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Abstract

Natural Language Processing methods present promising opportunities for analyz-
ing astronomical data, enabling the extraction of essential information from vast
amounts of observations. Yet, applying these techniques to astronomical data presents
notable challenges, including the difficulty of astronomical terminology and the di-
verse range of data sources. In this research, we leverage multiple Natural Language
Processing techniques to extract information from astronomical observations with a
specific focus on predicting the future citation rate of astronomical telegrams. To
achieve this, we create a comprehensive dataset gathering astronomical messages
from various sources and utilize techniques such as Named Entity Recognition,
doc2vec, word2vec, and topic extraction. Along with this, we enhance the extracted
information by incorporating manually created features that capture the character-
istics of astronomical telegrams beyond their direct context. These features aim to
provide a comprehensive representation of the messages. We then use all the ex-
tracted information to predict the future impact of the telegrams, as indicated by
their citation counts, using multiple Machine Learning techniques.
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Chapter 1

Introduction

1.1 Context

The Astronomer’s Telegram (ATL) is a free online service that rapidly communi-
cates new astronomical observations and discoveries to the professional astronomi-
cal community. It was founded in 1997 by a group of astronomers who recognized
the need for a more efficient way of sharing information about transient astronom-
ical events, such as supernovae, gamma-ray bursts, and other phenomena that ap-
pear suddenly in the sky.

ATL is a web-based bulletin board where astronomers can submit short mes-
sages describing their observations and discoveries in real-time. One of the key
advantages of the ATL is its speed. The service is designed to provide rapid com-
munication of new discoveries, with messages typically posted within hours or even
minutes of the observations being made. This allows astronomers worldwide to
quickly follow up on new discoveries and conduct further observations and analy-
ses. But the other side of this feature is volume - the number of such messages is
significant and increasing every day.

The Astronomer’s Telegram has become an essential tool for professional as-
tronomers and has contributed to many significant discoveries in the field of as-
tronomy. It has also helped to foster collaboration and communication among as-
tronomers and has enabled the rapid dissemination of new information about the
universe to the broader scientific community.

Another source of data is GCN Circulars. It is a dataset of astronomical circu-
lars released by the Gamma-ray Coordinates Network (GCN). The GCN system dis-
tributes two types of messages: notices containing information about the location
of gamma-ray bursts (GRBs) and other transients obtained from various spacecraft
and circulars containing information about follow-up observations made by opti-
cal, radio, X-ray, and TeV observers from ground-based and space-based sources.
ATels are typically released within hours or days of observation and provide a quick
overview of the discovery and initial analysis. GCN circulars are more comprehen-
sive reports released after a more thorough analysis of the observations. Both report
types are essential sources of information for astronomers and astrophysicists study-
ing transient phenomena such as supernovae, gamma-ray bursts, and others.

These short messages contain much information hidden in enormous volumes
of unstructured (and semi-structured) data, making it difficult to get meaningful
insights reading them as is, even for scientists. We aim to apply NLP techniques to
these datasets to solve several significant problems, interesting for researchers in the
field.
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1.2 Goals of the Master Thesis

Our goals in this research are the following:

1. Our goal is to create a clean and tagged dataset that is suitable for analysis
using the mentioned data sources. Additionally, we will develop the required
functionality that enables the population of this dataset with new data, ensur-
ing its continuous updates and relevance.

2. We aim to develop ML solutions that can extract interesting information from
astronomical telegrams. This includes identifying the telescopes and sources
(the observed astronomical objects or events) mentioned in the observations
and capturing the related topics discussed in the telegrams. In addition to the
ML-based solutions, we seek to create comprehensive features that provide a
holistic description of the telegrams, going beyond their content.

3. We want to solve the citation prediction problem. The thing is that number
of reported observations is growing, and usually, only a few of them discover
new events. These few telegrams then are cited in others or (later) in papers.
Hence, we aim to use the mentioned above information to predict the informa-
tional value of astronomical telegrams, which is expressed as the citation rate
of the latter.
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Chapter 2

Related Work

2.1 Related Researches Overview

Machine learning is a powerful tool that has become increasingly popular in analyz-
ing astronomy data in recent years. ML algorithms can automatically identify pat-
terns and relationships within large data sets, allowing astronomers to make more
accurate and efficient predictions and classifications. ML techniques apply in many
areas of astronomy, including star and galaxy classification, data analysis, and image
processing. One of the critical advantages of ML in astronomy is its ability to han-
dle large amounts of data with many variables, which can be challenging to analyze
using traditional statistical techniques. ML algorithms can also learn from the data,
improving their accuracy and efficiency over time as more data becomes available.
However, this paper focuses on NLP methods primarily, so we can address an excel-
lent overview Baron, 2019 of general ML methods in astronomy and proceed to our
topic.

Applying NLP methods to astronomical data is relatively unexplored for now.
One of the first examples is the paper Murphy and Curra, 2006, where authors pre-
sented a corpus of approximately 200,000 words of text from astronomy articles,
manually annotated with about 40 entity types of interest to astronomers. The au-
thors report on the challenges in extracting the corpus, defining entity classes and
annotating scientific text. They investigate which features of an existing state-of-
the-art Maximum Entropy approach perform well on astronomy text and achieve an
F-score of 87.8%.

The authors also discuss the advantages of the astronomy domain for NER, such
as being representative of the physical sciences, having freely available papers, inter-
esting entity types to annotate, and existing databases of astronomical objects. The
paper also reviews comparable named entity corpora, discusses aspects of astron-
omy that make it challenging for NLP, and presents examples of interesting cases of
ambiguity in the astronomical text. Finally, the authors describe experiments with
retraining an existing Maximum Entropy tagger for astronomical named entities and
use the tagger to detect errors and inconsistencies in the annotated corpus.

Another recent paper Grezes, 2021 discusses the development of a language
model based on Google’s BERT deep neural network transformer architecture, called
astroBERT. The aim of the project is to automate the process of identifying and tag-
ging named entities within the ADS (Astrophysics Data System) database, which is
used by the astrophysics community. The authors used a large collection of recent
astronomy ADS papers to train astroBERT, which outperformed BERT on the named
entity recognition task on ADS data. The paper also discusses the related work on
BERT and SciBERT, as well as the technical details of data preparation and training
of the model.
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Finally, authors Alkan, 2022 propose using Natural Language Processing (NLP)
to extract and summarize information from astronomical reports. They introduce
TDAC, the first publicly available corpus based on astrophysical observation reports
for named entity recognition in time-domain astrophysics. The paper also highlights
the differences between astrophysics corpora and characterizes the discourse used
in astrophysics through corpus analysis. The Astronomy Bootstrapping Corpus, the
Astro Corpus, and the DEAL Shared Task Corpus are discussed as examples of ex-
isting annotated corpora for astrophysical named entity recognition.

2.2 General Methods Overview

2.2.1 Text Information Extraction

Ideologically, there are 3 main Information Extraction (IE) approaches: rule-based,
machine-learning-based (also statistical) and hybrid.

The classical approach to the IE task is a rule-based approach. Chiticariu and
Reiss., 2013 make a comprehensive review of its pros and cons. The stated pros of
a rule-based IE approach include that it is easy to comprehend, easy to incorporate
domain knowledge, and easy to trace and fix the cause of errors. However, it also
requires tedious manual work and may not be as scalable as other approaches.

We can also take a look at Wu, 2022 as an example of the latest successful incorpo-
ration of the rule-based IE. The paper proposes a rule-based approach to the IE task
in the professional mechanical, electrical, and plumbing (MEP) domain. The pro-
posed algorithms include matching algorithms for named entity recognition (NER)
and relationship extraction The paper also introduces two novel ideas, "meta link-
ing" and "path filtering," for discovering out-of-pattern entities/relationships. A
comparison experiment shows that the proposed rule-based approach outperforms
the selected deep learning NER models by 37% and 49% in extraction precision. This
work coincides with ours, as it is also solving a very domain-specific IE problem.

The basic rule-based IE approach is incorporated in our project by introducing
a set of pre-defined Regular expressions which are used to extract data on both the
data preparation step and the feature extraction step.

Speaking of the machine-learning (statistical), the field classic is Peng and Mc-
Callum., 2006. At the time published, the CRF were able to outperform that time IE
titans: hidden Markov models and SVM classifiers. The research took part in 2006
but the conditional random fields are still widely used in the IE hybrid techniques
and NER problems (Settles, 2004, Klinger, 2011).

In this research, the CRF is used as a layer of a Neural Network NER model
provided by Spacy.

Another more novel IE approach is presented by the Jiang and Chen., 2023.
The authors propose automatic information extraction using entity recognition tech-
niques to ease the burden of paper reading for AI researchers. The proposed ap-
proach involves creating a manually annotated dataset called the ACER dataset and
utilizing the GIA-PME model, which uses a gated interaction attention mechanism
and probability-matrix encoding to enhance entity recognition. The model achieves
the best performance compared to existing models and significantly improves the
F1 score on the ACER dataset (according to the Jiang and Chen., 2023 results).

A comprehensive review of the Deep Learning IE methods is provided by Nguyen,
2018. The author develops deep learning models for various information extraction
problems, such as entity mention detection, relation extraction, and event detection
as a counterpart to the traditional approaches which involve hand-designing large
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feature sets and are limited and expensive. The experiments demonstrate the effec-
tiveness of the proposed methods, particularly in domain adaptation and transfer
learning settings. The proposed methods show promise in automating the represen-
tation learning process for efficient and effective information extraction. The author
also achieved joining frameworks for solving multiple problems simultaneously.

The other promising method in the IE field is question-answering (QA) using
large language models (LLM). The LLM’s ability to understand context and rea-
son over natural language text makes them an effective tool for extracting insights
from complex and even domain-specific datasets. The recent researches in this di-
rection Wei, 2023 and Pereira, 2023 show superior LLMs performance in IE, even
with zero-shot prompting (Wei, 2023). Dunn, 2022 presented a simple sequence-
to-sequence approach using GPT-3 to jointly extract named entities from complex
scientific text. The approach is fine-tuned on approximately 500 pairs of prompts
and completions and can extract information from single sentences or whole ab-
stracts/passages. They were able to extract very structured information from the
scientific text in both native English and JSON formats. Their targets and data type
are very similar to what we are dealing with in this project and hence might be a
very good example to follow up.

We also employ the power of pre-trained LLMs to solve the topic extraction prob-
lem in a fashionable manner.

2.2.2 Domain-Specific Text Classification

Although the citation prediction problem is being addressed using both classifica-
tion and regression approaches, we prefer a classification one more due to its ease
of understanding and interpretation of the results. We will consider the domain-
specific text classification problem for the related work references in this subsection.

A problem somehow similar to ours was solved by Liu, 2005. This paper pro-
poses a statistical method for extracting domain-specific terms from the scientific
corpora. The method takes into account the distribution of a candidate word within
domains using entropy impurity. The process includes a normalization step to deal
with unbalanced corpora. The extracted domain-specific terms are applied in text
classification as the feature space and outperform traditional methods in experi-
ments.

Another domain-specific classification problem was solved by Wu, 2020. The
paper proposes a method to incorporate domain-specific information into meta-
embeddings, which have shown superior performances across different NLP tasks.
Experiments on four text classification datasets demonstrate the effectiveness of the
proposed method. Basically, their statement is “You have to train your own embed-
dings”.

Benballa and Picot-Clemente., 2019 proposed a very interesting key to the text
classification solution, combining the state-of-the-art LLMs with classical hand-crafted
features. The paper outlines the three steps involved in the system: feature creation,
dynamic meta-embedding, and combining information to classify tweets for hate
speech. Despite the fact that some of the hand-crafted features such as bag-of-POS-
tagging or bag-of-emoji were not of interest for the predictions and were reducing
the F1 score (as described in Benballa and Picot-Clemente., 2019 experiments), the
idea to enhance the word embeddings with some classical NLP features is worth
taking note of. It is like “You have to train your own embeddings and not forget
about the classical NLP features”.
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And while the previously mentioned papers were aimed to solve the domain-
specific text classification problem using all the available arsenal of tools, including
the products of Deep Learning Transformers, these researchers from London and
Toronto Wahba and Steinbacher., 2023 have proven that using complex, attention-
based embeddings is not always necessary. Their main statement is that the Support
Vector Machine (SVM) classifier with Tf-Idf vectorization can perform comparably
to state-of-the-art models such as pre-trained language models like BERT. Believe
it or not, the paper argues that the monosemic nature of specialized words in the
domain-specific text makes the use of contextualized embeddings less necessary.
And their research is live evidence that there are cases, where a simpler and more
explainable model can achieve results similar to a Wu, 2020.

Last but not least Xie, 2022 - straightforward research on domain text classifica-
tion methods based on BERT. The researchers proposed a method based on word
embeddings to solve the text classification problem in specific domains. The pro-
posed BERT “VCA” model segments long domain texts into short sentence sequences,
inputs them into the BERT to obtain word vectors, compresses the sequence vectors,
and combines them with the Encoder layer to extract important domain features.
The experiments showed an F1 increase of 1.2% and emphasized the need for a
domain-specific pre-training. The BERT-based solution might not be the most ex-
plainable one, but it definitely can be one of the fastest considering the use of already
pre-trained embeddings.

After conducting a review of the literature and related research, several key con-
clusions can be drawn. Firstly, astronomer telegrams have emerged as relatively
new sources of information and have gained popularity over the past decade. As-
tronomers themselves are increasingly interested in tracking significant and rare ob-
servations, but the growing volume of telegrams creates challenges in identifying
valuable insights. Secondly, the field of astronomical NLP is still in its early stages of
development, although there have been notable projects (as described in the Related
Researches Overview) that have utilized various NLP techniques for astronomical
exploration.

The main objective of this research is to evaluate and apply different NLP tech-
niques in order to understand their effectiveness in the field and apply them to solve
the prediction problem at hand.
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Chapter 3

Dataset

3.1 Dataset Creation

The dataset for this project was collected and composed from two primary sources
of astronomical telegrams mentioned in the Introduction: ATel and GCN. The tele-
grams gathered on the corresponding resources will be referenced later in the text as
ATels and GCNs.

The ATel website was parsed using the html-parsing libraries in Python and the
underlying information was transformed into a more structural representation us-
ing a comprehensive set of Regular expressions. GCN website, however, already
provides functionality to download all existing telegrams as one tar achieve. Each
of the GCN telegrams is saved in a plain text format, with a few upper-case titles
that help to identify the subject or the date of a telegram. Another set of Regular
expressions was applied to extract the GCNs’ data. The data from both sources was
consolidated into a single dataset, incorporating all the necessary transformations to
ensure a standardized format. This involved converting dates into a unified format,
parsing author(s) information, subjects, etc.

Another challenge we had to face is that the same astronomical observation
might be posted in multiple sources by the same reporter with a few differences in
the content. To address this issue, we employed the Tf-Idf approach to vectorize the
bodies of GCNs and ATels. These vector representations were then analyzed using
pairwise cosine similarity metric, resulting in a matrix of size Dnum_atels × Dnum_gcns,
where each element represents the similarity between the corresponding ATel and
GCN bodies. To identify probable duplicates, we set a similarity threshold of 0.9
based on empirical observations. In cases where a GCN and an ATel had a similarity
score above this threshold, we prioritized the GCN and removed the correspond-
ing ATel from the final dataset. By applying this step, we were able to identify and
remove 258 duplicated telegrams. This process ensured that the final dataset was
cleaned from duplicated instances, which could have potentially worsened the re-
sults of the prediction algorithm due to variations in citation rates across different
sources.

As mentioned previously, the aim of this research is to analyze the informational
value of a telegram. However, due to the broad nature of this concept, we have
decided to measure it in terms of the citation or mention rate of a telegram. To
achieve this, we conducted an analysis of the bodies of the telegrams and collected
the mentions of other telegrams from them in order to define the target variable
for our machine-learning problem. Good for us, there are agreed rules on how the
telegrams should be referred to. The astronomers include the number and the source
of the cited telegram in their report, e.g.: “The object identified in the previous epoch
of imaging (GCN 9884)” or “This agrees reasonably well with previous photometric
estimates of Zharikov et al. 1998 (ATel #34, #35)”. Hence, by defining the multiple
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Regex rules we were able to collect the vast majority of the direct possible mentions
and citations. Worth to say, that GCNs are sometimes referring to the ATels and
vice versa. To avoid human bias, it was important for us to exclude self-mentions
from our analysis. Self-mentions refer to the situations where authors cite their own
previous work in their posts.

3.2 Dataset Description

In total, around 15000 ATels and 33000 GCNs were collected and processed resulting
in a dataset of the size of 48000 records. The collected ATels and GCNs were unified
in their structure and the dataset end up having the following fields:

• telegram_no - the exact number of the telegram concatenated with the telegram
source. E.g.: 134_atel or 135_gcn

• date - the telegram post date

• subject - the telegram subject

• body - the actual content of a telegram

• f rom - the telegram’s author(s) credential information (an email). This field
was chosen as a more appropriate and convenient replacement of the exact
author(s) name(s) and surname(s).

• atel_re f erences - defines which other ATels are cited in this telegram

• gcn_re f erences - defines which other GCNs are cited in this telegram

A brief examination of the temporal distribution of telegrams, as illustrated in
3.1, indicates that the popularity of GCN and ATel was relatively low prior to 2005.
This observation suggests that the earlier years may hold less significance in rela-
tion to the prediction problem. Additionally, an analysis of telegram volumes on a
monthly basis helps to yield worthwhile insight, which will be further used in the
feature engineering process.

FIGURE 3.1: Temporal Distribution of Telegrams
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3.3 Target Value and Labels Assignment

The citation rate of each telegram was calculated as the number of telegrams that
make reference to it. For instance, if ATel #101 is citing ATel #100, ATel #100 will get
a +1 to its citation rate.

If we take a look at the distribution of a target value (Figure 3.2), we can notice
that 75% of the telegrams are cited no more than once. The purpose of defining the
target value is to align with the primary hypothesis, which says that telegrams with
higher citation rates are likely to contain more interesting observations. To set a clear
threshold, we decided to consider a telegram potentially interesting only if it is cited
at least three times which corresponds to the top 20% percentile of the citation rate.

FIGURE 3.2: Citation Rate Distribution

The target variable for the classification problem was divided into three classes:
very interesting (class 2), interesting (class 1) and not interesting (class 0). The dis-
tribution of the target labels shown in Figure 3.3 indicates that only 20% of the tele-
grams were labelled as interesting while the remaining 80% were labelled as not
interesting. This suggests that the classification problem is imbalanced, with signif-
icantly more instances belonging to the majority class than the minority class. We
will discuss our approach to handling class imbalance in the Experiments chapter.

Note: Later in the research, we will consider merging classes 1 and 2 into one,
turning the classification problem into a binary one. This will allow us to reduce the
impact of the over-cited telegrams and concentrate only on separating interesting
telegrams from not interesting, as stated in the research goals.

Based on the distribution depicted in Figure 3.4, certain years exhibit signifi-
cantly higher citation counts, indicating a greater overall interest in the correspond-
ing topics. Notably, the year 2015 stands out with a notable increase in citations,
which can be linked to the discovery of gravitational waves. Also, the year 2010
has the highest average citation count, likely due to the discovery of the first known
Earth Trojan asteroid, indicating its significance in the field.

Examining the insights by month reveals specific periods when interesting cos-
mic objects are more frequently observable. For instance, in June, the Galactic Center,
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FIGURE 3.3: Citation Class Distribution

FIGURE 3.4: Temporal Distribution of the Citation Rate

located at the core of our Milky Way galaxy, becomes more prominently visible in
the night sky. Oppositely, December poses challenges for astronomical observation
as the Earth’s position in its orbit obstructs the view of certain celestial objects. This,
coupled with the reduced visibility of the Milky Way during that period, makes
December the least "interesting" month in terms of astronomical observations. In
relation to November, it can be observed that this particular month does not feature
any significant astronomical events that are exclusive to it. Additionally, in many
regions, November corresponds to the transition into colder weather, which often
leads to cloudier skies and reduced visibility for observations.
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Chapter 4

Astronomical Data Features
Extraction

With the successful completion of the initial objective outlined in the Introduction
goals, which involved the creation of a clean and tagged dataset, we now shift our
focus to the next stages of our research. This includes text information extraction (IE)
and feature engineering. These stages will enable us to extract relevant information
from the text data and engineer informative features that will enhance our models’
predictive capabilities.

4.1 Word2Vec

As some of the subsequent features that we extract from the text, named entities and
topics in particular, require a vector form representation in order to be used as an
ML model input, we begin this step by introducing a word2vec solution that will be
further used for the stated above purposes. By leveraging word2vec, we can capture
the semantic relationships between words and generate meaningful representations
that capture the context and meaning of the text.

FIGURE 4.1: Word2Vec Representation Models: CBOW and Skip-
gram. Image from the internet.

Due to the unique nature of astronomical data, we need a fast and scalable so-
lution to train custom word2vec embeddings of different dimensions. Traditional
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word2vec models might not capture the specific nuances and domain-specific ter-
minology present in astronomical texts. For instance, the existing BERT word-level
embeddings or Spacy embeddings taken from the en_core_web_lg model were not
able to capture the similarity between the "FAST" and "MOST" (both are telescopes)
or between "blazar" and "agn" (blazars belong to the group of the active galactic
nucleus - agn).

To create our custom word embeddings, we employ BLOOM-based embeddings
and utilize the fine-tuning functionality offered by Floret. Floret stands out as a
lighter and faster compressor compared to one of the widely used word2vec meth-
ods, FastText. We preprocessed the telegram bodies using the NLP best practices
(special character removal, stop-words removal, etc.) and trained Floret embeddings
of sizes 128 and 256 for further inference. CBOW and Skip-gram are two popular al-
gorithms used for training word embeddings (Figure 4.1) in the context of word2vec.
While both algorithms have their strengths and weaknesses, CBOW is usually pre-
ferred because of its computational efficiency and the tendency to work better when
there’s enough training data. Floret provides an option to choose between both of
them.

In our training process, we utilized the CBOW model option with the default
training settings, except for the adjustments made to the dimensionalities.

4.2 NER

To develop our Named Entity Recognition (NER) model, we focused on identifying
and extracting specific entities of interest in the astronomical domain, namely tele-
scopes and sources. Through communication with our astronomer colleagues, we
were able to determine that these entities play a crucial role in identifying interest-
ing observations. Worth noting, that by telescopes we are sometimes referring to the
observatories, and sources may identify any observable cosmic object (for instance,
we are not separating stars from planets). The theoretical formula of an interesting
observation is pretty straightforward:

powerful telescope + rare source = interesting observation

In order to approach the solution, we selected the Spacy Python library as our
tool of choice for its comprehensive documentation, computational efficiency, and
overall convenience for the task at hand.

4.2.1 Training Attempt One

To have something to start with, our colleagues provided us with a defined list of
telescopes and sources that they actively track in the telegrams as interesting enti-
ties. We transformed this list into a set of pre-defined regex rules, encompassing
over 2600 entities. This set included 107 telescopes and approximately 2500 sources.
These regex rules were then used to label the bodies of the telegrams in a format that
corresponds to the required training format for Spacy NER models. Each labelled
entity is represented as a tuple (span_start, span_end, label), indicating the starting
and ending positions of the entity within the text, along with its corresponding label
- either TELESCOPE or SOURCE. Due to the model’s generalizing and in-context-
seeking ability, we expected the model to identify a larger set of entities compared
to the rule-based (regex) approach that we were provided with. Moving forward in
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the text, we will refer to the model inference phase when applying the Named Entity
Recognition (NER) model to the entire dataset, rather than a separate test subset.

We used the en_core_web_sm built-in Spacy model as a base model for training.
The model was trained in 2 epochs, achieving an F-score of 99.79 on the validation
set (taken as 15% of the total data). During the inference, we discovered that the
model was able to find 40 new unique sources and 3 new telescopes that were not
previously included in the labels, while it was almost never missing any of the pro-
vided rule-based labels. Despite the promising training metrics and newly found
entities, we have also noticed some issues after checking the inference results:

• Since we had a relatively small number of interesting entities used for la-
belling, approximately 9.73% of the annotated telegrams did not have any en-
tity labels specified. Although the model was able to capture slightly more of
the relevant information, there were still 9.68% of the telegrams without any
entities identified by the model. There also were only 1.02 entities per telegram
on average, which indicates that a significant number of telegrams were miss-
ing either the source or the telescope information, as identified by our NER
model.

• The only thing that could neglect the previous problem could be a strong cor-
relation between the amount of found entities and the citation rate of the tele-
gram. For instance, if most of the telegrams with the missing entities would
correspond to the not-interesting citation class, it could already be a power-
ful signal alone. However, despite we only trained the model on a subset of
telescopes and sources stated as interesting ones, there was no correlation be-
tween the number of entities identified and the citation rate of the telegrams
(Figure 4.2). This implies that telegrams without any identified entities could
be equally relevant to all citation classes.

FIGURE 4.2: Correlation between the amount of Extracted Entities
and Citation Rate

We decided to iterate on this step and enhance the training data in order to in-
crease the extraction coverage and achieve better entity representation for each tele-
gram.
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4.2.2 Training Attempt Two

An additional source of labels was required to create more annotations and increase
the NER coverage on inference. "Those who seek shall find" - Matthew 7:7. We
found out that Wikipedia provides extensive lists of telescopes categorized by their
types, including optical, gamma-ray, radio telescopes, space telescopes, and more.
It also has lists of astronomical sources such as stars, planets, and galaxies. Hence,
the Python parsing script was written and by leveraging that Wikipedia information
we achieved to augment our training data with a wide range of entities, adding
717 new telescopes and 3050 new sources to our training labels. With the doubled
annotations the model was training noticeably longer achieving the maximum F1-
score of 98.9.

The results of the model inference were significantly more promising this time.
Only 3% of the telegrams did not have any extracted entities, resulting in an average
of 3.08 unique entities found per telegram. This indicates a three-fold improvement
in model coverage. Consequently, the correlation depicted in Figure 4.2 has become
insignificant. An example of the NER results can be observed in Figure 4.3. More
NER examples in a text format can be seen in Appendix A.

FIGURE 4.3: NER Predictions with Spacy

Notably, as shown in Table 4.1 the new NER model was able to identify more
than a hundred previously undefined telescopes while missing even slightly more
telescopes that were labeled with the regex patterns. A similar pattern emerged
for the sources but with even more unique entities undefined by NER this time.
Considering these facts, we made a decision to combine the NER predictions and
the regex patterns in order to achieve the maximum entity coverage and extract as
many unique telescopes and sources as possible. Later in the text, when discussing
the extracted entities from the telegrams and the corresponding NER results, we will
be referring to the combined outcome of both the NER model and the rule-based
approach.

Entity Type Entities not found by NER Entities not found by RB

TELESCOPE 101 131
SOURCE 947 307

TABLE 4.1: NER and RB comparison
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Proceeding with the analysis of the extracted entities. One of the interesting in-
sights can be drawn from Table 4.2. We have observed that we possess more knowl-
edge about interesting telescopes compared to interesting sources. This indicates
that we can extract information about telescopes that are capable of discovering rare
phenomena in the cosmos, which in turn increases the likelihood of their observa-
tions being cited in the future. The number of such powerful telescopes is limited,
and it is expected that we can identify most of them since they are frequently men-
tioned in the training data, particularly those operated by the largest observatories
and institutes. On the other hand, there is a larger number of amateur telescopes
(class 0) that are only capable of detecting generic objects, and we tend to miss them.
However, the number of rare and interesting sources is much larger, making it chal-
lenging for us to capture all of them. The training data primarily consists of well-
known source labels, such as popular stars and black holes, thereby limiting our
coverage of the diverse range of rare sources.

Citation Class Telegrams with missing
Telescopes

Telegrams with missing
Sources

0 19% 11.7%
1 13.9% 11.9%
2 11.2% 19.7%

TABLE 4.2: Missing Entities per Citation Class

FIGURE 4.4: Telescopes by the Citation Class

A step towards the upcoming prediction problem would be to see the extracted
entities’ distribution with respect to the citation classes. Figure 4.4 displays the dis-
tribution of the 10 most frequent telescopes among different citation classes. The
analysis of this figure reveals that the presence of certain telescopes in astronomical
telegrams may be related to their citation rates. For instance, telegrams mentioning
the MASTER telescopes or Palomar (observatory) are generally not cited, with most
of them belonging to class 0. In contrast, reports mentioning the observations ob-
tained by AGILE (satellite) or FAST (Five-hundred-meter Aperture Spherical radio
Telescope) are mainly assigned to the highly-cited telegrams class. Figure 4.5 illus-
trates a similar pattern for the top 10 most frequent sources. Sources like the sun
(obviously), stars, or radio sources are likely to be generic and commonly observed,
which explains their high frequency. In contrast, black holes or neutron stars, being
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FIGURE 4.5: Sources by the Citation Class

more unique and rare in nature, are typically mentioned in the most cited telegrams,
highlighting their significance in astronomical observations. Indeed, in the case of
both telescopes and sources, there are entities that are mentioned equally across all
citation classes, reflecting a similar distribution as the citation classes themselves.

These findings suggest that a traditional machine learning algorithm, such as a
Random Forest Classifier (RFC) or LGMB, has the potential to differentiate the rel-
evance of telegrams by solely considering the extracted entities. The methodology
for predicting citations based on the extracted entities and their corresponding vec-
tor representations will be detailed in the Citation Prediction section.

4.3 Doc2Vec

The next approach we explored involved capturing the context of the entire tele-
gram body to predict its future informational value and analyze the patterns or their
absence in the context-citation relationship. As an appropriate technique, Doc2Vec
was chosen. This technique for generating vector representations of documents is an
extension of Word2Vec and is designed to capture the semantic meaning of an entire
document, as opposed to just individual words. This vector can then be used as an
input to machine learning algorithms of a choice.

Doc2Vec models learn from the context and patterns of the input text, and these
patterns can be easily corrupted by the presence of noise or irrelevant information.
In order to avoid this kind of situation, the telegram bodies were preprocessed and
normalised following standard practices such as stop-words removal, punctuation
and special characters removal, and lowercase casting.

The Doc2Vec algorithm of our choice is called Doc2VecC, described in “Effi-
cient vector representation for documents through corruption" Chen, 2017. It rep-
resents each document as a simple average of word embeddings, capturing the doc-
ument’s semantic meaning during the learning process. Doc2VecC includes a cor-
ruption model that favours informative or rare words while forcing common and
non-discriminative words to be close to zero. Due to its proven efficiency and relia-
bility, we employed this algorithm in our approach.

The implementation of Doc2VecC used in this project was obtained from Stan-
ford University’s GitHub repository (https://github.com/mchen24/iclr2017). This
implementation provides a range of settings and options for representation learning
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architectures, including the CBOW model and Skip-gram (Figure 4.1). We opted for
the CBOW model with most of the default settings but with a slight modification
to the CBOW window parameter. Instead of the default window size of 10, we in-
creased it to 15 to capture a wider range of surrounding context for each training
iteration. The document embeddings’ dimensionality was set to 256.

FIGURE 4.6: t-SNE projection of Document Vectors

FIGURE 4.7: UMAP projection of Document Vectors

Although our initial intention was to use doc2vec embeddings for the subse-
quent citation prediction task, we discovered some interesting insights by examin-
ing the 2D projections of the resulting vectors in relation to the target value. Of
course, in the ideal case scenario, we expected that the telegrams with high citation
rates tend to cluster together and be visually separatable from the low citation rate
clusters. The t-SNE projection in Figure 4.6 and the UMAP projection in Figure 4.7
reveal that there is no clear separability between the citation class clusters. Both vi-
sualizations indicate a lack of distinct and well-separated clusters corresponding to
different citation classes. However, it is worth noting that despite the absence of
clear separability, there is one noticeable cluster in both visualizations that mostly
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FIGURE 4.8: UMAP projection of the interesting DocVec cluster

contains telegrams labeled as "interesting" and a few "very interesting". This cluster
is located on the right side of Figure 4.7 and the left side of Figure 4.6, and can be
seen more closely in Figure 4.8.

Further analysis of the intriguing cluster reveals, that all of the telegrams in that
cluster belong to GCN info source, 94% of them are related to the GRB (Gamma-ray
burst) observations mainly made with the Swift telescopes (96%). More high-level
details can be seen in the WordCloud Figure 4.9. It is worth noting that the av-
erage citation rate for the telegrams in this cluster is 6.4, which is more than two
times higher than the global average of 2.9. This indicates that telegrams within this
cluster, which are predominantly focused on GRB observations with the Swift tele-
scopes, tend to receive a higher level of attention and citations within the astronom-
ical community. It is noteworthy that 71% of these posts belong to just four different
authors, indicating that certain authors may consistently receive more citations and
have a greater impact compared to others.

These insights emphasize the importance of considering the topic information
when predicting the citation rates of telegrams, as well as the importance of finding
a way to represent the authors as the feature. Subsequent experiments involving the
use of Doc2Vec embeddings, as well as their combination with other signals, will be
detailed in the Citation Prediction chapter.

4.4 Topics Extraction

In this research, the topic extraction model is needed to identify and extract the un-
derlying themes or subjects discussed in the astronomical telegrams. While we have
already obtained the complete document vector representations in the previous sec-
tion, we believe that extracting topics can be a great complement to the Feature Ex-
traction pipeline and serve two main purposes:

1. Feature Engineering: Topics can serve as informative features in machine learn-
ing models for predicting citation rates or other relevant outcomes. Addition-
ally, we can generate novel topic-based features, such as the citation rate of
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FIGURE 4.9: Intriguing Cluster’s WordCloud

related topics and the relative frequency of topics.

2. Interpretability: Topics provide a higher-level representation of the telegrams,
allowing researchers to interpret and analyze the content in a more meaningful
way. While their impact on the citation prediction problem may not surpass
that of the entire document embeddings, topics offer a concise summary of the
key themes and subjects discussed in the telegrams.

For this research, we aimed to explore various approaches for each step, and as
a result, we decided to integrate a Large Language Model into our methodology. In
line with the current trend, we selected the model offered by OpenAI for this pur-
pose. Given the uniqueness of astronomical data and the specific requirements of
our research, it was necessary to perform fine-tuning on the chosen OpenAI model.
OpenAI provides a wide range of options for both direct inference and fine-tuning,
allowing us to tailor the model to our specific needs and improve its performance
in the context of astronomical data analysis. Following OpenAI’s general recom-
mendations (and the budget limited by the author’s purse), we selected the ADA
(Adversarial Debiasing Augmentation) model as the most suitable option for our re-
search. ADA is known for its efficiency in fine-tuning and its cost-effectiveness dur-
ing inference. For instance, ADA’s fine-tuning cost per thousand tokens is $0.0004,
with a usage price of $0.0016 per thousand tokens while a more powerful Davinci
(GPT-3) model would cost $0.03 and $0.12 respectively, making it 18 times more ex-
pensive. These factors made the ADA model a practical choice for addressing topic
extraction tasks.

4.4.1 Annotations Preparation

Like any other model, ADA also requires labeled annotations for fine-tuning. In
order to fine-tune the model, we needed to provide it with prompts and their perfect
completion. The question arises: "Where do we get enough astronomical data with
tagged themes?". And once again we are lucky enough, as the ATel website already
has the built-in functionality that tags each of the newly added telegrams with a
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set of related topics. With a couple of additional parsing steps, we were able to
effortlessly obtain approximately 15,000 telegrams tagged with 54 different topics.

When it comes to the annotation prompt format, there are several strict require-
ments that need to be followed to ensure compatibility with the fine-tuning process.
The requirements for the annotation prompt format are generally independent of the
specific model and framework used for fine-tuning. One common requirement is
that each prompt should end with a specific set of characters, such as \n\n###\n\n.
This ending pattern helps in identifying and separating the prompts from the rest of
the text during the fine-tuning process. Another requirement is that all completions
should have the same set of characters at the end, such as ###. This consistent ending
allows for easy extraction and processing of the completed annotations. By follow-
ing these requirements, there is no need for additional prompt engineering, such as
explicitly instructing the model to extract the related topics. The annotations can be
straightforwardly generated by providing the text without any explicit instructions,
as long as the prompts and completions follow the specified format.

Following the recommended practices, we prepared 15000 annotations with tele-
gram bodies in prompt and ATel-generated tags in completion.

4.4.2 Fine-tuning

The documentation provided by OpenAI is comprehensive and helpful in under-
standing the fine-tuning process. Once we created the fine-tuned model, we submit-
ted it to the fine-tuning queue for processing. The cost for fine-tuning the model was
set at the affordable price of $9, considering the significant amount of data involved.
After approximately 8 hours, we were notified about the fine-tuning completion.

4.4.3 Inference and Analysis

After completing the fine-tuning process, we were able to utilize the model by send-
ing completion requests. The total cost of performing inference on approximately
30,000 GCNs, following the iterative approach described below, amounted to ap-
proximately $40. To assess the model’s performance, we first tested it on a subset
of the ATel training data, which consisted of approximately 5000 telegrams. The
completion process for each telegram took some time to generate the predicted top-
ics. We then evaluated the model’s performance by comparing the predicted topics
with the true labels (ATel tags) and measuring precision, recall, and F1 score. The
obtained metrics were as follows: precision of 63.1%, recall of 67.8%, and F1 score of
65.3%. Considering the affordable cost of the model and the domain-specific nature
of the data, we considered these metrics to be acceptable.

To run the process of predicting topics for all of the GCNs, we implemented
an asynchronous request-sending mechanism. Initially, sending synchronous re-
quests for each telegram took around 5 seconds, which would have been too time-
consuming for processing 33,000 telegrams. With the asynchronous implementation,
we were able to predict the topics for all telegrams in less than an hour. Fortunately,
OpenAI does not set any request limits for their ADA models, unlike more advanced
models such as Davinci or GPT3.5-turbo. Moving on to the investigation of the re-
sults, we found that the model was successful in identifying numerous previously
unlabeled topics. However, there was a downside to this as a significant portion of
these newly identified topics were unrelated to astronomy. Some of the topics were
also questionable, and it was necessary to consult a domain professional to validate
their relevance. Out of the numerous topics extracted by the model, around 10000 in
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total, a large portion of them appeared only once or twice and were not relevant to
astronomy. Only 766 topics were predicted more than twice. While there were some
promising new topics, we wanted to minimize the noise in the predictions. There-
fore, we decided to focus only on the 54 topics that were present in the ATel tags used
for labelling, calling them benchmark topics. This can be seen as a form of multi-
label topic classification, where we narrowed down the topics extraction to a specific
set of 54 relevant topics. To ensure that each telegram received at least two bench-
mark topics, we implemented an iterative process during the prediction phase. As
generative models have a random nature, approximately 10% of the GCNs initially
did not have any predicted topics that matched our new benchmark criteria.

After multiple iterations and data validation, we successfully predicted at least
two benchmark topics for each telegram in the dataset. Note that we were not re-
predicting the topics for ATels, as they were already there. With the extracted topics
in hand, we are now ready to perform data analysis to gain insights and formulate
theories based on the information seen.

FIGURE 4.10: Popular Topics by Citation Class

FIGURE 4.11: Less Popular Topics by Citation Class

In Figure 4.10, we observe the distribution of the most frequent topics in relation
to the citation classes. The pattern of this distribution is similar to the distribution we
observed for NER sources with respect to the citation classes, although with some
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minor differences. Upon closer examination, we can identify that certain topics such
as supernovae, gamma-rays, and variables (variable stars) are usually associated
with telegrams that receive fewer citations. These topics tend to be more common in
telegrams that are less cited overall. On the other hand, topics like binaries (binary
stars), neutron stars, and black holes are often associated with telegrams that receive
a higher number of citations. These topics appear to be more prevalent in telegrams
that are cited more frequently. Figure 4.11 presents the distribution of less frequent
topics in relation to the citation classes. Ironically, we observe that certain topics,
such as "potentially hazardous asteroid" and "meteor," tend to have a lower citation
rate despite their possible importance. This observation challenges the human intu-
ition that topics related to potentially hazardous events or celestial phenomena like
meteors would naturally receive more citations.

In Figure 4.12, the plot demonstrates the temporal aspect of topics citation, re-
vealing shifts and trends in astronomers’ interests over time. Although we don’t
possess enough knowledge to make definitive conclusions about the topics shown,
this observation itself suggests that incorporating temporal information into future
topics-based features such as the recent citation rate of topics relative to the global
rate, could help to capture the evolving nature of community interests.

FIGURE 4.12: Most Cited Topics by Year

FIGURE 4.13: Topics Relative Frequency vs Citation Rate



4.5. Feature Engineering 23

Finally, in order to gain a better understanding of the relationship between topic
frequency and telegram citation rate, we introduced topic weights calculated as fol-
lows:

Topic Weight =
1

Num of Obseravtions with this Topic
∗ Total Num of Observations

Num of Unique Topics

By incorporating these topic weights, we can visualize a scatterplot (Figure 4.13)
to examine a correlation (or better say, the absence of it) between the rarity of a topic
and the average citation rate of telegrams related to that topic. As no correlation
can be observed between the rarity of a topic and the average citation rate of tele-
grams, we can conclude that the relative rarity of a topic alone does not guarantee
a high citation rate. This suggests that other factors and signals are likely at play in
determining the citation rates of telegrams.

With all the information discussed so far, we will move to the final section of
this chapter, and leave the exploration of using topics for predicting citations for the
future paper chapter.

4.5 Feature Engineering

In the previous sections, we discussed our approaches for extracting and represent-
ing text information from telegrams. We encountered various challenges along the
way and gained valuable insights from our analysis. We employed several machine-
learning techniques to represent the telegrams’ content and underlying information.
Moving forward, we will now focus on engineering the features that capture ad-
ditional information beyond the direct context of the telegrams. These features,
commonly referred to as meta-features, provide complementary insights that can
enhance our prediction task.

4.5.1 General Features

We will begin with a couple of generic high-level features, that still can have their
use cases:

• re f s_count - represents the count of references and citations to other posts in-
cluded in the telegram body. A higher value suggests that the post is more
comprehensive and supported by a significant amount of evidence from exter-
nal sources. It is also possible that some authors may not ignore or overlook
someone who has referenced them previously, hence the telegram with more
citations more likely will be highly cited.

• telegram_len - the char length of the telegram body. The longer length might
indicate more substantial observations. On the other hand, longer telegrams
can be more challenging to read and comprehend.

• month - the number of the month when observations took place. Regarding the
data analysis we made before, some months (June, October) get more citations
than others (December, July) due to the changing weather conditions or the
Earth’s positioning in space.

Continuing with the features that emphasize the time-series nature of the tele-
grams and can help to track the short- and long-term trends in astronomers’ activity.
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These features are computed based on the information available at the time of new
telegram publication, without taking into account any future information. In other
words, the feature values are determined solely based on the data that was already
available up to that point in time.

Note: In the future context, when we refer to "month," we mean the period of the
past 30 days leading up to the current moment. Similarly, when we mention "year,"
we are referring to the period of the past 365 days leading up to the current moment.

4.5.2 General Trend Features

• month_citation_rate_to_global_ratio - the average number of citations this month
divided by the global average number of citations. Reflects the relative interest
in recent posts. A higher value of this metric (above 1) suggests an increased
level of interest in the posts made during the current month compared to the
overall average citation rate. It might indicate the general increase in interest in
the ATEL resource or a month that is more suitable for all sorts of observations.

• year_citation_rate_to_global_ratio - calculated as the average number of cita-
tions during the current year period divided by the global average number of
citations. A higher value of this metric (above 1) suggests a growing level of
interest in posts made thru the current year.

4.5.3 Author-based features

• author_all_time_citation_rate_to_global_ratio - calculated as the average num-
ber of citations received by this author(s)’ all previous publications divided by
the global average number of citations. A value greater than 1 indicates that
the author may be relatively more popular or well-known compared to other
authors. For instance, we observed this metric to be noticeably higher for the
authors with NASA credentials.

• author_year_citation_rate_to_global_ratio - calculated as the average number
of citations received by the author’s posts during the current year and divid-
ing it by the global average number of citations during the same period. This
might indicate the growing interest in the author’s posts during the previous
year. For example, it could reflect a situation where a well-known observatory
has acquired a new, more powerful telescope, leading to greater potential for
significant discoveries.

• author_month_citation_rate_to_global_ratio - calculated as the average num-
ber of citations received by the author’s posts during the current month and
dividing it by the global average number of citations during the same period.
Probably will help to catch the short-term trends in the author’s popularity (if
any).

• author_activity_ f rac_year- the ratio of the number of posts by the author dur-
ing the current year to the total number of posts by this author. A lower value
(minimum of 0) indicates that this is the author’s first post in the current year,
suggesting limited activity. A higher value (maximum of 1) indicates that all
of the author’s activity occurred in the current year, suggesting that the author
may be relatively new to the field or have a focused presence within a specific
time frame.
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• author_activity_ f rac_month - the ratio of the number of posts by the author
during the current month to the total number of posts by this author. Same as
the feature mentioned above but for the month time period.

4.5.4 Topics-based features

An important detail to note about the topics-based features is that they were calcu-
lated taking into account the varying number of topics extracted from the telegrams.
To ensure comparability, the average citation rate for each topic was calculated rel-
ative to the number of topics present in the telegram. This means that the topic
citation rates of telegrams with two identified topics and those with ten identified
topics were placed on the same scale, allowing for fair comparisons across different
telegram-topics compositions.

• topics_all_time_citation_rate_to_global_ratio - computed as the average num-
ber of citations received by all previous publications that share the same top-
ics as the current one, divided by the global average number of citations. A
value greater than 1 suggests that these specific topics, in combination, have a
higher level of interest and citation compared to other topics. It indicates that
publications within these topics tend to receive more attention and citations in
general.

• topics_year_citation_rate_to_global_ratio - computed as the average number
of citations received by previous publications posted this year that share the
same topics as the current one, divided by this year’s global average number
of citations. A value greater than 1 suggests that these specific topics have
a higher level of interest during the current year than the other topics. This
feature can be particularly useful in cases such as the discovery of gravitational
waves, where specific topics gain significant attention and engagement from
the scientific community over a period of years.

• topics_month_citation_rate_to_global_ratio - computed as the average number
of citations received by previous publications posted this month that share the
same topics as the current one, divided by this month’s global average number
of citations. A value greater than 1 suggests that these specific topics have a
higher level of interest during the current month than the other topics. May be
related to the better visibility of the specific cosmos objects during this month.

• topics_activity_ f rac_year - the ratio of the number of posts with the same top-
ics during the current year to the total number of posts with these topics. A
lower value (minimum of 0) indicates that these topics are not being actively
discussed this year. A higher value (maximum of 1) indicates that most of
these topics’ related posts occurred in the current year, suggesting that these
topics might either be more common for a specific time frame or they are get-
ting more popular recently.

• topics_activity_ f rac_month - same as the feature mentioned above but for the
month time period.

• topics_weight_coe f _all_time - the weight coefficient of the topics which takes
into consideration their frequency during the whole time. For each topic, we
calculate its relative importance (weight) as described in 4.4.3. By applying
weights to the citation rates of the topics, we can highlight the less frequent
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topics by normalizing their citation rates based on their respective weights.
For example, topics such as "transient" or "optical" are commonly observed in
many posts and therefore have weights of 0.1 and 0.2, while the topic "meteor"
is rare and has a weight of 400. The overall weight coefficient is calculated
by dividing the raw citations by the weighted citations. A higher value indi-
cates the presence of rare topics. While the weights calculated for the features
did not exhibit a direct correlation with the target values (as shown in Figure
4.13), it is still possible that their combination with other features could have
an impact on the prediction task.

• topics_weight_coe f _year - same as above, but computed in a year timeframe.

• topics_weight_coe f _month - same as above, but computed in a month time-
frame.

4.5.5 Features Analysis

FIGURE 4.14: Features Correlation Heatmap

We investigated the correlation between features and the target variable by cre-
ating a heatmap, as depicted in Figure 4.14. To ensure that only features with at least
a potential weak correlation were considered, we set a minimum threshold of 0.2.
Analysis revealed that the re f s_count feature has the strongest correlation of 0.44.
This finding provides evidence to support the idea that when authors reference a
greater number of telegrams in their own publications, it increases the likelihood
of their telegrams being cited by others. In addition to that, we can also observe
a moderate correlation between the citation rate and some of the author-based fea-
tures. This finding provides further evidence that certain authors may have better
reputations or access to more resources, such as powerful telescopes, which could
contribute to their ability to make significant observations. And finally, the weak-
est out of the strongest, a few of the topics-based features also show an interesting
behaviour identifying the predictable trend in a topics-citation relationship.
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FIGURE 4.15: Telegram Length Boxplot

When examining the temporal boxplots of telegram length as shown in Figure
4.15, several untrivial observations come to light. One notable trend is the substan-
tial increase in the average and median length of telegrams in recent years. Addition-
ally, there is a notable increase in the number of telegrams that exceed 10000 char-
acters, indicating a higher frequency of exceptionally long telegrams. These find-
ings suggest a potential shift towards more extensive and detailed communication
among astronomers over time. Or maybe the astronomers became using language
models, such as Chat-GPT, to generate more refined and competitive observations.
However, as any correlation between the telegram citation rate and length was not
spotted, the notable influence of this feature on the citation prediction problem is
doubtful.

Other observations that contribute to our understanding of the data can be drawn
from the analysis of the authors’ data. On average, authors generated 16.15 tele-
grams, with some authors producing hundreds of messages. The University of Le-
icester holds the record for the highest number of telegrams generated, with a maxi-
mum of 1757. Interestingly, the majority (76%) of productive authors, in terms of the
number of telegrams, do not have the highest citation rates. Among the top 10 most
productive authors, only two of them have a citation rate to the global average ra-
tio (defined above as author_all_time_citation_rate_to_global_ratio) higher than the
average ratio of 0.92. These authors are affiliated with the NASA credentials (milky-
way.gsfc.nasa.gov) and David Palmer’s group from the Los Alamos National Labo-
ratory (palmer@lanl.gov), with citation rate to global average ratios of 1.96 and 2.40,
respectively. Among the 100 most generative authors, 24 of them have an all-time
citation rate above the average, while the entire group of the top 100 authors has an
average citation value of 0.82, which is lower than the global average. This suggests
that many large scientific astronomy groups, such as universities and observatories,
often report routine observations rather than focusing solely on significant discov-
eries.

Surprisingly, a significant number of the most cited authors with a citation rate
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to the global ratio of 10 and above (as investigated in the group of the top 100 most
cited ones) have only a small number of posts, usually 2 or 3. These highly cited
authors do not necessarily belong to specific scientific groups, and their credentials
vary from universities to personal affiliations. This finding suggests that relying on
author-based trend features may not be effective in identifying significant discover-
ies made by relatively new authors. And once again, it highlights the importance of
focusing on the content of the telegram itself when determining the significance of
the observations.

With all the information we have extracted and the features we have created in
this chapter, we will now proceed to predict the citation rates of telegrams.
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Chapter 5

Citation Prediction

5.1 Data Preparation

In order to utilize some of the extracted features, named entities and topics, in ma-
chine learning algorithms, we needed to convert them into a suitable vector form.
To accomplish this, we employed multiple algorithms that are specifically designed
for feature representation and transformation. In a previous chapter, we introduced
the first approach called word2vec for generating word embeddings. We employed
Floret and trained two versions of word embeddings, one with a dimensionality of
128 and another with a dimensionality of 256. These embeddings are now ready
to be tested and incorporated into our models. Additionally, we utilized an algo-
rithm known as Bag-of-Words as an alternative approach. This algorithm allows
us to compare its performance with word embeddings in terms of computational
efficiency and the range of achievable metrics.

When encoding named entities using the Floret embeddings, we followed a spe-
cific approach. First, we encoded the telescopes and sources separately, taking into
account any duplicates and averaging the vectors if there were multiple instances
of the entity (e.g. multiple telescopes found in the telegram). Next, we created a
final feature vector by stacking the encoded telescope and source vectors together.
The size of this feature vector was determined by the dimensionality of the Floret
embeddings, which was either 256 or 512 depending on the chosen embedding size
(128 or 256). In cases where there were missing values for telescopes or sources, we
handled them by replacing the absent values with specific placeholders. For missing
telescopes, the placeholder used was "no telescope found," and for missing sources,
the placeholder used was "no source found." This ensured that all missing telescopes
had the same vector representation and all missing sources had the same vector rep-
resentation, allowing for consistent handling of missing data in our feature encoding
process.

For encoding the topics vector using the Floret embeddings, we followed a simi-
lar approach as with the named entities. Each topic was encoded individually using
the Floret embeddings and their encoded vectors were averaged to obtain a repre-
sentative vector.

To incorporate the Bag-of-Words approach, we transformed our entities (both
named entities and topics) into a single-string representation. For example, telescope
entities such as ["MOST", "Adolphson Observatory", "Atlas"] were transformed into
the string "MOST Adolphson Observatory Atlas". With the Bag-of-Words approach,
the transformed entity strings were further processed to create a vector represen-
tation. Each column of the resulting vector corresponded to a unique word in the
dataset. Indeed, in the case of the named entities, the Bag-of-Word approach was ap-
plied to telescopes and sources separately, so that these entities and sources had their
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own dictionaries of unique words. The corresponding BOW vectors were stacked af-
ter that.

Entity type Method Vector Size

Named Entities Floret 256 512
Named Entities Floret 128 256
Named Entities BOW 2112
Topics Floret 128 128
Topics BOW 74

TABLE 5.1: Created Vector Representations of the Extracted Entities

The table 5.1 shows all of the created representations of both extracted named
entities and extracted topics.

After brief experiments, we evaluated the performance and computational effi-
ciency of the created representations using two main criteria: the average fold fit
time using cross-validation and the learning capacity measured by the test score
on an overfitted model with the same parameters. Based on these evaluations, we
determined that the Floret 128 representation provided the best trade-off between
computational efficiency and performance for both named entity recognition (NER)
predictions and topics extraction. Therefore, the final vector size for NER predictions
is 256, while for topics extraction it is 128.

FIGURE 5.1: Assembled Data Schema

As the other features, namely document vectors and hand-crafted features are
already in a form suitable for the prediction task, you can see a scheme of the final
(later in text referenced as assembled) version of the training data in Figure 5.1. This
scheme represents the dataset that is a culmination of the feature extraction process
and is now ready to be utilized for citation prediction.

5.2 Experiments Setup

Before we dive into the experiments and their results, it is important to establish a
set of clear rules that were followed throughout these experiments and will help to
understand the results obtained.
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1. In addition to our primary goal of achieving separability between interesting
and not interesting telegrams for the classification problem, we will also ex-
plore the regression problem of predicting the exact number of citations. This
approach will provide insights into our capabilities in this direction and can
potentially be integrated into a stacking or blending solution to enhance the
overall predictive power.

2. The prediction results obtained on a subset of the data will be referred to cor-
respondingly. For example, we will have "docvec-based" results, "ner-based"
results, "features-based" results, etc. On the other hand, the results obtained
on the entire assembled dataset (as depicted in Figure 5.1) will be referred to
as "assembled" results.

3. The results of the classification models will be referred to as "class" results,
while the results of the regression models will be referred to as "reg" results.
Indeed, the regression target variable is the future exact amount of citations.

4. The experiments conducted for binary classification and three-class classifica-
tion tasks will be referred to as "binary" and "multiclass" experiments, respec-
tively.

5. The random seed was fixed and remained the same on each preprocessing and
training step involved.

6. Regarding the classification experiments:

(a) To address the issue of imbalanced class label distribution, stratification
was applied during the Train/Test/Val split and K-Fold split to ensure a
representative distribution of classes in each subset.

(b) Multiple imbalanced classification techniques were employed and com-
pared on baseline models. These techniques included resampling, class
weighting, and specific parameter adjustments. The best-performing tech-
nique was selected and applied during the final tuning step in each sub-
sequent model iteration. This additional step will be indicated in the ex-
periments table in the corresponding column.

(c) To account for the imbalanced nature of the data, the chosen classifica-
tion metric is the balanced accuracy (also known as weighted accuracy),
which considers the class distribution and gives more weight to the mi-
nority classes. However, for the sake of brevity in the paper, it will be
referred to as simple accuracy.

7. Regarding the regression experiments:

(a) In order to handle extremely cited telegrams and mitigate the potential
noise they introduce, we occasionally employ a technique where we limit
the upper 2.5% percentile of target values. This means that any citations
above a threshold of 20 citations are capped at that threshold. If this ap-
proach leads to an improvement in the test metrics, it will be indicated in
the experiments table.

(b) The metric of our choice for this regression task is Mean Absolute Error
(MAE). This metric is the most intuitive to interpret, as it directly shows
in how many future citations we are mistaking on average.
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8. We consistently removed the first 1000 observations, which corresponded to
the years 1997 and 1998. During this period, the resources were not widely
used, and meaningful trends could not be identified. Similarly, we excluded
the most recent 100 observations, as these telegrams might not have received
their citations yet, which could potentially mislead the model.

5.3 Experiments

For each of the subsets of data and the prediction problems mentioned (binary and
multi-class classification, and regression), we employed several machine learning
algorithms, including Random Forest, LGBM, and neural network (NN) models
based on Keras. In the experiment results, we only report the performance of the
best-performing tuned models for each of these experiments. The best results will
be highlighted with bold text, the different prediction tasks will are grouped and
separated by the double line.

Based on the results presented in Table 5.2, the assembled dataset performed the
best among the different subsets of data. Furthermore, the examination of feature
importances using the best performing multi-class setup (Figure 5.2) revealed that
the document vector representation was the most important feature. This suggests
that the information captured in the document vectors played a significant role in
the prediction task. On the other hand, the topics vector was found to be the least
important among the extracted feature vectors, indicating that the topics informa-
tion was already partially captured in the document vectors.

FIGURE 5.2: Feature Importances

Regarding the hand-crafted features, the reference count was identified as the
most impactful feature. This finding supports the idea that the more telegrams an
author references, the more likely they are to be referenced by others. Addition-
ally, some of the author-based and topics-based features showed importance, which
aligns with the observation of their weak correlation with the target variable and the
idea of the presence of specific trends in the astronomers community.

5.4 Final Shot

Our goal was to maximize the separability between the interesting and uninterest-
ing telegrams, ultimately aiming to improve the existing binary classification metric.
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Specifically, we aimed to surpass an accuracy threshold of 80%, which is regarded
as an acceptable metric in this context. We decided to further involve the Model
Stacking technique (Figure 5.3). Model stacking is a technique used to enhance
the predictions of machine learning models by combining their outputs and feed-
ing them as input to another machine learning model known as a meta-learner. This
approach leverages the diversity and strengths of multiple base models to improve
overall prediction performance.

FIGURE 5.3: Model Stacking. Image from the internet.

To implement the model stacking approach, we have selected the following mod-
els:

• LGBM regression model

• Keras NN regression model

• LGBM multiclass model

• Keras NN multiclass model

• KKN multiclass model. As you could note, the KKN multiclass model was not
listed in the previous experiments because it had much worse metrics com-
pared to the other models. However, since model stacking considers different
prediction principles and aims to find interesting patterns in the predictions,
the KKN model could still have an impact on the stacking process due to its
distance-based algorithm. Further analysis of the meta-model’s feature impor-
tances supports this assumption.

The training data used for model stacking was the assembled dataset. This
dataset was split into a training set and a holdout set. The holdout set predictions
from the base models are then used to further train the meta-model, following the
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principles of model stacking (Figure 5.3). The test subset used for evaluation is the
same as the one used in the previous experiments section.

For the model stacking approach, we have chosen the LGBM Classifier as the
meta-model. The task is binary classification, and we trained and fine-tuned the
classifier using the holdout set predictions from the base models. The final evalua-
tion was performed on the test set. The stacking approach proved to be beneficial,
as it helped us achieve an accuracy of 83.3%, which is an improvement of more than
5% compared to the previous best binary classification result.

The final classification report, shown in Table 5.3, provides an overview of the
model’s performance. The achieved recall for class 1 suggests that we are able to
identify 84% of the interesting telegrams, although this comes at the expense of pre-
cision for this class. On the other hand, the high precision for class 0 indicates that
we are very accurate at identifying telegrams that are not interesting.

Overall, the performance of the model indicates that we have successfully ex-
tracted enough information from the telegrams to achieve a satisfactory level of sep-
aration between highly cited (interesting) and not interesting telegrams.
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Task Algorithm Add. Techniques Test Metric

DocVec-
based binary
class

LBGM Classifier oversampling 75.7 accuracy

NER-based
binary

LBGM Classifier "balanced" class_weight 68.4 accuracy

Topics-
based binary

LBGM Classifier "balanced" class_weight 67.2 accuracy

Assembled
binary

LBGM Classifier "balanced"
class_weight

79.4 accuracy

DocVec-
based multi-
class

LBGM Classifier oversampling 65.3 accuracy

DocVec-
based multi-
class

Keras NN adding custom class
weights

63.5 accuracy

NER-based
multiclass

LBGM Classifier "balanced" class_weight 57.4 accuracy

Topics-
based multi-
class

LBGM Classifier "balanced" class_weight 58.4 accuracy

Features-
based multi-
class

LBGM Classifier oversampling 64.3 accuracy

Assembled
multiclass

LBGM Classifier "balanced"
class_weight

68.7 accuracy

Assembled
multiclass

Keras NN adding custom class
weights

66.7 accuracy

DocVec-
based reg

LBGM Regressor capping at upper 2.5%ile 2.87 MAE

DocVec-
based reg

Keras none 2.24 MAE

NER-based
reg

LGBM Regressor capping at upper 2.5%ile 2.82 MAE

Topics-
based reg

LGBM Regressor capping at upper 2.5%ile 2.88 MAE

Features-
based reg

LBGM Regressor capping at upper 2.5%ile 2.51 MAE

Assembled
reg

LBGM Regressor capping at upper 2.5%ile 2.13 MAE

Assembled
reg

NN Keras none 2.0 MAE

TABLE 5.2: Experiments
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Class Precision Recall

0 94 82
1 60 84

TABLE 5.3: Final Binary Classification Report. Balanced Accuracy
achieved: 83.3
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Chapter 6

Conclusions and Future Work

6.1 Conclusions on the Results

Throughout this research, we significantly replenished the vocabulary of astronom-
ical terms and achieved the following results as stated in the Introduction Goals:

1. During our research, we collected and prepared a custom dataset consisting of
observations from two of the most popular astronomer message sources - ATel
and GCN. This dataset comprises a total of 48,000 observations. The data col-
lection process involved parsing the relevant information from these sources
and ensuring the dataset’s quality and data format consistency for further anal-
ysis and modelling. Additionally, we developed functionality that allows for
easy maintenance and updating of the dataset. This functionality enables the
population of the dataset with new observations from the chosen source by
taking the last populated telegram number, the desired number of telegrams
to fetch, and produces an updated dataset as output.

2. We incorporated multiple advanced machine learning algorithms to extract
and represent the information from the data. This included the development
of the following:

(a) Combined Named Entity Recognition (NER) model: This model was built
using a combination of a Spacy-based Neural Network and a set of reg-
ular expressions. It is capable of identifying and extracting information
about more than a thousand unique telescopes and over five thousand
different cosmic objects referenced as sources in the telegrams.

(b) Topic Extraction model: This model based on the OpenAI cheapest ADA
model was designed to extract topics from the telegrams and was capable
of determining numerous topics. However, it is recommended to limit the
number of topics to a benchmark of 54 for better performance. This model
served as a valuable complement to GCNs analysis, as the GCN resource
did not have built-in topic detection functionality or corresponding text
fields.

(c) Astronomy Text Representation Models: a Word2Vec Floret-based model
that utilizes BLOOM embeddings and the CBOW Word2Vec algorithm,
and a Doc2Vec model based on the Doc2VecC algorithm. Both of these
text representation models were crucial in the citation prediction tasks,
as they provided meaningful and context-aware representations of this
domain-specific text data.

(d) We have created a comprehensive set of engineered features to capture
the temporal nature of the astronomy telegrams and their meta-context.
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These features include various temporal features and contextual features
that provide valuable information for analysis and prediction.

3. We conducted an extensive analysis of the insights gained from each of the
abovementioned parts. This analysis helped us gain a better understanding of
the data and identify areas for improvement in future.

4. Finally, we developed a machine learning stacking solution that achieved an
acceptable balanced accuracy of 83.3%, allowing us to effectively separate in-
teresting and not interesting telegrams. This indicates that the features and the
extracted information we utilized were valuable and contributed to the suc-
cess of the citation prediction task. The final precision and recall metrics of
our model align with the needs of potential end-users. With a precision of
94%, our model can accurately identify telegrams that are not interesting, sav-
ing time and effort in manually reviewing them. Additionally, with a recall of
84% on interesting telegrams, our model is effective at highlighting potentially
significant observations. These metrics demonstrate the practical utility of our
model in assisting astronomers in quickly filtering and identifying relevant in-
formation from a large volume of telegrams.

All the notebooks and related code with the described experiments can be found in
the following GitHub repository: https://github.com/tamara-is-home/astro-diploma-nlp

6.2 Future Work

Future work in this direction could involve the following aspects:

• Continuous data updating and model retraining: As new telegrams are gener-
ated over time, it is essential to continuously update the dataset and retrain the
model to ensure its relevance and accuracy. Developing automated pipelines
using different scheduling solutions (for example an Airflow) to fetch and in-
tegrate new observations into the dataset can help keep the model up to date.
Also providing astronomers with automated batch predictions via email with
the newly appeared telegrams that are likely to be worth their attention can be
a valuable feature. It can even have a paid subscription.

• Incorporating more advanced NLP techniques: While we have employed tech-
niques such as named entity recognition and topic extraction, there are other
advanced NLP methods that could be explored. This includes using deep
learning models like Transformer-based architectures (e.g., BERT) and more
advanced LLMs (e.g., GPT-4). Although performing a thorough comparison
of different methods for each part of the project could be a standalone paper, it
would be valuable to further evaluate and compare the existing approaches in
the field in order to leverage the quality of the extracted information.

• Enhancing model interpretability: Even though we have achieved acceptable
accuracy and performance, it is crucial to understand the reasons behind the
model’s predictions. While we already have techniques in place to extract in-
teresting entities such as the telescope and source names, as well as topics, it
would be beneficial to further enhance the interpretability of the models by
transforming existing features. For example, we can convert features such as
the relative popularity of authors or the rarity of topics into a score represen-
tation (1 - 10) and utilize those scores during the predictions’ interpretations.
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• Telegram Interest Prediction: Our research focused on using the citation rate
of telegrams as an indicator of their informational value. However, it is im-
portant to acknowledge that there probably are alternative approaches to pre-
dicting the significance of telegram observations. By leveraging multiple ad-
vanced ML techniques, it is possible to measure the relevance and impact of
the observed phenomena or events mentioned in the telegrams in completely
another way, and who knows, maybe those ways produce many potent re-
sults...

Overall, further research and development in automated telegram analysis and
knowledge extraction can have a significant impact on the field of astronomy. By uti-
lizing advanced techniques in natural language processing, machine learning, and
data analysis, it is possible to change the way astronomers approach their research
and accelerate scientific discoveries, bringing humanity closer to the great unknown.
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Appendix A

NER Examples

Example 1: The 2-m Liverpool Telescope (TELESCOPE) robotically followed up
GRB110402 ( SWIFT (TELESCOPE) trigger 450545; Ukwatta et al. GCN 11857) 14.85
min after the GRB (SOURCE) trigger time. We identify a faint source detected within
the XRT error circle in R, i’ and z’ band images. Fading is yet to be confirmed. This
message may be cited.

Example 2: Comparison of R band images of the error box of GRB 980425 (SOURCE)
(Soffitta et al. 1998; IAUC 6884) taken at the ESO NTT telescope on April 28.37 UT
(900s) and May 1.33 UT (900s) shows no variation 0.3 mag down to 22.8 mag at
the location of the transient BeppoSAX (TELESCOPE) NFI X-ray source (SOURCE)
1SAXJ1935.3-5252 (Pian et al. 1998; GCN #61). This message is citeable.

Example 3: Monitoring of the time-variable radio source (SOURCE) (GCN 63, IAUC
6896, GCN 70) coincident with a supernova (SOURCE) candidate proposed by Galama
et al. (GCN 60, IAUC 6895) has continued with the Australia Telescope Compact
Array (TELESCOPE) at 20, 13, 6 and 3 cm. The radio source (SOURCE) may have
reached a peak on May 7 1998 at 6 and 3 cm of 45 and 49 mJy, respectively.

Example 4: M. Williams (PSU) reports on behalf of the Swift (TELESCOPE) Team:
Swift (TELESCOPE) resumed observations of GRB 221009A (SOURCE) on February
7 at 00:51 UTC after the end of Sun (SOURCE) constraint, 10 Ms after the Fermi
(TELESCOPE) /GBM trigger (Veres et al., GCN Circ. 32636). Further observations
are planned for this weekend.

Example 5: We observed the BeppoSAX (TELESCOPE) MECS error circle of GRB
(SOURCE) /XRF 020427 (GCN 1386) at 8.7 GHz with the Australia Telescope Com-
pact Array (TELESCOPE) (ATCA) for 6.2 hours centered on May 11.8 UT. We de-
tect one radio source (SOURCE) within the MECS error circle with a flux density of
190+/-35 microJy. We find no counterparts to the three Chandra sources reported by
D. Fox (GCN 1387), down to a 2-sigma limit of 70 microJy.

Example 6: Following the detection of SGR (SOURCE) -like behaviour from the
anomalous x-ray pulsar (SOURCE) 1E 2259+586 by RXTE (TELESCOPE) (GCN#1432),
we have observed the field with the auxiliary port camera at the 4.2-m William Her-
schel Telescope (TELESCOPE) at La Palma on June 20, 02:53-03:35 UT. We do not
find optical emission within the Chandra 0.6" radius error circle (Hulleman et al.
2001, ApJ 563, L49) down to limiting magnitudes of R = 24.8 and I = 20.0.
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