of chlorophyll elements
and total missing data. We then calculated the percentage of missing data for each
unique pair of longitude and latitude.

Next, we distributed the pairs into six predefined bins based on the percentage of
missing data. These bins include the ranges of (90.0, 100.0), (80.0, 90.0), (70.0, 80.0),
(60.0, 70.0), (50.0, 60.0), and (0.0, 50.0). This information is illustrated in Table 3.8.

The size of the values for a specific pair of longitude and latitude indices is equal
to 18634.

Percentage Range Missing data(%))

90.0% - 100.0% 50.12%

80.0% - 90.0% 0.48%

70.0% - 80.0% 6.92%

60.0% - 70.0% 20.29%

50.0% - 60.0% 9.79%

0.0% - 50.0% 12.41%

TABLE 3.8: Percentage of unique coordinates pairs
with NaN values in different ranges for 0.1km×0.1km

spatial resolution

Due to the presence of corrupted data on 45 days (days 1-12 and days 333-365)

in the year 2021, we decided to remove these days from the dataset. The size of the
values for a specific pair of longitude and latitude indices is equal to 397. The per-
centage of unique coordinate pairs with NaN values in different ranges for a spatial
resolution of 1km×1km is presented in Table 3.9.

TABLE 3.9: Percentage of unique coordinates pairs
with NaN values in different ranges for 1km×1km

spatial resolution

Range Percentage

90.0% - 100.0% 22.41%

80.0% - 90.0% 1.51%

70.0% - 80.0% 8.81%

60.0% - 70.0% 24.43%

50.0% - 60.0% 10.57%

0.0% - 50.0% 32.24%

Additionally, we can examine the NaN percentages across unique coordinate
pairs, as depicted in Figure 3.5.

In our analysis, we extracted and removed the data points where the percentage
of missing values was in the range of 90% - 100.0% and 80.0% - 90.0%. We did
this because these data points had an excessively high percentage of missing values,
which could negatively impact the accuracy of our analysis. By removing these data
points, we could ensure that our analysis was focused on more complete and reliable
data.
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FIGURE 3.5: Histogram of NaN Percentages Across Unique Coordi-
nates Pairs

We have constructed an Empirical Cumulative Distribution Function (ECDF) to
visualize the distribution of NaN percentages for unique coordinate pairs. The re-
sults are displayed in Figure 3.6.

FIGURE 3.6: Empirical Cumulative Distribution Function of NaN
Percentage

For Unique Coordinates Pairs

We have created a histogram to analyze the distribution of unique pairs based
on the percentage range of missing data. The histogram is depicted in Figure 3.7.

3.4.4 Analysis and Exclusion of Datasets with Different Spatial Resolu-
tions

The concentration level chl_level is a measure of chlorophyll-a concentration in the
water, which is an indicator of phytoplankton biomass.

After careful consideration, we have decided to exclude the dataset with a spatial
resolution of 4km×4km due to a high percentage of missing data. As a result, we
have chosen to focus our analysis on datasets with a higher spatial resolution, which
are expected to provide more accurate and detailed information for our research.

We have decided to convert the chlorophyll concentration data into the RGB(RGB
color model) color format and display the dataset for each day of the year 2021. The
process of converting the chlorophyll data to RGB involves normalizing the data
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FIGURE 3.7: Histogram of Unique Pair Percentage by NaN Values.

between 0 and 1, scaling it to the 8-bit range of the RGB color space (0-255), and
replicating the same grayscale values for each of the three color channels (red, green,
and blue). This results in an RGB image where violet color represents land, yellow
represents water surface, and different shades of green represent the chlorophyll
concentration. Upon thorough examination of the chlorophyll dataset with a spatial
resolution of 0.1km×0.1km, we have determined that the dataset is corrupted and
inconsistent. This is illustrated in Figure 3.8.

FIGURE 3.8: Chlorophyll Concentration by Day in 2021 for spatial
resolution 0.1×0.1km

In the visualization, the color violet represents land, while yellow represents the
water surface. The varying shades of green correspond to the different levels of
chlorophyll concentration. After careful consideration, we have decided to use the
dataset with a spatial resolution of 1km×1km, because, as depicted in Figure 3.9, the
data exhibits consistency. We have chosen to visualize the chlorophyll concentration
data on a daily basis for the year 2021, using a spatial resolution of 1km×1km.

However, within this dataset, there are instances of distorted data, as observed
in Figure 3.10. These distorted data points are specifically associated with the winter
months.
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FIGURE 3.9: Chlorophyll Concentration by Day in 2021 for spatial
resolution 1×1km

FIGURE 3.10: Distorted Chlorophyll Concentration for spatial resolu-
tion 1×1km

In the feature engineering process for the first dataset, we created eight statistical
features for each point in a 3×3 matrix. These features include mean, median, stan-
dard deviation, minimum, maximum, percentile 25, percentile 50, and percentile 75.
In addition to these features, we also included the year, month, and a label indicating
whether the pollution level is high or not.

The Sea Chlorophyll Concentration in the England over Time for one particular
point in Figure 3.11 As observed on the chart 3.11, there were noticeable bursts in
chlorophyll concentration during the months of April and May.

The point is illustrated in Figure 3.12 where we can observe the sea chlorophyll
concentration in the England over time for a specific location in Figure 3.11. The
corresponding point is marked on the chlorophyll map (see Figure 3.12).

All unique points from the DEFRA pollution dataset are plotted on the chloro-
phyll map. The corresponding point is marked on the chlorophyll map in Figure
3.13
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FIGURE 3.11: Sea Chlorophyll Concentration in the England over
Time

FIGURE 3.12: The red marked point on the Chlorophyll Concentra-
tion map

It can be observed that there are 9 points located within landmasses, which have
been removed from the dataset.
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FIGURE 3.13: The red pollution detecting points on the Chlorophyll
Concentration map

We have added 15 points to the map of England, each representing a specific
location, and the corresponding matrix of chlorophyll concentration for those points.
And this is displayed in Figure 3.14.

3.4.5 Result of data preprocessing

To calculate the statistical features, we checked if the middle element of the matrix
is a non-NaN value. If it is, we used it as a feature. If it is a NaN value, we cal-
culated the statistical features based on the non-NaN values within the 3×3 matrix.
The middle element of the matrix, which corresponds to the point measured by the
DEFRA service, is [2][2].

For the second dataset, we used each element of the 3×3 matrix as a separate
feature. This means that for each point with coordinates and time, we have nine
features in total. For the remaining missing data, we filled in the values with the
mean chlorophyll concentration.

As a result of our feature engineering, we have created two datasets that will be
used for further processing and evaluation.
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FIGURE 3.14: The 15 points on the Chlorophyll Concentration map
with corresponding matrix
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Chapter 4

Methodology

4.1 Problem formulation

The focus of this current work is on the problem of "nowcasting" pollution incidents:
We aim to provide real-time or near-real-time predictions for the current pollution
levels using freely available remote sensing data from CMEMS.

To this end, we formulate the problem of pollution prediction as a binary classi-
fication problem: Ŷs

t = f (xs
t), where Ys

t is a binary variable indicating a record of a
pollution incident in location s on day t as defined by DEFRA. xs

t is a feature vector
describing the state of the marine environment in location s recorded by CMEMS on
day t. Our goal is to train a function f to map a feature vector Xs

t to a prediction Ŷs
t

of a pollution incident Ys
t .

In our study, we formulated several research questions to guide our investigation
and analysis. These questions serve as the foundation for our study’s objectives and
aim to address specific aspects related to our research topic:

1. What is the optimal shape of data (3×3, 11×11, etc.) and statistical features to
detect water pollution based on the concentration of chlorophyll?

2. Which machine learning model performs best at detecting water pollution
based on the concentration of chlorophyll?

4.2 Feature engineering

To define vectors Xs
t we use the following approach. Since, MSES data is provided

in a grid with a fixed step (e.g. 0.1km x 0.1km), we first identify the cell cs in the grid
which contains location s. We then consider a window sn×n of n × n cells centered
around cs.

For each MSES variable xs
t ∈ Xs

t (e.g. CHL, SPM, TUR, etc.) recorded on day t,
we construct a vector xsn×n

t resulting from querying and flattening all measurements
in the window sn×n on day t.

In addition, we compute a number of statistics for each vector xsn×n
t , namely:

Mean, Median, Standard Deviation, Minimum Value, Maximum Value, 25th Per-
centile, 50th Percentile and 75th Percentile. We will discuss the efficacy of this feature
engineering step in comparison to using raw features in Chapter 5.

4.3 Normalization

The purpose of applying StandardScaler (sklearn, 2023a) to the chlorophyll concen-
tration is to standardize the feature and bring it to a common scale. This can be
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beneficial for machine learning algorithms that assume the input data follows a nor-
mal distribution or have sensitivity to feature scales.

The process of normalization involves transforming the data such that it follows
a standard normal distribution with a mean of 0 and a standard deviation of 1. This
is achieved by subtracting the mean value of each feature and dividing it by its stan-
dard deviation. The formula for standardization is:

z =
chlorophyll concentration − µ

σ

where z is the standardized value, chlorophyll concentration represents the orig-
inal chlorophyll concentration, µ is the mean of the chlorophyll concentration, and
σ is the standard deviation of the chlorophyll concentration.

4.4 Train test split

We used the train test split (learn.org, 2014) function from the sklearn.model selec-
tion module to implement the train-test split technique. The testing set consisted of
20% of the total data, while the remaining 80% was allocated to the training set.

The main objective of the train-test split technique is to evaluate the model’s
performance and its ability to generalize to unseen data. By segregating the data
into distinct sets, we could train the model on the training set to learn patterns and
relationships within the data. The independent testing set was then used to assess
how accurately the model could predict unseen instances.

4.5 Dataset balancing

The dataset used for the analysis is imbalanced, meaning that there is a significant
disparity in the number of instances between the two classes. Specifically, there are
62,560 instances classified as not pollution incidents, while only 2,006 instances are
classified as pollution incidents.

This class imbalance can pose challenges when training a machine learning model.
Since the majority class (not pollution incidents) dominates the dataset, the model
may become biased and tend to favor predicting the majority class more accurately.
As a result, it may struggle to effectively identify and predict instances of pollution
incidents, which are relatively rare compared to the not pollution incidents.

In the case of the Random Forest Classifier model (forest, 2016), We employed
a balancing approach by setting the parameter ‘class weight‘ to ‘balanced‘. This
technique automatically adjusts the weights of the classes based on their frequencies
in the training data. It helps address the issue of imbalanced classes by giving more
weight to the minority class during the training process. This way, the model can
learn to better handle the imbalanced nature of the data and make more accurate
predictions for both classes.

For the other models, We used the RandomOverSampler (sklearn, 2023b) tech-
nique. RandomOverSampler is a method for addressing class imbalance by over-
sampling the minority class. It randomly duplicates instances from the minority
class until it reaches a similar number of instances as the majority class. The advan-
tage of this approach is that it allows the model to be exposed to more instances of
the minority class, thereby reducing the bias towards the majority class and poten-
tially improving the model’s ability to generalize and make accurate predictions for
both classes.
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However, it’s important to note that RandomOverSampler has its limitations.
Applying oversampling techniques to the minority class can result in overfitting,
causing the model to become overly specialized to the training data and perform in-
adequately on unseen data. Moreover, if the dataset is already substantial, oversam-
pling may substantially prolong the training time and demand additional memory
resources.

It’s worth mentioning that We applied the balancing technique only to the train-
ing dataset and not the entire dataset. This ensures that the model’s evaluation and
performance metrics are based on unbiased data, as the test dataset remains in its
original distribution.

4.6 Models

4.6.1 Baseline

To establish the baseline for our model, we determine the probability of non-pollution
by dividing the number of samples labeled as non-pollution by the total number of
samples present in the dataset.

4.6.2 Logistic Regression

Logistic Regression models the conditional probability of the pollution indicator
(y = 1) given the chlorophyll concentration features (x1, x2, . . . , xn). The parame-
ters β0, β1, β2, . . . , βn represent the coefficients of the logistic regression model, and
the sigmoid function is used to transform the linear combination of the features and
coefficients into a probability value between 0 and 1, i.e.: (regression, 2016)

P(y = 1 | x1, x2, . . . , xn) =
1

1 + e−(β0+β1x1+β2x2+...+βnxn)

One of the main reasons for selecting Logistic Regression is its simplicity and
interpretability. It is a linear model that assumes a linear relationship between the
predictors (chlorophyll concentration in this case) and the log-odds of the binary
outcome (pollution indicator). The model estimates the coefficients that represent
the influence of the predictors on the probability of the binary outcome.

4.6.3 Decision Trees classifier

The Decision Trees algorithm is presented in Figure 4.1.

if Chlorophyll Concentration > threshold_1:

if Chlorophyll Concentration > threshold_2:

Prediction: Pollution Indicator = 1

else:

Prediction: Pollution Indicator = 0

else:

Prediction: Pollution Indicator = 0

FIGURE 4.1: Decision Trees Algorithm

One of the primary reasons for selecting a Decision Tree Classifier is its simplicity
and interpretability. Similar to decision trees, Decision Tree Classifiers also represent
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a hierarchical structure where each internal node corresponds to a decision based on
a particular feature and threshold. Each leaf node in the tree represents the final
prediction or classification.

The hierarchical structure of Decision Tree Classifiers allows for straightforward
interpretation and comprehension of the decision-making process. By traversing the
tree from the root to a specific leaf node, one can easily understand the sequence of
decisions made by the classifier to arrive at a particular classification outcome.

Moreover, Decision Tree Classifiers excel at capturing non-linear relationships
between the features, such as chlorophyll concentration, and the target variable,
such as a pollution indicator. They can identify complex interactions and patterns
within the data that may not be apparent through simple linear relationships. This
capability makes Decision Tree Classifiers particularly effective in scenarios where
the relationships between the input features and the target variable are non-linear in
nature.

In summary, Decision Tree Classifiers offer simplicity, interpretability, and the
ability to capture non-linear relationships, making them a valuable choice for tasks
that require transparent decision-making processes and the analysis of complex data.

4.6.4 Random Forest Classifier

The Random Forest Classifier (forest, 2016) is selected for several reasons. Firstly,
it is an ensemble learning method that combines multiple decision trees to make
predictions. This ensemble approach brings numerous benefits, such as improved
accuracy and increased reliability compared to using a single decision tree. By aggre-
gating the predictions from multiple trees, the Random Forest Classifier can mitigate
the risk of overfitting and reduce the impact of individual trees’ errors or biases.

Furthermore, Random Forests have the ability to capture more complex rela-
tionships within the data. Due to the randomness introduced during the training
process, each decision tree in the forest is exposed to a different subset of the data.
This variability helps the ensemble to capture diverse patterns and consider differ-
ent perspectives, which can enhance the model’s overall predictive performance.
By combining the predictions from multiple trees, the Random Forest Classifier can
effectively capture non-linear relationships, interactions, and higher-order depen-
dencies that may exist in the data.

Another advantage of the Random Forest Classifier is its relative ease of imple-
mentation. While it is a sophisticated ensemble model, it does not require exten-
sive hyperparameter tuning or fine-tuning compared to some other complex mod-
els. The Random Forest algorithm has default parameter settings that often yield
good results across various datasets. This characteristic makes it a practical choice,
especially when time and computational resources are limited.

In summary, the Random Forest Classifier is selected for its ensemble approach,
which improves accuracy and reliability. It excels at capturing complex relationships
in the data and offers simplicity in implementation with minimal hyperparameter
tuning requirements. These advantages make the Random Forest Classifier a popu-
lar and effective choice for various classification tasks.

4.6.5 Gradient Boosting Classifier

The Gradient Boosting Classifier is an ensemble learning method that combines mul-
tiple weak learners, typically decision trees, to make predictions. It sequentially
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trains the weak learners on the residuals of the previous models, focusing on im-
proving the model’s performance with each iteration.

The training algorithm for Gradient Boosting Classifier proceeds as follows:
Initialization: Initially, all training instances are given equal weights. The first

weak learner is trained on the entire dataset.
Training Iterations: For each iteration:

Prediction: The current ensemble of weak learners makes predictions on the
training data.

Residual Calculation: The difference between the actual target values and the
predictions is calculated. These differences, called residuals, represent the errors of
the current ensemble.

Training of Weak Learner: A new weak learner is trained to predict the resid-
uals. It focuses on capturing the patterns in the residuals that the current ensemble
fails to capture.

Update Ensemble: The new weak learner is added to the ensemble, and its
contribution is determined by a learning rate parameter. The learning rate controls
the weight given to each weak learner in the ensemble.

Weight Update: The weights of the training instances are updated based on
the residuals. Instances with larger residuals are given higher weights, so that the
next weak learner can focus on correcting these instances.

Final Prediction: The final prediction is obtained by combining the predictions
of all the weak learners in the ensemble. The contribution of each weak learner is
weighted based on the learning rate.

The iterative process continues until a predefined number of iterations is reached
or a stopping criterion is met. The Gradient Boosting Classifier effectively combines
the strengths of multiple weak learners to create a strong predictive model. It excels
in capturing complex non-linear relationships and can provide accurate predictions
for the binary pollution indicator based on the chlorophyll concentration features.

4.6.6 Convolutional Neural Networks (LeNet)

LeNet ?? is a convolutional neural network (CNN) model designed for image classi-
fication tasks (Y. Lecun, 1998). We chose to use LeNet for our study:

Transformation of Chlorophyll Concentration to Images: We transform the ma-
trix of chlorophyll concentration, which is 11x11 in size, into images. By considering
each value in the matrix as a pixel intensity, we can create images for input into the
LeNet model.

Convolutional Networks for MNIST: The MNIST database is widely used for
digit recognition, containing 60,000 training images and 10,000 testing images. Each
image in MNIST is 28x28 pixels (database, 2010). MNIST classification tasks com-
monly involve the use of convolutional networks, and LeNet is a classic CNN ar-
chitecture specifically designed for such tasks. LeNet’s architecture (database, 2010)
consists of convolutional layers, pooling layers, and fully connected layers.

Generalization to Chlorophyll Concentration: While originally designed for the
MNIST dataset, LeNet’s convolutional layers can learn and extract relevant features
from various types of images, including our transformed chlorophyll concentration
images. Although the image size in our case is 11x11, LeNet can still be applied
effectively since it is designed to handle various image sizes.

And also the LeNet model was selected for our study for several reasons:

1. Proven Performance: LeNet is a well-established and widely used CNN archi-
tecture that has shown excellent performance in image classification tasks. It
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was one of the pioneering models in the field of deep learning and has been
successfully applied to various image recognition tasks, including the MNIST
dataset.

2. Suitability for Small-Sized Images: The LeNet architecture is particularly suit-
able for small-sized images, such as the 11x11 transformed chlorophyll concen-
tration images in this scenario. LeNet’s design includes convolutional layers
with small filter sizes, which enables the model to effectively capture local pat-
terns and features in the images.

3. Effective Feature Extraction: LeNet’s convolutional layers are designed to learn
and extract meaningful features from images. This is crucial for image classifi-
cation tasks as it allows the model to automatically identify relevant patterns
and structures that can discriminate between different classes. The hierarchi-
cal structure of convolutional layers followed by pooling layers in LeNet helps
in progressively abstracting features from the input images.

4. Efficient Training: LeNet’s architecture strikes a good balance between model
complexity and training efficiency. It contains a moderate number of trainable
parameters, making it easier and faster to train compared to more complex
CNN architectures. This is especially beneficial when dealing with limited
computational resources or when working with smaller datasets.

5. Availability of Precedent: LeNet has been widely used and studied in the
deep learning community, which means there are numerous resources, imple-
mentations, and insights available for reference. This makes it easier to find
guidance, troubleshoot issues, and leverage existing knowledge when work-
ing with LeNet.

Overall, the selection of LeNet for this scenario was based on its proven perfor-
mance, suitability for small-sized images, effective feature extraction capabilities,
efficient training characteristics, and the availability of precedent in the deep learn-
ing community. These factors contribute to making LeNet a reliable and appropri-
ate choice for image classification tasks, including the classification of transformed
chlorophyll concentration images.

4.7 Metrics

4.7.1 ROC AUC

True positive rate (sensitivity) is a measure that quantifies the proportion of actual
positive cases correctly identified by a classification model, indicating its ability to
detect positive instances.

True negative rate (specificity) is a metric that represents the proportion of actual
negative cases accurately identified by a classification model, indicating its capabil-
ity to correctly identify negative instances.

To calculate the True Positive Rate (Sensitivity), divide the number of true pos-
itive predictions by the sum of true positive predictions and false negative predic-
tions.

To calculate the True Negative Rate (Specificity), divide the number of true neg-
ative predictions by the sum of true negative predictions and false positive predic-
tions.
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The ROC curve is a graphical representation of the model’s performance as the
classification threshold varies. The plot illustrates the relationship between the true
positive rate (sensitivity) and the false positive rate (1-specificity) for various thresh-
old values. The area under this curve, referred to as the ROC AUC score, quantifies
the model’s capability to differentiate between positive and negative cases.

A higher ROC AUC score indicates better performance, as it implies a higher
ability to correctly classify instances. A score of 0.5 represents a random classifier,
while a score of 1 indicates a perfect classifier.

4.7.2 Average precision

To understand the Average Precision Score, we need to consider precision and re-
call. Precision measures the proportion of correctly predicted positive instances (true
positives) out of all instances predicted as positive. Recall measures the ratio of ac-
curately predicted positive instances to the total number of actual positive instances.

The Average Precision Score combines precision and recall by calculating the
area under the precision-recall curve. This curve plots the precision values against
different levels of recall, typically achieved by varying the classification threshold.
The score is computed by calculating the average precision at different recall levels
and then taking the mean of those values.

A higher Average Precision Score indicates better performance, as it implies a
higher proportion of correctly predicted positive instances with respect to both pre-
cision and recall. It provides an overall measure of the model’s ability to rank and
retrieve positive instances accurately based on the chlorophyll concentration and the
binary pollution indicator.

Precision (Positive Predictive Value) is a measure that quantifies the proportion
of correctly predicted positive instances out of all instances predicted as positive by
a classification model, indicating the model’s accuracy in identifying true positives.

Recall (Sensitivity) is a metric that represents the proportion of actual positive
cases correctly identified by a classification model, indicating its ability to detect
positive instances.

PR AUC stands for Precision-Recall Area Under the Curve. It is a performance
metric used to evaluate the quality of a binary classification model, focusing on
the trade-off between precision (positive predictive value) and recall (sensitivity).
PR AUC represents the area under the precision-recall curve, which plots precision
against recall at various classification thresholds. A higher PR AUC value indicates
better model performance in achieving high precision and recall simultaneously.

4.7.3 Accuracy

When evaluating the accuracy of a model, we can use the following metrics:
True Positive (TP): The number of the instances where the model correctly pre-

dicts pollution when it is present.
True Negative (TN): The number of the instances where the model accurately

predicts the absence of pollution.
False Positive (FP): The number of the instances when the model incorrectly

predicts pollution when there is none.
False Negative (FN): The number of the instances when the model fails to predict

pollution when it is actually present.
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We calculate accuracy as:

Accuracy =
TP + TN

TP + TN + FP + FN

4.7.4 F1 score

The F1 Score integrates precision and recall into a unified metric, providing an over-
all evaluation of the model’s performance. Precision quantifies the ratio of true pos-
itives to all instances predicted as positive, while recall measures the ratio of true
positives to all actual positive instances.

The F1 Score is determined by computing the harmonic mean of precision and
recall. It provides a balanced measure that considers both precision and recall si-
multaneously. The harmonic mean emphasizes situations where both precision and
recall are high, giving equal importance to both metrics.

A higher F1 Score indicates better performance, as it implies a higher balance be-
tween precision and recall. It shows the model’s ability to achieve accurate positive
predictions (high precision) while capturing most of the actual positive instances
(high recall) based on the chlorophyll concentration and the binary pollution indica-
tor.

4.8 Cross validation

Cross-validation is a method employed to evaluate the performance and generaliz-
ability of a model.

Cross-validation involves dividing the training dataset into multiple subsets or
folds. In this case, the dataset was split into 5 equal parts or folds. The model is
then trained and evaluated multiple times, with each fold serving as the validation
set while the remaining folds are used for training. This process is repeated for each
fold, ensuring that every data point is used for both training and validation.

4.9 Tuning hyper parameters

4.9.1 DecisionTreeClassifier model

For the DecisionTreeClassifier model, We employed the following hyperparameters
to optimize its performance:

1. Criterion: This hyperparameter specifies the criterion used for node splitting
in the decision tree. By selecting ’entropy’, the model uses information gain based
on the entropy of the target variable to make decisions about feature splits.

2. Min samples leaf: This hyperparameter determines the minimum number of
samples required to be present at a leaf node. By setting it to 2, the model ensures
that each leaf node has at least 2 samples, which helps prevent overfitting and pro-
motes generalization.

3. Max depth: None indicates that there is no limit on the maximum depth of
the decision tree, allowing it to grow until all leaves are pure or until the minimum
number of samples required for a split is reached.

4. Min samples split: 2 specifies the minimum number of samples required to
perform a split at an internal node. With a value of 2, the model will only split a
node if it contains at least 2 samples.
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4.9.2 LogisticRegression model

For the LogisticRegression model, We used the following hyperparameters to opti-
mize its performance:

1. C: The hyperparameter C represents the inverse of the regularization strength.
A higher value of C indicates weaker regularization. In this case, C was set to 100,
implying a relatively low regularization strength, which allows the model to focus
more on fitting the training data.

2. Penalty: The penalty hyperparameter determines the type of regularization
used in the logistic regression model. Setting it to ’l1’ indicates the adoption of L1
regularization, also known as Lasso regularization. L1 regularization encourages
sparsity in the model’s coefficients, favoring a subset of important features.

3. Solver: The solver hyperparameter determines the algorithm used for op-
timization during model training. ’liblinear’ is a solver specifically designed for
logistic regression problems. It is efficient for small-to-medium-sized datasets and
supports both L1 and L2 regularization.

4.9.3 RandomForestClassifier model

For the RandomForestClassifier model, the following hyperparameters were found
to yield the best performance:

1. Max depth: This hyperparameter specifies the maximum depth of each deci-
sion tree in the random forest. A depth of 10 means that each tree in the forest is
allowed to have a maximum of 10 levels or splits.

2. Min samples leaf: This hyperparameter determines the minimum number of
samples required to be at a leaf node in each decision tree. With a value of 4, each
leaf node in the trees must have at least 4 samples.

3. Min samples split: This hyperparameter sets the minimum number of samples
required to perform a split at an internal node in each decision tree. By setting it to
2, the model will only split a node if it contains at least 2 samples.

4. N estimators: This hyperparameter denotes the number of decision trees to be
included in the random forest ensemble. A higher number of estimators generally
leads to better model performance, but it also increases computational complexity.

4.9.4 GradientBoostingClassifier model

The selected model is the GradientBoostingClassifier, which has been optimized
with the following hyperparameters:

1. Learning rate: The learning rate determines the contribution of each tree in the
gradient boosting ensemble. A learning rate of 0.1 means that each tree’s prediction
is scaled down by a factor of 0.1, controlling the impact of each individual tree on
the final model.

2. Max depth: The max depth hyperparameter defines the maximum depth of
each tree in the gradient boosting ensemble. With a value of 7, each tree is allowed to
have a maximum of 7 levels or splits, enabling the model to capture more complex
relationships in the data.

3. N estimators: The n estimators hyperparameter specifies the number of boost-
ing stages or iterations in the gradient boosting process. By setting it to 300, the
ensemble will consist of 300 trees, which increases model complexity and improves
its ability to learn from the data.

4. Subsample: The subsample hyperparameter determines the fraction of sam-
ples used for training each tree in the ensemble. In this case, a value of 0.8 indicates



42 Chapter 4. Methodology

that 80% of the data is randomly sampled with replacement for each tree, introduc-
ing randomness and reducing the likelihood of overfitting.

4.9.5 LeNet model

The chosen model is LeNet, and it has been configured with the following hyperpa-
rameters:

1. Batch size: The batch size hyperparameter determines the number of training
examples processed in a single iteration or mini-batch during training. A batch size
of 64 means that 64 samples will be processed at a time before updating the model’s
parameters.

2. Dropout rate: The dropout rate hyperparameter controls the regularization
technique known as dropout. A dropout rate of 0.1 means that during training, 10%
of the model’s input units will be randomly set to 0 at each update, reducing the
model’s reliance on specific features and improving generalization.

3. Epochs: The epochs hyperparameter specifies the number of times the entire
training dataset is passed through the model during training. With 200 epochs, the
model will be trained on the complete dataset 200 times, allowing it to learn from
the data and improve its performance over iterations.

4. Learning rate: The learning rate hyperparameter determines the step size
at each iteration during the optimization process. It controls the rate at which the
model’s parameters are adjusted. A learning rate of 0.001 implies small updates to
the model’s parameters, which can prevent overshooting and help the model con-
verge to the optimal solution.



43

Chapter 5

Experiments

We conducted an experiment where we varied the value of n between 3 and 11 to
investigate its impact on the matrix chlorophyll concentration.

5.1 What is the optimal shape of data (3×3, 11×11, etc.) and

statistical features to detect water pollution based on the

concentration of chlorophyll?

5.1.1 Statistical features of chlorophyll concentration dataset

In this experiment, we focused on extracting the chlorophyll concentration from a
dataset represented as a n × n matrix, where n from 3 to 11. The dataset consists of
statistical features related to chlorophyll concentration, but it is imbalanced. These
models were used with their default hyperparameters. The results can be observed
in Table 5.1.

Based on the analysis of the Statistical features of chlorophyll concentration dataset,
it has been determined that the optimal shape of the data is represented by an 11x11
matrix. This specific matrix configuration provides the best results in terms of per-
formance metrics for the models evaluated.

Among the evaluated models, the random forest classifier emerged as the top-
performing model, demonstrating superior accuracy, ROC AUC, and PR AUC scores
within the context of the 11x11 matrix.

1. Accuracy: The baseline model achieved the highest accuracy of 0.0587.

2. ROC AUC: The random forest classifier attained a ROC AUC score of 0.5509.

3. PR AUC: Similarly, the random forest classifier obtained the highest PR AUC
score of 0.0480.

Based on these results, we can conclude that among all the models considered for
the 11x11 matrix, the random forest classifier performs the best for the Statistical
features of chlorophyll concentration dataset.

5.1.2 Each pixel of chlorophyll concentration as a features dataset

In this experiment, we aimed to extract chlorophyll concentration from a dataset
represented as as a n × n matrix, where n from 3 to 11. Each pixel in the matrix
represents a feature for the chlorophyll concentration. Nevertheless, it is crucial to
acknowledge that the dataset exhibits class imbalance, indicating an uneven distri-
bution of chlorophyll concentration values. All models were used with their default
hyperparameters. The results can be observed in Table 5.2.
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Matrix Size Model F1 Score ROC AUC PR-AUC

3x3 Baseline 0.0605 0.5048 0.0314

3x3 Logistic Regression 0.0000 0.5000 0.0306

3x3 Random Forest 0.0179 0.5757 0.0497

3x3 Decision Trees 0.0253 0.5469 0.0346

3x3 Gradient Boosting 0.0000 0.5681 0.0382

5x5 Baseline 0.0604 0.5038 0.0313

5x5 Logistic Regression 0.0000 0.5000 0.0306

5x5 Random Forest 0.0147 0.5343 0.0349

5x5 Decision Trees 0.0233 0.5345 0.0330

5x5 Gradient Boosting 0.0000 0.5411 0.0339

7x7 Baseline 0.0597 0.4988 0.0310

7x7 Logistic Regression 0.0000 0.5000 0.0306

7x7 Random Forest 0.0197 0.5550 0.0426

7x7 Decision Trees 0.0366 0.5417 0.0340

7x7 Gradient Boosting 0.0050 0.5442 0.0367

9x9 Baseline 0.0598 0.4996 0.0310

9x9 Logistic Regression 0.0000 0.5000 0.0306

9x9 Random Forest 0.0147 0.5488 0.0401

9x9 Decision Trees 0.0353 0.5282 0.0328

9x9 Gradient Boosting 0.0049 0.5360 0.0354

11x11 Baseline 0.0587 0.4919 0.0306

11x11 Logistic Regression 0.0000 0.5000 0.0306

11x11 Random Forest 0.0339 0.5509 0.0480

11x11 Decision Trees 0.0374 0.5248 0.0329

11x11 Gradient Boosting 0.0098 0.5280 0.0375

TABLE 5.1: Models metrics for different matrix sizes of statistical fea-
tures dataset



5.1. What is the optimal shape of data (3×3, 11×11, etc.) and statistical features to
detect water pollution based on the concentration of chlorophyll?

45

Upon analyzing the models using the 11x11 matrix for the Each pixel of chloro-
phyll concentration as a features dataset, we observe the following best performance
metrics:

1. Accuracy: The baseline model achieved the highest accuracy of 0.1569.

2. Random Forest Classifier: The random forest classifier closely followed the
baseline model, with an accuracy of 0.1564. It also obtained a relatively high
ROC AUC score of 0.7188 and a PR AUC score of 0.1255.

Based on these results, we can conclude that among all the models considered for the
11x11 matrix with Each pixel of chlorophyll concentration as a features dataset, the
random forest classifier performs the best. Although it has a slightly lower accuracy
than the baseline model, it compensates with significantly higher ROC AUC and PR
AUC scores, indicating better overall performance.

Furthermore, the Each pixel of chlorophyll concentration as a features dataset
has demonstrated the best results compared to Statistical features of chlorophyll con-
centration dataset. Therefore, for further study and analysis, I use the Each pixel of
chlorophyll concentration as a features dataset for improved insights and outcomes.

Matrix Size Model F1 Score ROC AUC PR-AUC

3x3 Baseline 0.0605 0.5048 0.0314

3x3 Logistic Regression 0.0000 0.5000 0.0306

3x3 Random Forest 0.0339 0.5931 0.0609

3x3 Decision Trees 0.0773 0.5531 0.0393

3x3 Gradient Boosting 0.0050 0.5704 0.0397

5x5 Baseline 0.060382 0.503775 0.031298

5x5 Logistic Regression 0.000000 0.500000 0.030587

5x5 Random Forest 0.099323 0.636162 0.115877

5x5 Decision Trees 0.116743 0.568111 0.045211

5x5 Gradient Boosting 0.009828 0.600200 0.067640

7x7 Baseline 0.059678 0.498836 0.030999

7x7 Logistic Regression 0.000000 0.499920 0.030587

7x7 Random Forest 0.139130 0.709112 0.154011

7x7 Decision Trees 0.148241 0.580216 0.052423

7x7 Gradient Boosting 0.019851 0.671053 0.088856

9x9 Baseline 0.059783 0.499568 0.031043

9x9 Logistic Regression 0.000000 0.499920 0.030587

9x9 Random Forest 0.154839 0.727279 0.173810

9x9 Decision Trees 0.156716 0.570948 0.053088

9x9 Gradient Boosting 0.034483 0.699704 0.104475

11x11 Baseline 0.0604 0.5038 0.0313

11x11 Logistic Regression 0.0000 0.5000 0.0306

11x11 Random Forest 0.1564 0.7188 0.1255

11x11 Decision Trees 0.1569 0.5666 0.0530

11x11 Gradient Boosting 0.0443 0.7138 0.1185

TABLE 5.2: Models metrics for different matrix sizes of Each pixel as
features dataset
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Based on our investigation, it is found that utilizing a dataset where each pixel
represents an individual feature yields more favorable results for further analysis,
as supported by the metrics presented in 5.2. A comparison with the metrics from
5.1 further reinforces the superior performance of this approach. This higher level of
granularity and detailed information captured within the chlorophyll concentration
dataset enables a more comprehensive understanding of the underlying patterns
and dynamics of water pollution detection.

In response to the research question posed in Chapter 4 regarding the optimal
shape of data and statistical features for detecting water pollution based on chloro-
phyll concentration, our analysis indicates that an 11×11 data shape yields the most
favorable results. This conclusion is supported by the metrics presented in 5.2, which
were compared with the metrics from 5.2. The evaluation of these metrics highlights
the superior performance and effectiveness of the 11×11 data shape in detecting
water pollution accurately and efficiently.

5.2 Which machine learning model performs best at detect-

ing water pollution based on the concentration of chloro-

phyll?

5.2.1 11x11 dataset with the best hyper parameters

After evaluating the performance metrics of different datasets using models with de-
fault hyperparameters, we have chosen to focus on further research using the 11x11
matrix dataset. This dataset comprises chlorophyll concentration data, with each
pixel representing a feature. Our next set of experiments were conducted using this
dataset to explore its potential.

We have performed hyperparameter tuning for several models, including Logis-
ticRegression, RandomForestClassifier, DecisionTreeClassifier, and GradientBoost-
ingClassifier. Additionally, we have used the LeNet network for analyzing an 11×11
dataset.

In the hyperparameter tuning process, we adjusted the parameters of each model
to optimize their performance. This involved finding the best combination of hyper-
parameters that would improve the accuracy or other relevant metrics of the models.

Furthermore, for the 11×11 dataset, we employed the LeNet network, which is
a convolutional neural network architecture commonly used for image recognition
tasks. By utilizing this network, we aimed to leverage its capabilities in analyzing
the chlorophyll concentration data represented by each pixel in the 11×11 matrix.

5.2.2 DecisionTreeClassifier model

During the hyperparameter tuning process, the best parameter configuration for the
DecisionTreeClassifier model was found to be:

criterion : entropy, max_depth : None,′ min_samples_lea f ′ : 2,′ min_samples_split′ : 2
In summary, these findings highlight the specific hyperparameters used, their

purpose in optimizing the DecisionTreeClassifier model, and the best parameter con-
figuration obtained through the hyperparameter tuning process.

The model with the best hyperparameters for the DecisionTreeClassifier outper-
formed the model with default parameters in terms of accuracy, F1 score, ROC AUC,
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and PR-AUC, achieving higher values in all metrics. It exhibited a significantly im-
proved ability to correctly classify instances and discriminate between classes com-
pared to the default parameter model.

5.2.3 LogisticRegression model

After conducting hyperparameter tuning, the best parameter configuration for the
LogisticRegression model was found to be:

C : 100, penalty : l1, solver : liblinear
The model with the best hyperparameters for the Logistic Regression classifier

significantly improved the performance compared to the model with default param-
eters. It achieved an accuracy of 0.6398, indicating a higher proportion of correctly
classified instances. The F1 score improved from 0.0000 to 0.0839, suggesting a better
balance between precision and recall. The ROC AUC also increased from 0.5000 to
0.5911, indicating an improved ability to discriminate between classes. Additionally,
the PR-AUC improved from 0.0306 to 0.0386, indicating a better trade-off between
precision and recall.

5.2.4 RandomForestClassifier model

The best parameter configuration for the RandomForestClassifier model consists of
a maximum tree depth of 10, a minimum of 4 samples per leaf node, a minimum of
2 samples for splitting internal nodes, and an ensemble of 200 decision trees. These
hyperparameters were determined through hyperparameter tuning to optimize the
performance of the random forest model.

The model with the best hyperparameters for the RandomForestClassifier showed
improvements in performance compared to the model with default parameters. It
achieved an accuracy of 0.8523, indicating a higher percentage of correctly classified
instances. The F1 score improved from 0.1564 to 0.1580, suggesting a slight enhance-
ment in the balance between precision and recall. The ROC AUC increased from
0.7188 to 0.7404, indicating an improved ability to discriminate between classes. Ad-
ditionally, the PR-AUC improved from 0.1255 to 0.1272, suggesting a better trade-off
between precision and recall.

5.2.5 GradientBoostingClassifier model

In summary, the optimized GradientBoostingClassifier model uses a learning rate
of 0.1, a maximum tree depth of 7, 300 boosting iterations, and a subsampling rate
of 0.8. These hyperparameters have been selected through the tuning process to
achieve the best performance for the model.

The model with the best hyperparameters for the GradientBoostingClassifier ex-
hibited significant improvements in performance compared to the model with de-
fault parameters. It achieved an accuracy of 0.9521, indicating a high proportion of
correctly classified instances. The F1 score improved from 0.0443 to 0.2445, suggest-
ing a substantial enhancement in the balance between precision and recall. The ROC
AUC increased from 0.7138 to 0.7659, indicating a significantly improved ability to
discriminate between classes. Additionally, the PR-AUC improved from 0.1185 to
0.1821, indicating a better trade-off between precision and recall.
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FIGURE 5.1: LeNet accuracy

5.2.6 LeNet model

In summary, the LeNet model has been configured with a batch size of 64, a dropout
rate of 0.1, trained for 200 epochs, and a learning rate of 0.001. These hyperparame-
ters were chosen to optimize the performance and training of the LeNet network for
the specific task or dataset at hand. The accuracy of the LeNet model is depicted in
Figure 5.1.

In our specific scenario, we used a separate validation set to fine-tune the hyper-
parameters for LeNet, a convolutional neural network architecture. To ensure opti-
mal parameter selection, we utilized a cross-validation parameter, denoted as ‘cv‘,
set to a value of 5. This setting facilitated the division of the dataset into five separate
folds, enabling comprehensive cross-validation throughout the training process.

5.3 Summary

As a result, we have compiled the performance metrics for all models on the bal-
anced dataset, which are presented in the following table 5.3.

Model Accuracy F1 Score ROC AUC PR AUC

Baseline 0.2083 0.0605 0.5048 0.0314

DecisionTreeClassifier 0.9521 0.2013 0.5890 0.0692

LogisticRegression 0.6398 0.0839 0.5911 0.0386

RandomForestClassifier 0.8523 0.1580 0.7404 0.1272

GradientBoostingClassifier 0.9521 0.2445 0.7659 0.1821

LeNet 0.5935 0.0981 0.7530 0.2092

TABLE 5.3: Final Performance Metrics

Based on the final performance metrics, the DecisionTreeClassifier and Gradi-
entBoostingClassifier models achieved the highest accuracy of 0.9521. The Decision-
TreeClassifier model performed better in terms of the F1 score with a value of 0.2013,
while the GradientBoostingClassifier model outperformed the others in terms of F1
score with a value of 0.2445. DecisionTreeClassifier, RandomForestClassifier, and
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GradientBoostingClassifier, generally performed better than the baseline and sim-
pler model (LogisticRegression). They showed improvements across multiple met-
rics, including accuracy, F1 score, ROC AUC, and PR AUC. These models were able
to capture more intricate patterns in the data, leading to enhanced performance in
classification tasks.

In response to the research question posed in Chapter 4 regarding the machine
learning model that performs best in detecting water pollution based on chloro-
phyll concentration, our analysis reveals that the GradientBoostingClassifier models
achieved the highest accuracy of 0.9521. This result is based on the metrics presented
in Table 5.3. The evaluation of these metrics demonstrates the superior performance
of the GradientBoostingClassifier models in accurately detecting water pollution in
relation to chlorophyll concentration.

The following charts are presented for visual analysis of the metrics:
The F1 scores for different models are displayed in Table 5.2.

FIGURE 5.2: F1 score for different models

The ROC AUC scores for different models are displayed in Table 5.3.

FIGURE 5.3: ROC AUC score for different models

The PR AUC scores for different models are displayed in Figure 5.4.
The Accuracy scores for different models are displayed in Table 5.5.

5.3.1 Comparative Analysis of F1 Score, Pollution Incidents, and Average
Chlorophyll Level by Month

Next, we split the test dataset into separate datasets based on the months. Each
month’s dataset was evaluated individually to obtain the F1 score for that specific
month.
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FIGURE 5.4: PR AUC score for different models

FIGURE 5.5: Accuracy score for different models

Winter months were excluded from the table because a significant number of
rows had to be removed due to corruption issues from the Copernicus marine ser-
vice. Therefore, the F1 score metric for the winter months is not available in the
table. The F1 score metric for months is displayed in Table 5.4.

Month F1 Score

March 0

April 0.526

May 0.608

June 0.729

July 0.494

August 0.655

September 0.666

October 0.5

TABLE 5.4: F1 Score for Each Month

Visually, we can examine the F1 score metric for each month in Figure 5.6.
We have constructed a histogram that represents the number of pollution inci-

dents by month, which is displayed in Figure 5.7. Additionally, we compared this
histogram with the F1 score metric for each month.

Upon analysis, it is evident that the number of pollution incidents increased
in July, while the corresponding F1 score decreased. Conversely, in September, al-
though the number of pollution incidents remained high, the F1 score was also high.
These findings suggest that there may not be a clear pattern between the increase in
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FIGURE 5.6: The F1 score metric for each month

FIGURE 5.7: Pollution incidents by month

the number of pollution incidents and the F1 score.

We have constructed a histogram that represents the number of pollution inci-
dents by month, which is displayed in Figure 5.8. Additionally, we compared this
histogram with the F1 score metric for each month.

The purpose of this experiment was to establish a correlation between the F1
score and pollution incidents by month or average chlorophyll levels by month.
However, no significant relationship was observed between them. Specifically, when
the F1 score decreased in July, there was no noticeable impact on the occurrence of
pollution incidents by month or the average chlorophyll levels by month.

FIGURE 5.8: Average chlorophyll by month

By comparing the number of pollution incidents and the average chlorophyll
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concentration by month, it becomes evident that there is an inverse relationship be-
tween the two variables. Specifically, when the number of pollution incidents is
lower, the average chlorophyll concentration tends to be higher. This suggests that
a decrease in pollution incidents may contribute to an increase in chlorophyll lev-
els in the studied environment. For the months of April and May, there are fewer
pollution incidents recorded, but the chlorophyll level is relatively high. In contrast,
the months of July and September exhibit a higher number of pollution incidents,
accompanied by lower chlorophyll levels compared to other months. These obser-
vations highlight the potential inverse relationship between pollution incidents and
chlorophyll levels, where a decrease in pollution incidents is associated with higher
chlorophyll levels, while an increase in pollution incidents is linked to lower chloro-
phyll levels.

According to the visual analysis of the F1 score and average chlorophyll level
by month, no clear patterns or correlations can be observed. This suggests that a
more comprehensive and detailed study is required to investigate the relationship
between these two variables. Further analysis, such as statistical tests or advanced
modeling techniques, may be necessary to uncover any potential underlying pat-
terns or dependencies between the F1 score and average chlorophyll level.

5.3.2 Comparative Analysis of F1 Score, Pollution Incidents, and Average
Chlorophyll Level by Region

We split the test dataset into regions around England and aggregated the data for
each region.

Pseudocode for the divide test dataset into squares algorithm:

1. First, the algorithm identifies the minimum and maximum values of latitude
and longitude from the given pairs.

2. It then calculates the number of rows and columns required in the grid based
on the specified square size.

3. An empty grid is initialized to hold the squares.

4. The algorithm iterates over each pair and assigns it to the corresponding square
in the grid.

5. For each latitude and longitude pair, the algorithm calculates the row and col-
umn indices within the grid based on the minimum latitude and longitude
values and the specified square size.

6. If a pair falls within a specific square defined by its row and column indices, it
is added to that square’s set of pairs.

7. Each non-empty square, along with its set of pairs, is appended to a row.

8. If a row contains at least one non-empty square, it is added to the grid.

9. Finally, the algorithm returns the resulting grid, which represents the parti-
tioned data.

Following the F1 score calculation for each region, the results are presented in
Figure 5.9.

We have generated the number of pollution incidents by region 5.10 and the
average chlorophyll level by region 5.11.
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FIGURE 5.9: The F1 score metric for each region

FIGURE 5.10: The number of pollution incidents by region

By comparing the F1 score by region chart with the number of pollution inci-
dents, we observe that regions 10, 11, 12, and 13 exhibit high F1 scores along with
the highest levels of chlorophyll. On the other hand, region 5 shows a high F1 score
but a low number of pollution incidents. This finding suggests that further investi-
gation is warranted for future studies.

By comparing the F1 score by region chart with the average chlorophyll level, we
do not observe any discernible patterns. There is no observed correlation between
the average chlorophyll concentration categorized by region and the F1 score.

5.3.3 Confusion matrix and precision-recall curve

The best model is gradient boosting classifier. Among the evaluated models, the
gradient boosting classifier achieved the highest accuracy with a value of 0.9521,
indicating its superior performance in correctly classifying instances. In terms of F1
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FIGURE 5.11: The average chlorophyll by region

score, the model attained a score of 0.2445, reflecting a balanced precision and recall
trade-off. The ROC AUC (Receiver Operating Characteristic Area Under the Curve)
value for the gradient boosting classifier was 0.7659, indicating its effectiveness in
distinguishing between positive and negative instances. Additionally, the PR AUC
(Precision-Recall Area Under the Curve) of 0.1821 suggests the model’s ability to
maintain precision while correctly identifying positive instances.

Based on the evaluation results, the best model Gradient boosting classifier is
determined using the confusion matrix and precision-recall curves. These metrics
provide valuable insights into the performance and predictive capabilities of the
model.

The confusion matrix allows us to analyze the classification accuracy of the model
by presenting the counts of true positive, true negative, false positive, and false neg-
ative predictions for each class. It provides a comprehensive view of the model’s
performance across different classes and helps identify any misclassifications or im-
balances. The confusion matrix is presented in Figure 5.12.

FIGURE 5.12: Confusion Matrix

The model achieved a high number of true positives (TP), with 12,196 instances
correctly predicted as positive. This indicates that the model effectively identified
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and classified a significant portion of the positive class accurately. However, the
model had a relatively low number of true negatives (TN), with only 100 instances
correctly predicted as negative. This suggests that the model had some difficulty
correctly identifying and classifying instances belonging to the negative class. Ad-
ditionally, there were a moderate number of false positives (FP), with 323 instances
incorrectly predicted as positive. These instances were classified as positive by the
model, but in reality, they belonged to the negative class. Similarly, the model had
a moderate number of false negatives (FN), with 295 instances incorrectly predicted
as negative. These instances were classified as negative by the model, but in reality,
they belonged to the positive class. In summary, the model exhibited a strong per-
formance in correctly classifying positive instances (TP) but struggled to accurately
identify negative instances (TN). The presence of false positives (FP) and false neg-
atives (FN) suggests areas where the model’s predictions may have been less accu-
rate. Further analysis and improvements may be necessary to enhance the model’s
performance, particularly in correctly classifying negative instances.

On the other hand, precision-recall curves offer a graphical representation of the
model’s precision and recall values at different classification thresholds. Precision
measures the proportion of correctly classified positive instances out of all instances
predicted as positive, while recall calculates the proportion of correctly classified
positive instances out of all actual positive instances. The curve illustrates the trade-
off between precision and recall, allowing us to choose an appropriate threshold for
our specific needs.

Based on the given confusion matrix:

1. True positive (TP): 12196

2. False positive (FP): 323

3. False negative (FN): 295

4. True negative (TN): 100

The confusion matrix represents the performance of a binary classification model.
In this case, the model correctly predicted 12,196 instances of class 1 (positive) as pos-
itive (TP) and incorrectly classified 323 instances of class 0 (negative) as positive (FP).
Moreover, the model wrongly classified 295 instances of class 1 as negative (FN) and
correctly predicted 100 instances of class 0 as negative (TN). The model makes much
more true positive predictions than true negative ones, but only because there are
much more positive cases in the data.

Recall (also known as sensitivity or true positive rate) is the proportion of actual
positive instances correctly identified by the model. Recall = TP / (TP + FN) = 12196
/ (12196 + 295) = 0.9766 = 97.66

Precision is the proportion of positive predictions that are actually correct. Preci-
sion = TP / (TP + FP) = 12196 / (12196 + 323) = 0.9747 = 97.47

Therefore, the recall is 97.66% and the precision is 97.47%.
The recall of 97.66% indicates that the model correctly identified a high percent-

age of actual positive instances (12196 out of 12491). This suggests that the model is
effective in capturing the true positives and has a low false negative rate (295 out of
12491). In other words, it successfully detected the majority of positive instances in
the dataset.

The precision of 97.47% signifies that among the instances predicted as positive
by the model, the majority (12196 out of 12519) were indeed true positives. This indi-
cates that the model has a low false positive rate (323 out of 12519). It demonstrates
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that when the model predicts an instance as positive, there is a high likelihood that
it is indeed a positive instance.

Overall, the high recall and precision values indicate that the model performs
well in accurately classifying positive instances, achieving a good balance between
capturing positive instances and minimizing false positive and false negative pre-
dictions.

The precision-recall curve is depicted in Figure 5.13.

FIGURE 5.13: Precision Recall Curve

By analyzing the confusion matrix and precision-recall curves, we can determine
the best model based on its ability to accurately classify instances, handle class im-
balances, and strike an optimal balance between precision and recall. These evalua-
tion metrics provide valuable insights into the model’s performance and can guide
decision-making in selecting the most suitable model for the task at hand.

Before, we would need to perform 12914 manual measurements to detect the
cases of water pollution in your test set. Those measurements are expensive (in
terms of money and human-hours), and each one would have a probability of

P =
12914

395
≈ 33%

of detecting the actual case of pollution.
With your model acting as a tool for early detection, we can detect 97.66% of all

pollution cases (recall) by only checking the 423 cases that were reported by your
model as positive. In this scenario, each measurement will have a P = 97.47% chance
of detecting actual pollution (precision).
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Chapter 6

Conclusions

Based on the research conducted, which involved data on chlorophyll concentration
from the Copernicus Marine Service and pollution reports from DEFRA, the goal
was to classify the presence of pollution based on chlorophyll concentration.

The study included experiments using different matrix sizes (3x3, 5x5, 7x7, 9x9,
and 11x11) of chlorophyll concentration as features. Feature engineering was per-
formed, resulting in the creation of two datasets: one with statistical metrics (mean,
median, standard deviation, and percentiles) as features, and another with each cell
of the chlorophyll concentration matrix as a feature.

Evaluation metrics such as F1 score, ROC AUC, and PR AUC were used to assess
the performance of the models. The results indicated that the dataset with each
cell of the chlorophyll concentration matrix as a feature, combined with a gradient
boosting classifier, yielded the best metrics.

• Accuracy: The model achieved an accuracy of 0.9521, indicating a high overall
correct classification rate.

• F1 Score: The F1 score, which combines precision and recall, was determined to
be 0.2445. This metric considers both the model’s ability to correctly identify
positive instances (precision) and its ability to capture all positive instances
(recall).

• ROC AUC: The receiver operating characteristic area under the curve (ROC
AUC) was calculated as 0.7659. This metric assesses the model’s ability to dis-
tinguish between positive and negative instances across different classification
thresholds.

• PR-AUC: The precision-recall area under the curve (PR-AUC) was found to
be 0.1821. This metric evaluates the trade-off between precision and recall and
provides insights into the model’s performance when dealing with imbalanced
datasets.

Specific hyperparameters were tuned for the gradient boosting classifier, includ-
ing a learning rate of 0.1, a maximum tree depth of 7, 300 boosting iterations, and a
subsampling rate of 0.8.

In conclusion, the research demonstrated that using each cell of the chlorophyll
concentration matrix as a feature, along with a gradient boosting classifier, produced
the best performance in classifying pollution based on chlorophyll concentration.
These findings provide valuable insights for future studies in the field of pollution
classification using remote sensing data.
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6.1 Future research directions

1. Comparative Analysis with Other Satellite Services: In order to enhance the
understanding of chlorophyll concentration and its relationship with pollu-
tion incidents, it is recommended to acquire chlorophyll concentration datasets
from other satellite services such as Aqua MODIS, Landsat, GeoEye-1, and
WorldView-2/3/4. By comparing the results obtained from these datasets with
the current research findings, a more comprehensive understanding of the spa-
tial distribution and variability of chlorophyll concentration can be achieved.

2. Comprehensive Study of Optical Properties in Sea Water: Conduct an exten-
sive investigation into the optical properties of sea water, including sea water
turbidity, mass concentration of suspended matter, volume backward scatter-
ing coefficient of radiative flux, volume attenuation coefficient of downwelling
radiative flux, Secchi depth, and volume absorption coefficient of radiative
flux. Explore the interrelationships between these properties, their spatial and
temporal variations, and their impact on light transmission and water quality
in marine ecosystems. This research will provide a deeper understanding of
the optical characteristics of sea water and their ecological significance, con-
tributing to improved monitoring and management strategies for coastal and
marine environments.

3. Time Series and Advanced Time Series Models: To improve the accuracy of
pollution incident predictions, it is suggested to explore a range of time series
models. Traditional models like Autoregressive Integrated Moving Average
(ARIMA), Seasonal ARIMA (SARIMA), and Exponential Smoothing (ES) can
be employed. Additionally, advanced models such as Vector Autoregression
(VAR), Long Short-Term Memory (LSTM), Gaussian Process Regression (GPR),
Seasonal-Trend Decomposition using LOESS (STL), Bayesian Structural Time
Series (BSTS), Recurrent Neural Networks (RNNs), and other architectures of
Convolutional Neural Networks (CNNs) can be investigated. These models
offer the potential to capture complex patterns and relationships within the
time series data.

4. Contamination Direction Prediction: Once I have identified the cases of con-
tamination, figure out the direction in which the contamination will move.

5. Exploring Additional Dataset Balancing Approaches: In addition to the cur-
rently applied dataset balancing approaches, further investigation can be con-
ducted on other methods such as Random Undersampling, Synthetic Minority
Over-sampling Technique (SMOTE), Adaptive Synthetic Sampling (ADASYN),
and Data Augmentation. These techniques can help mitigate the effects of im-
balanced datasets and potentially improve the performance of the classifica-
tion models.

6. Hypothesis Testing on Mission Date and Tides: It is worth exploring the
hypothesis that the mission date of the satellite and the occurrence of tides
may be related. By analyzing the data and investigating potential correlations
or patterns between mission dates and tidal variations, new insights into the
dynamics of chlorophyll concentration and pollution incidents can be gained.
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7. Relationship between Pollution Incidents and Chlorophyll Concentration:

Further investigation can be conducted to identify any potential patterns or re-
lationships between the number of pollution incidents and the average chloro-
phyll concentration. This analysis can provide valuable insights into the eco-
logical dynamics of the marine environment and help understand the impact
of chlorophyll concentration on pollution incidents.

By undertaking these future advancements, the research can contribute to the
advancement of knowledge in the field of marine chlorophyll concentration analysis,
pollution incident prediction, and environmental monitoring.
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Appendix A

Links to materials

A.1 Code

The public repository with code is available by the link:
https://github.com/yest89/PollutionProject

A.2 Dataset

Dataset is available by the link:
https://drive.google.com/drive/folders/1YXlfv5yWUEHngXq0b52FgBp3LsD9Rzf1
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