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Abstract

Neural field modeling is a developing area that improves state-of-the-art results in
tasks such as 3D scene reconstruction, image manipulation, generative modeling,
and other aspects of deep learning. In this work, we present SplitNet, a novel neu-
ral network architecture for neural field modeling that combines multiple activation
functions in a single layer. We try different techniques to improve performance,
such as proper weight initialization, and benchmark its performance on image rep-
resentation, 3D scene reconstruction, and image classification tasks. As a part of the
work, we found a way to improve the performance of previous work on implicit
neural networks with sinusoidal activations in a limited setting and study how well
this improvement generalizes to other tasks and data.
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Chapter 1

Introduction

1.1 Domain description

Deep learning has revolutionized many fields with its ability to learn complex pat-
terns from data. One area where progress was recently made is the modeling of
neural fields (Xie et al., 2022). This conceptual framework advanced the practical
areas such as image representation (Sitzmann et al., 2020, Martel et al., 2021, Dupont
et al., 2022), generative modeling (Skorokhodov, Ignatyev, and Elhoseiny, 2021) 3D
scene reconstruction (Mildenhall et al., 2020, Gao et al., 2022) and beyond. The na-
ture of neural field modeling challenges established deep learning tools and leads
to researching and devising new paradigms and methods, such as positional en-
coding (Mildenhall et al., 2020) and periodic activation functions (Sitzmann et al.,
2020). In this work we present the SplitNet, novel architecture for neural field mod-
eling. Since previous work showed that activation functions are crucial in this area,
SplitNet main novelty is usage of 4 activation functions in one layer, namely hyper-
bolic tangent, sigmoid, sine and cosine. The objectives of this work are to study the
properties of SplitNet architecture and its components, evaluate and improve per-
formance. The broader goal is to gain more understanding of processes that occur
during neural field modeling and deep learning in general.

To achieve these objectives, we are aimed to establish a representative benchmark
and compare performance to relevant baseline from previous work. Also, we are
going to study the behavior of the network during training and apply methods to
improve gradient flow health, such as proper weight initialization.

The structure of this work is the following.
This is the Chapter 1 that makes the brief overview of the work.
Chapter 2 sets the stage by reviewing what is done in the field. First, it reviews

neural field modeling and its application. Also, this chapter highlights the relevance
of SplitNet research and references literature to support this claim. The last sec-
tion reviews neural image representation task and motivates its usage for the initial
benchmark.

Chapter 3 delves deeper into neural field modeling and sinusoidal activation
functions. Sinusoidal networks are a subset of SplitNet, and this chapter describes
experiments to improve the performance of the former.

Chapter 4 formally defines SplitNet architecture and describes initial research on
improving its performance.

Chapter 5 delves deeper into designing SplitNet and devising a weight initial-
ization strategy.

Chapter 6 presents early results in applying Split networks to other tasks, namely
image classification and 3D scene reconstruction.

Chapter 7 concludes the work done in this work and proposes directions for
future work.
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Chapter 2

Related Work

In this chapter, we set up the stage for our work and define a context. This chapter
is structured as follows:

1. Overview of work on neural fields and their broad applications

2. Review implicit neural networks with periodic activations and highlight their
importance

3. Describe current attempts of using neural representations as primary data for-
mat

4. Overview the role of small multilayer networks in modern deep learning pipelines
as the motivation of this research

5. Introduce image representation task and motivate its usage as a main task to
do analysis on

2.1 Neural Fields

We refer to a field as a concept that describes how certain quantities, such as force
or energy, are distributed in space and/or time. A field can be defined as follows:

A field is a quantity defined for all spatial and/or temporal coordinates. (Xie et al., 2022)
Examples of fields in physics include electric fields, magnetic fields, and gravi-

tational fields. Many phenomena of interest, such as images or 3D scenes, can also
be formulated as fields. Images, for instance, can be described as a field of pixel
intensities. More specifically, it can be seen as a mapping from 2D pixel coordinates
to the RGB color. 3D scenes can be thought as a mapping of spatial locations (xyz
coordinates and/or viewing direction) to color or opacity.

Natural fields in most cases have complex underlying structure, and it is infeasi-
ble to model them analytically. Neural networks, on the other hand, can be thought
of as universal function approximators, giving a practical tool to approximate and
model different phenomenas formulated as a field.

Neural fields have gained a lot of attention with successful work on neural ra-
diance fields (NERFs) Mildenhall et al., 2020. NERF achieved state-of-the-art results
in modeling 3d scenes and novel view synthesis. A scene is modeled volumetrically
with multi-layer perceptron (MLP). It takes 5 coordinates as an input (x, y, z spatial
coordinates and viewing angles θ, ϕ) and returns RGB colors and density σ. Radi-
ance along each camera ray is then accumulated with respect to density σ to get the
final color of a pixel. Model is scene-specific (MLP is learned for a specific scene, and
scene becomes "baked" into network).

Follow-up studies go on improving all aspects of NERFs, such as training
speed, inference speed, memory footprints and multi-scene generalization. We refer
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to the recent extensive survey on the application of neural fields in visual computing
for more details Gao et al., 2022.

2.2 Implicit neural networks with periodic activation func-
tions

The big stepping stone in developing neural fields is the research of implicit neural
networks with periodic activation functions (SIREN) Sitzmann et al., 2020. First, au-
thors investigated the spectral bias problem and found out that standard activation
functions, such as ReLU or hyperbolic tangent (tanh) fail to reconstruct fine details.
One of the possible solution to this is the usage of positional encoding Mildenhall
et al., 2020, such that the frequency of the input signal is artificially boosted. But as
authors of the SIREN showed, this is not enough and Relu networks with positional
encoding still underperform in capturing high-frequency details. Moreover, such
networks fail to capture the first and second derivatives of the signal. This prevents
them from successful application in tasks where neural fields are operated as differ-
ential equations, such as in Poisson image reconstruction or solving the wave equa-
tion. To address this problem, the authors proposed the usage of sinusoidal activa-
tion functions. It superior performance was empirically verified and compared with
other approaches on the number of tasks for neural fields modeling, such as neural
image representation, audio representation, video representation, solving Eikonal
equation, Poisson image reconstruction, image inpainting etc. One of the main com-
ponents of the SIREN network is proper weight initialization. It allows to keep the
distribution of the activations at initialization constant regardless of the number of
layers. This eliminates the problem of vanishing and exploding gradients. Also,
an additional constant factor ω0 was introduced to the weight matrix of the linear
layer: W = Ŵ ∗ ω0. It allows to boost the gradients to the weight matrix while pre-
serving the original distribution of the activation. This work explains in detail the
process of devising the new activation function for neural fields, deriving the proper
weight initialization and gradient flow, and the procedure of empirical qualitative
evaluation of the performance.

2.3 Neural representations as data format

Traditional signal representation include 3D tensors of RGB values for images, meshes,
point clouds or voxel grids for 3D scenes (Martel et al., 2021). While these data
formats are well studied, they may be suboptimal for modern applications and im-
pose limitations. Emerging applications often include optimization or deep learning
models on some stages, and properties of a way the data is represented in such
pipelines are very important. Desired properties include end-to-end differentiabil-
ity, low memory requirements and scalability in learning-based pipelines. Explicit
approaches in most cases scale poorly and require preprocessing (that could be a
bottleneck) before using in deep learning pipelines.

There is an upcoming trend in finding ways to use neural representations as
primary data format. The work Davies, Nowrouzezahrai, and Jacobson, 2021 ex-
plores the neural networks as a first-class 3D shape representation. Authors note
that weight-encoded signals previously was overlooked, and argue that neural rep-
resentations are competitive with classic approaches to storing and manipulating 3D
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objects, such as meshes or point clouds. This method can be viewed as lossy com-
pression, trading off memory for computation, that can be useful in practical appli-
cations. A similar approach is described in work on functas Dupont et al., 2022 - do-
ing the downstream tasks on implicit data representations. Here, authors decouple
dataset creation and learning into separate stages. At the first stage, for each point
of the dataset, they fit the implicit neural network. To reduce computational and
storage costs, meta-learning is applied. On the second stage, downstream tasks are
solved directly on implicit representations. The authors found out compelling prop-
erties of this approach, such as amortized memory scaling, removing the problems
of different resolutions, solving problems with discretization and improving the op-
timization on downstream tasks. While this approach does not beat state-of-the-art,
it paves out the way to the promising direction of implicit data representation.

Replacing traditional data representations with neural representations is a promis-
ing direction and already have practical and commercial applications in some areas
such as 3D rendering and computer graphics. Implicit neural representations are
also easier to integrate into existing deep learning pipelines. One of the main pros of
implicit neural representation is plausible memory consumption. Coordinate-based
networks can overcome unaffordable memory rate of growth, for example O(n3) for
3D scene. However, there are fundamental challenges of using them as a drop-in re-
placement building block in traditional pipelines. One of the main challenges is high
computational cost that was traded for lower memory consuption. In a straightfor-
ward setting, implicit network should run forward pass for each input coordinate
(that is, every point in a 3D space or every image pixel). With large networks, such
pipelines could take a lot of time to train and inference. Therefore, more efficient,
compact and fast approaches should be developed, and this is one of the main con-
cerns of our research.

2.4 Small neural networks in modern pipelines

We claim that small Multilayer Perceptrons (roughly less than 5 layers, less than
200, 000 parameters) are an important part of modern state-of-the-art applications of
different kinds. Therefore, understanding and improving the performance of such
networks is a potential orthogonal improvement to many tasks.

Here are a couple of examples to support our claim.
TensoRF. (Chen et al., 2022a). This work presents a novel way to reconstruct

3D scenes via tensor decomposition, that makes training and rendering time much
lower. A cruicial component of this pipeline is a small neural network to decode
latent features to the final RGBσ values. Quote from the paper:

"For neural features, we use a small MLP with two FC layers (with 128-channel
hidden layers) and ReLU activation.”

In further chapter, we make a more detailed overview and benchmark SplitNet
agains MLP used in the paper.

MobileNeRF (Chen et al., 2022b). This work presents a way to integrate neural
radiance fields into rasterization pipeline, making possible to run NERFs inside on
even small mobile devices. Small MLP is used in final stages to model light effects
and is implemented with shader. Quote from the paper on its importance:

“Without the small MLP, the model cannot handle reflections, as shown in (i).”
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2.5 Implicit neural image representation

Implicit neural image representation is an approach to modeling images in machine
learning that uses neural networks to implicitly define the pixel values of an image,
rather than storing the image as an explicit grid of pixels. With implicit represen-
tation, an image is not represented directly in memory. Instead, a function (in this
case, a neural network) models it implicitly, taking as input the coordinates of a pixel
and outputting the color of that pixel.

Connection of neural image representation to practical tasks. Despite the suc-
cess of implicit neural representations in 3D computer vision, this approach has
been under-explored in the domain of 2D imaging. Neural image representation
is the first step in new architectures for downstream image tasks that may have
more pleasing properties or even be competitive to state-of-the-art solutions. There
are architectures that are using neural image representation for solving denoising,
superresolution and inpainting problems (Czerkawski et al., 2021, Sitzmann et al.,
2020, Skorokhodov, Ignatyev, and Elhoseiny, 2021) or image compression Martel et
al., 2021.

Motivation to use neural image representation as a main task in this work. Be-
sides direct downstream practical applications, neural implicit representation task
offers a suitable benchmark to test the fundamental properties of neural networks
and neural fields in a simple setting. Other tasks of neural field modeling can have
computational requirements too high which makes certain experiments too costly or
even impossible. For example, the first NERF model can take up to 12 hours to train
(Mildenhall et al., 2020)) a representation of a single scene, modeling a short video
can take 15 hours of neural network training (Sitzmann et al., 2020). However, as
was shown in previous work, improvements to the architecture that was found to
perform well in one task of neural field modeling (for example, image representa-
tion), can also improve performance on other tasks (for example, 3D scene represen-
tation). The architectures we test in this work are not task-specific. Therefore, this
performance correlation is the main motivation to test most of the hypotheses since
it makes it possible to run more experiments cheaper.

Metric. Metric the most works use to assess the quality of a reconstructed image
is Peak Signal-to-Noise Ratio (PSNR) (Mildenhall et al., 2020, Chen et al., 2022a, Sitz-
mann et al., 2020, Martel et al., 2021). PSNR is calculated based on the mean squared
error (MSE) between the pixel values of the original image and the reconstructed
image. The "peak signal" refers to the maximum possible pixel value in the image
(for instance, in an 8-bit image this would be 255, or if the image is normalized to
the range [0, 1] this would be 1), and the "noise" refers to the difference between the
original and the reconstructed image. Formula to calculate PSNR with units in dB
(decibels) is in Equation 2.1 where MAXpixel is the maximum possible signal value
and MSE is the mean squared error of the reconstruction:

PSNR = 20 × log10(MAXpixel)− 10 × log10(MSE) (2.1)

This formula is derived from the definition of decibel. The decibel (dB) is a log-
arithmic unit used to express the ratio of two values of a physical quantity, often
power or intensity. It’s defined as 10 times the logarithm (base 10) of the ratio of the
two power quantities. From this definition, derivation of Equation 2.1 is described
in Equation 2.2
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PSNR = 10 × log10
MAX2

pixel

MSE
= 20 × log10

MAXpixel√
MSE

(2.2)

The main drawback of this metric is poor correlation with human perception.
However, we are more interested in the amount of signal the model is able to re-
construct, and that aspect is captured by PSNR. Calculating this metric is compu-
tationally cheap and makes our results comparable with previous work. Also, this
metric is not image-specific and has a normalization term with regard to signal scale,
which makes this metric comparable across different modalities and tasks of signal
reconstruction.
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Chapter 3

Sinusoidal activations

3.1 Introduction

Neural networks with periodic activation functions are an important stepping stone
in understanding and developing neural fields. This chapter overviews the relevant
background and describes experiments and tools on improving SIREN performance,
that later would be used for designing Split networks. Codes for this and further
experiments is available on public GitHub repository 1.

The objectives of this chapter are the following:

• Overview previous work on sinusoidal activation functions (SIREN) as an im-
portant stepping stone in neural fields

• Highlight parts that are relevant to the designing of a new family of implicit
neural networks, such as details of deriving a good initialization strategy

• Present our putative contribution, which is the improved performance of sinu-
soidal implicit neural networks via empirically tuned initialization

• Highlight limitations and possible future work in this direction, as well as for-
mulate further research hypotheses and describe their relevance

3.2 Background

The key feature of SIREN is its use of sinusoidal activation functions, which allows it
to model periodic patterns and oscillations that are common in many types of data,
such as images, sound, and other types of signals. This is in contrast to most other
neural network architectures, which use non-periodic activation functions like ReLU
or sigmoid.

One of the main advantages of SIREN is its ability to model fine details and
high-frequency components in data. This makes it particularly well-suited for tasks
like image and audio synthesis, 3D shape modeling, and solving partial differential
equations.

3.2.1 SIREN initialization scheme

Another important aspect of SIREN is its initialization scheme, which is designed to
ensure proper convergence. It makes SIREN networks easier to train and less prone
to issues like exploding or vanishing gradients.

1https://github.com/kilianovski/my-neural-fields

https://github.com/kilianovski/my-neural-fields
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Authors of SIREN devise the initialization scheme and claim that it is crucial for
network performance. Indeed, our experiments confirm that using default initial-
ization schemes like standard normal or Kaiming (He et al., 2015b) lead not only to
worse results but the complete halting of the network’s training.

The key idea of the proposed principled initialization scheme is to preserve the
distribution of the activations without dependence on the network’s depth. When
such property is satisfied, a network of arbitrarily chosen depth and width is sup-
posed to avoid problems of vanishing/exploding gradients, at least at initialization.
The main argument relies on the assumption that if the input to a neuron in a layer
has the same distribution as its output, then the distribution will be preserved across
the network.

Creating an initialization scheme that retains activations consistently across all
layers requires a thorough understanding of both the activation functions that are
used and the distribution of the network’s input.

In the case of SIREN and neural fields in general, the input to the network is usu-
ally the normalized coordinates. The distribution of such coordinates is uniformly
distributed between -1 and 1. After applying sine nonlinearity, authors come up
with a conclusion that the output of a such neuron is arcsine distributed (a variant
of U-shaped Beta distribution). With this fact and control over the distribution of
the weights, authors come up with a sampling range for the weights, such that the
property of distribution preservation is satisfied.

The derivation treats the first layer separately since it receives uniform input in
the range [−1, 1] and returns the output that is arcsine-distributed. The second and
consequent layers map arcsine distribution to the arcsine distribution. Recursive
argument can be applied here, if the input distribution of a neuron is the same as the
output (both in terms of distribution family and concrete parameters).

In this setting, the task of finding an appropriate initialization can be formu-
lated as finding parameter q that defines the sampling distribution for the weights:
U(−q, q)2. Note, that q is usually a function of the number of the input parameters n
(also called f anin) q(n). This is due to the nature of the dot product in the linear part
of a neuron: the larger the number of input parameters, the larger the dot product
grows. The parametric form of the desired distribution is the following: U( −c√

n , c√
n ).

With this scheme, authors show and prove that the dot product (preactivation value)
follows such normal distribution: N(0, c2

6 ). Authors decide to keep the preactivation
value to be standard normally distributed, thus the final initialization looks the fol-

lowing: U(−
√

6
n ,
√

6
n ). First layer is initialized from another distribution: U(− 1

n , 1
n )

We refer to the original work for more detailed and formal derivation. We empiri-
cally find that on specific families of tasks, such as image representation, other values
of initialization parameter c lead to better performance and analyze the limitation of
our finding.

2We do not consider sampling from the normal distribution for simplicity. The exact same line
of reasoning can be applied to it, and in practice uniform and normal sampling strategies are used
interchangeably
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experiment name PSNR first PSNR 2999 position first position 2999
initc=24__flic=2 6.3765 32.8515 5 0
initc=6__flic=2.0 6.6530 32.5486 8 1
initc=6__flic=4.0 6.6553 32.1855 10 2
initc=24__flic=1 6.3698 31.8647 13 3
initc=12__flic=1 6.5677 31.7728 1 4
initc=42__flic=1 6.3570 31.6754 9 5
initc=6__flic=1.0 6.6833 31.7276 4 8
initc=6__flic=1 6.6833 31.7276 2 7
initc=64__flic=1 6.2974 31.2727 12 6
initc=3__flic=1 6.5945 31.1234 11 9
initc=6__flic=16.0 6.6615 30.5229 3 10
initc=6__flic=0.5 6.6441 30.3218 7 11
initc=1__flic=1 6.4423 30.2109 6 12
initc=6__flic=0.1 6.7710 25.8888 0 13

TABLE 3.1: SIREN learning dynamics. Comparison of different ini-
tialization models. This data brings the evidence that performance
on initialization of the same architecture cannot be directly used to

compare performance after the full training.

3.3 Experiment setup

The goal of our experiment is to investigate initialization strategies for SIREN and
their impact on network convergence. We follow the original SIREN form of initial-
ization, and vary two scaling coefficients (gains): f lic (stands for first layer initial-
ization coefficient) and initc (stands for initialization coefficient). The final parametric
form we optimize is presented in equations (3.1) and (3.2):

W0 ∼ U(− f lic
n

,
f lic
n

) (3.1)

Wi ∼ U(−
√

initc
n

,

√
initc

n
) (3.2)

Hyperparameters. We chose a lightweight setup in favor of speed and number
of experiments we can run. Also, we are interested in finding out if results, found on
simple task setting, overfit to this setting or can be generalized to broader network
architectures and tasks. We describe these experiments in later sections. We train on
a 256x256 grayscale image of a Cameraman 3 . Network has 3 layers, outermost layer
is set to linear. Adam optimizer is used with learning rate 1 × 10−4 and no weight
decay. We train for 300 steps and justify this number as a decent tradeoff between
speed and accuracy with the prestudy described in the next section.

3.4 Prestudy

Before running a full-scale parameter search, we conducted an exploratory analysis
of SIREN learning dynamics. To cover a vast space of parameters, we run a dozen
of experiments with different initialization for 3000 steps. Results are summarized
in Table 3.1. One of the findings is that performance on the initialization is a bad

3https://scikit-image.org/docs/stable/api/skimage.data.html#camera

https://scikit-image.org/docs/stable/api/skimage.data.html#camera
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FIGURE 3.1: SIREN learning dynamics. The plot demonstrates rel-
ative training performance for different initialization models. Y-axis
represents the position in comparison to other models (lower is the
better). We selected the subset of models for visualization. It can be
seen that after the 500 iterations, there is no large oscillation and mod-

els have found their place in terms of relative performance.

indicator of overall network performance. As we observe, networks with the most
promising performance on the initialization end up being much worse than the net-
works with relatively bad PSNR scores. Therefore, we can’t use too low number of
training steps to empirically compare the effectiveness of initialization.

To select the optimal number of training steps, we visualize the relative position
of networks during training, see Figure 3.1. The goal of this plot is to observe how
the "leaderboard" is evolving during training. Surprisingly, the network with the
best relative position after full training end up with the lowest score. However, this
position transition happens very quickly, during the first 50 training steps. From
this plot we observe, that after 1000 iterations there is no change in position except
for local oscillations and after the first 200 iterations almost all large shifts in position
are done. Therefore, we decide that 300 iterations for our hyperparameter search is a
good tradeoff due to limited computational resources. This should allow promising
initializations to unfold their potential, and, from the other side, to enable higher
number of experiments.

3.5 Parameter search

In this study, we perform a hyperparameter serach to optimize the SIREN network’s
initial weights. We initialize the weights according to equations (3.2) and (3.1).
Based on prestudy, parameter f lic was searched with the uniform distribution in
range [0.01, 10], parameter initc was searched with the uniform distribution in range
[1, 100]. These ranges were chosed to cover a wide spectrum of possible values, from
the obviously low to obviously high values, to ensure a comprehensive search. We
use wandb platform (Biewald, 2020) for tracking experiments.

We search for parameters with a random search. In comparison to Bayesian
search, we believe it is more robust for our setting of low number of hyperparam-
eters and opportunity to do brute force efficiently. In comparision to grid search,
it is more convenient since we can stop sweep any time and have approximately
representative results.
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FIGURE 3.2: SIREN hyperparameter sweep visualization. This
plot shows the coverage of parameters searched (first and second
columns): both parameters are sampled from uniform distributions.
Also, it shows the skewness of the distribution of the PSNR scores
(last column). Grey arrows represent experiments that failed due to

technical reasons.
.

3.6 Result

Distribution of the final scores is depicted on Figure 3.2. As we can see, the best ini-
tialization allows achieving PSNR score more of the 110, and the most of the proba-
bility mass, when sampling uniformly in the defined range, is concentrated between
80 and 90 PSNR. This visualization allows to quickly healthcheck if the software is
running correctly in terms of uniformly covering the sampling interval.

Five best and five worst runs in terms of final PSNR score are presented in Table
3.2. We can make these conclusions from the data we have:

• First layer initialization coefficient ( f lic) is highly suboptimal in low values
(probably below 1).

PSNR last flic initc

116.58 1.93 39.44
107.32 2.49 36.98
105.00 7.07 21.49

96.85 8.09 18.30
96.64 3.61 47.86
26.14 0.28 30.36
25.94 0.21 45.84
24.46 0.15 59.70
22.96 0.20 28.86
17.10 0.02 95.25

TABLE 3.2: SIREN initialization tunning results. Displaying 5 first
and 5 last results, sorted by performance. f lic is the multiplier
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Layer name Baseline init distribution σ Our init distribution σ

input 0.58 0.58
layer 0 preact 14.14 18.99
layer 0 act 0.71 0.71
layer 1 preact 1.51 2.79
layer 1 act 0.72 0.71
layer 2 preact 1.49 2.81
layer 2 act 0.72 0.71
layer 3 preact 1.46 2.81
layer 3 act 0.71 0.71
layer 4 out 0.03 0.09

TABLE 3.3: Comparison of standard deviations of activation distri-
butions of the network we use for parameter search. Baseline dis-
tribution corresponds to the original initialization strategy used in
Sitzmann et al., 2020. Our distribution corresponds to the best ini-
tialization strategy we found, namely with f lic = 2 and initc = 40.
Baseline initialization is equivalent to f lic = 1 and initc = 6. Means
are approximately zero for all cases and are not displayed there. Pre-

activation values are approximately Gaussian distributed.

• Upper limit looks very flexible though, with optimal values lying from values
below 2, to values above 8.

• Making the same speculative conclusions on the optimal range of init coeffi-
cient for other layers (initc) looks harder. We can only say that it is likely that
these two coefficients have nonmonotonic relations, and the model looks more
sensitive to f lic parameter.

• This also is probably related to the fact that the initialization range of a layer
roughly grows with f lic in O(n) rate, while it grows with initc in O(

√
n) rate.

As a sanity check, we look at how these found parameters affect the distribution
of the weights at initialization. To do this, we feed-forward the full dataset through
the network at initialization and record intermediate activation at each layer. Com-
parison with baseline initialization is presented in Table 3.3. preact stands for val-
ues after the feedforward layer before the nonlinearity. As we can see, the main
difference is in preactivation distributions: they are wider (have higher variance).
Activation distributions are almost not affected. We hypothesize that this difference
improves gradient flow to the weights and leave further investigations to future
work.

Summary. It’s clear from the results that the choice of the initialization param-
eters significantly affects the performance of the SIREN network. With empirically
chosen parameters, we improved PSNR performance more than twofold. But the
main caveat is in the simple setup: we used a small network fitting a small im-
age in the hyperparameter search. And it is unclear if this finding is more general.
Therefore, we formulate the research hypothesis as follows: "Initialization parame-
ters f lic = 2, initc = 40 of a SIREN network lead to better performance in compar-
ison to baseline initialization f lic = 1, initc = 6 on other tasks and other network
architectures".
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3.7 Generalization analysis

To test the hypotheses of generalization as formulated above, we conduct experi-
ments to check if found initialization leads to better performance on other tasks with
other network architectures. In particular, we conduct experiments in this settings:

• Image representation of different image with different network architectures

• Audio signal representation

• Video representation

3.7.1 Different image representations

FIGURE 3.3: SIREN image representation benchmark. Models with
hidden sizes of 1024 and 512 fit the image almost perfectly. Artifacts
in smaller networks differ between initialization. While the networks
with baseline init produce blurry results, our initialization leads to

white noise artifacts.
.

Model name PSNR@3000 MAX(PSNR) N of parameters

initc=6__flic=1__nh=3__h=1024__baseline 34.37 40.23 3154947
initc=40.0__flic=2.0__nh=3__h=1024 46.22 108.91 3154947
initc=6__flic=1__nh=3__h=512__baseline 30.66 30.97 791043
initc=40.0__flic=2.0__nh=3__h=512 43.57 45.54 791043
initc=6__flic=1__nh=3__h=256__baseline 24.82 24.82 198915
initc=40.0__flic=2.0__nh=3__h=256 27.11 27.12 198915
initc=6__flic=1__nh=3__h=128__baseline 21.71 21.71 50307
initc=40.0__flic=2.0__nh=3__h=128 21.62 21.62 50307

TABLE 3.4: Comparison of our initialization scheme with the origi-
nal SIREN initialization across different network sizes. PSNR@3000
refers to the Peak Signal to Noise Ratio after 3000 training steps, while
MAX(PSNR) refers to the highest PSNR achieved throughout train-
ing. N of parameters refers to the total number of trainable parame-

ters (weights and biases) in the model.
.
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Data We fit on a 512x512 crop of Gigapixel Tokyo image 4. This image contains
512×512×3

256×256 = 786432 times more training points than the grey image we tuned param-
eter on.

Architecture. We use an MLP with 3 hidden layers, and vary the width of a
hidden layer, using values [128, 256, 512, 1024].

Hyperparameters. We use learning rate of 1× 10−4 and train for 3000 epochs. We
run each experiment twice with two different random seeds, to ensure the training
is stable and the effect of randomness is negligible for score comparison.

In this setting, our results demonstrate that the tunning of the initialization scheme
leads to substantial improvements in performance for different dataset and different
network sizes. Table 3.4 illustrates that proposed initialization parameters outper-
form the baseline initialization for almost all network sizes. Noticeably, the pro-
posed initialization provides significant performance improvements in networks
with higher capacity (those with more parameters). The PSNR performance gap
becomes smaller with the decreasing width. For the smaller networks performance
is less prominent or even worse, but it still remains competitive.

Visual comparison for the experiment is demonstrated in Figure 3.3. Subjectively
all images in the top row have better perceptual quality (proposed init scheme).
Also, an interesting observation is the nature of noise. Underfit of networks with
baseline initialization scheme reveals itself through the blurriness of a fitted image,
while networks with proposed initialization parameters have white noise artifacts.

FIGURE 3.4: SIREN image fitting loss curves for different network
sizes

.

Loss curves for this benchmark are visualized in Figure 3.5. We can observe, that
the proposed initialization gives the most boost at the beginning of the training, and
converges to a similar or better PSNR score at the end. Convergence of the largest
network demonstrates instabilities. To add more evidence that final results are com-
parable and depend more on the initialization strategy and other hyperparameters

41.2 Gigapixel Panorama of Shibuya in Tokyo, Japan by Trevor Dobson.
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FIGURE 3.5: SIREN image fitting loss curves for network with hidden
size 1024 for different random seeds. While the overall loss curves
demonstrate instability, the trajectory remains stable across different

random seeds.
.

than on randomness, we plotted the loss curves of the same model training with two
random seeds in Figure 3.5. Loss curves of both runs are very close. Therefore, the
effect of randomness does not influence our conclusions in a significant way.

3.7.2 Representing audio signal

FIGURE 3.6: Loss curves of two networks fitting the audio signal.
The network with the proposed initialization distribution converges
faster at the first iterations and has less variance during the training.

But in the end, both networks converge to the competitive values
.

In this experiment, we compare found initialization to the baseline on task of
fitting the audio signal.

Reproducibility details

Data. We fit networks to the first 7 seconds of Bach’s Cello Suite No. 1: Prelude
(Bach), as was used in the original SIREN work. Sampling rate is 44100 samples per
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FIGURE 3.7: Waveform plot of audio signals fitted by neural net-
works. X axis represents time,Y axis represents amplitude. The last
row demonstrates the prediction error, which is distributed differ-

ently for two initialization strategies
.

second, domain is scaled to [-1, 1] range. We used the SIREN implementation from
the official GitHub repository (Sitzmann et al., 2020), and refer to the original work
for other preprocessing details.

Architecture. We use a 5-layer MLP with a hidden size of 256.
Hyperparameters. We use a learning rate of 5 × 10−1

Runtime. We train for 9,000 iterations
Final loss (Mean squared error) of the network with the proposed initialization

converged to a slightly better value (see Figure 3.6). Also, it has better performance
in the early stages of training.

An interesting observation was made about the distribution of the errors for two
different initializations (Figure 3.7). The error of the baseline model has the error
that putatively has correlation with the signal, while the error of our network is
distributed independently from the signal. The latter distribution looks correlated
with the time coordinate.

3.7.3 Representing video

Reproducibility details

Data. We fit networks to the "bikes sequence" video in the same way done in the
original work (Sitzmann et al., 2020). Dataset contains of 250 frames of 272x640
resolution.

Architecture. Network is learning a mapping from 3 coordinates (time, x,y loca-
tions) to RGB values. The number of hidden units is set to 5, with number of hidden
features equal to 1024. Outermost layer is set to a linear layer without activation
function.

Hyperparameters. We use a learning rate of 1 × 10−4

Runtime. We train for 3,000 iterations
The network with the proposed initialization on this task does not converge at

all. Initial investigations do not give any results. The reasons may lie in the dataset
specifics, or in network size. We make a conclusion that the proposed initialization
may not work as an improvement that works out of the box and requires further
work on resolving issues that impede convergence.
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FIGURE 3.8: First row represents ground true frames, second repre-
sents baseline model prediction at iteration = 1505 with PSNR = 23.87
dB, second row represents predictions of the model with proposed

initialization at same iteration with PSNR = 13.561 dB
.

3.8 Conclusions

3.8.1 Experiment results

Conducted experiments showed that performance of sinusoidal networks could be
improved with empirically-driven initialization. We conducted a hyperparameter
search of two parameters f lic and initc, that control the initialization distribution of
the network’s parameters in a way described in Equation 3.1 and Equation 3.2. The
optimal combination of parameters we found is f lic = 2, initc = 40 in comparison
to baseline f lic = 1, initc = 6.

The reserach hypothesis on generalization we formulated before the study was
partially confirmed. Indeed, found initialization improved the performance of wider
networks on harder image representation task. Also, we observed slight improv-
ment in audio representation task compared to baseline. However, it spoiled the
convergence on much harder video representation tasks.

3.8.2 Open questions

Error distribution. We observe the difference in the nature of the distribution of
the errors. Errors in the proposed initialization scheme seem to be distributed in-
dependently (white noise), namely in image representation (Figure 3.3), or correlate
with the input coordinates only, namely with the time coordinate in audio repre-
sentation task (Figure 3.7). This difference may relate to the hypothesis, that neu-
rons could learn in two different modes: "generalization mode" and "memorization
mode" (Henighan et al., 2023). This observation could be formulated as a conjec-
ture: these two distinct initialization strategies send the network on two principally
different learning trajectories with distinct geometry of the optimization landscape.
Further work in this direction requires heavier mathematical tools and a more strict
experimental setup.

Video performance. It is unclear why networks fail to converge on video repre-
sentation task. The first steps to do in this direction may include analysis of activa-
tion and gradient distributions. It may give insights onto reasons why the particular
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FIGURE 3.9: Learning curves of the video model. X axis represents
training step,Y axis represents PSNR score. Model initialized with

proposed parameters is stuck at the beginning of training.
.

initialization does not fit into this task, and highlights possible improvement points
that may boost the performance on other tasks.

3.9 Summary

In this chapter, we made an overview of previous work on implicit neural networks
with sinusoidal activations, namely SIREN (Sitzmann et al., 2020).

Also, we conducted an experiment on empirical tunning initialization param-
eters of a SIREN model. The found initialization boosted performance on image
fitting task, compared to baseline initialization. We conducted further research and
found that this performance improvement scales well on other datasets within the
same task, and other network sizes. On the other hand, testing generalization on
other tasks showed ambiguous results. While performance in audio representation
was slightly better than baseline, the proposed initialization scheme prevented the
network from learning any useful signal in the video representation task.

These results create a good starting point for the development of SplitNet archi-
tecture. Specifically, it is important to pay attention to the choice of initialization
strategy for the sinusoidal part of the SplitNet, as it could significantly influence the
model’s performance.
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Chapter 4

SplitNet formulation

4.1 Introduction

In this chapter we introduce the SplitNet, the neural network architecture that have
4 routes for the input signal with separate activation function each. We fix the ar-
chitecture and particular combination of activation functions to reduce degrees of
freedom in our research. This allows us to focus on experiments and make initial
investigation of the topic. However, such particular combination of activation func-
tions may be suboptimal and testing other combinations may be a topic of further
work.

This chapter is structured as following:

1. We briefly review the relevant background of activation functions in deep
learning

2. We formally formulate the SplitNet architecture

3. We make initial benchmark and analysis using neural image representation
task as an example

4.2 Activation Functions review

Activation functions is a must-have component of modern neural networks. Ac-
tivation functions make the neural networks capable of nonlinear morphing of the
space. Without non-linearity, most of the deep neural network architectures become
degenerate, since consequent linear mappings effectively can be reduced to single
linear operation. In the context of neural fields, activation functions are of great in-
terest. Choices that are considered to be a safe default in convolutional networks
or transformers on more explored tasks such as object recognition or machine trans-
lation, showed to underperform on neural fields modeling (Sitzmann et al., 2020).
Moreover, processing neural fields often requires special properties to be satisfied
(e.g. preserving first or second order derivative of the signal), that require careful
activation function setup. Therefore, we present a brief history and background of
activation functions research and refer to recent survey such as Dubey, Singh, and
Chaudhuri, 2022 for more details.

Sigmoid and tanh. In the early days of neural networks, sigmoid and tanh non-
linearities were extensively used. Sigmoid function is defined as follows:

σ(x) =
1

1 + e−x (4.1)

It has plausible interpretations, that contribute to the motivation of using this
function. Since it outputs the value in the range of [0, 1], it can be thought of as
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an activation of the biological neuron. However, the output is not zero-centered
with a mean of 0.5, which creates problems when stacking multiple sigmoid layers
together. Similar activation function, namely hyperbolic tangent, comes without
this drawback. It outputs the values in the range [−1, 1], centering at zero. Tanh is
defined as follows:

tanh(x) =
ex − e−x

ex + e−x (4.2)

However, despite pleasing probabilistic properties, these functions. For example,
the derivative of tanh and sigmoid approaches zero very quickly on the tails. It is
sometimes referred to as neuron saturation (a more detailed explanation will follow
in future work). When this happens, the derivative becomes extremely low, making
the output insensitive to weight perturbation. This leads to the problem of vanishing
gradients and bad convergence.

Rectified Linear Unit. ReLU is a simple but very effective non-linearity function
that is still very common today. It is formulated as follows: ReLU(x) = max(0, x). It
trade-offs probabilistic interpretability for much lower computational cost and more
healthy gradient flow. Derivative on the positive region always equals to 1, that
does not shrink gradients so much as sigmoid or tanh. But this simple formulation
has drawbacks, such as the problem of dead neurons. This situation can happen
when a neuron always outputs negative pre-activation values, which leads to zero
gradients all the time, meaning not learning at all. Also, this gradient sparsity could
make training of systems such as Adversarial Networks unstable. Solutions such as
Leaky ReLU solve this problem by replacing zero region with a small slope, allowing
the gradients to flow even in the case of negative neuron output.

Further work on Exponensial Linear Unit (ELU) Clevert, Unterthiner, and Hochre-
iter, 2016 improves Leaky ReLU and its variants, demonstrating more robustness
to noise. The output range is [−1, ∞). Extension with a scaling parameter leads to
Scaled ELU (SELU) Klambauer et al., 2017. This allows network to perform self-
normalization automatically via gradient descent.

Automatic search of activation functions is a promising direction. For example,
applying Neural Architecture search helped to discover SWISH activation function
(Ramachandran, Zoph, and Le, 2017) and beat state-of-the-art results on computer
vision tasks. This function is similar to ReLU, better in terms of convergence, and
usually can replace the latter without major architectural changes.

(Formulas and detailed explanations of advanced activation functions will be
included in future work).

To sum up, the main rough requirements to the activation function are as fol-
lows: a) it should add non-linearity b) it should have low computational cost c) it
should be able to model different distributions of the training data d) it should have
healthy gradient flows.

4.3 SplitNet Formulation

SplitNet is a neural network that consists of layers with so called "split activations".
We define output of such layer as an elementwise multiple of 4 different activation
functions:

layer(x) = tanh(Wtanhx) ∗ σ(Wσx) ∗ sin(Wsinx) ∗ cos(Wcosx.)
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FIGURE 4.1: Schematic representation of SplitNet layer.

The input vector x ∈ RN is mapped via 4 different linear transformations N →
M, followed by 4 different nonlinearities and elementwise multiplication (see Figure
4.1). In our experiments we found almost no difference between bias and biasless
versions of linear transforms, and we stick to default option of using bias.

4.4 Motivation

In this section, we try to describe the motivation of studying SplitNet architecture.
It is important to note that while these theoretical reasons may sound plausible, the
effectiveness of this approach should be validated through empirical experimenta-
tion.

Understudy of activation functions. Activation functions is an understudied
topic in deep learning. The recent discovery of effectiveness of periodic activation
functions for neural field modeling demonstrates that established defaults, such as
ReLU nonlinearity, may be highly suboptimal. Moreover, most of the research is fo-
cused on the single activation functions and not on their interactions (Dubey, Singh,
and Chaudhuri, 2022). We believe that there is a lot of undiscovered potential in
this direction that can boost deep learning models in terms of performance or other
plausible properties such as explainability.

Favorable properties.

• Handling periodic data. The usage of sinusoidal activation functions in neural
field modeling may be an important or even crucial component, as demon-
strated by Sitzmann et al., 2020. Including two periodic activations with dif-
ferent phase shifts (sine and cosine) adds more flexibility to the network, in
theory.

• Gating mechanism similar to attention. Sigmoid and tanh parts of SplitNet
can be viewed as a gating mechanism, since they can either pass feature fully
(when output is 1), or block feature completely in the case of sigmoid and flip
feature in the case of tanh. Each activation function can be seen as applying
a different form of gating or weighting to the input features, and these are
then combined through multiplication. This could allow the model to learn to
emphasize or de-emphasize certain features depending on their relevance to
the task, which is similar to what attention mechanisms do.
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• Higher capacity with lower computational cost. We formulate the hypothesis,
that multiplying different activation functions produce complex non-linear be-
havior, and a single layer can model more complex functions than a layer with
a single activation function and same number of parameters. We expect the
network to utilize this capacity.

Different architectures and combinations of activation functions can have very
different performance characteristics on different tasks and datasets, so it’s crucial
to test this thoroughly in empirical real-world setting.

4.5 Initial performance analysis

We start the analysis of SplitNet with a simple experiment setup and comparison of
the performance to the baseline.

4.5.1 Experiment setup

FIGURE 4.2: PSNR curves for the SplitNet and baseline SIREN train-
ing.

We chose the image representation task for its simplicity. We use grayscale Cam-
eraman image used in previous chapter. We use network with 3 layers and hidden
size of 128. As a baseline, we use SIREN with the same number of parameters.

Performance of SplitNet compared to baseline is depicted in Figure 4.2. We can
see that while the performance of SplitNet (experiment splitnet_m=1__baseline) is
comparable to SIREN baseline it is still consistently underperforming. In the next
subsection we describe analysis of activation distributions and simple hyperparam-
eter that can and allow to improve over baseline in this setting.

4.5.2 Activation multiplier

We analyse activation distribution and observe that the output range of every layer
is very narrow. This phenomena can be explained by the shrinking properties of
activation functions used. Each activation has values that are less than 1 in absolute
values, and their product produce even smaller values. Activation distribution is
visualised on Figure 4.3. We can see that the range of the SplitNet in the second
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FIGURE 4.3: Histogram of intermediate activation distributions. First
row represents SIREN network, second row represents SplitNet with-
out multiplier (m=1), the third row represents SplitNet with activa-
tion multiplier m = 10. Activations in the third row looks healthier

than in the second.

column is degenerate compared to SIREN. To increase the possible effective range of
a network, we decide to introduce a hyperparameter m for the network, that boosts
the activation value via multiplication:

SplitLayerm(x, m) = m × SplitLayer(x) (4.3)

Throught the experiments we validated that boosting activations to the factor
of 10 indeed improves the performance of SplitNet (Figure 4.2, experiment split-
net_m=10__baseline). We use the multiplier m for all layers except the last one.

4.6 Summary

In this chapter, we introduced the SplitNet architecture. We setup an image repre-
sentation task to analyse performance of SplitNet. We found out that in such for-
mulation, the effective range of the is smaller than |1| and may limit the network
performance. We come up with a simple trick of using multiplier m. We set this
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value to 10 and empiricaly observed improvement of the performance. Further tun-
ning of this parameter is required since choice of this particular value was not strict
enough.
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Chapter 5

Tunning SplitNet

5.1 Introduction

In this chapter, we explore the ways of improving performance of SplitNet via weight
initialization strategies.

This chapter is structured as following:

1. We briefly review the relevant work on weight initialization

2. We describe experiment with using LSUV initialization for SplitNet

3. We describe experiment with hyperparameter tunning of SpitNet initialization

5.2 Weight initialization review

Training neural networks is a difficult task, and many work was put into making
it work. Mathematically, this task is formulated as an optimization problem. Off-
the-shelf algorithms for training neural networks include a lot of heuristics and as-
sumptions, usually designed and tuned for specific setup. These assumptions could
be suboptimal or even fatal if setup is different, for example, when using different
activation functions. Also, early results hint to the optimization bottleneck in the
proposed architecture. Thus, we describe initialization methods that make the neu-
ral network optimization feasible and help avoid common failure modes such as
vanishing/exploding gradient problem.

One of the primary concerns when devising new activation functions is the issue
of exploding and vanishing gradients. These phenomena can significantly impede
the optimization process, thus limiting the performance of neural networks. To ad-
dress these issues, we need to carefully consider weight initialization strategies that
ensure a stable and robust training process.

5.2.1 Xavier init

The first serious progress in research of impact of weight initialization in deep learn-
ing was made in the work "Understanding the difficulty of training deep feedfor-
ward neural networks" by Glorot and Bengio, 2010. They investigated a similar
problem of impediments in gradient optimization caused by activation functions.

Also, the authors analyzed the evolution of activations during training. First,
excessive saturation is undesirable, because high saturation lead to small derivatives
that prevents propagation of the learning signal. But on the other hand, pushing
activations too far away from the saturation can also be detrimental. This can be due
to the high similarity of the activation to the linear layer, meaning under-utilization
of the network’s capacity.
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One historical subtlety is also interesting: authors emphasize the gains of using
log-likelihood loss for classification in comparison to mean squared error. The for-
mer is considered more theoretically justified and well-suited for classification tasks,
but the latter was extensively used prior to that work. Authors note that MSE loss
causes more severe plateaus during training. This is a reminder that design choices
that are taken for granted today may be suboptimal, and there is usually a place for
improvement even on the fundamental level.

The work of Glorot and Bengio, 2010 introduced an innovative weight initial-
ization technique known as Xavier initialization, which significantly improved the
training process for deep neural networks.

The core idea behind Xavier initialization is to ensure that the variance of the
input and output of each layer in the network remains roughly the same through-
out the training process. By maintaining this balance, the technique helps prevent
the gradients from becoming either too small (vanishing) or too large (exploding),
thereby allowing for more stable and efficient training.

5.2.2 Kaiming init

The previously established Xavier initialization was not optimal for other initializa-
tion functions, such as ReLU. Work of He et al., 2015b dives deep into this prob-
lem. And, besides exploration of new activation function named Parametric ReLU
(PRELU), design a sampling distribution that keeps the activation distribution con-
stant across layers, respecting properties of ReLU activation function.

5.2.3 LSUV init

Derivation of proper initialization scheme usually requires knowledge of the archi-
tecture and activation functions. Work on Layer-sequential unit-variance (LSUV)
initialization Mishkin and Matas, 2016 tries to circumvent this limitation. They pro-
pose iterative way of initialization, that does not make assumptions on particular
activation functions or other design choices of the layer. Algorithm takes a couple
iterations to converge on practice. The computational cost is not very high and com-
parable to couple forward passes. But it has the potential to remove the burden of
analytical derivation of proper initialization scheme for new neural network mod-
ules or their combinations.

Main idea behind LSUV initialization is to calculate the standard deviation σ and
mean µ of activations for each layer, after that divide weights by σ and subtract µ. In
practice, this procedure is able to set activation distribution to be standard normal in
couple of iterations. This procedure is iterative from layer to layer, starting from the
first one. The main advantage is the ease of use with different activation functions,
since no particular assumption about concrete non-linearity is made.

5.3 Applying LSUV initialization

Here we describe application of LSUV initialization to SplitNet. We apply LSUV ini-
tialization algorithm to SplitNet in the following way. We normalize pre-activation
distribution to the standard normal of each non-linearity separately.

In the same setup as in previous chapter, LSUV initialization boosts the perfor-
mance of SplitNet (Figure 5.1, experiment splitnet_m=10__lsuv).
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FIGURE 5.1: Training PSNR curves for SIREN baseline, SplitNet with
default initialization and SplitNet with LSUV initialization.

5.4 Hyperparameter tunning

Experiment name activation σ range m range Number of runs
Experiment 0 [0.1, 10] [0.5, 100] 1917
Experiment 2 [0.5, 3] [3, 15] 529
Experiment 3 [0.1, 2] [12, 25] 778

TABLE 5.1: Configuration of hyperparameter tunning experiments

In this section we describe the hyperparameter tunning of SplitNet with the
LSUV initialization.

Motivation. Using LSUV initialization showed to improve performance of a
SplitNet. Therefore, we want to try to push this approach further and try to find
optimal parameters, since default assumptions may be suboptimal.

Experiment setup We use the similar setting for tunning as in Chapter about
SIREN. We use image representation task and fit network for 500 iterations. We use 5
layer MLP with a hidden size of 32. We tune 5 parameters: activation multiplier (see
Equation 4.3) and 4 standard deviations for LSUV init. In particular we use custom
formulation of LSUV init and allow each nonlinearity in SplitNet (tanh, sigmoid, sin,
cos) have its own σ of pre-activation, instead of sticking to σ = 1 as in original work.
We run 4 experiments (second one technically failed). Range of parameters for each
experiment is described in Table 5.1

Experiment results. We run hyperparameter tunning sessions sequantially, man-
ually adjusting hyperparameter ranges to improve performance. Histograms can be
seen on Figure 5.2. As we can see, with each iteration spread of the values increases,
as do the maximum value of PSNR, the metric we are most interested in.

Generalization analysis. To test how found hyperparameter generalizes, we
train networks with these hyperparameters in slightly different setting: bigger im-
age and different number of hidden layers and hidden size. Experiments show that
performance was almost the same or even worse with hyperparameters found dur-
ing initialization.
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FIGURE 5.2: Histogram of PSNR scores of hyperparameter tunning
experiments. After each run sampling configuration was adjusted

manually with an objective to achieve the highest score

Conclusions. From the first experiment with LSUV initialization, we can con-
clude that this algorithm improves the performance of SplitNet and makes it com-
petitive with SIREN. Attempts to furhter improve performance of initialization with
hyperparameter tunning doesn’t gave much results. One explanation to this could
be impossibility to simply extrapolate hyperparameters to other settings due to com-
plex and unexplored nature of multiple activations mulitplied and deep learning in
general.

5.5 Summary

In this chapter, we explored ways of improving performance of SplitNet, mainly
through weight initialization. LSUV initialization improved performance. Experi-
ment with further tunning hyperparameters of initialization didn’t help improving
performance. Possible reasons may be the challenge in extrapolating hyperparame-
ters to other settings.
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Chapter 6

Experiments on other tasks

In this section, we present experiments with SplitNet on other tasks, namely image
classification with convolutional neural networks and 3d scene modeling with neu-
ral radiance fields. This allows to compare performance of SplitNet in wider setting
and find directions that works further investigation.

6.1 Image classification with CNNs

Model name Test accuracy, % N of parameters

CNN hsize=16 43.28 3418
CNN hsize=32 44.45 6170
CNN split hsize=64 49.89 5122
CNN split hsize=64 with LSUV 45.79 5122
CNN hsize=64 46.48 11674
CNN split hsize=128 50.56 9218
CNN split hsize=128 with LSUV 49.12 9218
CNN hsize=128 50.83 22682
CNN split hsize=256 53.71 17410
CNN split hsize=256 with LSUV 52.09 17410
CNN 4 layer 65.45 292170
CNN split 4 layer 62.78 201086

TABLE 6.1: Image classification benchmark results on CIFAR10.
.

To understand how well Split activation networks perform in general, we im-
plemented a convolutional neural network with split activations and compared its
performance CNN with ReLU activation. Architecture is the same as in Figure 4.1,
except that now we have feature layers with 4 different activations that are multi-
plied elementwise.

For comparison, we used image classification task on CIFAR10 dataset (Krizhevsky,
Nair, and Hinton, 2009) as a benchmark. We constructed a 2 layer CNN with ReLU
nonlinearity as a baseline and vary the number of feature maps (hidden layer). Mod-
els were evaluated vased on their classification accuracy on the test set and total
number of parameters. For SplitNet, we used two flavors: with default pytorch ini-
tialization (Kaiming uniform He et al., 2015b) and with LSUV initialization. The
results of the experiments are shown in Table 6.1.

The table demonstrates that, for each group of models with approximately simi-
lar complexity (i.e., number of parameters), SplitNet models outperformed the CNN
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baseline. This is true both for models without and with LSUV initialization. Data
shows that Kaiming initialization works better in this setting.

A bigger baseline CNN was also used for comparison, achieving over 65% accu-
racy. CNN with split activation and a similar number of parameters showed worse
results. This may suggest that bigger split models struggle from unhealthy gradient
flow, and further work may be required to setup architecture with better initializa-
tion or activation statistics.

6.2 Radiance Field modeling

To test how SplitNet architecture perform in 3D setting, we conduct experiments
with modeling radiance field. We base this experiment on TensoRF Chen et al.,
2022a, a simple and fast neural radiance field model that gives state-of-the-art re-
sults. We replace an MLP feature decoder in this architecture with SplitNet and
show that better performance could be obtained with a smaller number of parame-
ters.

First, we provide a brief description of radiance field modeling and TensoRF
architecture and motivation of choosing this model for comparison. Then, we for-
mulate an experimental setup. After that, we discuss the results and consider its
limitations.

6.2.1 TensoRF formulation

Radiance fields Various 3D scene representation methods exists. Classical ones in-
clude meshes, implicit functions such as Signed Distance Function, voxels and point
clouds. Xie et al., 2022. The emerging way of 3D scene representation is with ra-
diance fields modeled with neural network Mildenhall et al., 2020. Radiance field
modeling is formulated as a task of mapping 3D location and viewing direction to
the volume density and view-depended color. Incorporating viewing angles into
the model allows modeling non-Lambertian surfaces, for example, glossy materials
and their non-equal light reflection, causing specular highlights. The original NERF
and some of its derivative work have a pure MLP formulation. That is, the whole
scene is backed into the Multilayer Perceptron weights. While this approach results
in a very compact representation, it has some fundamental drawbacks, such as high
training and inference time. For each pixel, MLP is fully evaluated multiple times,
usually hundreds of times. This approach is redundant in practical cases, because
all features are evaluated for each part of the scene. While in practice the underlying
signal may have local patterns, and this locality may be utilized to save computation.
Recent methods, such as Yu et al., 2021 try to leverage this locality and disentangle
the information about the scene all over the volume using voxel grids. That is, each
part of a volume is associated with its own feature, making rendering extremely fast.

Note on voxels. Voxel stands for "volume pixel", that is the three-dimensional
equivalent of a pixel in a two-dimensional image. Voxels are arranged in regular pat-
tern (small cubes), with each voxel having its own position and size. Size of voxels
is usually the same for all voxels in a grid. Properties of interest are attached to each
voxel, such as color or density, that are used for scene visualization (rendering) or
other processing. A 3D voxel grid of features can be represented as a 4D tensor, with
3 spatial dimensions and one feature dimension. The main problem of the voxels in
3D processing is the memory consumption, that scales cubicaly with resolution.
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While the voxel-based method gain in inference speed, this improvement comes
with a huge memory cost. Size of a voxel grid scales cubically with the resolution,
and tradeoffs classical MLP-based NERFs compactness. For example, Lego scene
represente with Plenoxel model (Yu et al., 2021) has a size more then 700 Megabytes.
The central idea of TensoRF is to effectively represent the scene as a 3D voxel grid of
features via tensor decomposition, reducing the memory footprints from O(N3) to
O(N2) (Figure 6.1).

FIGURE 6.1: TensoRF architecture. Voxel grid is decomposed into a
sum of outer products between vectors and matrices, reducing mem-

ory size from O(N3) to O(N2)

. Image taken from Chen et al., 2022a.

Tensor decomposition. To reduce the model size TensoRF uses novel compact
tensor decomposition to model the feature grid. 4D tensor is decomposed into a sum
of lower-rank tensors, with each tensor modeled as an outer product between vector
and matrix:

G =
R

∑
r

vX
r ⊗ MY,Z

r + vY
r ⊗ MX,Z

r + vZ
r ⊗ MX,Y

r (6.1)

Where R is the dimensionality of a feature grid, and X, Y, Z denote 3 planes that
bound the rendering volume.

Authors call this novel decomposition Vector-Matrix (VM) decomposition and
it lies in a core of TensoRF architecture. The pipeline is extended with a few non-
critical components, such as separation of geometry and appearance features and
additional vector in appearance grid decomposition (Figure 6.1). We refer to the
original work of Chen et al., 2022a for more details.

The motivation of using TensoRF model for comparison:

• Fast convergence relative to alternatives with high-quality reconstruction

• Simple architecture formulation, leaving less space for bugs. Also, easy-to-run
and reproducible code is available.

• Suitable for replacement with SplitNet small MLP architecture

While this particular radiance field model was chosen, no architecture-specific
changes were made, and we suppose that results generalize to other architectures.

6.2.2 Experiment Setup

Original MLP architecture. After obtaining latent features from factorized voxel
volume on a given coordinate, neural TensoRF uses a neural network to render the
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final view-dependent color. The input to this neural network consists of grid features
and angles of the viewing direction, fed through positional encoding, following the
original NERF method Mildenhall et al., 2020. Architecture is simple and shallow:

Linear(150, 128) → relu → Linear(128, 128) → relu → Linear(128, 3) (6.2)

Where Linear(in_dim, out_dim) is a linear map from in_dim to out_dim dimen-
sions, and relu is a ReLU non-linearity. Output of this neural network are RGB col-
ors. In Table 6.2 we refer to this baseline MLP as MLP_Fea. For comparison with a
smaller version of SplitNet, we slightly decrease the number of parameters in this
model via reducing the number of hidden features to 119, referring to this variation
as MLP_Fea_Smaller.

SplitNet. We use a similar architecture (3 layers) for SplitNet. Number of hid-
den features is chosen to be 45, to make number of parameters comparable to origi-
nal MLP decoder. To test that same quality could be obtained with smaller number
of parameters, we decrease the number of hidden features to 42, resulting in Split-
Net_Smaller.

SIREN. SIREN MLP is also used for comparison. The architecture is the same as
in 6.2 except for the activation function, which is sinusoidal in this case. We apply
the same initialization scheme as in the original work on SIREN Sitzmann et al., 2020

Training strategy. We use an original implementation of TensoRF, replacing the
decoder. We test models on Lego dataset. We use 7000 iterations and report the
final test PSNR score. Codes and instructions to reproduce results could be found at
https://github.com/kilianovski/TensoRF_splitnet

6.2.3 Results

Experiment results a summarized in Table 6.2. Better test performance of 34.16
PSNR, compared to baseline 34.01 PSNR, is obtained with a smaller number of pa-
rameters. Moreover, a comparable to baseline performance could be obtained with
almost 10% less parameters. To test if the size of the decoder has any impact on
the overall performance, we decreased in a similar way the baseline decoder. This
experiment showed that the smaller baseline decoder indeed decreases the overall
score. SIREN architecture obtained lower scores.

Limitations. Experiment was conducted on a single scene, and using more scenes
may increase confidence in a result. However, the Lego scene contains 100 train and
600 test images, each of the size 800x800 pixels. So the overall train dataset contains
800× 800× 100 = 6.4e7 training data points (rays) and 3.84e8 testing datapoints. We
consider this enough for an initial evaluation and leave more thorough evaluation to
the future work. We expect some metric variance from scene to scene. Also, results
are obtained on a specific NERF architecture with specific shallow MLP decoder ar-
chitecture, and results may differ for other setups.

Overall, these results add additional evidence to the potential of SplitNet and
add reasons to research this architecture further.

https://github.com/kilianovski/TensoRF_splitnet
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Decoder PSNR Number of parameters
MLP_Fea 34.01 36227

MLP_Fea_Smaller 33.93 32609
SIREN 32.11 36227

SplitNet 34.16 35598
SplitNet_Smaller 34.00 32721

TABLE 6.2: TensoRF performance with different feature decoders on
Lego dataset
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Chapter 7

Conclusions

7.1 Summary

This work presented a novel SplitNet architecture for neural field modeling.
The first part of the research conducted a study on a subset of Split networks,

namely Sinusoidal Neural Networks (SIRENs). Study of performance and activation
distributions allowed to empirically find better initialization strategies and improve
performance compared to the original work in the studied setting. Further research
on a generalization of this finding confirmed that this initialization setting indeed
improves performance on other image representation tasks, audio representation
tasks, and with networks with varying width and depth. On the other hand, it was
found that our improvement does not generalize perfectly since we found settings,
such as the video representation task, where the proposed initialization strategy de-
graded the performance.

The second part of the study described the design process of SplitNet. Acti-
vation distributions were studied and problem of activation saturation was found.
Introducing multiplication coefficient m to boost activation values was found to be a
simple but working solution, that empirically proved its effectiveness. Also, weight
initialization strategies were studied, and some of them, such as LSUV initialization
(Mishkin and Matas, 2016) was found to be effective. Further work on hyperparam-
eter tunning was conducted. In contrast to a more simple setting with sinusoidal
activations, extrapolating found hyperparameters from one task setting to another
was found challenging.

The third part of the work investigated performance of the proposed SplitNet
architecture on more distinct tasks, such as 3D scene reconstruction and image clas-
sification. Early results showed that in these settings SplitNet gives competitive or
better performance. This gives reasons and motivation to study split activation fur-
ther.

7.2 Limitations

While the research conducted in this work provides valuable insights into the poten-
tial of SplitNet and neural field modeling, it also has several limitations that should
be acknowledged. The experiments conducted in this thesis were limited to a few
specific tasks and datasets, mainly an image representation task. To address this
problem, initial research was conducted with other tasks, such as image classifica-
tion, video and audio representation, 3D scene reconstruction. But their coverage
remains limited. Also, the main baseline for comparison was SIREN, and compari-
son with other approaches can give a more objective view.
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7.3 Future work

Here we propose some ideas that can be addressed in future work:

1. Incorporating other methods of improving gradient flow health besides weight
initialization, such as training-time normalizations (such as BatchNorm Ioffe
and Szegedy, 2015 and its variations) and skip connections (He et al., 2015a).

2. Setting up more advanced hyperparameter tunning or even neural architecture
search

3. Exploring different tasks and datasets.

4. Incorporating SplitNet into existing models. Experiments with CNNs showed
that using SplitNet as a plug-in deep learning building block has the potential
to improve the performance of other downstream tasks. This can not only
improve the performance of the pipelines but give insights into how SplitNet
can be improved.

5. Exploring variations of SplitNet. In this work we studied only the particular
combination of activation functions, namely hyperbolic tangent, sigmoid, sine
and cosine. This combination may be suboptimal and other options can be
studied. Also, more simple settings of activation interactions via multiplica-
tion (e.g. only two) can be studied to gain more insights.
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