
UKRAINIAN CATHOLIC UNIVERSITY

MASTER THESIS

Text-Guided 3D Synthesis with Latent
Diffusion Models

Author:
Danylo KOVALENKO

Supervisor:
Oles PETRIV

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science

in the

Department of Computer Sciences
Faculty of Applied Sciences

Lviv 2023

http://www.ucu.edu.ua
http://researchgroup.university.com
http://department.university.com

ii

Declaration of Authorship
I, Danylo KOVALENKO, declare that this thesis titled, “Text-Guided 3D Synthesis
with Latent Diffusion Models” and the work presented in it are my own. I confirm
that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

iii

UKRAINIAN CATHOLIC UNIVERSITY

Faculty of Applied Sciences

Master of Science

Text-Guided 3D Synthesis with Latent Diffusion Models

by Danylo KOVALENKO

Abstract

The emergence of diffusion models has greatly impacted the field of deep generative
models, establishing them as a powerful family of models with unparalleled perfor-
mance in various applications such as text-to-image, image-to-image, and text-to-
audio tasks. In this work, we aim to propose a solution for text-guided 3D synthesis
using denoising diffusion probabilistic models, while minimizing the memory and
computational requirements. Our goal is to achieve high-quality and high-fidelity
3D object generation conditioned by text or a label in a number of seconds. We pro-
pose to use a triplane space parametrization in combination with a Latent Diffusion
Model (LDM) to generate smooth and coherent geometry. The LDM is trained on
the large-scale text-3d dataset and is used as a latent triplane texture generator. By
using a triplane space parametrization, we aim to improve the efficiency of the space
representation and reduce the computational cost of synthesis. We will also give a
theoretical justification that this kind of parametrization of 3d space is capable of
containing not only information about the geometry but also about the color and
reflectivity of the figure. Additionally, we use an implicit neural renderer to decode
geometry details from triplane textures.

HTTP://WWW.UCU.EDU.UA
http://department.university.com

iv

Contents

Declaration of Authorship ii

Abstract iii

1 Introduction 1

2 Related Work 4
2.1 Diffusion models. 4
2.2 Diffusion Models in 3D Generation . 4
2.3 Leading-edge 3D Scene Representation. 6

3 The Proposed Method 7
3.1 Compressed 3D Representation . 8

Optimization . 9
Limitations and Considerations 10

3.2 Generative Approach . 10
3.2.1 Triplane Compression: VAE . 10

Overview of Variational AutoEncoders 10
Training the VAE . 11

3.2.2 Latent Diffusion Model . 11
Theoretical Background . 12
Mathematical Formulation . 12
Benefits and Limitations . 13

4 Training Data 14
4.1 ShapeNet . 14
4.2 Objaverse . 15

5 Experiments and Implementation Details 17
5.1 Implementation Details . 17

5.1.1 Data Preprocessing . 17
5.1.2 Training Process . 17
5.1.3 Evaluation Metrics . 19

5.2 Experiments . 19
5.2.1 Triplane Space Parametrization 20

3D Scene Overfitting . 20
Pointcloud-to-triplane encoding 22

5.2.2 Training of the Variational Autoencoder and Diffusion Model . 22
5.2.3 Results . 24

6 Conclusions 27
6.1 Contribution . 27
6.2 Future Steps . 27

v

Bibliography 29

vi

List of Figures

3.1 This illustration shows the full pipeline of projecting a point onto
three orthogonal planes, sampling features and their aggregation, and
then decoding the resulting features into an SDF values using a lightweight
neural network. 8

3.2 The authors of "TensoRF: Tensorial Radiance Fields"[Chen et al., 2022a]
work showed that their 3D scene parameterization is capable of pre-
serving the scene’s high frequency features while keeping the number
of parameters required to decode the entire scene small. 9

3.3 The authors of "High-Resolution Image Synthesis with Latent Diffu-
sion Models"[Rombach et al., 2021] demonstrated the architecture of
their model, showing two important components: a variational au-
toencoder and a generative model. We plan to use LDM as a triplane
texture generator and this is the second component in our text-to-3d
pipeline. 11

3.4 The authors of "Diffusion Models: A Comprehensive Survey of Meth-
ods and Applications"[Yang et al., 2022] work proposed a visualiza-
tion of how diffusion models iteratively inject noise into data during
the forward path, and then learn the reverse process. This visualiza-
tion helps to understand how diffusion models work and how they
can be used to generate new data that is similar to the original data. . . 12

4.1 The authors of the work "ShapeNet: An Information-Rich 3D Model
Repository" [Chang et al., 2015] provided an example of what the ob-
jects of their dataset look like. 14

4.2 The authors of the work "ShapeNet: An Information-Rich 3D Model
Repository" [Chang et al., 2015] provided statistics on the number of
objects for each category from their complete dataset. 15

4.3 The authors of "Objaverse: A Universe of Annotated 3D Objects" [Deitke
et al., 2022] showed a comparison of their dataset with popular 3D
datasets. 16

4.4 The authors of "Objaverse: A Universe of Annotated 3D Objects"[Deitke
et al., 2022] showed a sample of metadata for each item in OBJAVERSE
includes a 3D model, a rendered thumbnail image chosen by the user,
a title, a description, tags, a category, statistics, and other supplemen-
tary information. 16

vii

5.1 The illustration herein exhibits an instance of an unrolled texture map-
ping. For every distinct mesh within the structure, a correspond-
ingly analogous texture is generated through training, which essen-
tially encapsulates pertinent data pertaining to the tri-dimensional
representation of the underlying geometry. Furthermore, these tri-
dimensional texture mappings possess the capability to encapsulate
additional information parameters, including albedo and surface nor-
mals. 18

5.2 This figure shows the loss charts of different experiments. Chamfer
loss was used as a metric. In more detail: the most optimal model
is a four-layer MLP, with a skip-connection block in the hidden layer,
which has 128 hidden size, as well as with frequency encoding of the
input features. 21

5.3 In this image, you can see two unwrapped triple textures. Above
is a ground truth texture obtained from a random object from the
ShapeNetCore dataset. Below is a reconstruction. As you can see,
they are quite difficult to distinguish. 23

5.4 Convergence of total loss during the training of the VAE. 23
5.5 An example of how our model generates 3D figures in an uncondi-

tional manner. 24
5.6 This is an image of one plane out of three, where the batch size is

4. Here you can see how the model starts generation from a Gaus-
sian distribution and sequentially reaches recognizable patterns of 3d
shapes. This model is still converging and the results are not final. . . . 25

5.7 Convergence of total loss during the training of the diffusion model.
The model was trained on the Objaverse dataset, represented in green,
and subsequently on the ShapeNet dataset, represented in blue. 26

viii

List of Tables

5.1 Hyperparameter settings for MLP experiments. The best performing
set (Experiment 3) is highlighted in bold. 21

5.2 The FID of our model is better than some baselines, but it is still far
from being a state-of-the-art model. 26

1

Chapter 1

Introduction

The use of diffusion models [Ho, Jain, and Abbeel, 2020; Nichol and Dhariwal, 2021;
Song, Meng, and Ermon, 2020] is a growing trend in the generation of high-quality
and diverse content, such as images [Ramesh et al., 2022; Saharia et al., 2022; Rom-
bach et al., 2021], audio [Schneider, Jin, and Scholkopf, 2023], and video[Ho et al.,
2022]. Diffusion models have several benefits over other generative models, includ-
ing better coverage of data distributions, and more stability during training, research
shows that they beat many state-of-the-art models of those times [Dhariwal and
Nichol, 2021]. Most diffusion models are used to generate 2D images by working
with their representation as pixel grids [Saharia et al., 2022] or as compressed latent
space [Rombach et al., 2021; Ramesh et al., 2022] that are constructed by the autoen-
coders. However, recently researchers have started to apply diffusion generative
models to synthesize 3D content [Poole et al., 2022; Lin et al., 2022; Gao et al., 2022;
Zeng et al., 2022], which has a less standardized representation, including voxels,
point clouds, meshes, and implicit functions. This variety of representations makes
the application of diffusion models to 3D shapes less straightforward than in 2D,
however, there are a number of works showing the pros and cons of each.

The research community has proposed a wide range of solutions to address the
problem of 3D synthesis. These solutions can broadly be grouped into three main
categories:

Diffusion models as prior: Solutions [Poole et al., 2022; Lin et al., 2022] that uti-
lize generative diffusion models as a prior model for various neural implicit
scene representations, such as neural radiance fields (NeRFs) [Mildenhall et al.,
2020]. In this method, the diffusion model is pre-trained on the text-to-image
pairs and used as guidance for the NeRF model by propagating gradients into
NeRF weights. Generating one scene with a text prompt usually takes quite
a lot of time. Due to the temporal inconsistency of the diffusion signal to the
camera position and due to the lack of information about 3D scenes, as well as
due to the long convergence time of nerf models even in a fairly stable config-
uration, the quality of the resulting scene is rather low.

Compressed 3D Representations: Approaches that focus on studying the represen-
tation of 3D space in a more compressed format, such as triplanes [Shue et al.,
2022; Wang et al., 2022; Gao et al., 2022; Gupta and Gupta, 2023; Wu et al., 2023]
or signed distance functions (SDFs) [Nam et al., 2022]. As a rule, in such ap-
proaches, the authors suggest using an explicit-implicit representation of a 3D
scene [Müller et al., 2022; Chen et al., 2022a]. Where meta-information about
the scene is stored as a latent texture or parameters, which is subsequently de-
coded by some kind of implicit neural network to achieve 3D geometry. After
all, the diffusion models learn how to generate these textures, to synthesize
novel figures.

2 Chapter 1. Introduction

3D Diffusion models: The final category includes works that propose the direct
synthesis of a 3D scene using a 3D diffusion process [Zeng et al., 2022; Nichol et
al., 2022; Chou, Bahat, and Heide, 2022; Zhang et al., 2023]. These approaches
often suggest the use of point clouds as a representation of the 3D scene. A
randomly initialized point cloud is iteratively optimized to reach a state that
describes geometry. As a rule, after that, there is still a lot of post-processing
work to convert the point cloud into a mesh. The main problem with these ap-
proaches is the complexity of their convergence and parameterization. Also,
such approaches take up a lot of memory due to multi-stage generation, which
uses a large number of parameters.

Research of current methods in the field of 3D synthesis has shown that most
approaches are either conditioned very poorly or generate 3D scenes in an uncondi-
tioned manner due to the lack of large, representative datasets in the form of text-3D
pairs.

In this work, we will focus more on the direction in using explicit-implicit [Müller
et al., 2022; Chen et al., 2022a] models but in a point cloud setting, that is parametrized
by a diffusion generative model that operates in a latent space of variational auto-
encoder. We were inspired by the idea to improve solutions by taking only the best
ideas from such works as [Shue et al., 2022; Zheng et al., 2022; Chou, Bahat, and
Heide, 2022; Nam et al., 2022; Wang et al., 2022; Gupta and Gupta, 2023]. Our
choice is motivated by the idea, that such a pipeline could be easily broken into
two major parts that can be sequentially but independently optimized. Also, such
implicit architecture requires a low memory footprint to learn how to reconstruct
high-frequency features from a compressed state. We believe, that our model will
have a small number of parameters to be capable make inference on small GPUs in a
number of seconds. An open question in our research is about the most compressed
and efficient 3D space explicit-implicit representation that will be compatible with
2D latent diffusion models.

We suggest employing 2D triplane textures, which are a type of hidden repre-
sentation that can capture information about the fine details of a 3D shape. These
textures have demonstrated the ability to compress 3D information effectively and
with high quality. Following this, triplanes are decoded by a lightweight MLP (Mul-
tilayer Perceptron) model to reconstruct the 3D object.

In this work, we introduce the concept of adapting LDM(latent diffusion model),
a generative model that can handle conditioning through text, class labels, or even
images to generate triplane textures. We will highlight the effectiveness of this model
by using label conditioning. Moreover, with sufficient training resources, there is the
potential to develop the model to a point where it can be exclusively guided through
text.

Our goal is to implement 2 main features in the pipeline, which are iterated ac-
cording to the complexity of implementation: (i) we want to be able to set the con-
dition in the form of text or label to generate geometry by the description from the
user, which will make it possible for artists to use this solution in the real world
tasks, (ii) provide the ability to convert 2D images in the 3D mesh.

In section [2] we will briefly discover existing solutions for a combination of 2D
diffusion models and 3D neural fields. In section [3] we will discover proposed
improvements to current explicit-implicit (see section [3.1]) 3D synthesis by apply-
ing prior from state-of-the-art latent diffusion models (see section [3.2]) and training
strategy (see section [5.1.2]) that we want to apply. After all, we will discuss potential
challenges and summarize our research plan in section [6].

Chapter 1. Introduction 3

To summarize our contribution is:

1. We introduce an efficient solution for compressing 3D scenes by employing
an explicit form of parameterization, which is then followed by an implicit
decoding process that reconstructs the scenes by point clouds.

2. Propose to reuse the latest state-of-the-art diffusion model architecture in a
class or text conditional manner that will be capable to synthesize novel ex-
plicit parameterizations for implicit decoder model.

3. Present a multi-stage training pipeline strategy on large and diverse 3D datasets.

4

Chapter 2

Related Work

This work combines state-of-the-art latent diffusion models with implicit 3D neural
fields to achieve high-quality and conditional 3D scene representation. We provide
an overview of the related work in the areas of diffusion models and leading-edge
3D scene representation.

2.1 Diffusion models.

Generative models, such as Generative Adversarial Networks (GANs) [Goodfellow
et al., 2014; Mirza and Osindero, 2014; Karras et al., 2019] and autoregressive models
[Razavi, Oord, and Vinyals, 2019], have been well-established in the field of genera-
tive models. Latent space models have shown significant improvements in synthesis
speed, especially when pretraining the VAE with a Gaussian prior. Nevertheless, De-
noising Diffusion Probabilistic Models (DDPMs) [Ho, Jain, and Abbeel, 2020; Nichol
and Dhariwal, 2021] and their latent space modifications [Rombach et al., 2021] cur-
rently hold the state-of-the-art in 2D image synthesis due to their ability to generate
high-quality and diverse images while offering stable training and capturing the full
training distribution. GANs, on the other hand, can be challenging to train and may
experience mode collapse [Dhariwal and Nichol, 2021].

2.2 Diffusion Models in 3D Generation

Several methods have been proposed to utilize 2D diffusion models as priors for
3D synthesis. One such approach [Nam et al., 2022] suggests using DDPM [Ho, Jain,
and Abbeel, 2020] to generate the parameters of the signed distance function (SDF) in
a conditional manner with CLIP (Contrastive Language-Image Pre-Training) [Rad-
ford et al., 2021] embeddings. This approach requires fewer trainable parameters,
allowing the models to run on smaller video cards, but lacks explicit representation
of 3D space, leading to artifacts in the final result.

Recent advances in text-to-image synthesis have been driven by diffusion mod-
els trained on large-scale image-text datasets [Schuhmann et al., 2022]. However,
applying this approach to 3D synthesis is challenging due to the lack of large-scale
labeled 3D datasets and efficient architectures for denoising 3D data. In "DreamFu-
sion: Text-to-3D using 2D Diffusion"[Poole et al., 2022], the authors propose a novel
approach to overcome these limitations by using a pre-trained 2D text-to-image dif-
fusion model as a prior for optimizing a parametric 3D model, Neural Radiance
Field (NeRF) [Mildenhall et al., 2020], using a probability density distillation-based
loss function. This method demonstrates the effectiveness of pre-trained image dif-
fusion models as priors, allowing the generation of 3D models of the given text that
can be viewed from any angle and composited into any 3D environment.

2.2. Diffusion Models in 3D Generation 5

In another work, "Magic3D" [Lin et al., 2022], the authors address the limitations
of DreamFusion [Poole et al., 2022] by leveraging a two-stage optimization frame-
work. Magic3D synthesizes 3D content with 8x higher resolution supervision and
is 2x faster than DreamFusion [Poole et al., 2022]. However, both DreamFusion and
Magic3D still require multiple GPU-hours of inference time for one sample, which
is considerably longer than state-of-the-art generative image models.

The authors of "Point·E: A System for Generating 3D Point Clouds from Complex
Prompts" [Nichol et al., 2022] propose an alternative method for 3D object genera-
tion, which produces 3D models in only 1-2 minutes on a single GPU by combining
recent methods for text-to-3D synthesis. However, while this model is a meaningful
step towards fast text-to-3D synthesis, it has limitations in producing colored three-
dimensional shapes at a relatively low resolution in a 3D format (point clouds) that
does not capture fine-grained shape or texture. Extending this method to produce
high-quality 3D representations such as meshes or NeRFs could allow the model’s
outputs to be used for a variety of applications. However, point clouds have limita-
tions such as poor surface continuity, which is the main disadvantage of this model.

In the paper "3D Neural Field Generation using Triplane Diffusion" [Shue et al.,
2022], the authors propose preprocessing training data, such as ShapeNet meshes, by
converting them to continuous occupancy fields and factoring them into a set of axis-
aligned triplane feature representations. This approach allows them to train existing
2D diffusion models, specifically Denoising Diffusion Probabilistic Models (DDPM)
[Ho, Jain, and Abbeel, 2020] on these representations to generate 3D neural fields
with high quality and diversity, outperforming alternative approaches to 3D-aware
generation. In our work, we aim to propose a novel approach for 3D generation
by directly generating triplanes parameterization of implicit SDF (signed distance
function) with more recent state-of-the-art 2D latent diffusion models [Rombach et
al., 2021] with pre-train on large and diverse dataset like Objaverse. This grants
the model near-complete control over the generated neural field and allows us to
treat well-fit triplanes in a shared latent space as ground truth data. We also want to
answer the question of whether this grounded spatial latent space can make it real to
learn diverse data objects in compressed latent form, followed by implicit decoding
to point clouds.

In recent times, a novel algorithm named "3DGen: Triplane Latent Diffusion for
Textured Mesh Generation" was presented [Gupta and Gupta, 2023]. The propo-
nents of this work leveraged a 3D Variational Autoencoder (VAE), a model profi-
cient in compacting 3D space into a less intricate dimension—triplane textures—
and deciphering them back into a colored mesh. They emphasized the criticality of
employing unique 3D convolutions for the generation of triplane textures, as advo-
cated in the related work [Wang et al., 2022]. Moreover, they introduced the use of
a differentiable marching tetrahedra algorithm, as detailed in another study [Gao
et al., 2022], to facilitate the creation of high-quality meshes. Despite its recent pub-
lication, the authors suggested training the model on expansive datasets, such as
"Objaverse" [Deitke et al., 2022]. They put forth the use of a latent diffusion model
for the generative component, recognizing it as the current pinnacle in content gen-
eration. This work, although it was unveiled substantially after the commencement
of our research, has provided us with profound insights. These include the essential
role of triplane regularizations, the intricacies involved in training latent diffusion
models, and the application of VAE in learning low-dimensional latent representa-
tions of high-dimensional spaces such as 3D. In our work, we want to propose a
similar pipeline, however, simplifying the process of final decoding of 3D figures, as
suggested in the work "3D Neural Field Generation using Triplane Diffusion" [Shue

6 Chapter 2. Related Work

et al., 2022], as well as the generation of triplines.
Finally the latest work from NVIDIA "LION: Latent Point Diffusion Models for

3D Shape Generation"[Zeng et al., 2022] proposes to operate only in 3D point clouds.
The authors introduce the hierarchical Latent Point Diffusion Model (LION) for 3D
shape generation. LION is set up as a variational autoencoder (VAE) with a hierar-
chical latent space that combines a global shape latent representation with a point-
structured latent space. For a generation, they train two hierarchical denoising dif-
fusion models (DDMs) in these latent spaces. The hierarchical VAE approach boosts
performance compared to DDMs that operate on point clouds directly, while the
point-structured latents are still ideally suited for DDM-based modeling.

2.3 Leading-edge 3D Scene Representation.

Neural fields [Mildenhall et al., 2020; Müller et al., 2022; Chen et al., 2022a; Karnewar
et al., 2022; Barron et al., 2021; Suhail et al., 2021; Sitzmann et al., 2021], or implicit
neural representations, are at the forefront of 3D scene representation. These fields
can learn both geometry and appearance through posed images or just geometry
alone. Neural fields represent scenes as continuous functions, making them more
scalable and flexible for complex scenes than their discrete counterparts. In the past,
a single large MLP [Mildenhall et al., 2020] was utilized to represent entire scenes,
but this approach had limited efficiency as it required many forward passes through
the model during training. Recent advancements [Müller et al., 2022; Chen et al.,
2022a; Suhail et al., 2021; Sitzmann et al., 2021] have focused on locally conditioned
representations that use small MLPs, which are efficient during inference and better
at capturing local details in the scene. Our work adopts the hybrid triplane-vector
representation that has proven [Chen et al., 2022a; Müller et al., 2022] to be expres-
sive and efficient, scaling with surface area and integrating well with 2D genera-
tor architectures. Our modifications enhance its compatibility with denoising tech-
niques.

In conclusion, this work combines state-of-the-art latent diffusion models [Rom-
bach et al., 2021] with implicit 3D neural fields [Chen et al., 2022a] modifications in
point cloud settings to achieve high-quality and conditional 3D scene representation.

7

Chapter 3

The Proposed Method

Previous research work "3D Neural Field Generation using Triplane Diffusion" [Shue
et al., 2022] utilizes occupancy fields as a representation of space. Occupancy fields
are randomly initialized point cloud that is then processed by a neural network to
differentiate between geometry and non-geometry points. The authors of this work
propose to parameterize the implicit neural network using triplane parameteriza-
tion, which yields fast convergence but also poses a significant memory requirement
challenge. They uniformly generate ten million points in a space, however, only a
small portion of these points were used in the final geometry result. Additionally,
this work used an outdated diffusion model [Ho, Jain, and Abbeel, 2020; Nichol and
Dhariwal, 2021](DDPM), while there are more robust and effective models available,
such as the latent diffusion model [Rombach et al., 2021].

In our current study, we aim to enhance the previous approach by incorporat-
ing a more advanced state-of-the-art latent diffusion model [Rombach et al., 2021]
instead of the conventional denoising diffusion probabilistic model (DDPM) [Ho,
Jain, and Abbeel, 2020]. We also intend to improve the triplane parametrization by
factorizing space into three planes and three vectors, as suggested by the authors
of [Chen et al., 2022a]. Most notably, we propose to minimize memory consump-
tion by replacing the occupancy field with a signed distance function (SDF) defined
as sd f : R3 → R that maps a 3D coordinate to its shortest distance to the nearest
surface, is employed to imbue the triplane texture with geometric complexity. This
function will iteratively move the randomly initialized point cloud toward the ge-
ometry, thereby preserving information and allowing for explicit control over the
number of 3d points to be optimized.

The problem we aim to address in this paper can be broken down into the fol-
lowing two main components:

1. Compressed 3D Representation: One of the major challenges in the field of
3D space representation is to find a compact and efficient way to represent
complex and vast 3D space. In this work, we aim to propose a solution that can
effectively capture the intricacies of 3D space while minimizing the memory
and computational requirements.

2. Generative Training Approach: The state-of-the-art latent diffusion model (LDM)
[Rombach et al., 2021] has been shown to be a powerful tool for 3D scene gen-
eration. However, to fully realize its potential, we aim to adapt the LDM to
effectively generate 3D scenes from class labels. This requires an in-depth un-
derstanding of the model and a thorough evaluation of its suitability for this
particular task.

8 Chapter 3. The Proposed Method

3.1 Compressed 3D Representation

In this work, we specifically focus on 3D scene representations using parametrized
implicit signed distance function model. The output of the implicit SDF, in this case,
represents a distance indicating how far away a point from the object (see Figure 3.1
for more model architecture details).

Intuition. Triplane space parametrization draws on the principle of projecting
sampled points from a 3D object onto three orthogonal planes, thereby creating a
compact yet efficient representation of the object’s geometry. This hybrid approach
combines elements from both explicit and implicit representations, inheriting their
strengths while mitigating their weaknesses.

FIGURE 3.1: This illustration shows the full pipeline of projecting a
point onto three orthogonal planes, sampling features and their ag-
gregation, and then decoding the resulting features into an SDF val-

ues using a lightweight neural network.

Explicit 3D representations, such as voxel grids, are computationally fast but
memory-intensive due to the necessity of storing the entire voxel grid. Implicit rep-
resentations, like NeRF, offer memory efficiency by representing the scene as a con-
tinuous function, but at the cost of expensive predictions. The triplane representa-
tion bridges these techniques by storing just three planes in memory and projecting
the 3D positions onto these planes, achieving both prediction speed and memory
efficiency.

Forming the Triplane Textures. As a parametrization of the signed distance
function model, we decided to use a triplane-vector parametrization, as proposed
in [Chen et al., 2022a, TensoRF: Tensorial Radiance Fields], which will reduce the
number of trained parameters in the MLP decoder, and also give compatibility with
the diffusion model. The triplane-vector representation is a highly efficient hybrid
explicit-implicit network architecture for neural fields. It leverages the concept of
projecting a 3D coordinate onto 2D feature planes, fxy, fxz, fyz ∈ RN×N×C, where N is
the spatial resolution, and C is the number of feature channels, and projecting point
on orthogonal to each plane vector embedding fx ⊥ fyz, fy ⊥ fxz, fy ⊥ fxy ∈ R1×1×C

3.1. Compressed 3D Representation 9

(see Figure 3.2). [Chen et al., 2022a, TensoRF: Tensorial Radiance Fields] authors
found that triplane-vector decomposition of 3D space is more efficient way to repre-
sent high frequency geometry, especially when additional information about multi
geometry intersection is needed, than usual triplane parametrization.

FIGURE 3.2: The authors of "TensoRF: Tensorial Radiance
Fields"[Chen et al., 2022a] work showed that their 3D scene parame-
terization is capable of preserving the scene’s high frequency features
while keeping the number of parameters required to decode the en-

tire scene small.

Feature Vector Aggregation. For every point in the point cloud, we calculate
its projection onto each plane using the corresponding UV coordinates. The feature
vectors derived from these projections are subsequently aggregated by summation
and passed through a ReLU activation function. The mathematical formulation of
this process is as follows:

fi = ReLU
(

fxy(pi) ◦ fz(pi) + f yz(pi) ◦ fx(pi) + f xz(pi) ◦ fy(pi)
)

(3.1)

In this equation, fi denotes the feature vector for the i-th point pi and ReLU(x) =
max(0, x) is the Rectified Linear Unit activation function.

Final Decoding. Implicit MLPs are neural networks trained to learn implicit
functions, which define a shape by mapping a 3D point to a scalar value representing
the point’s relationship to the shape. In our case, the MLP is used to learn a Signed
Distance Function (SDF), which provides the shortest distance from a 3D point to
the surface of the 3D shape. Positive values indicate the point is outside the shape,
while negative values indicate the point is inside, and zero signifies the point is on
the surface. Such representation can be formulated as:

MLPϕ(fi) → d̂i ≈ SDF(pi) → di (3.2)

Where MLPϕ(fi) → d̂i represents the output of the neural field for a given point
to a distance to closest surface. The feature planes and MLP can be jointly optimized
to represent the signed distance function of a shape. This concludes the triplane
space parametrization, yielding a compact, efficient, and memory-friendly repre-
sentation of the 3D object.

Optimization

The optimization process involves several loss functions to guide the learning of
the proposed model effectively. The primary goal is to ensure that the predicted
Signed Distance Function (SDF) values closely align with the ground truth and that
the triplane representation remains spatially smooth.

10 Chapter 3. The Proposed Method

SDF Loss. The SDF loss function compares the predicted SDF values with the
ground truth values. The loss is computed by taking the absolute difference between
the predicted and ground truth SDF values. This encourages the model to predict
SDF values that closely match the actual distances. The SDF loss can be formulated
as follows:

SDF Loss =
1
N

N

∑
i=1

|SDFpredicted,i − SDFground truth,i| (3.3)

Where N is the total number of points in the 3D space, SDFpredicted,i is the pre-
dicted SDF value and SDFground truth,i is the ground truth SDF value for the i-th point.

Total Variation Loss. Total Variation (TV) loss encourages spatial continuity in
the learned triplane representation. It is computed by summing the squared dif-
ferences between adjacent pixels in the triplane representation along both the height
and width dimensions. This regularization discourages abrupt changes in the values
of neighboring pixels, promoting a smoother representation.

This process encourages the model to produce accurate SDF predictions while
maintaining a spatially smooth triplane representation.

Limitations and Considerations

While the triplane representation technique offers significant advantages, it is not
without limitations. The quality of the model highly depends on accurate projec-
tion of the 3D positions onto the triplane space, and inaccuracies in this projection
may result in an imprecise final 3D representation. Additionally, despite being more
memory-efficient than explicit methods, triplane representation still requires consid-
erable computational resources and memory, especially for large or complex objects.
Therefore, hardware limitations should be taken into account when working with
triplane representation in a practical setting.

3.2 Generative Approach

In this paper, we plan to use the concept of Latent Diffusion Models (LDM) [Rom-
bach et al., 2021] (see Figure 3.3) to synthesize triplane-vector parameterization for
implicit space decoder.

3.2.1 Triplane Compression: VAE

Variational AutoEncoders (VAEs) are a pivotal component of the Latent Diffusion
Model (LDM) used in our work. These generative models enable us to learn the un-
derlying latent representations of high-dimensional data, such as the triplane repre-
sentations of 3D meshes.

Overview of Variational AutoEncoders

A VAE comprises an encoder and a decoder. The encoder, or recognition model,
maps the high-dimensional input data into a lower-dimensional latent space, out-
putting a mean and variance. These parameters define a probability distribution
from which we can sample in the latent space. The decoder, or generative model,
reconstructs the original data from these sampled latent representations.

3.2. Generative Approach 11

FIGURE 3.3: The authors of "High-Resolution Image Synthesis with
Latent Diffusion Models"[Rombach et al., 2021] demonstrated the ar-
chitecture of their model, showing two important components: a vari-
ational autoencoder and a generative model. We plan to use LDM as
a triplane texture generator and this is the second component in our

text-to-3d pipeline.

In the context of our work, the VAE takes a triplane as input—a 2D representation
of the 3D mesh with dimensions RH×W×C. The VAE further compresses this triplane
into a latent representation of dimensions 4 × 32 × 32.

Training the VAE

Training a VAE entails the optimization of two distinct objectives: a reconstruction
loss and a regularization loss. The reconstruction loss ensures that the VAE can accu-
rately reconstruct the original data from the latent representations. This is typically
evaluated by the L1 error between the original and reconstructed data.

The regularization loss, usually expressed as the Kullback-Leibler (KL) diver-
gence, encourages the learned latent distribution to closely align with a predefined
prior, often a standard normal distribution. This prevents the model from overfitting
to the training data and ensures the generation of diverse samples.

In the context of LDMs, the VAE is optimized in the latent space, enabling it to
directly learn the distribution of the data in this space. By efficiently learning to
generate triplanes in the latent space, the LDM can then be used to generate novel
3D meshes.

3.2.2 Latent Diffusion Model

Latent Diffusion Models (LDMs) [Rombach et al., 2021] are a significant advance-
ment in the field of generative modeling, particularly for high-resolution image

12 Chapter 3. The Proposed Method

synthesis. They represent a fusion of Variational Autoencoders (VAEs) and Diffu-
sion Models (DMs), incorporating the strengths of both while mitigating their weak-
nesses.

Theoretical Background

A Diffusion Model, in its simplest form, is a generative model that learns to generate
new data samples by simulating a diffusion process. This process is initialized with a
sample from a simple prior distribution (like a standard multivariate Gaussian), and
gradually transforms it into a sample from the target distribution through a series of
small diffusion steps (see Figure 3.4).

FIGURE 3.4: The authors of "Diffusion Models: A Comprehensive
Survey of Methods and Applications"[Yang et al., 2022] work pro-
posed a visualization of how diffusion models iteratively inject noise
into data during the forward path, and then learn the reverse pro-
cess. This visualization helps to understand how diffusion models
work and how they can be used to generate new data that is similar

to the original data.

The DM’s learning process involves two stages. In the first stage, the model
transforms a data sample into a simple noise sample with fixed transformation meth-
ods. This forward process is typically carried out using fixed Markov Chain Monte
Carlo methods. In the second stage, the learned model is used to simulate the re-
verse diffusion process, which transforms a noise sample into a data sample.

Mathematically, given a data sample x0 from the target distribution p(x), a diffu-
sion process is applied to generate a sequence of variables x0, x1, ..., xT, where xT is a
sample from the prior distribution p(z). The diffusion process is defined by a series
of conditional distributions p(xt|xt−1) that satisfies the Markov property. During the
learning process, the DM learns to approximate the reverse conditional distributions
q(xt−1|xt).

In the context of LDMs, this process is carried out in the latent space of a VAE,
which greatly reduces the computational complexity. The VAE learns a mapping
from the data space to a lower-dimensional latent space, and its inverse, through a
pair of encoder and decoder networks. The DM then operates on the encoded data
in the latent space, instead of the original data in the high-dimensional space.

Mathematical Formulation

Given a triplane x0, the VAE model downsamples the triplane by a factor d and maps
it to a latent space, yielding z0. The autoencoder is represented as:

3.2. Generative Approach 13

z0 = Encoder(x0) x̂0 = Decoder(z0) (3.4)

In the case of the diffusion model, we consider a sequence of random variables
Z = z0, z1, ..., zT where z0 is the encoded representation of the original data and
zT is a sample from the prior distribution p(z). This diffusion process is defined
by a series of conditional distributions p(zt|zt−1) that satisfy the Markov property.
To simulate the reverse process, we learn a set of approximate reverse conditional
distributions q(zt−1|zt) and use them to generate new data samples. The reverse
process is represented by the following formula:

zt−1 = Denoiser(zt) +
√

1 − βt · ϵt−1 (3.5)

where ϵt−1 is a standard Gaussian noise, βt is a time-dependent noise level, and
Denoiser is a neural network learned to denoise the diffusion process.

The forward process can then be simulated using these learned reverse distribu-
tions. The forward process is represented by the following formula:

zt =
√

βt · zt−1 +
√

1 − βt · ϵt (3.6)

where ϵt is a standard Gaussian noise.
In the end, to generate new data samples, we approximate the reverse process

starting from a sample from the prior distribution and decode the final state z0 back
into the data space using the VAE decoder:

x̂0 = Decoder(z0) (3.7)

Benefits and Limitations

LDMs represent a powerful approach to generative modeling, achieving new state-
of-the-art results on tasks such as image inpainting, class-conditional image synthe-
sis and various other applications. They offer a near-optimal point between com-
plexity reduction and detail preservation, greatly boosting visual fidelity. Despite
these benefits, the training and inference of LDMs can still be computationally ex-
pensive, but they are significantly more efficient compared to pixel-based diffusion
models. In our work, we propose to utilize this type of model to synthesize triplane
textures. We focus on conditioning using class labels from the ShapeNet dataset.
Our main contribution is the modification of LDM to shift its focus from generating
images to producing triplanes.

From the theoretical side, one can notice an excellent combination of triplane
parametrization with latent diffusion models. Triplanes, as a compression of 3D
space into 2D, and LDM as a generative method of learning the entire 3D space
manifold through 2D proxy triplanes.

It’s worth noting that while LDMs can generate high-quality data samples, their
performance is still dependent on the quality of the learned VAE model. If the VAE
fails to capture the important details of the data, the performance of the LDM will
also be affected. As such, careful design and training of the VAE model is crucial for
the success of LDMs.

14

Chapter 4

Training Data

4.1 ShapeNet

In the following section, we present an overview of the ShapeNet [Chang et al.,
2015] dataset, which plays a crucial role in our master’s thesis. ShapeNet is a com-
prehensive, large-scale repository of 3D models that covers a wide range of object
categories, organized under the WordNet taxonomy. The dataset is richly annotated,
with various semantic annotations provided for each 3D model, such as consistent
rigid alignments, parts and bilateral symmetry planes, physical sizes, and keywords.

FIGURE 4.1: The authors of the work "ShapeNet: An Information-
Rich 3D Model Repository" [Chang et al., 2015] provided an example

of what the objects of their dataset look like.

For our research, we specifically focus on the ShapeNet Core subset, which con-
tains a more refined selection of models (see Figure 4.1) from the entire ShapeNet
dataset. ShapeNet Core covers 55 object categories with a minimum of 100 models

4.2. Objaverse 15

per category (see Figure 4.2 for categories examples of the complete dataset), offer-
ing a cleaner and more uniform dataset for our analysis.

FIGURE 4.2: The authors of the work "ShapeNet: An Information-
Rich 3D Model Repository" [Chang et al., 2015] provided statistics on
the number of objects for each category from their complete dataset.

We leverage the ShapeNet dataset for pretraining our model, taking advantage
of the wealth of 3D geometric information it provides. By pretraining our model on
ShapeNet, we aim to develop a robust foundation for our algorithm, enabling it to
generalize better when applied to other datasets or real-world scenarios.

Furthermore, we utilize ShapeNet as an official and widely popular benchmark
for evaluating the performance of our 3D reconstruction algorithm. By comparing
our results with existing state-of-the-art methods on ShapeNet, we can gain insights
into the efficacy of our approach and identify areas for potential improvement.

It is important to note that, in our work, we focus solely on the geometric prop-
erties of the 3D models and do not consider textures or other visual attributes. This
choice allows us to concentrate on the fundamental challenges of 3D shape under-
standing and reconstruction, without the additional complexities introduced by tex-
tural information.

In summary, the ShapeNet dataset, and specifically the ShapeNet Core subset,
plays a vital role in our master’s thesis. We employ it for pretraining our model,
as well as for benchmarking our 3D reconstruction algorithm, emphasizing the geo-
metric aspects of the 3D models while disregarding textures.

4.2 Objaverse

In this section, we will discuss the OBJAVERSE [Deitke et al., 2022] dataset, which
serves as the primary data source for our master’s thesis. This extensive annotated
3D dataset plays a crucial role in enabling research across various computer vision
fields. We will delve into the dataset’s statistics, the intended use of its meta infor-
mation, and the fine-tuning process employed for our text-to-3D model.

The OBJAVERSE 1.0 dataset comprises 818,000 3D objects designed by 160,000
artists (see comparison with ShapeNet in figure 4.3). These objects encompass over

16 Chapter 4. Training Data

FIGURE 4.3: The authors of "Objaverse: A Universe of Annotated 3D
Objects" [Deitke et al., 2022] showed a comparison of their dataset

with popular 3D datasets.

2.35 million tags, with more than 170,000 being unique. The dataset is estimated to
cover nearly 21,000 WordNet entities. The objects in OBJAVERSE were uploaded
between 2012 and 2022, with over 200,000 objects uploaded just in 2021.

Furthermore, OBJAVERSE includes 44,000 animated objects, 63,000 character mod-
els, and various articulated objects, exteriors, and interiors. The dataset covers a
wide range of visual styles, such as 3D scans, 3D modeled objects, point clouds, and
photo-realism through physically based rendering (PBR).

In our research, we propose to leverage the rich meta information of objects from
the OBJAVERSE dataset, particularly the text descriptions, to train our text-to-3D
model (see Figure 4.4). These descriptions provide valuable insights into the objects’
characteristics and can be used as input data for generating accurate 3D models from
textual information.

FIGURE 4.4: The authors of "Objaverse: A Universe of Annotated 3D
Objects"[Deitke et al., 2022] showed a sample of metadata for each
item in OBJAVERSE includes a 3D model, a rendered thumbnail im-
age chosen by the user, a title, a description, tags, a category, statistics,

and other supplementary information.

Just like with the shapenet dataset, we are going to only use geometry informa-
tion, ignoring textures.

In conclusion, the OBJAVERSE dataset serves as a vital resource for our master’s
thesis, providing us with an extensive collection of annotated 3D objects and meta-
data. By leveraging this dataset for fine-tuning our text-to-3D model and focusing
on geometry, we aim to develop a powerful model capable of generating accurate
and detailed 3D representations from textual descriptions.

17

Chapter 5

Experiments and Implementation
Details

5.1 Implementation Details

5.1.1 Data Preprocessing

In this work, we aim to use two datasets for training our models, ShapeNetCore
[Chang et al., 2015] and Objaverse [Deitke et al., 2022]. ShapeNetCore is a well-
established large-scale dataset of 3D shapes with about 51,000 unique shapes. These
shapes are mostly simple, ranging from complex to simple geometries, and contain
color information and textures but we will not consider it in our experiments. We
plan to split the ShapeNetCore dataset into two parts: one part will be used for
pre-training our models and the other for benchmarking as ShapeNetCore is a pop-
ular benchmark in the field of 3D synthesis. The details and implementation of the
metrics can be found in the relevant section of this paper, see evaluation plan 5.1.3.

On the other hand, Objaverse is a more diverse and rich dataset of 3D figures
with descriptions, tags, and animations, often with full textures (with normal, spec-
ular, diffuse, refraction, etc. maps) and highly detailed geometry containing over
800K 3D shapes and is updated regularly. In this work, we aim to use only part
(100k objects) of the Objaverse dataset as a pretrain for the diffusion model due to
the large memory requirements.

For each 3D mesh in our dataset, we performed a two-step sampling process.
First, we sampled 5 × 105 points uniformly from the surface of the mesh. Second,
an additional 5× 105 points were sampled uniformly within the spatial extent of the
mesh. Each point is represented in R3.

It is important to highlight that all meshes were normalized to fit within a prede-
fined range. Specifically, the coordinates of all points were scaled such that they fell
within the interval [−1, 1]. This normalization step ensures consistency across the
dataset, facilitating the learning process.

For the initialization of the triplane texture features for each mesh, we adopted
a grid structure in RC×H×W . Here, C represents the channel size, while H and W
denote the height and width of the grid, respectively. We set C to 16, and both
H and W were fixed at 256. This structured representation of the triplane texture
features enables a systematic and efficient approach to process the 3D data in our
experiments.

5.1.2 Training Process

In this study, our objective is to develop a resource-efficient pipeline for text-guided
3D synthesis. We aim to leverage existing, proven architectures as much as possible

18 Chapter 5. Experiments and Implementation Details

FIGURE 5.1: The illustration herein exhibits an instance of an un-
rolled texture mapping. For every distinct mesh within the struc-
ture, a correspondingly analogous texture is generated through train-
ing, which essentially encapsulates pertinent data pertaining to the
tri-dimensional representation of the underlying geometry. Further-
more, these tri-dimensional texture mappings possess the capability
to encapsulate additional information parameters, including albedo

and surface normals.

to expedite our process and harness advancements in the field.
Our proposed solution is a two-stage process. The initial stage involves the ran-

dom initialization of triplane features for each 3D shape. Here, a triplane feature
T for a shape S consists of three orthogonal 2D projections {Txy, Txz, Tyz} of S on
the planes xy, xz, and yz, respectively. Each 2D projection is subsequently encoded
into a latent representation using a Multi-Layer Perceptron (MLP) f : Tij = f (Sij) for
ij ∈ {xy, xz, yz}.

In this stage, we train the MLP to refine each triplane feature by backpropagating
gradients through an implicit decoder g that shares parameters across all shapes. We
utilize the ShapeNetCore dataset to train this stage, with the objective of acquiring a
decoder that can accurately reconstruct the point cloud from the triplane features.

In the second stage, we freeze the parameters of the decoder and train the tri-
plane features for all objects from the Objaverse dataset (see Figure 5.1 as an example
of triplane texture). This serves to expedite the data processing step.

We also propose a modification to the Latent Diffusion Model (LDM) [Rombach
et al., 2021] to extend its capability to texture space. Our approach adheres to a text-
to-triplane style, in which the model takes a noisy version of the triplane texture in
latent space as input and predicts the noise to be removed.

The training process of the LDM is performed in a classical manner, akin to the
approach proposed in the original work [Rombach et al., 2021]. The goal here is to
learn a mapping from the noisy triplane textures to their corresponding clean and
coherent representations in latent space.

5.2. Experiments 19

5.1.3 Evaluation Metrics

The evaluation of our proposed model relies on a modified version of the Frechet
Inception Distance (FID), a statistical metric designed to measure the dissimilarity
between the distribution of generated images and the distribution of real images in
the feature space of a pre-trained Inception model. The Inception model, specifically
the Inception v3 model, is a convolutional neural network that is widely used in the
field of computer vision. It was developed by researchers at Google and has been
trained on the ImageNet dataset, which contains over a million images spanning a
thousand categories. Due to its high performance on a variety of tasks, it has become
a standard model for extracting features from images. Unlike the standard FID, our
version considers the rendered shading images of the generated meshes, offering a
more thorough and accurate assessment of our model’s performance.

This evaluation approach aligns with those used in other works such as [Shue
et al., 2022; Zheng et al., 2022]. Notably, the authors in [Zheng et al., 2022] provide a
comprehensive exploration and examination of evaluation metrics for 3D generative
models, making it a valuable reference for our work.

To ensure a comprehensive evaluation, we follow the procedure outlined in [Shue
et al., 2022; Zheng et al., 2022], where 20 distinct views are utilized to render shad-
ing images of each generated shape. The FID scores are then computed for each
view. These scores are subsequently averaged, leading to the final FID score. The
mathematical representation of this procedure is as follows:

FID =
1

20

[20

∑
i=1

∥µi
g − µi

r∥2 + Tr
(

Σi
g + Σi

r − 2
(

Σi
rΣi

g

) 1
2
)]

(5.1)

In the above equation, the variables g and r denote the generated and training
datasets, respectively. Additionally, µi and Σi represent the mean and covariance
matrices for the shading images rendered from the ith view.

Our proposed model will be scrutinized under the ShapeNetCore benchmark
[Chang et al., 2015], enabling us to compare our solution with other existing solu-
tions [Shue et al., 2022; Nichol et al., 2022; Chou, Bahat, and Heide, 2022; Nam et al.,
2022] using the FID metric.

5.2 Experiments

As previously discussed, our pipeline comprises two main components. The first
involves the training of triplane textures which are used to parameterize a com-
pact model for point cloud decoding, thus representing the geometry in a three-
dimensional space. This portion of the process is the most experimentally intensive
within our pipeline. We aim to delve into the crucial experiments that significantly
influence the outcomes of our work in this section (see Section 5.2.1). The second
component is LDM which we utilize to learn and synthesize triplane textures (see
5.2.2).

All the source code relevant to this research, including algorithms, data analy-
ses, and supplementary scripts, has not been officially released yet. However, early
access is available. You can find the repository at this link1

1For early access, please send a request to daniel.kovalenko@ucu.edu.ua

https://github.com/animtel/diff-studio

20 Chapter 5. Experiments and Implementation Details

5.2.1 Triplane Space Parametrization

3D Scene Overfitting

Experiment Setup. At a high level, we have striven to establish a model architec-
ture and training methodology that ultimately yields a 2D representation capable of
encapsulating intricate 3D geometries. As such, our experiments broadly fall into
categories such as: model architecture (including the number of layers, activations,
frequency encoding, and the various types of model output such as SDF, occupancy),
triplanes (including optimal size, depth, and methods for sampling and interpo-
lating features), and methods of optimization (including loss functions and their
weighting). The primary goal was to balance resource efficiency with the quality of
the reconstructions. In other words, the triplane should be compact, the architecture
not overly complex, but the overall system should function effectively.

In order to achieve efficient 3D figure reconstruction, we decided to focus only on
the light-weighted MLP decoder architecture, this significantly reduces the amount
of resources of the entire pipeline, and also makes it possible to render figures in
real time using shaders in computer graphics. We are inspired by the use of a sim-
ple architecture for the final decoding of a figure by work "MobileNeRF: Exploiting
the Polygon Rasterization Pipeline for Efficient Neural Field Rendering on Mobile
Architectures" [Chen et al., 2022b], where the authors demonstrate real-time nerf
rendering using shaders. Although we do not use NeRF architecture and are fo-
cused on the SDF setting, we plan to explore the possibility of online ray marching
using our model in shaders.

We initiated our experiments with a straightforward objective: given a single
shape or point cloud, we aimed to perfectly reconstruct it using the model weights
and information from the triplane - essentially, an overfitting task. This experiment
was designed to confirm that the chosen model architecture, triplane, and loss func-
tions were capable of successful pattern reconstruction. As the outcomes of these
experiments demonstrated, this is a challenging task, especially considering that an
entire subfield of machine learning is devoted to reconstructing the original signal
using machine learning as a form of compression (for example, work "Implicit Neu-
ral Representations with Periodic Activation Functions"[Sitzmann et al., 2020] shows
the complexity of the task of signal reconstruction).

For our architecture comparison experiments, we employed Chamfer loss as the
metric. Chamfer loss is a commonly used distance metric for point clouds in the
field of machine learning, particularly in tasks concerning 3D reconstruction.

The Chamfer loss between two point clouds, A and B, is defined as:

LChamfer(A, B) =
1
|A| ∑

a∈A
min
b∈B

|a − b|2 + 1
|B| ∑

b∈B
min
a∈A

|a − b|2 (5.2)

Where |A| and |B| denote the number of points in point clouds A and B, respec-
tively. The term ∥a − b∥2 denotes the squared Euclidean distance between points a
and b.

In simpler terms, the Chamfer loss computes the average minimum squared dis-
tance between each point in one point cloud and the closest point in the other point
cloud. This calculation is performed in both directions, from A to B and from B
to A, to account for discrepancies in both point clouds. This makes it a symmetric
loss function that measures the similarity between the two point clouds. Minimizing
this loss during training makes the generated point cloud increasingly similar to the
target point cloud.

5.2. Experiments 21

Results. The performance of the proposed text-in-3D model is evaluated based
on two primary aspects: the loss curve and the optimal hyperparameters.

FIGURE 5.2: This figure shows the loss charts of different experi-
ments. Chamfer loss was used as a metric. In more detail: the most
optimal model is a four-layer MLP, with a skip-connection block in
the hidden layer, which has 128 hidden size, as well as with frequency

encoding of the input features.

Figure 5.2 depicts the loss curves during the training phase of our model. It
can be observed that the loss decreases steadily over iterations, indicating that the
model is learning effectively. However, the loss curve does not reach a minimal
value, suggesting room for potential improvements.

Parameter Name Searchable values
Hidden Size 32, 64, 128, 256

N Layers 2, 3, 4
PointCloud Initialization Uniformal, Normal

Larning Rate 0.001, 0.0001, 0.00001
triplane Feature Blending Methods Concat, Sumup, Multiplication

Frequency Encoding Yes, No
Activation Type ReLu, Sine, Sigmoid, ReLu + Sigmoid

TABLE 5.1: Hyperparameter settings for MLP experiments. The best
performing set (Experiment 3) is highlighted in bold.

Table 5.1 shows the optimal hyperparameters determined through an experi-
mental search process. Hyperparameters were selected manually inspired by work
[Shue et al., 2022], and a random search of parameters was also used. These bold
parameters provided the best performance for our model on the given one figure
overfitting task. This study cannot be called complete. As the authors of the work
"Implicit Neural Representations with Periodic Activation Functions"[Sitzmann et
al., 2020] show, signal reconstruction is not an easy task. One of the potential areas
of research could be the study of periodic activation functions, however, in such a
scenario, a large number of experiments will appear to find the optimal initialization
of the model (since weights initialization is the crucial for such activations), as well
as its regularization to achieve generalization.

22 Chapter 5. Experiments and Implementation Details

Pointcloud-to-triplane encoding

In the process of developing a pipeline capable of generating a dataset of meshes
and their corresponding triplanes, we relied on two works [Gupta and Gupta, 2023;
Shue et al., 2022]. The first [Gupta and Gupta, 2023] proposed the use of a 3D Vari-
ational Autoencoder (VAE) model. This model comprises two main components:
an encoder, which utilizes PointNet++[Qi et al., 2017] for conditioning a UNet-like
model, and a decoder, which employs the Marching Tetrahedra algorithm as in [Gao
et al., 2022].

Our primary focus was on the encoder, as we used an implicit signed distance
function (SDF) model for our decoder. However, after numerous trials, the results
were not satisfactory; the model either failed to converge or demonstrated poor con-
vergence. Notably, when utilizing periodic activation functions such as sine, the
model failed to converge entirely. This led us to surmise that the poor convergence
could be attributed to the gradient flow of Siren-like models. Another drawback of
such an architecture is its high computational cost due to the complexity of the UNet
architecture, making it extremely expensive to train.

Consequently, we decided to pivot to a different strategy, namely, the generation
of triplanes through the propagation of gradients in an implicit SDF. This method
is elaborately discussed in the paper "3D Neural Field Generation using Triplane
Diffusion" [Shue et al., 2022]. The underlying concept is similar to the overfitting ex-
periment, but in this case, we iterate over the meshes, initializing different triplanes
for each. The decoder weights remain common across the iterations.

In an effort to enhance the quality of the textures, we incorporated regularization
techniques, specifically total variance loss and L2 regularization.

Results. Following our experimentation, we successfully generated approxi-
mately 50,000 triplane textures for the ShapeNet dataset, and around 100,000 tex-
tures for the Objaverse dataset. The major challenge encountered during this ex-
periment was the storage of these textures, given that a single texture occupies
256x256x48 float values. This necessitated the development of extensive infrastruc-
ture for file compression. Despite these efforts, the dataset still occupies terabyte of
storage space and this is even to a full dataset.

5.2.2 Training of the Variational Autoencoder and Diffusion Model

VAE training. Our perceptual compression model is based on a work "High-Resolution
Image Synthesis with Latent Diffusion Models" [Rombach et al., 2021] and consists of
a variational autoencoder trained by a combination of a perceptual loss and a patch-
based adversarial objective. This ensures that the reconstructions are confined to the
triplane manifold by enforcing local realism and avoiding blurriness introduced by
relying solely on feature-space losses.

The configurations of the VAE and Diffusion model were kept largely unchanged.
The minor modifications made were primarily for adapting shapes from images to
triplanes. The VAE was trained over a period of two weeks using four T4 graphics
cards. The compression achieved was approximately eightfold, while the quality of
the reconstruction remained optimal (see Figure 5.3).

The objective of the training process was to optimize the parameters of the model
to minimize the loss function, which is a combination of the Negative Log-Likelihood
(NLL) loss and the Kullback-Leibler (KL) divergence. The NLL loss measures the ca-
pability of the VAE to reconstruct the input data, whereas the KL divergence imposes

5.2. Experiments 23

FIGURE 5.3: In this image, you can see two unwrapped triple tex-
tures. Above is a ground truth texture obtained from a random object
from the ShapeNetCore dataset. Below is a reconstruction. As you

can see, they are quite difficult to distinguish.

a regularization effect on the latent space by comparing the learned latent distribu-
tion to a prior distribution. During the training, the total loss showed a consistent
decrease, indicating that the VAE was progressively improving its ability to recon-
struct the input data. This trend is illustrated in Figure 5.4.

FIGURE 5.4: Convergence of total loss during the training of the VAE.

The decrease in the total loss suggests that the model was effectively learning
the underlying structure of the data, providing a good fit to the data distribution
and increasing its capacity to generate plausible samples.

Diffusion Model training. The base configuration of the diffusion model un-
derwent minor modifications, primarily the adaptation from pixel space to triplane
space. This shift in representation allowed the model to better capture the intricacies
of the data it was trained on.

24 Chapter 5. Experiments and Implementation Details

FIGURE 5.5: An example of how our model generates 3D figures in
an unconditional manner.

Visualizations provided offer a clear depiction of the model’s training progres-
sion. The first visualization demonstrates examples of diffusion unconditional gen-
erations (see Figure 5.5), showcasing the model’s ability to generate consistent out-
puts. The second visualization provides a row of denoising steps for an image, offer-
ing insight into the gradual transformation and improvement the model undertakes
during the denoising process (see Figure 5.6). Our diffusion model operates within
the VAE’s latent space. As previously mentioned, the size of the latent representa-
tion for a triplane is 32 × 32 × 4.

The diffusion model was trained over the course of approximately two weeks
on 4 T4 video cards. Throughout this training period, the model’s loss continued
to decrease, signaling the continuous learning and improvement of the model. This
consistent decrease in loss is indicative of the model’s convergence, a phenomenon
wherein the evolution of the model stabilizes as it approaches an optimal state. It’s
worth noting, however, that while convergence is often a desired outcome, prema-
ture convergence can lead to suboptimal results, and it’s vital to ensure that the
model doesn’t stagnate at a less than ideal state.

The total loss of diffusion model still falling, so there is potential to continue
experiments (see Figure 5.7).

It’s worth noting that the architecture of this model inherently supports text
guidance through the use of CLIP embeddings. However, this entails additional
training that is resource-intensive. As such, the current model checkpoint does not
support text guidance, but it can be easily adapted to do so. Through this work, our
objective is to demonstrate the potential of this architecture, and we plan to adapt it
for text guidance in future iterations.

5.2.3 Results

We conducted a multitude of experiments, which can be broadly categorized into
two distinct types, mirroring the global division of the pipeline itself.

In the first category, we carried out a series of tests aiming to compress 3D space
into a 2D feature grid, termed as a triplane. The directions of experiments included:

5.2. Experiments 25

FIGURE 5.6: This is an image of one plane out of three, where the
batch size is 4. Here you can see how the model starts generation
from a Gaussian distribution and sequentially reaches recognizable
patterns of 3d shapes. This model is still converging and the results

are not final.

the model architecture; triplane parameters; and optimization methods. Our pri-
mary objective was to strike a balance between resource efficiency and the quality of
reconstructions. In essence, we aimed for a compact triplane, a simple but effective
architecture, and an overall efficient system (see Section 5.2.1 for more details).

In the second category of experiments, we adapted the latent diffusion model to
triplanes. We found that the model converges satisfactorily even in its basic config-
uration (see Section 5.2.2 for more details).

To evaluate our model and compare it to other works, we employed the Frechet
Inception Distance (FID) metric. We generated 5,000 meshes for each category in a
label conditioned manner, after which we computed the FID, as described earlier in
Section 5.1.3.

The performance of our algorithm is observed to be considerably inferior to that
of contemporary state-of-the-art models (see Table 5.2). We conjecture that this de-
ficiency originates from error accumulation during data processing. A more thor-
ough investigation is needed to optimize the sampling process from 3D geometries,
as well as to refine how the geometry signal is encoded into triplines. Another factor
worth scrutinizing is the possibility that the diffusion model has not reached con-
vergence.

26 Chapter 5. Experiments and Implementation Details

FIGURE 5.7: Convergence of total loss during the training of the dif-
fusion model. The model was trained on the Objaverse dataset, rep-
resented in green, and subsequently on the ShapeNet dataset, repre-

sented in blue.

Data Method FID ↓
PVD* 335.8

Implicit-Grid 209.3
Cars Ours 183.43

SDF-StyleGAN 98.0
NFD 83.6
PVD* 305.8

Implicit-Grid 119.5
Chairs Ours 68.05

SDF-StyleGAN 36.5
NFD 26.4
PVD* 244.4

Implicit-Grid 145.4
Planes Ours 127.19

SDF-StyleGAN 65.8
NFD 32.4

TABLE 5.2: The FID of our model is better than some baselines, but it
is still far from being a state-of-the-art model.

27

Chapter 6

Conclusions

6.1 Contribution

In this study, we have introduced a potential solution to the text-to-3D generative
problem.

A comprehensive analysis of existing methodologies in the field was conducted,
which allowed us to identify three distinct categories: diffusion models as a prior,
diffusion models over 3D compression, and 3D diffusion models.

Our proposed approach strives to find a balance between speed and memory re-
quirements by implementing 2D diffusion over a memory-intensive compressed 3D
representation such as a triplane. This representation effectively reduces the prob-
lem dimensionality to 2D and allows a simpler data distribution manifold due to
one dimension’s compression, consequently facilitating high-quality generations.

We are among the pioneers to suggest the use of the Objaverse dataset, a rich
resource with over 800k objects. The dataset offers not only high-quality meshes but
also significant semantic context via textual descriptions.

Our model exhibits versatility in generating content in both conditioned and
unconditioned manners. The two-stage training process and the availability of a
dataset of triplane textures pave the way for experimentation with diffusion mod-
els, their modifications, and conditioning modifications. We have utilized class la-
bels from the ShapeNet dataset, but the inclusion of CLIP embeddings remains a
viable alternative.

In conclusion, our experiments led to the creation of a generative model that,
despite not matching state-of-the-art metrics, demonstrated the advantages of a 3D
compression approach referred to as triplane. Our model exhibits the capability to
generate 3D content (which inherently presents a more complex structure than 2D)
in roughly 45 seconds on T4 video cards.

6.2 Future Steps

A critical subsequent step is to modify the current checkpoint so that it supports text-
guided generation instead of class-label guidance. Fortunately, this transition does
not necessitate any alterations to the existing structure or the current checkpoint.
This endeavor will involve fine-tuning the current checkpoint using the comprehen-
sive Objaverse dataset. Various experiments were undertaken in this study, encom-
passing different data types (such as SDF and occupancy fields) and diverse architec-
tures. Our findings underscored the critical role played by the quality of triplanes.
This parameterization displays encouraging outcomes and is not fully realized its
potential. The potential use of 3D VAE (Vatiational Autoencoder) for embedding 3D
space into a shared latent space of a single model warrants thorough consideration.

28 Chapter 6. Conclusions

This is pivotal as it ensures that features across all triplanes are derived from the
same prior distribution, as each triplane is presently fitted independently, leading to
ambiguity when fitting the decoder and diffusion.

Incorporating color information and normals could be advantageous, albeit com-
plicating the task due to the additional data dimension, it does provide an auxiliary
geometry information source to the model.

It would be beneficial to train the model on the entire Objaverse dataset, as cur-
rently, only a small fraction is utilized for pre-training our diffusion model.

Lastly, investigating methods for converting point clouds into a mesh for subse-
quent export and utilization in the computer graphics industry is an essential aspect
of this study.

29

Bibliography

Barron, Jonathan T. et al. (2021). “Mip-NeRF: A Multiscale Representation for Anti-
Aliasing Neural Radiance Fields”. In: 2021 IEEE/CVF International Conference on
Computer Vision (ICCV), pp. 5835–5844.

Chang, Angel X. et al. (2015). ShapeNet: An Information-Rich 3D Model Repository.
Tech. rep. arXiv:1512.03012 [cs.GR]. Stanford University — Princeton University
— Toyota Technological Institute at Chicago.

Chen, Anpei et al. (2022a). “TensoRF: Tensorial Radiance Fields”. In: European Con-
ference on Computer Vision.

Chen, Zhiqin et al. (2022b). “MobileNeRF: Exploiting the Polygon Rasterization Pipeline
for Efficient Neural Field Rendering on Mobile Architectures”. In: ArXiv abs/2208.00277.

Chou, Gene, Yuval Bahat, and Felix Heide (2022). “DiffusionSDF: Conditional Gen-
erative Modeling of Signed Distance Functions”. In: ArXiv abs/2211.13757.

Deitke, Matt et al. (2022). “Objaverse: A Universe of Annotated 3D Objects”. In:
ArXiv abs/2212.08051.

Dhariwal, Prafulla and Alex Nichol (2021). “Diffusion Models Beat GANs on Image
Synthesis”. In: ArXiv abs/2105.05233.

Gao, Jun et al. (2022). “GET3D: A Generative Model of High Quality 3D Textured
Shapes Learned from Images”. In: ArXiv abs/2209.11163.

Goodfellow, Ian J. et al. (2014). “Generative Adversarial Nets”. In: NIPS.
Gupta, Anchit and Anchit Gupta (2023). “3DGen: Triplane Latent Diffusion for Tex-

tured Mesh Generation”. In: ArXiv abs/2303.05371.
Ho, Jonathan, Ajay Jain, and P. Abbeel (2020). “Denoising Diffusion Probabilistic

Models”. In: ArXiv abs/2006.11239.
Ho, Jonathan et al. (2022). “Imagen Video: High Definition Video Generation with

Diffusion Models”. In: ArXiv abs/2210.02303.
Karnewar, Animesh et al. (2022). “ReLU Fields: The Little Non-linearity That Could”.

In: ACM SIGGRAPH 2022 Conference Proceedings.
Karras, Tero et al. (2019). “Analyzing and Improving the Image Quality of Style-

GAN”. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 8107–8116.

Lin, Chen-Hsuan et al. (2022). “Magic3D: High-Resolution Text-to-3D Content Cre-
ation”. In: ArXiv abs/2211.10440.

Mildenhall, Ben et al. (2020). “NeRF: Representing Scenes as Neural Radiance Fields
for View Synthesis”. In: European Conference on Computer Vision.

Mirza, Mehdi and Simon Osindero (2014). “Conditional Generative Adversarial Nets”.
In: ArXiv abs/1411.1784.

Müller, Thomas et al. (2022). “Instant neural graphics primitives with a multiresolu-
tion hash encoding”. In: ACM Transactions on Graphics (TOG) 41, pp. 1 –15.

Nam, Gimin et al. (2022). “3D-LDM: Neural Implicit 3D Shape Generation with La-
tent Diffusion Models”. In: ArXiv abs/2212.00842.

Nichol, Alex and Prafulla Dhariwal (2021). “Improved Denoising Diffusion Proba-
bilistic Models”. In: ArXiv abs/2102.09672.

30 Bibliography

Nichol, Alex et al. (2022). “Point-E: A System for Generating 3D Point Clouds from
Complex Prompts”. In: ArXiv abs/2212.08751.

Poole, Ben et al. (2022). “DreamFusion: Text-to-3D using 2D Diffusion”. In: ArXiv
abs/2209.14988.

Qi, C. et al. (2017). “PointNet++: Deep Hierarchical Feature Learning on Point Sets
in a Metric Space”. In: NIPS.

Radford, Alec et al. (2021). “Learning Transferable Visual Models From Natural Lan-
guage Supervision”. In: International Conference on Machine Learning.

Ramesh, Aditya et al. (2022). “Hierarchical Text-Conditional Image Generation with
CLIP Latents”. In: ArXiv abs/2204.06125.

Razavi, Ali, Aäron van den Oord, and Oriol Vinyals (2019). “Generating Diverse
High-Fidelity Images with VQ-VAE-2”. In: ArXiv abs/1906.00446.

Rombach, Robin et al. (2021). “High-Resolution Image Synthesis with Latent Diffu-
sion Models”. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), pp. 10674–10685.

Saharia, Chitwan et al. (2022). “Photorealistic Text-to-Image Diffusion Models with
Deep Language Understanding”. In: ArXiv abs/2205.11487.

Schneider, Flavio, Zhijing Jin, and Bernhard Scholkopf (2023). “Moûsai: Text-to-Music
Generation with Long-Context Latent Diffusion”. In: ArXiv abs/2301.11757.

Schuhmann, Christoph et al. (2022). “LAION-5B: An open large-scale dataset for
training next generation image-text models”. In: ArXiv abs/2210.08402.

Shue, Jessica et al. (2022). “3D Neural Field Generation using Triplane Diffusion”.
In: ArXiv abs/2211.16677.

Sitzmann, Vincent et al. (2020). “Implicit Neural Representations with Periodic Ac-
tivation Functions”. In: ArXiv abs/2006.09661.

Sitzmann, Vincent et al. (2021). “Light Field Networks: Neural Scene Representa-
tions with Single-Evaluation Rendering”. In: Neural Information Processing Sys-
tems.

Song, Jiaming, Chenlin Meng, and Stefano Ermon (2020). “Denoising Diffusion Im-
plicit Models”. In: ArXiv abs/2010.02502.

Suhail, M. Mohamed et al. (2021). “Light Field Neural Rendering”. In: 2022 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8259–8269.

Wang, Tengfei et al. (2022). “Rodin: A Generative Model for Sculpting 3D Digital
Avatars Using Diffusion”. In: ArXiv abs/2212.06135.

Wu, Rundi et al. (2023). “Sin3DM: Learning a Diffusion Model from a Single 3D
Textured Shape”. In.

Yang, Ling et al. (2022). “Diffusion Models: A Comprehensive Survey of Methods
and Applications”. In: ArXiv abs/2209.00796.

Zeng, Xiaohui et al. (2022). “LION: Latent Point Diffusion Models for 3D Shape Gen-
eration”. In: ArXiv abs/2210.06978.

Zhang, Biao et al. (2023). “3DShape2VecSet: A 3D Shape Representation for Neural
Fields and Generative Diffusion Models”. In: ArXiv abs/2301.11445.

Zheng, Xin et al. (2022). “SDF-StyleGAN: Implicit SDF-Based StyleGAN for 3D Shape
Generation”. In: Computer Graphics Forum 41.

	Declaration of Authorship
	Abstract
	Introduction
	Related Work
	Diffusion models.
	Diffusion Models in 3D Generation
	Leading-edge 3D Scene Representation.

	The Proposed Method
	Compressed 3D Representation
	Optimization
	Limitations and Considerations

	Generative Approach
	Triplane Compression: VAE
	Overview of Variational AutoEncoders
	Training the VAE

	Latent Diffusion Model
	Theoretical Background
	Mathematical Formulation
	Benefits and Limitations

	Training Data
	ShapeNet
	Objaverse

	Experiments and Implementation Details
	Implementation Details
	Data Preprocessing
	Training Process
	Evaluation Metrics

	Experiments
	Triplane Space Parametrization
	3D Scene Overfitting
	Pointcloud-to-triplane encoding

	Training of the Variational Autoencoder and Diffusion Model
	Results

	Conclusions
	Contribution
	Future Steps

	Bibliography

