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Abstract

Seawater transparency is an indispensable ecological parameter with substantial im-
pacts on the health and productivity of aquatic ecosystems. Its significance spans
across various industries, including environment protection, fishing and tourism.
The fluctuating nature of aquatic systems and their intricate interplay with human
activities often induce substantial variability in seawater transparency. This un-
derlines the pressing necessity for effective predictive tools in the stewardship and
preservation of our invaluable water resources.

Despite the clear importance of water transparency, ocean forecasting remains
a considerably understudied field, some work has been done on using satellite for
monitoring, but literature is scarce for forecasting with only few simple models ex-
plored. There is an evident gap in research and tools focused on predicting changes
in this crucial ecosystem, underlining the novelty and urgency of our work.

In this research, we aim is to develop a forecasting model that not only excels
in precision and speed, but is also flexible enough to encompass a vast array of
potential future scenarios. We primarily employed SimVP, a spatio-temporal con-
volutional neural network, for ocean forecasting purposes. This model was trained
using the earth observation data from the Copernicus Marine Service. This data
were collected for 20 years of daily observation of water transparency in the marine
environment surrounding the UK, with a spatial resolution of 4km x 4km.

Our findings showed that SimVP substantially outperformed the baseline mod-
els (AutoRegressive Integrated Moving Average (ARIMA) and Simple Exponential
Smoothing (SES)) in predicting the next day seawater transparency, demonstrating
an improvement of 17.4%, and a notable reduction in the Root Mean Square Error
(RMSE) from 2.63 to 2.24, and improvement in inference time efficiency in 66.3 times
(334.6 -> 5.04 seconds). We show that this method better performs better on regions
with minor variation like Irish Sea or English Channel, and performs worse on re-
gions with high variations like Atlantic Ocean or North Sea.

Our study demonstrates the advantage of adopting the spatio-temporal neural
network architectures for ocean monitoring and paves the way for future research
in adopting advanced machine learning techniques in this field.

HTTP://WWW.UCU.EDU.UA
http://department.university.com
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Chapter 1

Introduction

1.1 Motivation

The omnipresence and vitality of oceans to life on earth cannot be overstated. Oceans
serve as the planet’s largest habitat, are central to the climate system, and provide
resources such as food and energy that society depends upon (NOAA, 2023). In that
regard, ocean surface visibility, often measured through the proxy of Secchi depth,
plays a significant role in oceanographic studies as it gives insights into several bio-
geochemical properties of the water column, as well as the health and productivity
of marine ecosystems. Consequently, the ability to predict ocean surface visibility is
crucial for numerous reasons that span both ecological and societal realms.

From an ecological perspective, the visibility of the ocean surface directly affects
the photosynthesis process, thus regulating primary productivity. Primary produc-
tivity serves as the baseline for the marine food web, impacting the availability of
resources for higher trophic levels. Platt et al., 2017 Predicting visibility allows for
forecasting of marine productivity changes, providing valuable insights for fishery
management, conservation strategies, and the evaluation of potential impacts of en-
vironmental changes.

Furthermore, water transparency, has significant implications for the propaga-
tion of light and heat in the water column. Increased turbidity, leading to lower
visibility, can alter the thermal stratification of water bodies, thus potentially influ-
encing patterns of oceanic circulation. Such changes can in turn impact the distri-
bution and behavior of marine species Li, 2020. Consequently, a reliable prediction
model for water transparency can offer insights into these potential changes, aiding
in biodiversity preservation and the understanding of ecosystem shifts.

From a societal perspective, better prediction of water transparency is a step for-
ward in improving water quality monitoring, recreational planning, and navigation
safety. For example, coastal regions with high recreational value often depend on
water clarity for activities such as swimming, boating, and scuba diving. Mean-
while, in sectors like shipping and offshore wind farms, improved visibility predic-
tion can significantly enhance operational safety and efficiency. Therefore, advances
in forecasting water transparency can directly benefit economic sectors and societal
activities that rely on the oceans.

The need for precise prediction models is heightened in the face of climate change.
With oceans experiencing shifts in temperature, acidity, and nutrient loads due to
anthropogenic activity, the clarity of ocean waters is anticipated to change, poten-
tially disrupting the balance of marine ecosystems (Krajick, 2022). Therefore, a ro-
bust model that can predict changes in ocean surface visibility can provide an early
warning system, aiding adaptive management efforts to mitigate potential impacts.

The body of research in this area, however, is sparse and mostly limited to linear
models or simple neural networks (Yipeng Liao, 2021, Heddam, 2016). Although
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these models have provided preliminary insights, they lack the ability to capture
complex spatio-temporal patterns and non-linear interactions between influencing
factors. By using modern Convolutional Neural Networks (CNN) and Recurrent
Neural Networks (RNN), it is possible to move towards a more accurate and com-
prehensive model of water transparency forecasting. This advancement will enable
researchers, policymakers, and industry professionals to make more informed de-
cisions, fostering the sustainable use and conservation of our invaluable marine
ecosystems.

1.2 Goals of the master thesis

Our main goal and focus of this thesis is to train a spatio temporal model, possessing
the capacity to effectively predict the water transparency for the subsequent day,
utilizing an extensive historical dataset. The specific objectives to accomplish this
endeavor have been delineated as follows:

• Train suitable Spatio-Temporal Neural Network: The prime focus is to re-
search and train a sophisticated machine learning algorithm, specifically a neu-
ral network, capable of exploiting both spatial and temporal features for water
transpareceny prediction purposes.

• Constructing a Suitable Dataset: It is crucial to curate an appropriate dataset,
amenable to training the neural network. This dataset must encapsulate a mul-
titude of relevant features and observations that are conducive to the predic-
tive capabilities of the model.

• Conducting a Thorough Model Evaluation: An in-depth evaluation of the
model must be performed to discern its strengths and limitations. The goal is
to create a forecasting model that’s not only accurate and fast, but also versatile
enough to handle a wide range of possible future scenarios.

1.3 Structure of the Thesis

This thesis is organized into six chapters, each dedicated to a distinct aspect of our
research.

Chapter 2 provides an extensive review of the literature in the field of our re-
search. This includes works related to satellite sensing, the process of forecasting,
and the measurement of Secchi depth. It offers a comprehensive analysis of prior
studies and methodologies, positioning our work within this larger academic dis-
course.

In Chapter 3, we delve into the specifics of the data employed in our study. This
chapter includes detailed descriptions of the different features and geographic char-
acteristics of the data. It provides a solid foundation for the understanding of our
problem space and the subsequent technical formulations.

Chapter 4 is where we present the core technical problem that we aim to solve in
our research. We provide a rigorous mathematical formulation of the problem and
propose the method we intend to use to tackle this challenge.

Following the problem formulation, Chapter 5 showcases the results of our ex-
periments and provides an in-depth evaluation of the models we have trained. This
includes a thorough analysis of their performance, potential limitations, and the in-
sights they offer into our research question.
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Finally, in Chapter 6, we offer a comprehensive summary of the work carried out
in this thesis. We reflect on the findings of our study, their implications, and potential
avenues for further research. This chapter not only concludes our present work
but also outlines prospective directions for future improvements and investigations
based on our research.



4

Chapter 2

Related works

2.1 Satellite sensing

Satellite remote sensing is the technique of obtaining information about the Earth’s
atmosphere, surface, and oceans from sensors onboard satellites. These sensors cap-
ture data in the form of images and provides measurements for analysis. Satellite
remote sensing can be passive or active. Passive sensors detect natural radiation
that is emitted or reflected by the object or surrounding areas. Active sensors, on the
other hand, emit energy in order to scan objects and areas whereupon a sensor then
detects and measures the radiation that is reflected or backscattered from the target.
(Loredana Tecar, 2014)

Satellite remote sensing is impacting various aspects of human life, which in-
cludes:

Monitoring and Understanding the Environment: Satellite remote sensing is
critical for studying various aspects of the Earth’s environment (Parra, 2019), includ-
ing weather and climate, the health of ecosystems, the status of agricultural crops,
and the quality of bodies of water (Godson Ebenezer Adjovu, 2023). By observing
these elements from space, scientists can track changes over time and assess the im-
pact of natural events and human activities.

Disaster Management: Satellite remote sensing provides a critical tool for pre-
dicting, monitoring, and responding to natural disasters. For example, remote sens-
ing data can be used to track the formation and path of hurricanes, allowing for early
warnings and evacuation orders. After a disaster, such as a flood, wildfire or military
conflicts, remote sensing data can be used to assess the damage and coordinate re-
covery efforts (Serhii Shevchuk, 2022). Additionally, monitoring earthquake-prone
regions can provide data about ground deformation patterns, contributing to earth-
quake preparedness. (Wen Liu, 2019)

Resource Management: Remote sensing is used in the management of various
natural resources. For instance, in forestry, remote sensing can be used to assess for-
est health (Angela Lausch, 2016), track deforestation, and plan sustainable logging.
In mineral exploration, certain spectral characteristics can indicate the presence of
valuable minerals (Sabins, 1999). In water management, remote sensing can track
changes in river courses, monitor reservoir levels, and assess the health of water-
sheds.

Infrastructure and Urban Planning: Remote sensing can provide detailed, up-
to-date images of cities and infrastructure. (Thilo Wellmann, 2020) These images can
be used in urban planning to analyze land use patterns, assess the impact of new
development, and monitor changes over time. Remote sensing can also be used to
monitor large infrastructure projects, such as the construction of highways, dams, or
airports, providing valuable information for project management.
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Climate Change Studies: Satellite remote sensing plays a crucial role in study-
ing climate change. (Jun Yang, 2013) For example, satellites can track changes in sea
ice extent and thickness, providing critical data about the impacts of global warm-
ing. Satellites can also monitor global vegetation patterns, helping scientists under-
stand the impacts of climate change on ecosystems. Data on ocean temperatures,
atmospheric CO2 levels, and sea-level rise are also gathered through remote sens-
ing, contributing to our understanding of climate change dynamics.

Defense and Intelligence: Satellite imagery is commonly used in defense and
intelligence for a variety of purposes. (Ricky J. Lee, 2014) These can include iden-
tifying and tracking military activities, such as troop movements or construction at
military sites. Remote sensing can also be used for border surveillance, contribut-
ing to border security efforts. Additionally, satellite imagery can support tactical
mission planning by providing detailed terrain information.

Navigation and Communication: Global navigation systems like GPS rely on
satellites to provide accurate location information. Similarly, communication satel-
lites are essential for transmitting signals for television, telephone, and internet ser-
vices, especially in remote areas. In both cases, the ability to monitor the status of
these satellites and understand the space environment is critical. (Pelton, 2017)

I our case, water transparency forecasting would fall under the category of Mon-
itoring and Understanding the Environment and Resource Management.

In the context of environmental monitoring, water transparency is a crucial indi-
cator of water quality (Timo Toivanen, 2013) and can be influenced by factors such as
algal blooms, suspended solids, and dissolved organic matter. Remote sensing can
be used to monitor these factors over time and across large areas. This information
can be crucial for understanding the health of aquatic ecosystems and the processes
affecting them.

From a resource management perspective, water transparency can affect a range
of human activities. For example, it can influence recreational uses of water bod-
ies, such as swimming and boating. In aquaculture, water transparency can affect
the health and growth of cultured species. Therefore, forecasting changes in water
transparency can inform the management of these activities and help to mitigate
potential impacts.

In both of these contexts, satellite remote sensing provides a valuable tool for
assessing and predicting water transparency at large scales and over extended peri-
ods. It allows for continuous, objective, and consistent observations that can greatly
enhance our understanding and management of water resources.

2.2 Forecasting

Forecasting is a critical discipline within a multitude of scientific fields, with appli-
cations ranging from weather prediction and environmental science to economics,
epidemiology, and beyond. It is the science of making predictions about future out-
comes based on historical data and statistical analysis. This discipline capitalizes on
a myriad of methodologies, some of which include time series analysis, regression
models, machine learning algorithms, and more recently, deep learning techniques.

The crux of forecasting lies in identifying patterns within historical data, quan-
tifying uncertainties, and extrapolating these patterns into the future. The scientific
value and societal impact of accurate forecasting are immense. It aids in decision-
making, policy formulation, risk management, and strategic planning across various
sectors, notably in finance, healthcare, in our case climate science.
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One of the most notable advancements within this field in the recent decade
has been the increased adoption of machine learning and artificial intelligence tech-
niques. Traditional statistical methods, such as autoregressive integrated moving
average (ARIMA) and exponential smoothing, while still valuable and widely used,
sometimes fall short when dealing with large, complex datasets. Machine learn-
ing models, such as random forests, support vector machines, and neural networks,
have demonstrated their potential to handle high-dimensional data, recognize com-
plex patterns, and enhance predictive accuracy.

Especially notable is the emergence of deep learning algorithms in forecasting.
These neural network-based models, such as long short-term memory (LSTM) units
(Sepp Hochreiter, 1997) and convolutional neural networks (CNNs) (Yann LeCun,
2015), have shown exceptional promise in processing time-series data. (Aji Prasetya
Wibawa, 2022). Their ability to capture temporal and spatial dependencies and han-
dle non-linear relationships between variables can lead to superior forecast results,
often outperforming traditional methods.

However, as with any discipline, forecasting is not without challenges. It faces
the perennial issue of balancing model complexity and interpretability. While com-
plex machine learning and deep learning models often yield more accurate predic-
tions, they tend to be "black boxes," making their inner workings difficult to inter-
pret. This lack of transparency can be a significant concern in fields where under-
standing the underlying causal mechanisms is as crucial as prediction accuracy it-
self.

Another challenge is the inherent uncertainty and volatility of some systems un-
der study. Forecasting models assume that the future will behave similarly to the
past, an assumption that might not always hold. Changes in trends, abrupt shocks,
and unpredictable events pose significant challenges to accurate forecasting.

Data quality and availability are further challenges. Models are only as good
as the data they are trained on. Biased, incomplete, or noisy data can lead to poor
forecasts. Despite these challenges, the field of forecasting continues to innovate,
with emerging techniques aiming to address these issues and improve accuracy and
reliability.

In summary, forecasting is a dynamic and evolving field with substantial real-
world significance. Its progression has been marked by the integration of sophis-
ticated computational and statistical methods that have continually improved our
ability to anticipate future outcomes. Despite the challenges posed by data qual-
ity, model transparency, and inherent system volatility, forecasting remains a crucial
discipline, pushing the boundaries of scientific inquiry and technological innova-
tion. The continuous advancement in this field promises an exciting future where
our predictive capabilities can further contribute to societal and scientific progress.

In the context of our study, conventional forecasting algorithms would require
a significant computational investment when training on each spatial point. Fortu-
itously, the domain of forecasting has experienced the emergence of a unique sub-
field, commonly known as spatial forecasting. This approach is particularly pertinent
to the challenges presented in our research.

2.3 Spatial forecasting

Spatiotemporal forecasting is a complex and increasingly significant subset of the
broader field of forecasting, which aims to predict future outcomes considering both
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spatial and temporal dimensions. This field is especially relevant in areas such as cli-
matology, epidemiology, traffic management, and energy consumption, where data
exhibit dependencies across both time and space. The spatiotemporal aspect brings
an additional layer of complexity to forecasting models as they must account not
only for how variables change over time but also how they change across different
geographical locations.

Techniques for handling spatiotemporal data have developed rapidly in recent
years, leveraging advanced machine learning and statistical methodologies. For ex-
ample, convolutional long short-term memory neural networks (ConvLSTMs) have
been employed to capture the spatial dynamics of a region effectively. (Xingjian
Shi, 2015). ConvLSTMs are a type of neural network that merges the spatial feature
extraction capabilities of convolutional neural networks (CNNs) with the temporal
dynamic learning capabilities of long short-term memory neural networks (LSTMs),
making them ideal for handling spatiotemporal data. (Espeholt, 2022)

Another promising technique is the use of Graph Neural Networks (GNNs) which
represent the spatial data as a graph and operate directly on it. (Bing Yu, 2017) This
approach can capture complex spatial dependencies and, when combined with tem-
poral models such as recurrent neural networks or transformer-based models, can
effectively handle spatiotemporal data.

However, similar to traditional forecasting, spatiotemporal forecasting also faces
significant challenges, such as computational demand, data scarcity or quality in
certain regions, and the need to correctly model complex spatial and temporal de-
pendencies. Despite these challenges, the growing importance of spatiotemporal
forecasting in our increasingly interconnected world, along with advancements in
computational capacities and methodologies, paints a promising picture for the fu-
ture of this field.

I this study we will use SimVP (Cheng Tan, 2022) convolution based method, as
our spatiotemporal model for forecasting water transparency. This method allows
relatively easy training with Mean Square Error loss and fast inference time.

2.4 Secchi depth

The method of determining water clarity by using a simple tool known as the Secchi
disk was devised 150 years ago by Angelo Secchi, an Italian priest, and has been
used by oceanographers ever since. The Secchi depth, which represents the point at
which the Secchi disk is no longer visible to the human eye, provides a reliable and
robust technique for assessing water quality. (Wernand, 2010) Despite the advent
of more advanced technologies, the Secchi disk remains a valuable tool due to its
simplicity, cost-effectiveness, and the vast amount of data it has accumulated over
the years, enabling researchers to evaluate changes in aquatic environments over a
long period.

Historically, a significant discrepancy existed between the measurements of Sec-
chi depths and its theoretical relationship, a challenge that has been addressed by
ZhongPing Lee, 2015. They identified inaccuracies in the traditional assumptions
about the detection of Secchi disks by human eyes and the mechanisms our eyes use
to distinguish an object from its surroundings. The team developed a new theoretical
model based on radiative transfer, thereby resolving the long-standing inconsistency
between field measurements and theoretical predictions. Their model was validated
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FIGURE 2.1: Modern Secchi disk for in situ measurements

using published data of Secchi depth and diffuse attenuation coefficient over a nine-
decade timespan, covering a range of water bodies including oceans, coastal waters,
and inland lakes.

Recently, researchers continue to advance our understanding of the Secchi depth
and its application in monitoring water quality. A 2023 study by Robert J. W. Brewin,
2023 conducted on four Atlantic Meridional Transect cruises demonstrated how tra-
ditional Secchi depth measurements, alongside modern radiometric measurements
of ocean clarity and color, can be used to monitor chlorophyll-a concentration and
evaluate remote-sensing algorithms. This study provided several key findings that
enhance our understanding of Secchi depth and its relationship with other optical
and environmental variables:

1. Correlation with Optical Variables: The study found that the Secchi depth is
closely correlated with several optical variables, including the Forel-Ule colour
(a scale used to measure the color of bodies of water) and beam and diffuse at-
tenuation (measures of how light is absorbed or scattered in the water). Specif-
ically, the Secchi depth was inversely related to Forel-Ule colour and to beam
and diffuse attenuation, and positively related to the ratio of blue to green
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remote-sensing reflectance and euphotic depth (the depth to which sufficient
light exists for photosynthesis to occur). These relationships validate the use
of Secchi depth as a robust measure of water clarity.

2. Correlation with Chlorophyll-a Concentration: The study also found a tight
correlation between Secchi depth and chlorophyll-a concentration, a measure
often used to estimate the amount of phytoplankton (microscopic plants) in
the water. This correlation ranged from 71-81

3. Performance of Remote-Sensing Algorithms: The research evaluated existing
algorithms that predict chlorophyll-a from these variables, and found them
to perform well, albeit with some systematic differences. Moreover, remote
sensing algorithms of Secchi depth were in good agreement with in-situ data
over the range of values collected, but with a slight positive bias.

4. Impact of Environmental Conditions: Importantly, the study also found that
wind speed can impact the estimation of Secchi depth. The researchers sug-
gested a path forward to include the effect of wind in the current Secchi depth
theory, which could improve the accuracy of this measurement under different
environmental conditions.

Their study provided a comprehensive analysis of the relationships between Sec-
chi depth, various optical variables, chlorophyll-a concentration, and environmental
conditions. These findings not only validate the use of Secchi depth as a robust mea-
sure of water clarity but also suggest ways to refine its application under varying
environmental conditions (Robert J. W. Brewin, 2023.)

However, the use of Secchi depth as a measure of water clarity has not been
without challenges. For many decades, researchers struggled to reconcile the dis-
crepancy between measurements of Secchi depth and its theoretical relationship to
an optical property named the ’diffuse attenuation coefficient’. Recent research by
ZhongPing Lee, 2015 and his colleagues has addressed these challenges by develop-
ing a new theory based on radiative transfer, which provides a more accurate model
for predicting Secchi depth in different waters.

Furthermore, modern research has found correlations between Secchi depth and
other environmental variables such as chlorophyll-a concentration and wind speed.
These findings underscore the value of Secchi depth as a robust measure of water
clarity and suggest ways to refine its application under varying environmental con-
ditions.
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Chapter 3

Data

3.1 Data sources

In this study we use Copernicus Marine Service which is headed by European Com-
mission, acting on behalf of the European Union. Copernicus is the world’s largest
and most ambitious Earth Observation system. It provides accurate, timely and eas-
ily accessible information to improve management of the environment, and to enable
us to understand and mitigate the effects of climate change while ensuring civil se-
curity (Joaquim Alves Gaspar, 2019). In collaboration with European Space Agency
they developed new family of satellites called Sentinels, currently they launched 3
types of satellites: Sentinel-1 which provides all-weather, day and night radar im-
agery for land and ocean services. Sentinel-2 provides high-resolution optical im-
agery for land services. It provides for example, imagery of vegetation, soil and
water cover, inland waterways and coastal areas. And Sentinel-3 which provides
high-accuracy optical, radar and altimetry data for marine and land services. It mea-
sures variables such as sea-surface topography, sea- and land-surface temperature,
ocean colour and land colour with high-end accuracy and reliability. (Copernicus,
2023) Each of 3 Sentinel family satellites are present in 2 examples so-called twins
to cover more globe surface. What is remarkable about this service is that data is
available 365 days a year and is free to use for everyone. In upcoming years they
planning to launch new Sentinel family satellites Figure 3.1, but we will not discuss
this in this work. For now Sentinel-3 satellite is the main source of data for our study,
since its provides wide range of marine characteristics.

Copernicus has several process levels of satellite data that can be delivered to end
user, from Level 0 to Level 4, where Level corresponds to how much of post process-
ing is applied on raw satellite data. Raw measurements are called Level 0 data which
is the lowest level data in Copernicus products. Level 1 products additionally takes
into account ancillary information including radiometric and geometric calibration
coefficients and georeferencing parameters computed and added to the data. Level
2 is when products include geophysical variables such as secchi depth that we use
as our target for forecasting. They achieve this with processing to remove the atmo-
spheric component of signal and applying several algorithms to raw measurements.
This products has highest spatial and temporal resolution. Level 3 and 4 products
has little amount of missing areas, which is achieved by merging and interpolation
of L2 products and typically has longer available time periods.

3.2 Datasets

In this study we incorporated few Copernicus Marine Service products to futher
train forecasting model on them.
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FIGURE 3.1: Sentinel family satellites

In case of forecasting we need the data to match several characteristics.
Firstly, data should be available as soon as possible, to make robust forecasts. The
ideal case is when data is available for access immediately after satellite measure-
ments, but this is not realistic for now, but we can access products that could be
delivered in less than a day after satellite measurements, which is not ideal, but
good enough to forecast.
And thirdly, it has to have good temporal resolution which is crucial for forecasting
and enough time period length so we would be capable to train generalizable neural
network without overfitting.
Secondly, it should be as much clean as it could. The raw measurements from satel-
lite are complex and has a lot of missing values due to various climate reasons, such
as cloud density, sun angle etc. For example on Figure 3.2 you can see winter period
when sun angle limits the visibility of satellite in the north part of the considered re-
gion. To fill in those gaps would require a lot of affords and aggregation of different
measurements from different sources.
For this reasons we used available Near real Time L4 products. Which have records
from 1997 and are updated daily. L4 data has almost no missing values both spa-
tially and temporally. We picked several biogeochemical variables which we used
to forecast secchi depth. First of all we used ZSD as it is our target feature and has
direct signal. For additional features we selected mass concentration of chlorophyll
a in sea water (CHL).

All of data we would be talking about in next subsection could be downloaded
via this link1

1https://data.marine.copernicus.eu/product/OCEANCOLOUR_GLO_BGC_L4_MY_009_104

https://data.marine.copernicus.eu/product/OCEANCOLOUR_GLO_BGC_L4_MY_009_104
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FIGURE 3.2: Gaps in data due to various climate reasons

3.2.1 ZSD. Secchi depth of sea water

In this study, we propose using water transparency as a key feature for predicting
future water transparency states using neural networks. Important to note that we
use ZSD both as a feature and target, to forecast its future states based on previ-
ous/historical states.

The use of water transparency as a predictive feature is rooted in the inherent
temporal dependencies observed in water bodies. Changes in water transparency
often exhibit temporal autocorrelation, meaning that the state of water transparency
at a given time is likely to be influenced by its previous states. For instance, an influx
of sediment or pollution could lead to a period of decreased water transparency,
while the growth of light-absorbing phytoplankton may show seasonal patterns tied
to temperature and sunlight availability.

Including water transparency as an input feature allows our neural network
model to capture these temporal dependencies, making it better equipped to pre-
dict future states of water transparency. By using historical water transparency data,
the model can learn the underlying patterns and trends, accounting for both the
short-term fluctuations and long-term changes in water transparency.

Moreover, water transparency can serve as a proxy for various environmental
factors not directly included in our feature set. For instance, it can indirectly reflect
factors such as nutrient concentration, sediment load, and even climatic variables,
given that these factors can all affect the transparency of a water body. Hence, the
use of water transparency as a feature can help in integrating the effects of these
various factors into our predictive model, even if they are not explicitly included as
separate features.

In summary, the inclusion of water transparency as a predictive feature in our
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neural network model offers the potential for more accurate forecasting of future wa-
ter transparency states. By leveraging the temporal autocorrelation in water trans-
parency data and its indirect reflection of various environmental factors.

3.2.2 CHL. Mass concentration of chlorophyll a in sea water

Mass concentration of chlorophyll a in sea water(CHL) can directly influence sea
water transparency. Chlorophyll a is a primary pigment found in cyanobacteria,
algae, and plants, is essential for photosynthesis, the process by which sunlight is
converted into chemical energy. This pigment plays a pivotal role in marine ecosys-
tems, driving primary production and forming the basis of the marine food web
(NOAA, 2020).

Moreover, the concentration of chlorophyll a in seawater significantly influences
water transparency. Phytoplankton, microscopic marine plants that utilize chloro-
phyll a for photosynthesis, are directly responsible for this phenomenon. When
chlorophyll a concentrations are high, indicating a dense population of phytoplank-
ton, water transparency decreases (Jun Song Kim, 2019). Phytoplankton scatter and
absorb light, thus reducing the depth to which sunlight can penetrate, known as the
euphotic zone. This scattering and absorption of light also impart a greenish hue
to the water, due to chlorophyll a’s characteristic absorption and reflection patterns
across the light spectrum.

Therefore, chlorophyll a could be very helpful signal for water transparency fore-
casting.

3.2.3 KD. Volume attenuation coefficient of downwelling radiative flux
in sea water

In a natural setting, the volume attenuation coefficient represents the cumulative
effect of three principal components: absorption, scattering, and reflection. Ab-
sorption, primarily caused by water molecules, colored dissolved organic matter
(CDOM), and particles, converts light energy into other forms of energy. Scattering
and reflection, on the other hand, alter the direction of light propagation without
necessarily changing its intensity.

KD is inversely proportional to water transparency meaning a higher KD value
suggests lower water transparency and vice versa. When KD increases, the available
light at a given depth decreases more rapidly, limiting the depth of the euphotic
zone where photosynthesis can occur. Thus KD can give us a direct signal for our
forecasting model.

3.2.4 Study area and training dataset structure

Marine area around Great Britain coastline were chosen, which include parts of
North Sea, Celtic Sea, Irish Sea, English Channel and part of Atlantic Ocean. Pre-
cise location is shown in Figure 3.3. Other large water bodies in the region - such as
lakes and rivers - are excluded for the purposes of this project. 26.11% of the study
area is ether surface or surface water, which are excluded from training. So 74.89%
of the area shown in Figure 3.3 represents our study area. To describe the state of
the marine environment in this area, we use various bio-geo-chemical and physical
characteristics of the water aggregated in a grid with 4x4 kilometers cells.

While training deep neural networks it’s crucial to have a large enough dataset to
train robust model. Thus we choose to use historical data of selected region starting
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FIGURE 3.3: Location of study area, including parts of North Sea,
Celtic Sea, Irish Sea, English Channel and part of Atlantic Ocean.

Each pixel represents 4x4 kilometers area with

from 01.01.2000 and up to our days. So we could have around 8200 snapshots of this
region, which is enough for our purposes.

The process of preparing data for training deep neural networks involves struc-
turing the collected features in a manner conducive to the training mechanism. Ini-
tially, we divide our dataset into two: a training dataset and a validation dataset.
The training dataset encompasses data from January 1, 2000, to January 1, 2022. The
validation dataset consists of more recent data, specifically from January 1, 2022, to
January 1, 2023. This bifurcation aims to provide a more accurate evaluation of our
model’s performance by testing it on unseen data.

Our training dataset, however, only contains 8030 images, which may not be suf-
ficient to effectively train a deep neural network. Thus, following the WeatherBench
experiment as outlined in Cheng Tan, 2022, we divided each image into smaller
patches with a resolution of 32x64 to effectively increase the size of our dataset.
This division inflates our dataset size by approximately 45 times, producing around
361350 data samples, as well as allow us to train smaller model because of decreased
spatial resolution.

Subsequently, we conduct per-channel normalization on the data. The formula
for this operation is as follows:

nDtrain =
Dtrain − µtrain

σtrain
(3.1)
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Where nDtrain represents the normalized training imagery data, Dtrain signifies
the original training imagery data, µtrain is the mean of all points(pixels) in train
dataset, and σtrain is the standard deviation of all points in train dataset.

This normalization process is crucial as it prevents domination of the model by
features with different scales, accelerates the convergence speed of the neural net-
work, and generally augments its accuracy. We store the values of σ and µ for future
use in denormalizing the model’s output.

Our dataset samples, denoted as xi, adopt the shape (1, C, 10, 32, 64). Here, C
refers to the number of channels or features, and 10 stands for a sequence of days
utilized to forecast the succeeding day. The target secchi depth yi embodies a shape
of (1, 32, 64).

In the construction of the training batch, we exclude all patches inclusive of sur-
face waters, such as lakes or rivers, which are not specifically a part of our study.
Since our original dataset lacks a feature to differentiate between ocean/sea water
and surface water, we implement a tree traversal algorithm to identify these regions,
save them as a mask, and apply this mask post data loading. This ensures that our
model trains only on pertinent data. You can see estimated mask in Figure 3.4.

(A) Surface area (B) Surface area af-
ter tree traversal algo-

rithm

FIGURE 3.4: Surface region mask

If you look closer on Figure 3.4a you will notice white dots on British and Irish is-
lands, those are lakes, rivers and other surface waters, each with its own biochemical
characteristics, which will add additional noise to our training data. After applying
tree traversal algorithm we exclude them all from dataset, the resulted mask with
solid surface is shown in Figure 3.4b
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Chapter 4

Forecasting model

4.1 Problem formulation

The problem we formulate in this work centers around the prediction of ocean trans-
parency within a designated rectangular region on Earth, specified by given longitu-
dinal, latitudinal coordinates and time. This is essentially a spatiotemporal forecasting
problem, that aims to predict the condition of the marine environment, specifically its
transparency, in both spatial and temporal dimensions. The challenge of this prob-
lem is the multi-faceted nature of the ocean transparency that is influenced by an
array of factors including, but not limited to, biological productivity, water temper-
ature, salinity, and human activity. Simplistically we can describe it with this math
definition:

Ŷl
t = f (xt−1) (4.1)

where:

• Ŷl
t is value we want to model with timestamp t and longitude,latitude as l,

• f is some function (neural network, linear model, etc.),

• xt−1 represents the state of environment prior to time t,

The problem necessitates the use of historical data that encapsulates these aspects
and potentially other relevant factors. This data, after a rigorous preprocessing and
exploratory analysis, will serve as the foundation for the construction of the forecast-
ing model. The spatiotemporal nature of the data introduces complexities like spa-
tial autocorrelation, temporal autocorrelation, and potentially intricate interactions
between spatial and temporal elements that must be carefully considered during
model building and validation processes.

One way to solve this problem is to use statistical time series models. Statistical
time series models, like ARIMA or SARIMA, could be extended into the spatial di-
mension, which we will use as our baselines. From a machine learning standpoint,
cutting-edge models such as convolutional neural networks (CNNs) for spatial data,
recurrent neural networks (RNNs) for temporal data, or a combination of both, might
be more suitable for this task due to their proficiency in handling high dimensional
data and capturing intricate patterns.

Recurrent architectures, including LSTM (Sepp Hochreiter, 1997) and its convo-
lutional variant (ConvLSTM) (Xingjian Shi, 2015), have been favored in past spa-
tiotemporal predictive learning work. Other significant recurrent architectures in-
clude Spatiotemporal LSTM (ST-LSTM) units (Qicheng Tang, 2019), which model
spatial appearances and temporal variations in a unified memory pool, and PhyD-
Net’s (Vincent Le Guen, 2020) two-branch architecture, which involves physical-
based PhyCells and ConvLSTMs. Architectures based on flow, such as the invertible
two-way autoencoder proposed by CrevNet, are also take place.
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FIGURE 4.1: Major categories of the architectures for spatiotempo-
ral predictive learning according to SimVP work. The red and blue
dotted line are available to learn the temporal evolution and spatial

dependency.

Authors of SimVP (Cheng Tan, 2022) categorize the prevalent methods for spa-
tiotemporal predictive learning into four categories 4.1, based on the types of layers
utilized in the architecture: (a) RNN-RNN-RNN, (b) CNN-RNN-CNN, (c) CNN-ViT-
CNN, and (d) CNN-CNN-CNN. For categories (a)-(c), models generate predictions
frame by frame using the previous output to capture temporal evolution. On the
other hand, in category (d), models generate predictions in a one-shot manner and
may employ Unet connections between the convolutional layers.

4.2 Baselines

For establishing benchmarks, we have selected several elementary yet resilient sta-
tistical methodologies. The establishment of these baselines is a pivotal step in the
research process, as they allow for the comparison of results derived from the ap-
plication of neural network models against those obtained from methods that have
already demonstrated effectiveness and validity. This comparison is integral to de-
termining the relative value and improvement the neural network models offer in
this context. In this task we choose 2 methods, Simple Exponential Smoothing and
Autoregressive Integrated Moving Average.

4.2.1 Simple Exponential Smoothing

Simple Exponential Smoothing (SES), also known as Exponential Weighted Moving
Average (EWMA), is a time series forecasting method for univariate data without
clear trend or seasonal components. It forms part of the broader class of exponential
smoothing techniques that include methods capable of handling trends and season-
ality.

The principle behind SES is to assign exponentially decreasing weights over
time. This makes the method suitable for forecasting data with no clear trend or
seasonal patterns, as it essentially uses a weighted average of past observations for
its forecasts.

In its simplest form, the SES model can be stated with the following formula:
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Ŷl
t = αxt−1 + (1 − α)Ŷl

t−1 (4.2)

where:

• Ŷl
t is the value we want to model for timestamp t at location l,

• α is the smoothing factor, a value between 0 and 1,

• xt−1 represents the actual state of environment at the previous timestamp,

• ˆYl
t−1 is the model’s output for the previous timestamp and location.

The value of alpha determines the weight given to the most recent observation
in the forecast. As alpha approaches 1, more weight is given to the most recent
observations. As alpha approaches 0, more weight is given to the historical average
of the series.

The forecasted value at time t+1 (next period) is a weighted average between the
actual value at time t and the forecasted value at time t from the previous period.
This makes the forecast "smoothed" towards recent observations but also accounts
for the overall historical trend. We used SimpleExpSmoothing from statsmodels library
with default parameters as a baseline.

4.2.2 Autoregressive Integrated Moving Average

ARIMA, or AutoRegressive Integrated Moving Average, is a forecasting method for
time series data which accounts for three aspects: Autoregression (AR), Integration
(I), and Moving Average (MA). The AR aspect represents the dependency of an ob-
servation on a number of lagged observations, as described by the formula:

Ŷl
t = C + ϕ1xt−1 + ϕ2xt−2 + ... + ϕpxt−p + εt (4.3)

where:

• Ŷl
t is the value we want to model for timestamp t at location l,

• C is a constant,

• ϕi are the parameters of the model,

• xt−i are the lagged states of the environment,

• εt is the error term at timestamp t.

The Integration aspect indicates the differencing of observations, such as Ŷl
t −

Ŷl
t−1, which is employed to make the time series stationary. Lastly, the MA aspect

denotes the dependency between an observation and a residual error from a moving
average model applied to lagged observations, expressed by the formula:

Ŷl
t = C + εt + θ1εt−1 + θ2εt−2 + ... + θqεt−q (4.4)

where εt−i are the error terms and θi are the parameters of the model. The combined
ARIMA model, typically denoted as ARIMA(p, d, q), helps identify and predict the
underlying pattern in a time series to forecast future values. In this work we used
ARIMA from statsmodels library with default parameters as a baseline.
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FIGURE 4.2: Simvp overall framework, source: Cheng Tan, 2022

4.3 Proposed method

Our forecasting model is strongly based on SimVP work. (Cheng Tan, 2022) In
this work, the authors explore the potential of purely CNN-based models, which
have not been as favored as the above RNN-based approaches. Existing CNN-based
methods usually require advanced techniques like adversarial training, teacher-student
distilling, and optical flow. In contrast, the authors propose a simple yet effective
model called SimVP, which is based on convolutional networks and shortcut con-
nections, and is trained with the mean square error (MSE) loss in an end-to-end
manner.

The SimVP model consists of a spatial encoder, a spatiotemporal translator, and
a spatial decoder. The spatial encoder encodes high-dimensional past frames into
a low-dimensional latent space, and the spatial decoder decodes the latent space
into the predicted future frames. The spatiotemporal translator learns both spatial
dependencies and temporal variations from the latent space.

The spatiotemporal translator in SimVP is built with blocks of an Inception-like
temporal module. Variants of the translator include the Inception-Unet Translator,
Stacked-Unet Translator, Cross-Unet Translator, and Multi-scale Translator, each of-
fering a different approach to capturing temporal dependencies and variations.

What interesting in this architecture is that spatiotemporal translator can be ba-
sically replaced by any U-Net (Olaf Ronneberger, 2015) like architecture and gives a
space for further experiments to improve its architecture.

In comparison to baseline models that you need to fit for every given coordinate,
we suggest fitting a single model, that could generalize through its spatial charac-
teristics. Such a shift in methodology allows us to capture spatially distributed pat-
terns, enabling superior generalization across various coordinates without requiring
individual fitting. The proposed model, therefore, offers potential improvements in
both efficiency and prediction accuracy.
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Chapter 5

Experiments

The experiments were conducted using the SimVP model as delineated in Section
4.3, and the performance was benchmarked against several baseline models. The
comparisons were carried out under a variety of conditions to ensure a compre-
hensive evaluation. Specific parameters of comparison encompassed the speed and
accuracy of our model relative to the baseline counterparts. Subsequent to the quan-
titative evaluation, efforts were dedicated towards interpreting the output of the
model, facilitating a deeper understanding of the results. This endeavor not only
enabled validation of the model’s effectiveness but also provided valuable insights
into the dynamics of its capabilities.

FIGURE 5.1: Variance of validation data. We calculate variance of
every points within 2022-2023 year. The darker the color the more
variable water transparency is in that location. Lighter colors suggest

that variation in water transparency is relatively small

5.1 Metrics

To assess the predictive performance of our models, we primarily utilize two sta-
tistical measures: the Root Mean Square Error (RMSE) and the Relative Root Mean
Square Error (RRMSE).
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The RMSE measures the average magnitude of the error in our predictions. In
essence, it is the standard deviation of the residuals or prediction errors. This mea-
sure provides us with an estimate of how far off our predictions are, on average. It
is defined mathematically as:

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)2 (5.1)

Where:

• yi represents the observed values,

• ŷi signifies the predicted values,

• N is the number of observations.

The RRMSE, on the other hand, is a normalized version of the RMSE, expressing
it relative to the range or variance of the observed data. This normalization allows
for a more meaningful and fair comparison between datasets with distinct scales or
variances. It can be computed as:

RRMSE =
RMSE√
1
N ∑N

i=1 y2
i

(5.2)

Our selection of metrics is primarily driven by their ease of interpretation, as
is crucial in our study. For instance, we employ RMSE serves as an estimator of
the standard forecast error in our case, which is expressed in meters. Therefore, an
RMSE value of 2.1 indicates that our forecasted values diverge from the true values
by an average of 2.1 meters.

In addition, RRMSE was chosen by affording the advantage of enabling compar-
isons of errors across different scales or units.

For instance, if we report an RRMSE value of 0.07, it means that our forecasted
values deviate from the true values by an average of 7% relative to the size of the
true values. This can be seen as our predictions being typically within 7% of the
actual measurements, emphasizing the relative nature of this metric.

The RRMSE offers insight into the extent of the error in relation to the size of
the values we are predicting, thereby providing a relative measurement of the fore-
cast error. This allows us not only to understand the magnitude of the prediction
errors but also their significance in relation to the overall scale of the values being
predicted. A smaller RRMSE suggests a model that makes relatively smaller errors
considering the values it is predicting, which enhances our understanding of the
predictive model’s performance.

In addition to these prediction quality metrics, we also monitor the computa-
tional efficiency of our models. Specifically, we document the time it takes to per-
form the train and inferencing on a Nvidia T4 Graphics Processing Unit (GPU). This
is essential as it gives us insights into the practical viability and scalability of our
models, especially when handling large datasets or real-world applications.

5.2 Models

Throughout this study, we employed an assortment of models constructed on the
foundation of the SimVP architecture, as detailed in Section 4.3. We incorporate
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different feature sets and also to adapt its size as per the model requirements. In
our study, we trained and experimented with four distinct models, the specifics of
which are presented in Table 5.1. Where in_shape refers to input shape, S_hid to size
of hidden layer of Spatial encoder/decoder, T_hid size of hidden layers in Translator
module, T_N - number of hidden layers in Translator module, S_N - number of
hidden layers in Spatial encoder/decoder

Model name input features in_shape S_hid T_hid T_N S_N

Zsd_Only Zsd (10, 1, 32, 64) 32 256 8 2
Zsd_Only-L Zsd (10, 1, 32, 64) 128 512 18 4

ZsdChl Zsd+Chl (10, 2, 32, 64) 32 256 8 2
ZsdKD Zsd+Kd (10, 2, 32, 64) 32 256 8 2

TABLE 5.1: Different models that were trained during experimenting.

We train all models on same patch resolution that we described in section 3.2.4.
Following Cheng Tan, 2022, we train models using the Adam optimizer (Kingma
and Ba, 2017) with cosine learning rate sceduler (Loshchilov and Hutter, 2017). For
every train we set batch size equals to 32, except of ZSD-L due to its larger memory
usage batch size was set to 16. As a loss function we used simple mean square error
(MSE), which authors of Cheng Tan, 2022 showed to be sufficient enough.

Our evaluation metrics of the various models is encapsulated in Table 5.2, where
we incorporated parameters such as training time, number of epochs, and perfor-
mance metrics. Given the constraints in computational capacity, adhering to the
recommendation for 200 epochs for each model as suggested in Cheng Tan, 2022
was not feasible. Consequently, we opted for a reduced epoch count while training
our models.

Num of Epochs Model RMSE RRMSE Train Time

29 Zsd_Only 2.23 0.163 64h
13 Zsd_Only-L 2.26 0.166 48h
55 ZsdChl 2.16 0.158 123h
54 ZsdKD 2.17 0.159 123h

TABLE 5.2: Models Evaluation on validation dataset

From Figure 5.2, which presents a heatmap of the global average error, we can
discern distinct patterns in the RMSE (Root Mean Square Error) of forecasted water
transparency across our specified region of interest.

Most notably, there is a pronounced increase in RMSE observable in proximity to
the coastlines. This suggests that the forecast model exhibits a higher degree of error
when predicting water transparency near coastal regions. As we shift our focus to-
wards the open ocean, the heatmap displays a more stable color gradient indicative
of a relatively constant RMSE.

However, it should be noted that there are sporadic exceptions scattered through-
out these open ocean areas. These anomalies could potentially be attributable to
a multitude of factors that might be worth investigating further to optimize our
model’s predictive accuracy.

This analysis provides an initial understanding of the performance of our model,
highlighting areas of strength and potential improvement. Further investigation into
the reasons behind the increased RMSE near coastlines and sporadic errors in open
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(A) Zsd_Only (B) Zsd_Only-L

(C) ZsdChl (D) ZsdKD

FIGURE 5.2: Models error on validation dataset

ocean regions is warranted to refine the predictive capabilities of our model. But
now we can suggest that there could be several reasons to that, it could be caused by
natural factors like tides or sediments from rivers as they are much more prominent
closer to the coastline. Other reason could be human factors such as pollution from
industrial waste. There also could be potential reason for this hidden in accuracy of
optical measurements, it could have lower accuracy due to the reflection from land.

5.2.1 Train analysis

The process of training neural networks necessitates the careful monitoring of the
progression of the training and the corresponding loss curves. This oversight serves
as an indicator of the efficacy of the training, with any abrupt fluctuations potentially
signaling underlying issues within the dataset or the architecture of the model itself.

Throughout the course of our models training, we logged the losses observed
during both training and validation phases, as illustrated in Figure 5.3. From these
illustrations, we can discern a noteworthy pattern. The training loss curve, as shown
in Figure 5.3a, reached a point of convergence swiftly after an initial period. This
suggests that our model was successfully able to minimize the discrepancy between
its predictions and the actual target values during the training phase, thereby exem-
plifying its learning capacity.

Contrastingly, the validation loss curve, as depicted in Figure 5.3b, did not mirror
this rapid convergence. Instead, the validation losses continued to decrement at a
slow yet consistent pace. This sustained decline is indicative of a continuous, albeit
slow, improvement in the model’s ability to generalize its learning to unseen data.

The continuous decline in validation loss could potentially signify that the model
is still improving its performance on the validation set, which, in turn, suggests that
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the model may not have yet reached its optimal complexity. This suggestion can be
confirmed by Cheng Tan, 2022, when they train their model for at least 200 epochs.
Additionally they showed that train models for x3(600 epochs), x5(1000 epochs) and
even x10(2000 epochs) more epochs still decrease validation error, which could be
considered as a future improvement of our work.

(A) Train loss (B) Validation
loss

FIGURE 5.3: Models losses during training. Train loss is logged every
iteration. Validation loss is logged after every epoch.

5.2.2 Evaluation on different marine environments

In an effort to gain a more nuanced understanding of our model’s performance,
we conducted an in-depth analysis that extended beyond the use of standard formal
metrics. The first phase of this assessment involved manual labelling of our study re-
gion, delineating it into distinctive marine environments: the Atlantic Ocean, North
Sea, Celtic Sea, Irish Sea, and English Channel. This stratification was instrumental
in our subsequent analysis.

We proceeded to calculate the RMSE for each sub-region, a step that facilitated
the examination of our model’s performance in specific geographical contexts. This
partitioned evaluation approach is advantageous as it provides insights into the
model’s predictive accuracy across diverse marine environments, thereby offering
a more comprehensive understanding of the model’s overall performance and ro-
bustness.

On Figure 5.4 we can see performance of every our model on different marine
environments. The lighter a blue color is the less RMSE, for visualisation purpose
we normalize RMSE values. From this we can clearly see that every model has the
same per-region error distribution. Atlantic Ocean is the harder one for model to
forecast, than we can see North and Celtic seas are almost same color, which means
they are very similar to forecast, and than we have English Channel and Irish Sea
in more brighter colors, when Irish Sea forecast has the lowest error. More detailed
metrics can be found in table 5.3. We can state that some regions are more harder for
our model to learn for example in Atlantic Ocean region on average model has 40%
greater error than same model but in Irish Sea environment.

The observed results can largely be attributed to the inherent variability in wa-
ter transparency across different regions, as depicted in Figure 5.1 which illustrates
the variance of ground truth validation data. Upon closer inspection of this fig-
ure, it becomes evident that regions such as the Irish Sea and the English Channel,
where our models demonstrate better performance in terms of RMSE, exhibit lower
temporal variance. The smaller level of fluctuations in water transparency in these
regions over time potentially simplifies the modeling task, thus leading to improved
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(A) Zsd_Only (B) Zsd_Only-L

(C) ZsdChl (D) ZsdKD

FIGURE 5.4: Models error on validation dataset within different ma-
rine environments

Model Atlanctic Ocean North Sea Celtic Sea English Channel Irish Sea

Zsd_Only 2.38 2.24 2.16 1.75 1.52
Zsd_Only-L 2.43 2.30 2.14 1.65 1.40

ZsdChl 2.32 2.18 2.09 1.59 1.34
ZsdKD 2.32 2.20 2.10 1.63 1.39

TABLE 5.3: Models Evaluation on validation dataset. Each value rep-
resents RMSE metric in corresponding marine environment

results. Therefore, the inter-regional disparity in RMSE performance can be reason-
ably explained by the natural variability in water transparency prevalent in these
geographies.

5.2.3 Comparison to baselines

In Section 4.2, we elaborate on the construction of two baseline models, namely the
Simple Exponential Smoothing (SES) and AutoRegressive Integrated Moving Aver-
age (ARIMA). These models serve as comparators, allowing us to benchmark the
predictive capabilities of our specifically trained models. It is important to note that
these models are exclusively temporal in nature.

Due to this temporal characteristic, evaluating these models requires an exhaus-
tive fitting process at every point within our defined area. We trained our baselines
model with a history window of 10, this is the same history window that we use to
forecast with our trained models.
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This procedure is computationally demanding, rendering it less efficient for larger
datasets. Preliminary estimates indicate that a comprehensive evaluation across the
full validation dataset would necessitate approximately a week of computational
time.

In order to mitigate the computational demands of evaluating these models, we
have employed a sampling strategy. We selected a subset of 100,000 data points from
our validation dataset, utilizing a uniform random sampling method. This approach
encompasses both the temporal aspect as well as spatial coordinates (longitude and
latitude) to ensure a representative and unbiased sample of our overall data.

Subsequently, we leveraged this subset to evaluate the predictive performance of
our models. The forecasts generated by our models were compared directly with the
actual observations at these specific points. This methodology affords us an efficient
yet comprehensive understanding of our model’s capabilities when juxtaposed with
the baseline SES and ARIMA models, without sacrificing the scientific rigour of our
evaluation process.

Model rmse rrmse GPU inference time (sec) CPU inference time (sec)

ARIMA 3.080 0.230 - 1243.9
SES 2.626 0.197 - 334.6

Zsd_Only 2.3 1.172 2.6 5.03
Zsd_Only-L 2.333 0.175 3.4 14.0

ZsdChl 2.236 0.167 5.1 7.9
ZsdKD 2.240 0.168 5.2 7.9

TABLE 5.4: Comparison with baseline, on 100000 sampled points
(baseline models that we used could only run on CPU).

As demonstrated in Table 5.4, the models developed in our research exhibit sig-
nificantly enhanced performance relative to the baseline counterparts, particularly
in terms of both RMSE and inference time. The RMSE of our models is consider-
ably lower, implying better predictive accuracy and robustness. Furthermore, the
markedly reduced inference time enhances the operational feasibility of these mod-
els in real-world scenarios, providing an efficient tool for rapid decision-making and
analysis. Therefore, the models we have developed not only elevate the speed and
performance of inference but also amplify their forecasting capabilities, thereby of-
fering an efficacious solution for robust and efficient predictive modeling, which
is expected to lead to more robust water management practices, cost savings, im-
proved risk mitigation, and overall better understanding of our water bodies.
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Chapter 6

Conclusions

6.1 Summary

In the context of this study, we have developed and trained multiple predictive mod-
els for seawater transparency, conducting extensive evaluation of their performance.
Our work has led to several noteworthy contributions:

• We created a dataset for training and validating water transparency forecasting
models in marine environments.

• To the best of our knowledge, we proposed the first application of modern
spatio-temporal neural network architectures for ocean water transparency
forecasting.

• We meticulously applied and examined our methodological approach, jux-
taposing it with the baseline strategy. This involved comprehensive evalua-
tions conducted across a diverse marine environments surrounding the Great
Britain. This rigorous testing approach ensured a holistic comparison, taking
into account the environmental conditions unique to different marine locales.

• Our approach demonstrated superior results against the established baseline
approaches in both the speed of inference and overall prediction accuracy: Our
best model ZsdChl showed a decrease of RMSE by 17.4% (2.63 -> 2.24), and
increase in inference time efficiency in 66.3 times (334.6 -> 5.04 seconds) in
comparison to best baseline SES.

• We validated our models on different regions and showed that our model per-
form worse in regions with high variance such as close to coastline and best on
regions with less water transparency variance like in Irish Sea or English Chan-
nel. This points out that our model is vulnerable to regional variability, which
gives us a window for further improvements with encountering regional char-
acteristics. All validations were made on unseen data from future(in compari-
son to train data) which examines that our model is not overfitted and flexible
enough to encompass real world future data.

The efficiency of these models indicates their potential as a valuable tool in ad-
vancing research in various domains. Moreover, they could be successfully lever-
aged for practical implementations in diverse sectors such as industrial diving, aqua-
culture, and the tourism industry, thereby enhancing safety standards and opera-
tional efficiency. We foresee that these models can contribute to the development of
innovative solutions and procedures within these industries, thus paving the way
for greater progress and safety measures.
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6.2 Directions for future research

There are several potential areas of further improvement. One of them lies in en-
riching the dataset with additional features. Our research demonstrated that water
transparency varied significantly across different geographical regions, indicating
the impact of location-specific factors. Therefore, it may be beneficial to incorporate
location features into our dataset, thereby integrating the influence of geographical
variables into our analysis.

Another potential area for the improvement lies in extending the training period
over a larger number of epochs. Our preliminary analysis indicates that the perfor-
mance of the model could be significantly improved by allowing it to learn over an
extended period, potentially leading to more refined and accurate predictions.

Furthermore, it’s worth considering the expansion of the model’s complexity as
a feasible strategy for increasing its performance. This approach, characterized by
increasing the model’s complexity or size, has been substantiated by numerous stud-
ies, including our own research. This approach is predicated on the understanding
that larger models, with their expanded capacity to capture and process information,
can potentially yield more accurate results, thereby improving performance.

Our work has also shed the light on the conditions where the model underper-
forms. This include forecasting close to the coastline, which can be improved by ex-
panding our dataset to include the information about the artifacts of existng coastal
infrastructure, land use patterns, population density, etc. Additionally, the inclusion
of real-time data about tidal cycles, wave activity, and local weather patterns can
potentially enhance the model’s predictive capability by accounting for the constant
changes in coastal water environments.

Finally our current predictive model forecasts water quality for the following
day. However, to provide more practical and actionable insights for policy makers,
environmental managers, and the public, there’s a need to expand this forecasting
window beyond a single day. Predictions with a longer time horizon, for instance,
a week or even a month ahead, could allow for better planning and more effective
intervention strategies.
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