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“Progress in controllable text generation illuminates the harmonious interplay between hu-
man ingenuity and machine intelligence, pushing the boundaries of creative expression and
amplifying our capacity to shape language with precision and purpose.”

ChatGPT
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Abstract

Controllable text generation has emerged as a significant research area, allowing the
production of text with desired characteristics. In this work, we investigate the con-
trollability of text generation, exploring the challenges of controlling various aspects
of generated text, such as length, parts-of-speech (POS) structure, sentiment, and
tense; in addition, we extend our analysis to the task of multi-conditional text gen-
eration, which entails the possibility of simultaneous control of several parameters
of the generated text.

Our research is mainly based on fine-tuned GPT-2, an autoregressive transformer-
based model. Using fine-tuned GPT-2, we managed to achieve notable progress in
controlling the above-mentioned text attributes; we also present the results of exper-
iments using other approaches, such as diffusion models and ChatGPT. The models
are trained on our own dataset, meticulously curated in-house; the evaluation of
the generation results is carried out using a comprehensive set of control, fluency,
distinctiveness, and repetition metrics.

Through rigorous analysis, we assess the performance of studied models in terms
of controllability. Length control, in particular, proved to be a challenging aspect,
even when employing the largest available models. Nevertheless, our fine-tuned
GPT-2 demonstrated promising results, showcasing its capabilities in generating text
with desired characteristics.

Overall, our findings highlight the possibilities of controllable text generation
using fine-tuned GPT-2 and other models. Our work contributes to the ongoing ex-
ploration of techniques for improving controllability in text generation. As this field
continues to evolve, further research can build upon our analysis and methodologies
to enhance controllability and pave the way for more sophisticated text generation
systems.

HTTP://WWW.UCU.EDU.UA
https://apps.ucu.edu.ua/en
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Chapter 1

Introduction and motivation

Generative modeling is one of the most quickly developing topics in the nowadays
artificial intelligence world. Generative models show prominent results in different
domains, such as image, audio, video, and text generation. Existing approaches to
generation tasks, such as autoregressive models, flow-based models, Generative Ad-
versarial Networks, energy-based models, and latent variable models, are capable of
creating high-quality visual, auditory and textual samples [Tomczak, 2022].

The text generation domain is often in the spotlight nowadays, with openly avail-
able APIs and user-facing chatbots such as ChatGPT1 and the ability to generate
texts of different types and lengths up to whole novels. The most common approach
for text generation is autoregressive models with huge Transformer-based language
models [Brown et al., 2020]. These models show high quality of generation, and al-
low the range of opportunities to adapt the existing pre-trained models to specific
tasks such as controllable text generation.

Another promising approach to text generation is diffusion models [Sohl-Dickstein
et al., 2015, Li et al., 2022]. Early works on diffusion models produced competitive
results on image [Ho, Jain, and Abbeel, 2020, Song et al., 2020] and audio [Chen et al.,
2020, Kong et al., 2020] generation. Although applying diffusion models to text gen-
eration requires tuning the approach due to the discrete nature of the text data, the
works in this field have already been done with promising results [Austin et al., 2021,
Chen, Zhang, and Hinton, 2022, Strudel et al., 2022]. Moreover, recent works on text
generation with diffusion models focus on the controllability and interpretability of
the generation [Li et al., 2022, Han, Kumar, and Tsvetkov, 2022, Strudel et al., 2022].

While showing competitive text generation quality, both autoregressive models
and diffusion models face some limitations, including long generation time, and lim-
ited generation control [Li et al., 2022, Han, Kumar, and Tsvetkov, 2022]; moreover,
solving specific tasks, such as length control, can be quite tricky even for the largest
models.

In our work, we investigate the possibilities of controllable text generation for
different approaches. The main base of our research is GPT-2 model, fine-tuned for
the tasks of length, POS (parts-of-speech), sentiment and tense control, as well as
multi-conditional text generation, where requirements of control condition are set
for parts-of-speech, sentiment and length at the same time. We also investigate the
possibilities of ChatGPT to control length and parts-of-speech structure of the text
generation, and provide some experiments with the existing approaches based on
the idea of diffusion.

For this work, we created our own dataset, which is based on OpenWebText2; in
order to use it for model training for conditional text generation tasks, we calculated
researched control attributes on the dataset samples. We also constructed the set of

1https://openai.com/blog/chatgpt/
2https://huggingface.co/datasets/openwebtext
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evaluation metrics, which allows us to assess different facets of the generation text,
such as compliance with control condition, fluency, distinctiveness and repetition.

Fine-tuned GPT-2 model demonstrated plausible results for all the metrics in
tasks of length, parts-of-speech, sentiment, tense control and multi-conditional gen-
eration. However, there is room for improvement, both in this method, and even in
such a large public API as ChatGPT. This, as well as other limitations of the consid-
ered approaches, will be discussed later in the work in the relevant sections.

In summary, this work investigates the tasks and approaches to controllable
text generation, with a particular emphasis on fine-tuning GPT-2 on the introduced
dataset, specifically tailored to research objectives. Through empirical evaluation,
we aim to analyze the possibilities of controllable text generation, assess the limita-
tions of existing techniques, and propose potential avenues for future research.

The next parts of the work have the following structure: chapter 2 is concentrated
on the literature review – it provides an overview of the controllable text generation
and existing approaches to this task; chapter 3 discusses approaches to the research:
section 3.1 describes controllable generation tasks, section 3.2 speaks about mod-
els that we experimented with during our research, and section 3.3 relates to the
dataset, constructed for the investigated tasks; chapter 4 demonstrates conducted
experiments and their results – section 4.1 describes in detail metrics used for the
evaluation of the generation results, and section 4.2 tells about specific experiments
and their results; chapter 5 summarizes the work and provides conclusive remarks,
as well as outlines possible future directions of the research.
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Chapter 2

Related work

Controllable text generation is one of the key challenges of natural language gener-
ation. Its task is to generate a text corresponding to a certain control condition. Such
a condition can be, in particular, sentiment, topic, syntactic structure, or inclusion of
keywords. Zhang et al., 2022a propose a division of control conditions into semantic
(sentiment, topic, lack of toxicity, etc.), structural (syntax tree, format, etc.), and lexi-
cal (inclusion of keywords, etc.). Zhang et al., 2022a also offer a generalized scheme
of the controlled text generation system: control condition (input), generative model
(process), and generated text (output) (Fig. 2.1).

FIGURE 2.1: Generalized scheme of the controllable text generation
system based on “The IPO of controlled text generation” figure in

Zhang et al., 2022a

Some earlier approaches to controllable text generation include sequential mod-
els and style embedding [Ficler and Goldberg, 2017, Li et al., 2016], Variational Au-
toencoders [Hu et al., 2018, Sohn, Lee, and Yan, 2015], Generative Adversarial Nets
[Scialom et al., 2020, Wang and Wan, 2018], and Energy-based Models [Deng et al.,
2020, Zhao, Mathieu, and LeCun, 2017]. These DL-based methods, however, heavily
relies on large-scale datasets [Zhang et al., 2022a].

Today, the most widely used approach for text generation is large autoregressive
language models [Brown et al., 2020, Chowdhery et al., 2022, Zhang et al., 2022b].
Fine-tuning such models with supervised data or even training them from scratch
for controllable text generation is generally used to achieve the ability to control the
generation result [Keskar et al., 2019]. At the same time, updating model parameters
for each individual case is a rather large and expensive task, moreover autoregres-
sive language models use a fixed order for a generation – left-to-right, which reduces
the flexibility of the models for those tasks of controlled text generation that require
the use of both left and right contexts.

One of the large autoregressive language models is GPT-2, developed by OpenAI
in 2019 [Radford et al., 2019] – a sentence-generative language model that employs
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only the decoder blocks from the Transformer architecture. Operating as a tradi-
tional language model, GPT-2 takes word vectors as an input and generates a proba-
bility distribution for the next word as an output. Its auto-regressive nature ensures
that each token in a sentence is conditioned on the context of the preceding words.
This autoregressive framework is built upon the Transformer’s decoder component
and incorporates masking mechanisms during training, allowing attention calcula-
tions to observe only the content before a given word and not the content after it.
Fine-tuning such a pre-trained language model has shown promising results across
various tasks [Zhang et al., 2022a].

On the other hand, non-autoregressive language models show good results on
machine translation and speech-to-text tasks [Gu et al., 2017, Saharia et al., 2020].
However, these models are not well suited for language modeling [Ren et al., 2020].

The limitations of autoregressive models have led to the appearance of light-
weighted plug-and-play approaches [Dathathri et al., 2019, Yang and Klein, 2021,
Krause et al., 2020, Liu et al., 2021], which consist in keeping the language model
fixed and steering the generation process with external classifiers (potential func-
tions). This way, plug-and-play approaches can both control satisfaction of the de-
sired conditions (using a probabilistic potential function) and fluency of the gen-
erated text (using language model’s probabilities). However, plug-and-play ap-
proaches inherit limitations of language models on which they are based (such as
only left-to-right order of generation for autoregressive language models). More-
over, Li et al., 2022 shows that plug-and-play methods are only successful on at-
tribute level (e.g., topic) control, and fail on more complex tasks (such as syntactic
structure and semantic content).

Another approach to controllable text generation are diffusion models, which
borrow the idea from non-equilibrium thermodynamics [Sohl-Dickstein et al., 2015].
The general idea of this approach is to “destroy” training data by gradually adding
Gaussian noise; after that, the diffusion model is trained to reverse the diffusion pro-
cess and recover the data. Then, the model can be used to generate the new data by
successively applying the same learned “denoising” process to the randomly sam-
pled noise. For several years, diffusion models have shown great performance in
the continuous domain, providing state-of-the-art quality in the images [Ho, Jain,
and Abbeel, 2020, Song et al., 2020, Nichol and Dhariwal, 2021, Kingma et al., 2021],
audio [Chen et al., 2020, Kong et al., 2020], and video [Ho et al., 2022] generation
tasks. The application of diffusion models to textual data has long been limited be-
cause of the need for additional adaptations due to the discrete nature of the data.
Existing approaches to this adaptation mainly include extending diffusion models
to discrete state spaces [Hoogeboom et al., 2021b, Austin et al., 2021, Han, Kumar,
and Tsvetkov, 2022] and applying approximation and corruption processes on dis-
crete data (embeddings, roundings, character, byte-level methods) [Hoogeboom et
al., 2021a, Li et al., 2022, Gong et al., 2022, Chen, Zhang, and Hinton, 2022, Strudel
et al., 2022].

The application of diffusion models to controllable text generation was intro-
duced in 2022 with the Diffusion-LM model [Li et al., 2022]. Combining ideas of
diffusion models and plug-and-play approaches, Diffusion-LM starts with Gaussian
noise vectors and gradually performs denoising steps which produce a sequence of
continuous latent representations up to vectors that correspond to words. Fig. 2.2
shows described diffusion and denoising processes for text embeddings generation.

While showing promising results on different controllable text generation tasks
(semantic content, syntax tree, infilling etc.), Diffusion-LM demonstrates some limi-
tations, namely: (1) higher perplexity compared to results of previous plug-and-play
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FIGURE 2.2: Graphical model of diffusion and denoising processes
for text embeddings generation

models; (2) significantly slow training and decoding processes. Other diffusion-
based approached to conditional text generation include such models as SSD-LM
[Han, Kumar, and Tsvetkov, 2022], SED [Strudel et al., 2022] and LD4LG [Lovelace
et al., 2022].
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Chapter 3

Approach

Our approach to solving the tasks of controllable generation is based on the follow-
ing ideas: based on the classical approach to text generation (GPT-2), we aimed to
check the possibility of its fine-tuning for various tasks of text generation, its lim-
itations, pros and cons; we also wanted to test new emerging approaches and try
to adapt existing diffusion solutions to the tasks of controllable generation; also, we
wanted to conduct experiments on ChatGPT, particularly on those tasks that could
potentially cause difficulties for it (length and parts-of-speech control). To imple-
ment and evaluate the results of the assigned tasks, we decided to create our own
dataset and set of metrics.

The motivation and process of creating the dataset are detailed in section 3.3, and
the description of the metrics is in section 4.1. Details and results of the conducted
experiments are placed in section 4.2.

3.1 Controllable generation tasks

To assess the ability of the models to solve the problems of controllable text genera-
tion, the tasks of length, parts-of-speech, sentiment, and tense control were selected.
We also added a multi-conditional generation task, which is designed to test the abil-
ity of models to simultaneously work with several control conditions. The idea is to
evaluate the model’s performance on various types of tasks: semantic (sentiment),
structural (POS, length) and morphosyntactic (tense), as well as their combination.

3.1.1 Length control

In the task of length control we train the model to generate sentences with the given
number of tokens, where number of tokens is the number of all words and punctu-
ation symbols in the sentence. The parts of contractions are counted as the separate
tokens: for example, contraction “I’m” consists of two tokens “I” and “’m”.

3.1.2 Parts-of-speech control

In the task of parts-of-speech control we train the model to generate sentences ac-
cording to the given sequences of parts-of-speech tags. POS sequences used to test
the performance of the model are taken from the parts-of-speech structures of the
real sentences of the validation dataset (see section 3.3 for dataset construction de-
tails).



3.2. Models 7

3.1.3 Sentiment control

In the task of sentiment control we train the model to generate sentences with the
given sentiment: positive, neutral or negative.

3.1.4 Tense control

In the task of tense control we train the model to generate sentences with the given
tense. For this task, we used the simplified system of tenses division, and consider
only “general present”, “general future” and “general past” classes which include
all the corresponding tenses.

3.1.5 Multi-conditional generation

In the task of multi-conditional generation we train the model to generate sentences
which satisfies parts-of-speech, sentiment and tense control simultaneously. The
example of multi-conditional generation is shown in Fig. 3.1.

FIGURE 3.1: Example of a multi-conditional text generation task with
three control conditions

3.2 Models

3.2.1 GPT-2

For fine-tuning GPT-2 for our tasks of controllable text generation, we took pre-
trained GPT-2 model available via HuggingFace1. Original GPT-2 model consists
of 1.5 billion parameters and was trained on a WebText dataset of 8 million web
pages.

GPT-2 was used in default set-up and architecture, and fine-tuned on our dataset
(see section 3.3) for the tasks of length, parts-of-speech, sentiment, tense control,
and multi-conditional text generation. As the result of the fine-tuning process, five
models were obtained:

1https://huggingface.co/docs/transformers/model_doc/gpt2
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• GPT-2 length

• GPT-2 pos

• GPT-2 sentiment

• GPT-2 tense

• GPT-2 pos_sentiment_tense

For fine-tuning each of the models learning rate 0.0001 and 10 maximum epochs
were used; however, we set "patience" parameter to 3, which means that training
stops 3 epochs after the loss doesn’t improve. This way, training of all the models
stopped after the 6th epoch.

Tokenizer of the GPT-2 was expanded with the following additional tokens:
ADDITIONAL_TOKENS = {
’WORDS’: ’<COND_LENGTH>’,
’POS’: ’<COND_POS>’,
’SENTIMENT’: ’<COND_SENT>’,
’TENSE’: ’<COND_TENSE>’,
’START’: ’<START>’,
’END’: ’<END>’,
’PAD’: ’<PAD>’
},
where ’WORDS’, ’POS’, ’SENTIMENT’ and ’TENSE’ are condition tokens, ’START’

and ’END’ indicates beginning and end of the sentence, and ’PAD’ is a placeholder
token. The output layer of GPT-2 model has been changed accordingly to take into
account the additional tokens.

An example of the sentence format with control conditions used when training a
multi-conditional model:

<COND_LENGTH> 8 <COND_SENT> neutral <COND_TENSE> present
<START> This is a short article about sports. <END>
An example of a prompt format with control conditions used to multi-conditional

generation:
<COND_LENGTH> 8 <COND_SENT> neutral <COND_TENSE> present
<START>
An AWS g5.2xlarge instance with one GPU was used to train the model. Training

of one model took about 12 hours on average.

3.2.2 Diffusion-based models

As part of this work, experiments with diffusion-based approaches were also con-
ducted. We used Diffusion-LM2 and minimal-text-diffusion3 based on it, and tried
to train them on our dataset.

A diffusion mode is a latent variable model. It models the data x0 as a Markov
chain xT...x0, where xT...x1 are latent variables with dimensionality equal to the di-
mensionality of x0, and xT is Gaussian [Li et al., 2022]. On each step of the chain,
the Gaussian noise is gradually added to the data to get the approximate posteriors
q(xt|xt−1) (Fig. 2.2).

2https://github.com/XiangLi1999/Diffusion-LM
3https://github.com/madaan/minimal-text-diffusion



3.3. Dataset 9

The training process of the diffusion model is learned to reverse the diffusion
process by training pθ(xt−1|xt). The new data can then be generated with the same
algorithm of denoising.

Diffusion-LM is controlled with the gradient-based method, which balances sat-
isfaction of text fluency and required control conditions. minimal-text-diffusion is
light-versioned adherent of Diffusion-LM model. It allows controllable text genera-
tion by combining the generative diffusion model with a classifier model.

An AWS g5.12xlarge instance with four GPUs was used to train Diffusion-LM,
and AWS g5.2xlarge instance with four GPUs was used to train minimum-text-
diffusion. Training of Diffusion-LM model took about 36 hours, and minimum-text-
diffusion – about 3 hours.

3.2.3 ChatGPT

For conducting experiments with ChatGPT, the publicly available online version
hosted on the OpenAI website4 was used.

3.3 Dataset

For the tasks of our research, we decided to create our own dataset. The motivations
for this are as follows:

• to have a full control over the training data, including size, attributes and other
aspects of the dataset

• to be able to make a proper analysis of different facets of the generation tasks

• to our knowledge, there is no standardized benchmark for the problem of
conditional text generation with multiple conditions in the literature. There
are standard benchmarks for unconditional generation, paraphrasing, summa-
rization, etc., but we are unaware of any well-established benchmark for our
tasks. Accordingly, composition of own dataset, which meets the conditions
necessary for research, appears to be a consistent solution.

3.3.1 Dataset preparation pipeline

To create our own dataset, we are using the following procedure:
1. We took as a basis the OpenWebText dataset5, which is an open-source replica-

tion of the WebText dataset from OpenAI. WebText, in turn, is a corpus created from
web pages collected according to the principle of quality.

2. We randomly sampled from OpenWebText the dataset of a 10000 paragraphs,
each of which consists on average of 4.5 sentences; the resulted dataset consists of
451103 sentences from various-thematic web publications.

3. We performed the first cleaning of the dataset, which includes applying the
following filters:

• whether a sentence has a string type

• whether a sentence has more letters than numbers, symbols and sum of num-
bers and symbols

4https://chat.openai.com
5https://huggingface.co/datasets/openwebtext
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• whether a length of a sentence is between 4 and 80 words and punctuation
inclusive

• whether a length of a sentence is more than 10 symbols

• whether a sentence doesn’t contain @ symbol (email address) or “http” sub-
string (link to the webpage)

• whether a sentence is completed and its last character is one of the following:
!’".?»” Also, some sentences were not accurately separated and included punc-
tuation (one symbol, such as opening quotation mark) from the next sentence;
therefore, we also checked whether the third character from the end is one of
the following: !’".?»”, and if it is, deleted the last two characters and considered
a sentence completed

• whether sentence contains less than or equal to 3 special symbols

#$%&\*+/<=>

After the first cleaning, the size of the dataset decreased to 378852 sentences.
4. We calculated or constructed using available models the set of attributes for

each sentence. The detailed description of the attributes is presented in the subsec-
tion 3.3.2.

5. We performed the second cleaning of the dataset, which was made based on
the mismatches and errors in the generated attributes, such as mismatch between the
sentence length, the number of parts-of-speech tags, and the value of the sentence
length attribute.

After the second cleaning, the size of the dataset is 369842 sentences.
Fig. 3.2 shows schematic image of the dataset preparation pipeline.

FIGURE 3.2: Dataset preparation pipeline

3.3.2 Attributes

The set of attributes was calculated or constructed using available models for each
sentence in the dataset. This set of attributes include:
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1. Number of symbols in the sentence (“Number of symbols”).
This attribute was used only for purposes of cleaning and visualization of the

distribution of sentence lengths (see subsection 3.3.4).
2. Number of words in the sentence (“Number of words”).
This attribute corresponds to the number of words and punctuation symbols in

a sentence. For example, length of the sentence She loves her two dogs. is 6.
3. Parts-of-speech tagging (“Parts-of-speech”). The list of UPOS (universal part-

of-speech) tags of all words and punctuation symbols in a sentence, constructed
using spaCy tools6.

4. Sentiment (“Sentiment analysis”). Sentiment of a sentence, constructed using
twitter-roberta-base-sentiment model from Cardiff NLP [Barbieri et al., 2020]. The
values of the attribute are as follows: 0 – negative, 1 – neutral, 2 – positive. The
output of the model is a dictionary of sentiment distribution between all three values
(which sums up to 1), but for the convenience of training we use for this attribute
only the index of the maximum value.

To select a model for constructing this attribute, four approaches were com-
pared: Polarity of the TextBlob by spaCy7, eng_spacysentiment by spaCy8, sen-
timent by Stanza9, and twitter-roberta-base-sentiment model from Cardiff NLP10.
Four approaches were compared on the test dataset of 60 sentences (20 with positive
sentiment, 20 with neutral sentiment and 20 with negative sentiment), constructed
by ChatGPT from the literature quotes. Sentiment tags, as well as performance
of the approaches were evaluated manually; twitter-roberta-base-sentiment model
showed significantly better results than other approaches.

5. Tense (“Tense”).
Tense attribute was constructed based on the scheme of interpreting tags pro-

posed in this Stack Overflow answer11. For the convenience of training we used
only three tense values: future, present and past.

Some, especially long, sentences are composed of several parts with different
tenses. In such cases, the attribute returned a set with all the tenses present in the
sentence. Later, such sentences were filtered out and not used for training (see sub-
section 3.3.3).

3.3.3 Training dataset

For training the models, the smaller version of the dataset were sampled. The rea-
sons behind this decision are:

1. To speed-up training process. Both GPT-2 and diffusion-based approaches re-
quire large computational resources, which complicates the iterative process
of research when training on a large dataset. With further research, the final
models can be trained on a larger dataset, which is expected to improve the
solving of controllable generation tasks and increase the vocabulary.

2. To balance training dataset on sentiment and tense attributes. As will be shown
in the section 3.3.4, the large dataset have high prevalence of sentences with

6https://spacy.io/usage/linguistic-features
7https://spacy.io/universe/project/spacy-textblob
8https://spacy.io/universe/project/eng_spacysentiment
9https://stanfordnlp.github.io/stanza/sentiment.html

10https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment
11https://stackoverflow.com/a/70976698
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neutral sentiment, and lack of sentences with future tense. To ensure the sta-
ble work of the models, we balanced the labels of these attributes in sampled
smaller dataset.

3. To ensure that all the sentences in training dataset have only one detected
tense. For some sentences from a large dataset, the detected tense is either
empty or contains more than one tense. Such samples can make it difficult
to train models on the tense attribute, so it was important that the training
dataset consisted only of those sentences for which the tense was uniquely de-
termined.

The size of the smaller (training) dataset is 100000 sentences.
Also, validation dataset with 10000 sentences were sampled. It was used to as-

sess loss of the model after each epoch of fine-tuning GPT-2.

3.3.4 Datasets description

After the second cleaning, the size of the larger (general) dataset is 369842 sentences;
the size of the training dataset is 100000 sentences. Each of the datasets consists of
six columns:

• ‘text’ feature, which contains the sentences of the dataset, one sentence per
row;

and features, which represent attributes of the corresponding sentences:

• ‘Number of symbols’;

• ‘Number of words’;

• ‘Parts of speech’;

• ‘Sentiment analysis’;

• ‘Tense’

Distributions of attributes ‘Number of symbols’ and ‘Number of words’ are pre-
sented on Fig. 3.3 and Fig. 3.4; distribution of ‘Sentiment analysis’ feature is pre-
sented on Fig. 3.5 and Fig. 3.6; distribution of ‘Tense’ feature is presented on Fig.
3.7 (for the general dataset, only those sentences in which ‘Tense’ attribute is defined
and contains only one value were taken into account) and Fig. 3.8.

The figures show an imbalance of classes for sentiment and tense attributes in
the general dataset, and their balance in the training dataset. In addition, the graphs
demonstrate that the distribution of sentence lengths is the same for both datasets.
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FIGURE 3.3: Distributions of ‘Number of symbols’ and ‘Number of
words’ attributes in the general dataset

FIGURE 3.4: Distributions of ‘Number of symbols’ and ‘Number of
words’ attributes in the training dataset



14 Chapter 3. Approach

FIGURE 3.5: Distribution of ‘Sentiment analysis’ attribute in the gen-
eral dataset

FIGURE 3.6: Distribution of ‘Sentiment analysis’ attribute in the train-
ing dataset
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FIGURE 3.7: Distribution of ‘Tense’ attribute (for those sentences, in
which ‘Tense’ attribute is defined and contains only one value) in gen-

eral dataset

FIGURE 3.8: Distribution of ‘Tense’ attribute in training dataset
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Chapter 4

Experiments and evaluation

4.1 Metrics

In the tasks of controllable text generation, it is necessary to consider several quality
aspects of the generated text. In particular, it is important not only to fulfill the given
control condition but also to produce qualitative (fluent) and diverse samples. This
is crucial in order to avoid the generation of "unreadable" or identical texts; also,
it’s important to ensure that generated text doesn’t directly reproduce the training
samples.

To ensure the quality of all four aspects, we are using the evaluation method-
ology based by evaluation scheme proposed by the authors of the Diffusion-LM [Li
et al., 2022] and SSD-LM [Han, Kumar, and Tsvetkov, 2022] models, but additionally
processed and adjusted to the specific control conditions of our work:

1. Control metrics. To evaluate compliance with the control condition, an accu-
racy metric of exact match to the condition is used; for the tasks of length and sen-
timent control, accuracy metric of approximate match to the condition is also used;
we also use the mean deviation metric to assess the length difference; task of POS
control has several additional control compliance metrics, which will be discussed
in subsection 4.1.4.

2. Fluency metrics. The fluency of the model is assessed using the perplexity
metric.

3. Distinctiveness metrics. Distinctiveness metrics are used to assess diversity.
They include such metrics as the average percentage of distinct n-grams in the out-
put samples and the percentage of output samples that begin or end with identical
phrases.

4. Repetition metrics. Repetition metrics are used to ensure that generated sam-
ples differ from the training data. We use average percentage of unseen n-grams to
calculate these metrics.

4.1.1 Length control metrics

For the tasks with the length control, three metrics are used to assess the compliance
with control condition:

1. Exact length: percentage of sentences with the exact match of the specified
control length with the number of words and punctuation symbols in the generated
sentence.

2. Approximate length: percentage of sentences with the approximate (+- 3
words or punctuation symbols) match of the specified control length with the num-
ber of words and punctuation in the generated sentence. The approximate length
metric aims to examine in more detail how well the model is able to capture the
general trend in length in cases where the length condition is a large number and an
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exact match with the control condition becomes significantly more complex task for
the model.

3. Mean deviation of length: the mean value of the deviations of the lengths of
the generated sentences from the specified control lengths conditions:

mean
i∈[1,n]

(|(length of generated sentence i)− (control length condition i)|)

4.1.2 Sentiment control metrics

For the tasks with the sentiment control, two metrics are used to assess the compli-
ance with control condition:

1. Exact sentiment: percentage of sentences with the exact match of the specified
control sentiment with the defined sentiment of the generated sentence. The defi-
nition of the sentiment of the generated sentences is made using the same twitter-
roberta-base-sentiment model that was used to calculate the sentiment attribute in
the training dataset.

2. Approximate sentiment: percentage of sentences with the approximate (+- 1
“sentiment level”) match of the specified control sentiment with the defined senti-
ment of the generated sentence. The approximate sentiment metric aims to “smooth”
the boundaries between “sentiment levels”, which in certain cases can be quite close
– negative (0) and neutral (1); neutral (1) and positive (2).

4.1.3 Tense control metrics

For the tasks with the tense control, one metric is used to assess the compliance with
control condition:

1. Exact tense: percentage of sentences with the exact match of the specified
control tense with the defined tense of the generated sentence. The definition of the
tense of the generated sentences is made using the same approach which is used
to calculate the tense attribute in the training dataset (subsection 3.3.2). Only those
sentences in which ’Tense’ attribute is defined and contains only one value are used
to calculate this metric.

4.1.4 Parts-of-speech control metrics

For the tasks with the parts-of-speech control, four metrics are used to assess the
compliance with control condition:

1. Exact POS: percentage of sentences with the exact match of the specified con-
trol sequence of parts-of-speech tags with the defined parts-of-speech tagging of the
generated sentence. The part-of-speech tagging of the generated sentences is made
using the same spaCy tools, used to construct Parts-of-speech attribute in the train-
ing dataset (subsection 3.3.2).

2. Presence of unique POS in control sequence: mean value of the percentages
of unique POS tags, presented both in the control sequence of tags and sequence of
POS tags of the generated sentence:

mean
i∈[1,n]

{[set of POS tags in control i] ∩ [set of POS tags in generated sentence i]}
{[set of POS tags in control i]}
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3. POS n-grams match: mean value of the percentages of n-grams of POS tags,
presented both in the control sequence of tags and sequence of POS tags of the gener-
ated sentence. In evaluating of the performance of the models we used POS bigrams
match and POS trigrams match metrics.

mean
i∈[1,n]

{[n-grams of POS in control i] ∩ [n-grams of POS in generated sentence i]}
{[n-grams of POS in control i]}

4. Alignment POS: the idea of this metric comes from the assumption that POS
tags in the generated sentence can differ from control sequence with some gaps or
extra tags. In this case, direct evaluation of the exact POS match is too strict, while
presence of unique POS in control sequence or POS n-grams match are too vague
metrics. Therefore, there is a need to align both sequences, and to calculate the per-
centage of matched tags only after that. To align the sequences we use the Needle-
man–Wunsch algorithm – the algorithm presented in 1970 by Needleman and Wun-
sch, 1970 for bioinformatic uses of aligning protein or nucleotide sequences. Af-
ter obtaining aligned sequences, we calculate mean value of the percentages of the
matched tags in all the generated sentence. The example of the POS sequences align-
ment is shown in the Fig. 4.1.

FIGURE 4.1: Example of the POS sequences alignment with the
Needleman-Wunsch algorithm

4.1.5 Fluency metrics

For ensuring the fluency of the generated text, we are using one metric:
1. Perplexity: we calculate the mean perplexity of the generated samples using

HugginFace Perplexity model1 [Jelinek et al., 2005]. The lower perplexity means the
higher fluency of the model.

4.1.6 Distinctiveness metrics for all models

For assessing the distinctiveness of the generated text (in other words, checking if
model doesn’t generate same or very similar sentences) we use four metrics:

1https://huggingface.co/spaces/evaluate-metric/perplexity
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1. Distinct n-grams in a sentence: we calculate the mean of sentence-level per-
centages of the unique n-grams. With this metric we evaluate whether the model
use repetitive words while generating a sentence. In evaluating of the performance
of the models we used distinct unigrams, bigrams and trigrams.

2. Distinct n-grams in all sentences: we calculate the percentage of unique n-
grams in all the generated sentences. With this metric we evaluate how distinct are
n-grams in all the generation result. In evaluating of the performance of the models
we used distinct unigrams, bigrams and trigrams.

3. Distinct endings: we calculate the percentage of unique endings in all the
generated sentences. Identical endings of the generated sentences is an encountered
problem of the not enough trained generative models; with this metric we would
like to ensure that generated sentences have distinct endings. In the evaluating of
the performance of the models we calculate this metrics for 2 and 3 ending tokens.

4. Distinct beginnings: we calculate the percentage of unique beginnings in all
the generated sentences. Identical beginnings of the generated sentences is an en-
countered problem of the not enough trained generative models; with this metric
we would like to ensure that generated sentences have distinct beginnings. In the
evaluating of the performance of the models we calculate this metrics for 2 and 3
beginning tokens.

4.1.7 Distinctiveness metrics for models with POS control

These metrics are aimed to ensure that generation results are different for the same
POS condition sequences. For ensuring distinctiveness of generation under the equiv-
alent POS tags, we generate 5 sentences for each POS control sequence, and calculate
three following metrics:

1. Distinct n-grams for repeated POS: we calculate the mean of 5-sentence-level
percentages of the unique n-grams (in other words, we find the percentage of the
unique n-grams in every 5 sentences, and then calculate the mean of all the percent-
ages). In evaluating of the performance of the models we used distinct bigrams,
trigrams and five-grams.

2. Distinct endings for repeated POS: we calculate the mean of 5-sentence-level
percentages of the unique endings (in other words, we find the percentage of the
unique endings in every 5 sentences, and then calculate the mean of all the percent-
ages). In evaluating of the performance of the models we calculate this metrics for 2
and 3 ending tokens.

3. Distinct beginnings for repeated POS: we calculate the mean of 5-sentence-
level percentages of the unique beginnings (in other words, we find the percentage
of the unique beginnings in every 5 sentences, and then calculate the mean of all
the percentages). In evaluating of the performance of the models we calculate this
metrics for 2 and 3 beginning tokens.

4.1.8 Repetition metrics

These metrics are aimed to ensure that generation results don’t repeat training data.
We use one metric for assessing uniqueness of the generated sentences:

1. Repetition n-grams: we calculate the percentage of unique n-grams in the gen-
erated sentences (in other words, such n-grams which are presented in generation
results but not presented in the training data). In evaluating of the performance of
the models we used distinct trigrams and five-grams.
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4.2 Experiments and results

4.2.1 Experiments with GPT-2

Experiments with GPT-2 were carried out using the models described in subsection
3.2.1. Each of the fine-tuned models was given an input of 1000 samples containing
the appropriate control conditions. As a result, 1000 generated sentences were ob-
tained for each of the models, which were evaluated using the metrics discussed in
section 4.1. Additional generation was carried out for the GPT-2 length model to test
the dependence of the metric results on the number of generated sentences. Also, to
evaluate the GPT-2 pos model, two different sets of sentences were generated: with-
out repetitions of POS sequences and with repetitions (5 sentences per one control
sequence).

GPT-2 length
To evaluate this model, a set of length tokens was created, the distribution of

which repeats the distribution of sentence lengths in the training dataset (Fig. 3.4).
The model demonstrated an exact match with the control condition in 42.3% of

the generated sentences, an approximate match with the control condition in 93.1%
of the generated sentences, and mean deviation of 1.551. The model demonstrated
the best results in matching with the control condition when generating short sen-
tences: for sentences of up to 10 words, the exact match with the control condition is
65.1%, approximate match with the control condition is 100%, and mean deviation is
0.37. As sentences length increases, the percentage of exact matches with the control
condition decreases, but for sentences up to 30 words, the approximate match is still
100%, and slightly decreases to 92.6% for sentences between 30 and 40 words. For
sentences longer than 40 words, the exact and approximate match with the control
condition drops sharply, while mean deviation grows, and after 50 words the model
can no longer generate sentences with the given number of words (mean deviation
more than 16 words). The values of the control metrics depending on the desired
length of the generated sentences are presented in Fig. 4.2 and Fig. 4.8.

The perplexity of the model is 164.7, and the generation results also showed good
results on the distinctiveness and repetition metrics (see Appendix B for a table with
the values of all metrics).

We conducted an additional experiment to evaluate the dependence of the metric
values on the number of generated samples; for this, we generated 2000 sentences
with given length control conditions. The distribution of the values of the length
tokens provided for the model input prompts also repeats the distribution of the
sentence lengths of the training dataset. On 2000 sentences, the model showed sim-
ilar results in compliance with the condition of control, perplexity, and repetition,
but, as expected, showed slightly worse results on almost all distinctiveness metrics.

GPT-2 pos
To evaluate this model, we gave the model prompts with sequences of parts-of-

speech tokens obtained from the structure of real sentences. For both cases (without
repetitions and with repetitions), the model demonstrated good results of match
with the control condition: 41.2% and 39.3% for exact match with a given POS se-
quence and 92.1% and 92.4% for alignment POS (results on other control metrics are
presented in Appendix B).

The GPT-2 pos model showed worse perplexity than other models: 324 and 313.8
for generation without repetitions and with repetitions. This is most likely due to
the specific sequences of tags given as input for generation. Although they are
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FIGURE 4.2: Length control metrics depending on the values of the
control condition for 1000 and 2000 generated samples of GPT-2 length

model

taken from real sentences, they often contain quite complex combinations of parts
of speech and punctuation symbols, which affects the fluency of the generated sen-
tences.

The models showed good results of distinctiveness metrics, and the best values
of repetition metrics among all models, which is probably also related to the unique-
ness of the given tag sequences.

Testing the model on repeated tag sequences showed excellent results: for the
same prompts with parts-of-speech tag sequences, the model generates different re-
sults.

GPT-2 sentiment
To evaluate this model, we used an even distribution of control conditions corre-

sponding to different values of sentiment – positive, neutral and negative.
The model performed well: 73.6% for an exact match with the control condition

and 99.1% for an approximate match with the control condition. The model showed
the best results for neutral sentiment (83.2% exact match), and good results for posi-
tive and negative sentiment (69.1% and 68.5% exact match, respectively). The values
of the control metrics depending on the desired sentiment of the generated sentences
are presented in Fig. 4.3.

Perplexity of the model is the best among all considered GPT-2 models – 137.
Distinctiveness and repetition metrics are similar to the results of other models.

GPT-2 tense
To evaluate this model, we used an even distribution of control conditions corre-

sponding to different values of tenses – past, present and future.
The model showed the best results for control conditions among all models –

98.7% exact match with the control condition. It is worth noting that this metric
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FIGURE 4.3: Sentiment control metrics depending on the values of the
control condition for GPT-2 sentiment and GPT-2 pos_sentiment_tense

models

was calculated among sentences for which it was possible to unambiguously de-
termine the tense on the post-generation check (956 sentences out of 1000). The
model demonstrated the best results in the generation of sentences in the future
tense (99.4%); for the past and the present tenses, the indicators of the match with
the control condition turned out to be the same – 98.4%. The values of the control
metrics depending on the desired tense of the generated sentences are presented in
Fig. 4.4.

FIGURE 4.4: Tense control metrics depending on the values of the
control condition for GPT-2 tense and GPT-2 pos_sentiment_tense mod-

els

Perplexity of the model is 144.5. Distinctiveness and repetition metrics are simi-
lar to the results of other models.

GPT-2 pos_sentiment_tense
The input of this model is fed simultaneously with three control conditions. For

the values of the control condition, we used the same approaches as for the single-
conditional models: sequences of parts-of-speech tags from real sentences and a
even distribution of sentiment and tense values.

The model performed slightly worse in terms of control than almost all single-
conditional models: 11.2% worse for exact sentiment, 1.4% worse for approximate
sentiment, 6.3% worse for exact tense (the value of the exact match with the tense
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control condition was also calculated among sentences for which it was possible to
unambiguously determine the tense on the post-generation check). However, the
values for compliance with the POS control conditions almost didn’t change. The
multi-conditional model showed different results than the single-conditional mod-
els on the distribution of control metric values depending on the control condition
values: the worst results for positive sentiment (47.1% exact match against 64.9% for
negative sentiment and 75.1% for neutral sentiment) and future tense (79.1% exact
match against 96.9% for the past tense and 98.6% for the present tense). The values
of the control metrics depending on the desired sentiment and tense of the generated
sentences are presented in Fig. 4.3 and 4.4.

Perplexity of the multi-conditional model is the highest among all models –
354.1; on the other hand, distinctiveness and repetition metrics showed the best re-
sults. All these facts are obviously related to increasing the complexity of the gener-
ated sentences due to combination of control conditions.

4.2.2 Experiments with diffusion-based models

Despite high expectations for the performance of diffusion models, based on suc-
cessful examples of their performance in generation tasks, including recent works of
controllable text generation, we were unable to achieve decent results when train-
ing Diffusion-LM and minimal-text-diffusion on our data (an example of one of the
generated samples using minimal-text-diffusion is shown in Fig. 4.5).

FIGURE 4.5: Example of one of the generated samples using minimal-
text-diffusion trained on our dataset

Most likely, the difference between the results of the models on the datasets pre-
sented in the original examples and our dataset lies in the difference in the datasets
complexities. The authors of Diffusion-LM use two datasets to train the model:
E2E, which is a collection of restaurant reviews, and ROCStories, a dataset of five-
sentence stories. These datasets are quite subject-specific and have a rather small
and simple vocabulary, which allows the models to work in certain narrow domains
with limited number of words and show good generation results. minimal-text-
diffusion, as a smaller model, uses even simpler training datasets in the published
examples.

With the available configurations, none of these models were able to learn on the
dataset we created, and the long time and large resource consumption of Diffusion-
LM training imposes limitations on the possibilities of experiments.

We expect that for future work, one of the following approaches may give better
results:

1. More training time/larger training dataset/more steps in the diffusion and
denoising processes, which, accordingly, requires more computing power.

2. And/or development of own diffusion approaches or changing the architec-
ture of existing solutions for our tasks.
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4.2.3 Experiments with ChatGPT

The task of generating text with a given sentiment and tense is apparently straight-
forward for ChatGPT. We decided to test its capabilities in generating sentences with
a given length and parts-of-speech structure.

ChatGPT length
ChatGPT could not "understand" the task of generating text with a given num-

ber of words and punctuation symbols, so we concentrated on the task of generating
text with a given number of words only. The metrics of compliance with the control
conditions remained similar – the exact number of words, the approximate (+- 3)
number of words and mean deviation of length. An example of prompt for generat-
ing sentences with a given number of words is shown in Fig. 4.6.

FIGURE 4.6: Example of prompt for generating sentences with Chat-
GPT with a given number of words

We generated 146 sentences with different length conditions. By exact and ap-
proximate match of the control condition, ChatGPT performed worse than GPT-2:
28.8% exact match with the control condition and 87% approximate match with the
control condition. However, it showed similar value of mean deviation – 1.53, and
by examining distributions of metrics depending on control condition we see that
ChatGPT performance is much more stable across the different desired lengths. Un-
like GPT-2 length model, ChatGPT is capable of generating longer texts with desired
length. Weaker performance of GPT-2 on longer sentences is likely due to the lack
of such sentences in the training data, which prevented the model from learning to
generate long sentences of a given length. In contrast, ChatGPT has no such restric-
tions. However, it is also important to note that starting with 60 words, ChatGPT
generates not a single sentence, but a text of a given length.

The values of the control metrics depending on the desired length of the gener-
ated sentences are presented in Fig. 4.7. The comparisons between the performances
of GPT-2 length and ChatGPT models, which demonstrate the more stable perfor-
mance of ChatGPT, are shown in Fig. 4.8.

ChatGPT, as expected, showed the best value of perplexity – 78.1. However,
according to the distinctiveness metrics, GPT-2 length model turned out to be better
in some of the metrics – in particular, ChatGPT often generates sentences that start
the same way.

ChatGPT POS
In order to test the ability of ChatGPT to generate sentences based on the given

parts-of-speech structure, we generated 50 sentences with 10 control sentences, which
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FIGURE 4.7: Length control metrics depending on the values of the
control condition for ChatGPT

FIGURE 4.8: Comparisons between the exact match and mean devia-
tion metrics of GPT-2 length model for 2000 sentences and ChatGPT

were previously used for experiments with GPT-2 POS model. An example of prompt
for generating sentences based on given parts-of-speech structure is shown in Fig.
4.9.

ChatGPT could not generate sentences that fully correspond to the given struc-
ture, but generated approximate variants: exact match with the given POS is 0%, but
alignment POS value is 49.2%. Most likely, this is due to the fact that ChatGPT was
not explicitly trained on these parts-of-speech tags, and has difficulties with their
recognition.

In addition, attempts to generate sentences according to the given structure sig-
nificantly worsened the perplexity of the generation results, which now amounts to
537.96.

However, ChatGPT showed a large variety of generation, including the genera-
tion of different sentences corresponding to the same sequence of tags.

4.2.4 Remarks

It’s also important to add some remarks about the evaluation process:
1. Evaluating the exact match for POS, sentiment and tense depends on the qual-

ity of the models that calculate these parameters after generation. Thus, such an
evaluation may contain certain small deviations from actual values.
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FIGURE 4.9: Example of prompt for generating sentences with Chat-
GPT based on given parts-of-speech structure

2. Perplexity metric is calculated under the GPT-2 model, hence it’s by default
biased in favor of GPT-2. Since in our work we use the perplexity metric to compare
the performance of different fine-tuned GPT-2 models, we can rely on this metric to
compare fluency. However, when comparing the results of the work with the results
of the work of other models, it is worth to consider other fluency metrics, such as
MAUVE [Pillutla et al., 2021] or human evaluation.

3. Generally speaking, comparing the results of GPT-2 and ChatGPT generations
is possible only at the level of general conclusions from observations, since both
models have not only different formulations of controllable generation tasks, but
also different training backgrounds.
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Chapter 5

Summary and future work

This study investigates possible directions of text generation with compliance with
control conditions compliance. In our work with GPT-2, we were able to achieve
decent results for controllable generation tasks with given length, parts-of-speech
tags, sentiment, and tense control, as well as a combination of control conditions.
Fine-tuned models not only learned to generate text under a certain condition, but
also to produce fluent and diverse results even for complex or repetitive structures
of parts-of-speech tags and combinations of different controls.

Diffusion-based approaches, despite the expected promise, haven’t show good
results on our dataset. However, our work with these models has laid the ground-
work for further research in this direction, and we expect that with more resources
and training time we will be able to achieve the expected results.

In our research, we identified the weaknesses of controllable text generation. In
particular, the generation of texts of a certain length, especially for long sentences,
is one of the difficulties faced by even the most complex language models. This gap
can serve as another direction for future research.

An important component of controllable text generation, as well as any gener-
ation task, is training data. During our research, we realized that models that per-
form well on simple and narrow-topic datasets may not always perform well when
trained on larger and more diverse datasets. However, researching the capabilities
of models across a wide range of tasks and topics is important for understanding
their generative capabilities beyond narrow domains.

In general, controllable text generation, like any actively emerging field, has
many ways for development. The purpose of this work was to study some of the
possible approaches, their possibilities and limitations. By investigating the facets
of the controllable generation tasks, this research is hoping to contribute to the on-
going progress in this field.
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Appendix A

Links to materials

A.1 Code

The public repository with code and generation results is available by the link:
https://github.com/SandraKonopatska/controllable-text-generation

A.2 Models

Fine-tuned GPT-2 models are available by the link:
https://drive.google.com/drive/folders/1Hr8rb_aeFn6HqPnAJq1C2O9gOQK86Ac1

A.3 Dataset

Dataset is available by the link:
https://drive.google.com/drive/folders/1KUKAHYEL9ZnibFaQrclhQBnjncT9xDRr
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Appendix B

Evaluation metrics

FIGURE B.1: Evaluation metrics



30

Bibliography

Austin, Jacob et al. (2021). Structured Denoising Diffusion Models in Discrete State-
Spaces. DOI: 10.48550/ARXIV.2107.03006. URL: https://arxiv.org/abs/
2107.03006.

Barbieri, Francesco et al. (2020). TweetEval: Unified Benchmark and Comparative Evalu-
ation for Tweet Classification. arXiv: 2010.12421 [cs.CL].

Brown, Tom B. et al. (2020). Language Models are Few-Shot Learners. DOI: 10.48550/
ARXIV.2005.14165. URL: https://arxiv.org/abs/2005.14165.

Chen, Nanxin et al. (2020). WaveGrad: Estimating Gradients for Waveform Generation.
DOI: 10.48550/ARXIV.2009.00713. URL: https://arxiv.org/abs/2009.00713.

Chen, Ting, Ruixiang Zhang, and Geoffrey Hinton (2022). Analog Bits: Generating
Discrete Data using Diffusion Models with Self-Conditioning. DOI: 10.48550/ARXIV.
2208.04202. URL: https://arxiv.org/abs/2208.04202.

Chowdhery, Aakanksha et al. (2022). PaLM: Scaling Language Modeling with Pathways.
DOI: 10.48550/ARXIV.2204.02311. URL: https://arxiv.org/abs/2204.02311.

Dathathri, Sumanth et al. (2019). Plug and Play Language Models: A Simple Approach
to Controlled Text Generation. DOI: 10.48550/ARXIV.1912.02164. URL: https:
//arxiv.org/abs/1912.02164.

Deng, Yuntian et al. (2020). Residual Energy-Based Models for Text Generation. arXiv:
2004.11714 [cs.CL].

Ficler, Jessica and Yoav Goldberg (2017). Controlling Linguistic Style Aspects in Neural
Language Generation. arXiv: 1707.02633 [cs.CL].

Gong, Shansan et al. (2022). DiffuSeq: Sequence to Sequence Text Generation with Diffu-
sion Models. DOI: 10.48550/ARXIV.2210.08933. URL: https://arxiv.org/abs/
2210.08933.

Gu, Jiatao et al. (2017). Non-Autoregressive Neural Machine Translation. DOI: 10.48550/
ARXIV.1711.02281. URL: https://arxiv.org/abs/1711.02281.

Han, Xiaochuang, Sachin Kumar, and Yulia Tsvetkov (2022). SSD-LM: Semi-autoreg-
ressive Simplex-based Diffusion Language Model for Text Generation and Modular Con-
trol. DOI: 10.48550/ARXIV.2210.17432. URL: https://arxiv.org/abs/2210.
17432.

Ho, Jonathan, Ajay Jain, and Pieter Abbeel (2020). Denoising Diffusion Probabilistic
Models. DOI: 10.48550/ARXIV.2006.11239. URL: https://arxiv.org/abs/2006.
11239.

Ho, Jonathan et al. (2022). Video Diffusion Models. DOI: 10.48550/ARXIV.2204.03458.
URL: https://arxiv.org/abs/2204.03458.

Hoogeboom, Emiel et al. (2021a). Argmax Flows and Multinomial Diffusion: Learning
Categorical Distributions. DOI: 10 . 48550 / ARXIV . 2102 . 05379. URL: https : / /
arxiv.org/abs/2102.05379.

Hoogeboom, Emiel et al. (2021b). Autoregressive Diffusion Models. DOI: 10.48550/
ARXIV.2110.02037. URL: https://arxiv.org/abs/2110.02037.

Hu, Zhiting et al. (2018). Toward Controlled Generation of Text. arXiv: 1703 . 00955
[cs.LG].

https://doi.org/10.48550/ARXIV.2107.03006
https://arxiv.org/abs/2107.03006
https://arxiv.org/abs/2107.03006
https://arxiv.org/abs/2010.12421
https://doi.org/10.48550/ARXIV.2005.14165
https://doi.org/10.48550/ARXIV.2005.14165
https://arxiv.org/abs/2005.14165
https://doi.org/10.48550/ARXIV.2009.00713
https://arxiv.org/abs/2009.00713
https://doi.org/10.48550/ARXIV.2208.04202
https://doi.org/10.48550/ARXIV.2208.04202
https://arxiv.org/abs/2208.04202
https://doi.org/10.48550/ARXIV.2204.02311
https://arxiv.org/abs/2204.02311
https://doi.org/10.48550/ARXIV.1912.02164
https://arxiv.org/abs/1912.02164
https://arxiv.org/abs/1912.02164
https://arxiv.org/abs/2004.11714
https://arxiv.org/abs/1707.02633
https://doi.org/10.48550/ARXIV.2210.08933
https://arxiv.org/abs/2210.08933
https://arxiv.org/abs/2210.08933
https://doi.org/10.48550/ARXIV.1711.02281
https://doi.org/10.48550/ARXIV.1711.02281
https://arxiv.org/abs/1711.02281
https://doi.org/10.48550/ARXIV.2210.17432
https://arxiv.org/abs/2210.17432
https://arxiv.org/abs/2210.17432
https://doi.org/10.48550/ARXIV.2006.11239
https://arxiv.org/abs/2006.11239
https://arxiv.org/abs/2006.11239
https://doi.org/10.48550/ARXIV.2204.03458
https://arxiv.org/abs/2204.03458
https://doi.org/10.48550/ARXIV.2102.05379
https://arxiv.org/abs/2102.05379
https://arxiv.org/abs/2102.05379
https://doi.org/10.48550/ARXIV.2110.02037
https://doi.org/10.48550/ARXIV.2110.02037
https://arxiv.org/abs/2110.02037
https://arxiv.org/abs/1703.00955
https://arxiv.org/abs/1703.00955


Bibliography 31

Jelinek, F. et al. (Aug. 2005). “Perplexity—a measure of the difficulty of speech recog-
nition tasks”. In: The Journal of the Acoustical Society of America 62.S1, S63–S63.
ISSN: 0001-4966. DOI: 10.1121/1.2016299. eprint: https://pubs.aip.org/
asa/jasa/article- pdf/62/S1/S63/11558910/s63\_5\_online.pdf. URL:
https://doi.org/10.1121/1.2016299.

Keskar, Nitish Shirish et al. (2019). CTRL: A Conditional Transformer Language Model
for Controllable Generation. DOI: 10.48550/ARXIV.1909.05858. URL: https://
arxiv.org/abs/1909.05858.

Kingma, Diederik P. et al. (2021). Variational Diffusion Models. DOI: 10.48550/ARXIV.
2107.00630. URL: https://arxiv.org/abs/2107.00630.

Kong, Zhifeng et al. (2020). DiffWave: A Versatile Diffusion Model for Audio Synthesis.
DOI: 10.48550/ARXIV.2009.09761. URL: https://arxiv.org/abs/2009.09761.

Krause, Ben et al. (2020). GeDi: Generative Discriminator Guided Sequence Generation.
DOI: 10.48550/ARXIV.2009.06367. URL: https://arxiv.org/abs/2009.06367.

Li, Jiwei et al. (2016). A Persona-Based Neural Conversation Model. arXiv: 1603.06155
[cs.CL].

Li, Xiang Lisa et al. (2022). Diffusion-LM Improves Controllable Text Generation. DOI:
10.48550/ARXIV.2205.14217. URL: https://arxiv.org/abs/2205.14217.

Liu, Alisa et al. (2021). DExperts: Decoding-Time Controlled Text Generation with Experts
and Anti-Experts. DOI: 10.48550/ARXIV.2105.03023. URL: https://arxiv.org/
abs/2105.03023.

Lovelace, Justin et al. (2022). Latent Diffusion for Language Generation. arXiv: 2212.
09462 [cs.CL].

Needleman, Saul B. and Christian D. Wunsch (1970). “A general method applicable
to the search for similarities in the amino acid sequence of two proteins”. In:
Journal of Molecular Biology 48.3, pp. 443–453. ISSN: 0022-2836. DOI: https://doi.
org/10.1016/0022-2836(70)90057-4. URL: https://www.sciencedirect.com/
science/article/pii/0022283670900574.

Nichol, Alex and Prafulla Dhariwal (2021). Improved Denoising Diffusion Probabilistic
Models. DOI: 10.48550/ARXIV.2102.09672. URL: https://arxiv.org/abs/2102.
09672.

Pillutla, Krishna et al. (2021). MAUVE: Measuring the Gap Between Neural Text and
Human Text using Divergence Frontiers. arXiv: 2102.01454 [cs.CL].

Radford, Alec et al. (2019). “Language Models are Unsupervised Multitask Learn-
ers”. In.

Ren, Yi et al. (2020). A Study of Non-autoregressive Model for Sequence Generation. DOI:
10.48550/ARXIV.2004.10454. URL: https://arxiv.org/abs/2004.10454.

Saharia, Chitwan et al. (2020). Non-Autoregressive Machine Translation with Latent Alig-
nments. DOI: 10.48550/ARXIV.2004.07437. URL: https://arxiv.org/abs/2004.
07437.

Scialom, Thomas et al. (2020). Discriminative Adversarial Search for Abstractive Summa-
rization. arXiv: 2002.10375 [cs.CL].

Sohl-Dickstein, Jascha et al. (2015). Deep Unsupervised Learning using Nonequilibrium
Thermodynamics. DOI: 10.48550/ARXIV.1503.03585. URL: https://arxiv.org/
abs/1503.03585.

Sohn, Kihyuk, Honglak Lee, and Xinchen Yan (2015). “Learning Structured Output
Representation using Deep Conditional Generative Models”. In: Advances in Neu-
ral Information Processing Systems. Ed. by C. Cortes et al. Vol. 28. Curran Asso-
ciates, Inc. URL: https://proceedings.neurips.cc/paper_files/paper/2015/
file/8d55a249e6baa5c06772297520da2051-Paper.pdf.

https://doi.org/10.1121/1.2016299
https://pubs.aip.org/asa/jasa/article-pdf/62/S1/S63/11558910/s63\_5\_online.pdf
https://pubs.aip.org/asa/jasa/article-pdf/62/S1/S63/11558910/s63\_5\_online.pdf
https://doi.org/10.1121/1.2016299
https://doi.org/10.48550/ARXIV.1909.05858
https://arxiv.org/abs/1909.05858
https://arxiv.org/abs/1909.05858
https://doi.org/10.48550/ARXIV.2107.00630
https://doi.org/10.48550/ARXIV.2107.00630
https://arxiv.org/abs/2107.00630
https://doi.org/10.48550/ARXIV.2009.09761
https://arxiv.org/abs/2009.09761
https://doi.org/10.48550/ARXIV.2009.06367
https://arxiv.org/abs/2009.06367
https://arxiv.org/abs/1603.06155
https://arxiv.org/abs/1603.06155
https://doi.org/10.48550/ARXIV.2205.14217
https://arxiv.org/abs/2205.14217
https://doi.org/10.48550/ARXIV.2105.03023
https://arxiv.org/abs/2105.03023
https://arxiv.org/abs/2105.03023
https://arxiv.org/abs/2212.09462
https://arxiv.org/abs/2212.09462
https://doi.org/https://doi.org/10.1016/0022-2836(70)90057-4
https://doi.org/https://doi.org/10.1016/0022-2836(70)90057-4
https://www.sciencedirect.com/science/article/pii/0022283670900574
https://www.sciencedirect.com/science/article/pii/0022283670900574
https://doi.org/10.48550/ARXIV.2102.09672
https://arxiv.org/abs/2102.09672
https://arxiv.org/abs/2102.09672
https://arxiv.org/abs/2102.01454
https://doi.org/10.48550/ARXIV.2004.10454
https://arxiv.org/abs/2004.10454
https://doi.org/10.48550/ARXIV.2004.07437
https://arxiv.org/abs/2004.07437
https://arxiv.org/abs/2004.07437
https://arxiv.org/abs/2002.10375
https://doi.org/10.48550/ARXIV.1503.03585
https://arxiv.org/abs/1503.03585
https://arxiv.org/abs/1503.03585
https://proceedings.neurips.cc/paper_files/paper/2015/file/8d55a249e6baa5c06772297520da2051-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/8d55a249e6baa5c06772297520da2051-Paper.pdf


32 Bibliography

Song, Yang et al. (2020). Score-Based Generative Modeling through Stochastic Differential
Equations. DOI: 10.48550/ARXIV.2011.13456. URL: https://arxiv.org/abs/
2011.13456.

Strudel, Robin et al. (2022). Self-conditioned Embedding Diffusion for Text Generation.
DOI: 10.48550/ARXIV.2211.04236. URL: https://arxiv.org/abs/2211.04236.

Tomczak, Jakub M (2022). Deep Generative Modeling. Springer Nature.
Wang, Ke and Xiaojun Wan (July 2018). “SentiGAN: Generating Sentimental Texts

via Mixture Adversarial Networks”. In: Proceedings of the Twenty-Seventh Interna-
tional Joint Conference on Artificial Intelligence, IJCAI-18. International Joint Con-
ferences on Artificial Intelligence Organization, pp. 4446–4452. DOI: 10.24963/
ijcai.2018/618. URL: https://doi.org/10.24963/ijcai.2018/618.

Yang, Kevin and Dan Klein (2021). “FUDGE: Controlled Text Generation With Fu-
ture Discriminators”. In: Proceedings of the 2021 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technolo-
gies. Association for Computational Linguistics. DOI: 10.18653/v1/2021.naacl-
main.276.

Zhang, Hanqing et al. (2022a). A Survey of Controllable Text Generation using Transfor-
mer-based Pre-trained Language Models. DOI: 10.48550/ARXIV.2201.05337. URL:
https://arxiv.org/abs/2201.05337.

Zhang, Susan et al. (2022b). OPT: Open Pre-trained Transformer Language Models. DOI:
10.48550/ARXIV.2205.01068. URL: https://arxiv.org/abs/2205.01068.

Zhao, Junbo, Michael Mathieu, and Yann LeCun (2017). Energy-based Generative Ad-
versarial Network. arXiv: 1609.03126 [cs.LG].

https://doi.org/10.48550/ARXIV.2011.13456
https://arxiv.org/abs/2011.13456
https://arxiv.org/abs/2011.13456
https://doi.org/10.48550/ARXIV.2211.04236
https://arxiv.org/abs/2211.04236
https://doi.org/10.24963/ijcai.2018/618
https://doi.org/10.24963/ijcai.2018/618
https://doi.org/10.24963/ijcai.2018/618
https://doi.org/10.18653/v1/2021.naacl-main.276
https://doi.org/10.18653/v1/2021.naacl-main.276
https://doi.org/10.48550/ARXIV.2201.05337
https://arxiv.org/abs/2201.05337
https://doi.org/10.48550/ARXIV.2205.01068
https://arxiv.org/abs/2205.01068
https://arxiv.org/abs/1609.03126

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction and motivation
	Related work
	Approach
	Controllable generation tasks
	Length control
	Parts-of-speech control
	Sentiment control
	Tense control
	Multi-conditional generation

	Models
	GPT-2
	Diffusion-based models
	ChatGPT

	Dataset
	Dataset preparation pipeline
	Attributes
	Training dataset
	Datasets description


	Experiments and evaluation
	Metrics
	Length control metrics
	Sentiment control metrics
	Tense control metrics
	Parts-of-speech control metrics
	Fluency metrics
	Distinctiveness metrics for all models
	Distinctiveness metrics for models with POS control
	Repetition metrics

	Experiments and results
	Experiments with GPT-2
	Experiments with diffusion-based models
	Experiments with ChatGPT
	Remarks


	Summary and future work
	Links to materials
	Code
	Models
	Dataset

	Evaluation metrics
	Bibliography

