
UKRAINIAN CATHOLIC UNIVERSITY

MASTER THESIS

Audio spoofing detection

Author:
Dmytro IVASHCHENKO

Supervisor:
Pablo MALDONADO

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science

in the

Department of Computer Sciences
Faculty of Applied Sciences

Lviv 2023

http://www.ucu.edu.ua
http://www.johnsmith.com
http://www.jamessmith.com
http://researchgroup.university.com
http://department.university.com


ii

Declaration of Authorship
I, Dmytro IVASHCHENKO, declare that this thesis titled, “Audio spoofing detection”
and the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed
myself.

Signed:

Date:



iii

“Tools such as artificial intelligence, automated voice systems, machine learning, deepfakes,
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Abstract

Efficient and accurate audio spoofing detection is crucial to ensuring audio-based
systems’ security and integrity. Existing methods often mainly focused on the per-
formance of the detection system. This master thesis focuses on the development of
advanced techniques that prioritize efficiency while maintaining high detection per-
formance. We introduced the model, consisting of an encoder and a classifier, which
can efficiently learn complex representations with a lack of labeled data. We intro-
duce suitable loss functions to effectively distinguish spoofed and bonafide speech
in latent space to keep the performance high. The results demonstrate notable im-
provements in both encoder performance and classification accuracy, highlighting
the potential for enhanced self-supervised audio analysis techniques.
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verification, audio processing, speech classification
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Chapter 1

Introduction

1.1 Motivation

With the development of information transmission and storage technologies, speech
plays an increasingly important role. The speech is highly informative and easy to
understand. At the same time, the rapid development of technologies for changing
speech characteristics and speech synthesis for fraud creates new challenges in all
spheres of life. Moreover, progress in deep fake generation makes spoofed audio
more realistic and leads to needing new audio spoofing detection technologies that
are more effective and robust.

Audio Spoofing Detection is an important Audio Classification subtask. Its pur-
pose is to build systems that detect whether human speech was spoofed using fil-
ters, vocoders, or deep generative models. With the rise of tools for audio spoofing
and deep fake generation for phishing individuals, organizations, and governments,
the selected topic becomes significantly more relevant. Because of this rapid devel-
opment, the complexity lies in the relatively small amount of labeled data and the
reliability of systems based on classical machine learning approaches.

Self-supervised learning has emerged as a promising approach to leverage the
abundance of unlabeled audio data for training neural networks. Self-supervised
learning enables models to learn meaningful representations from unannotated
data, which can later be transferred to various downstream audio analysis tasks.
However, despite the progress made in this area, challenges still need to be ad-
dressed further to enhance the efficiency and performance of existing methods. The
project aims to explore existing state-of-the-art approaches to audio spoofing detec-
tion, especially semi-supervised ones, analyze their advantages and disadvantages,
suggest possible modifications, and develop not a computationally expensive effec-
tive system with high classification quality.

1.2 Thesis structure

In chapter 2, we discuss the most relevant approaches to audio feature extraction,
audio classification, and semi-supervised learning related to speech data. After that,
in chapter 3, we provide the most popular for-use datasets and data preprocessing
explanation. Then, in chapter 4, we propose our solution, including encoder and
classifier architectures, loss functions, and evaluation metrics. In chapter 5, we pro-
vide an overview of the conducted experiments and analyze the results. Finally, in
chapter 6, we list what could be done in future research and conclude the paper.
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Chapter 2

Related work

2.1 Feature extraction techniques

This section briefly discusses the most practical features for speech recognition, ver-
ification, and automatic spoofing detection tasks.

2.1.1 Spectral features

Spectral transition, which is the movement of frequencies in the part of audio from
high to low and vice-versa, plays an important role in human speech perception
(Rabiner and Juang, 1993). The part of the utterance where spectral variation was lo-
cally maximum contained the essential phonetic information in the syllable. There-
fore it is reasonable that using spectral features to distinguish bonafide from spoofed
speech should contribute significantly to overall recognition performance.

As a first step of spectral feature extraction, some transformation should be ap-
plied to a raw waveform to obtain the signal’s spectrum. The Fourier transform
plays a central role in spectral analysis. Since speech is a non-stationary time series,
the transformation should be applied appropriately, using framing and windowing
of the signal, to extract the most information from it (Logan, 2000). Usually, the
Discrete Fourier Transform (DFT) is applied to calculate the spectrum.

Along with using DFT in speech processing, there are significant drawbacks.
The width of the windowing function relates to how the signal is represented — it
determines whether there is good frequency resolution (frequency components close
together can be separated) or good time resolution (the time at which frequencies
change). A wide window gives better frequency resolution but poor time resolution.
A narrower window gives good time resolution but poor frequency resolution (Liu
et al., 2019). One of the possible solutions is to use a Constant Q Transform (CQT)
(Brown, 1991) with a constant fraction of frequency resolution to time resolution (Q
factor).

2.1.2 Log-Power Spectrum

To calculate the Log-Power Spectrum (LPS) of the audio waveform, the speech signal
is divided into frames by applying windowing functions to remove edge effects.
After that, DFT is applied frame-wise, and the square of the output is calculated.
The obtained result is called the power spectrum. Finally, the power spectrum’s
logarithm is taken since a signal’s perceived loudness is approximately logarithmic
(Logan, 2000). The representation is suitable for a broad range of audio-related tasks.
Still, it has high dimensionality, so other techniques were developed to construct
features with lower dimensionality based on LPS.
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2.1.3 Mel-frequency cepstral coefficients

Cepstrum is the result of computing the inverse Fourier transform (IFT) of the LPS.
Since the LPS can be treated as a new signal, a cepstrum can be interpreted as the
spectrum of the LPS. Cepstral characteristics play a crucial role in speech processing.

According to psychophysical study O’Shaughnessy, 1987, human perception of
the frequency content of sounds follows this scale, which is defined in the following
way:

fmel = 2595 log10

(
1 +

f
700

)
(2.1)

where fmel is the subjective pitch in Mels corresponding to f , the actual frequency
in Hz (Chakroborty, Roy, and Saha, 2008). A subjective pitch is present on Mel
Frequency Scale to capture important characteristics of phonetics in speech. Mel-
frequency Cepstral Coefficients (MFCC) concept is based on human hearing per-
ceptions which cannot perceive frequencies over 1 kHz (Muda, Begam, and Elam-
vazuthi, 2010). Thus, the intuition behind the MFCC is the peculiarities of human
perception of lower and higher frequencies. MFCCs have two types of filters: spaced
linearly at low frequencies below 1000 Hz and logarithmic spacing above 1000 Hz.
MFCCs are calculated by applying Mel scaling onto the LPS using the Mel filter bank
and summing the energy in each filter. Then the Discrete Cosine Transformation
(DCT) is performed to hold as much information encoded on the first coefficients of
the decomposition.

2.1.4 Linear Frequency Cepstrum Coefficients (LFCC) and Inverted Mel
Frequency Cepstral Coefficients (IMFCC)

While MFCC presents a way to transform speech into a perceptually meaningful fea-
ture based on the human auditory system, it is not evident that the human ear and,
thus, MFCC are suitable for speech recognition tasks. For this reason, modifications
were proposed to this approach.

One example is Linear Frequency Cepstrum Coefficients (LFCC). The LFCC is
computed similarly to MFCC, but the DCT is performed directly on LPS instead of
Mel-scaled spectral representation (Davis and Mermelstein, 1980).

Another example is Inverted Mel Frequency Cepstral Coefficients (IMFCC). In
Chakroborty, Roy, and Saha, 2008, the inverted Mel scale is proposed:

f̂mel = 2195.286 − 2595 log10

(
1 +

4031.25 − f
700

)
(2.2)

where f̂mel is the subjective pitch in inverted Mel scale corresponding to f , the actual
frequency in Hz. IMFCCs are calculated in an MFCC manner, but the inversed Mel
scale is applied instead of the Mel scale. While MFCC focuses on lower frequencies,
IMFCC targets distinguishing higher frequencies and capturing their characteristics.

2.1.5 Constant Q cepstral coefficients

The CQT, initially proposed in music processing (Brown, 1991), employs geometri-
cally spaced frequency bins. This resembles the human perception system, like Mel
scale concept. In Todisco, Delgado, and Evans, 2017 introduced Constant Q Cepstral
Coefficients (CQCC). CQCCs are calculated similarly to LFCC, but instead of DFT
for LPS computing, CQT is used. CQCC could capture a time-frequency spectrum
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representation with characteristics missed by more classical approaches to feature
extraction.

2.1.6 Linear Predictive Coding Coefficients and Linear Prediction Cep-
stral Coefficients

In many cases, raw waveform analysis shows solid results for the speech recognition
and speech verification task. Auto-regression-based features can be one such repre-
sentation. Linear Predictive Coding (LPC) Coefficients remove the redundancy from
a signal and try to predict the following values by linearly combining the previously
known coefficients. LPC is the all-pole filter that represents the spectral envelope
of a digital speech in compressed form using a linear prediction model (Sharma,
Umapathy, and Krishnan, 2020).

First, normalization and preemphasis on the input signal are performed to calcu-
late LPC. Then, the result is split into frames. On each frame, windowing is applied.
Then, the auto-correlation analysis should be done, and coefficients obtained from
auto-regression on each frame.

Linear Prediction Cepstral Coefficients (LPCC) are computed from LPC in the
following way (Davis and Mermelstein, 1980):

LPCCi = LPCi +
i−1

∑
k=1

k − i
i

LPCCi−kLPCk, i = 1, 2, . . . (2.3)

LPCC can represent the acoustic signal as the frequency for a certain time without
signal distortion (Gupta and Gupta, 2016). LPC and LPCC features benefit audio
spoofing detection tasks (Sahidullah, Kinnunen, and Hanilçi, 2015).

2.2 Classification models

The initial classification models for audio spoofing detection were statistical models
based on the abovementioned features. However, with the development of audio
synthesis and deep fake technologies, the statistical approach works worse with new
data. Thus, more complex models, like deep neural networks, are frequently used
to distinguish spoofed audio.

2.2.1 Gaussian mixture model

The Gaussian mixture model (GMM) is a widely used generative model in speech
processing (Wu et al., 2017). It represents each class as a weighted sum of M mul-
tivariate Gaussians, p(x|λ) = ∑M

i=1 wi pi(x), where wi is the i-th mixture weight and
pi(x) is a D-variate Gaussian density function with mean vector µi and covariance
matrix Σi. The model parameters are defined by λ = {wi, µi, Σi}M

i=1. Expectation-
maximization (EM) algorithm is used to estimate the parameters of each class in-
dependently via the maximum likelihood (ML) criterion. For the test, given the
models, λb and λs, and feature vectors of the test speech, Y = {y1, . . . , yT}, the clas-
sification score is computed as,

Λ(Y) = L(Y|λb)− L(Y|λs) (2.4)
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where L(Y|λ) = 1
T ∑T

t=1 log p(yt|λ) is the average loglikelihood of Y given GMM
model λ. λb and λs are the GMMs for bonafide and spoofed classes, respectively
Hanilci and Kinnunen, n.d.

2.2.2 ResNet-based models

The evolution of neural networks for image classification gave major momentum
for developing classification models for audio data. The ResNet-based architecture
is proposed in the paper Alzantot, Wang, and Srivastava, 2019. The main advan-
tage of ResNet is that this design solves the gradient vanishing problem utilizing
skip connections, which enables the building of deeper models. In the first step,
a raw waveform should be transformed by one of the following feature extraction
algorithms: MFCC, CQCC, or LPS. This input is treated as a single-channel image
and passed through an architecture based on residual blocks, dropout to prevent
overfitting, leaky ReLU and sigmoid activation functions to model non-linear de-
pendencies.

Another example of skip connections usage was introduced in Chen et al., 2020.
As input, linear filter banks (LFBs) features are similar to LFCC. They provide a
lower risk of overfitting and adequate computational costs. The model’s architec-
ture was analogous to Alzantot, Wang, and Srivastava, 2019, but four instead of six
residual blocks and large margin cosine loss as a loss function were chosen.

The framework proposed in P. et al., 2020 refers to the transfer learning concept.
To detect spoofed speech, the authors propose to use a pre-trained ResNet model on
Mel-spectrograms as audio features representation. A significant advantage of this
approach is that it provides faster training. Still, it is necessary to mention that spec-
trograms differ significantly from the usual images in their structure, which origi-
nates from the nature of sound, so it is not obvious that the pre-trained model for
visual object detection will fit well.

In Zhang, Jiang, and Duan, 2021; Ding, Zhang, and Duan, 2022, authors pro-
posed to modify loss functions to classify the spoofed speech effectively. Most spoof
detection systems utilized softmax loss for binary classification. AM-Softmax loss
function improves the previous function by introducing an angular margin to make
the embedding distributions of both classes more compact (Zhang, Jiang, and Duan,
2021). Training a tight embedding space for bonafide speech in voice spoofing de-
tection is reasonable. However, a compact embedding space for the spoofing at-
tacks tends to overfit for known attacks. To address this issue, the authors Ding,
Zhang, and Duan, 2022 propose introducing two different margins, using the new
loss function called OC-Softmax, to compact the genuine speech better and isolate
the spoofing attack, making the classification more adaptive.

2.2.3 Light CNN models

A different approach is introduced in Lavrentyeva et al., 2017; Lavrentyeva et al.,
2019. The framework, based on CNN, named Light CNN (LCNN), was proposed.
The architecture consists of stacked convolutional, pooling, and Max-Feature-Map
(MFM) layers. A max-feature-map activation function is used then to calculate the
element-wise maximum. The idea behind MFM is that it plays the role of a feature
selector. Before the output, there is an FC layer with a softmax activation. As input
for the model, LPS representations extracting with CQT, DCT, or FFT, and LFCC
were used (Lavrentyeva et al., 2019). As a loss function, AM-Softmax was used. The
model from Lavrentyeva et al., 2017 was constructed for the physical access scenario
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of the spoofing attack, and it was adopted in Lavrentyeva et al., 2019 for the logical
access scenario.

In Lavrentyeva et al., 2017, a bidirectional gated recurrent unit model was pro-
posed, combining CNN and RNN properties, but it did not reach the LCNN per-
formance. Another attempt was made in Gomez-Alanis et al., 2019, using LCNN in
GRU to train gates output. One of the advantages was the fact, that the resulting
model was comparably small and could effectively model temporal dependencies.
However, the resulting model was overfitted, and the performance was moderate.

A notable framework was proposed in Wu et al., 2020. The introduced model
takes genuine speech representation in the first stage as the input and generates gen-
uine speech as the output, following the same distribution of genuine speech. The
idea is that the output for the spoofed speech differs significantly from the bonafide
speech on which the transformer was trained. Then the output is classified using
the LCNN model. We can see that this model is more complex than the previous
one, but the quality change was small, so it seems that more data should be used for
training the transformer.

2.3 Self-supervised approach models

Labeled data is hard and expensive to obtain in real-world problems, so unsuper-
vised learning is preferable. Instead of modeling complex dependencies with la-
beled data usage, we can find a suitable non-linear feature representation using the
unlabeled data and then train the classifier on the resulting latent space using the la-
beled data. The advantage of the approach is that we can model complex non-linear
dependencies without a lot of labeled data.

In the Chorowski et al., 2019, the WaveNet encoder-decoder model was pro-
posed. This model aims to extract features using ResNet-like architecture for the
encoder. As input for the encoder, MFCCs are passed. As the output, the best de-
coder model is trained to reconstruct the original raw waveform of the speech, using
two additional feature sets besides encoder features: autoregressive data to predict
future samples based on the previous and the identity of the input speaker. The
model was primarily used for speech processing, but the concept of ResNet-based
architecture is viable for latent space representations.

Another example of deep learning features representation extraction from the
raw waveform proposed in Jung et al., 2021. The framework is called AA-SIST.
Firstly, the raw waveform is passed to a RawNet2 encoder, which extracts features
using predefined filters at the start, and the result is passed to the residual CNN
blocks. Then, the spectral and temporal graphs are constructed using graph atten-
tion and pooling. Thereafter, they are combined by adding them. Later, heteroge-
neous stacking graph attention and max graph operation are applied. The result is
concatenated and used for further classification. The model’s main advantage is its
relatively small number of trainable parameters and high performance. But despite
the good classification results with the proposed latent space representation, it is
hard to train the model effectively in a self-supervised manner.

One of the possible solutions to get more informative latent space representations
is solving different self-supervised tasks jointly. In the paper Pascual et al., 2019, a
problem-agnostic speech encoder (PASE) was proposed, and in Ravanelli et al., 2020,
a refined version, PASE+. The encoder consists of the convolution of the raw input
waveform with a set of parameterized sinc(x) = sin(x)

x functions that implement rect-
angular band-pass filters and 7 ConvNet blocks. In PASE+, a quasi-recurrent neural
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FIGURE 2.1: PASE+ architecture scheme (Source: Ravanelli et al.,
2020)

network is also performed to learn long-term dependencies efficiently, and skip con-
nections are introduced to improve gradient flows (see Fig. 2.1). Workers, which are
small feed-forward NNs, are fed by the encoded representation and solve multiple
self-supervised tasks, defined as regression or binary discrimination tasks. They in-
clude original waveform, LPS, MFCC representations reconstruction as regression
tasks, local info max, global info max, and sequence predicting coding prediction
as binary discrimination tasks (Pascual et al., 2019). Representations obtained with
the framework were used to achieve good results in speaker identification, speech
emotion classification, and automatic speech recognition tasks.

FIGURE 2.2: SSAD architecture scheme
(Source: Jiang et al., 2020)

One example of adapting the previous approach was introduced in Jiang et al.,
2020. The framework is called a self-supervised spoofing audio detection scheme
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(SSAD). The architecture is shown in Fig. 2.2. A temporal convolutional network
(TCN) is used to learn long-term dependencies more efficiently. The model has only
four workers: LPS, CQCC, and LFCC as regression tasks and congener info max
(CIM) binary feature as a binary discriminative task. The trained encoder was used
for the spoofing detection task with SENet12, LCNN-big, and LCNN-small classi-
fiers. The SENet integrates the ResNet with the squeeze-and-excision (SE) block.
The SE block can adoptively acquire the importance of each feature channel and ex-
plicitly model the interdependencies between them by assigning weights to them
(Zhang, Wang, and Zhang, 2021).
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Chapter 3

Data

This chapter describes the main data sources in spoofed audio detection tasks with
the selected dataset, data preprocessing steps, and key metrics on which the models
are evaluated.

3.1 Spoofed audio datasets

Today exists a wide variety of datasets and competitions on audio classification top-
ics. Nevertheless, few consider fake audio detection as the main task. The cen-
tral challenge in this field remains the Automatic Speaker Verification Spoofing and
Countermeasures Challenge (ASVspoof) (Wu et al., 2017).

The database for the first challenge, the ASVspoof 2015 (Wu et al., 2015), con-
tains both bonafide and spoofed speech data collected from 106 speakers (45 male
and 61 female). All bonafide speech recordings were gathered in the same condi-
tions. Spoofed speech samples of each speaker were generated artificially using one
of ten different, well-known speech synthesis or voice-conversion spoofing-attack
algorithms. The dataset was refined for ASVspoof 2019 (Todisco et al., 2019). It con-
sists of two use-case scenarios: logical access (LA) and physical access (PA). The LA
scenario involves spoofing attacks injected directly into the ASV system. Attacks in
the LA scenario are generated using text-to-speech synthesis (TTS) and voice conver-
sion (VC) technologies. For the PA scenario, speech data is assumed to be captured
by a microphone in a physical (Todisco et al., 2019), reverberant space. In ASVspoof
2021 dataset (Delgado et al., 2021), the speech deep fake (DF) scenario was separated
from the LA scenario, but the data primarily originates from previous challenges.

Challenges data is partitioned into three datasets: training, development, and
evaluation. The three partitions are disjoint in terms of speakers, and the record-
ing prerequisites for all source data are identical. The training and development
sets contain spoofing attacks generated with the same algorithms and conditions
(Todisco et al., 2019). The evaluation set contains attacks generated with different
algorithms or conditions (Todisco et al., 2019).

Our work uses the LA partition of ASVspoof 2019 dataset since it is widely used
in the spoofing detection task, which is crucial to compare our results to the existing
models. The LA database includes genuine and fake speech data created by 17 dif-
ferent TTS and VC systems. The training data for these systems is obtained from the
VCTK database but does not overlap with the data in the 2019 database. Of these
17 systems, 6 are known attacks, while the other 11 are unknown. The training and
development sets only include known attacks, but the evaluation set has 2 known
and 11 unknown spoofing attacks (Todisco et al., 2019).

Among the 6 known attacks, 2 are VC systems, and 4 are TTS systems. The
VC systems use neural-network-based and spectral-filtering-based approaches. The
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TTS systems use waveform concatenation or neural-network-based speech synthe-
sis, which employs either a conventional source-filter vocoder or a WaveNet-based
vocoder. The 11 unknown systems comprise 2 VC, 6 TTS, and 3 hybrid TTS-VC
(Todisco et al., 2019) systems with various waveform generation methods. These
methods include classical vocoding, GriffinLim, generative adversarial networks,
neural waveform models, waveform concatenation, waveform filtering, spectral fil-
tering, and combinations (Todisco et al., 2019).

There are 2580 bonafide and 22800 spoofed utterances for the training subset,
resulting in 25380 samples. Similarly, there are 2548 bonafide and 22296 spoofed
utterances for the development subset, resulting in 24844 samples. Each audio file is
stored in FLAC format with the same sample rate of 22500 Hz and different signal
lengths (see Figure 3.1).

FIGURE 3.1: Audio, which is represented as a normalized signal

3.2 Data preprocessing

3.2.1 Samples splitting

As the first step, we split all the samples into chunks of 5 seconds in length. If the
chunk is smaller, then it is padded with zeros. The main reason for this operation is
to feed multiple waveforms simultaneously and, thus, make the processing, primar-
ily during the training, more effective, saturating GPU memory. These chunks are
used as the input data, and all the feature representations are calculated from this.

3.2.2 Framing and windowing

Before transferring the audio data to 2-dimensional representations, we perform the
framing. Framing is a common technique used in speech processing to analyze the
speech signal over short, overlapping time intervals. We use the frame length of 20
ms and the hop length of 10 ms.

Since the frames are half-overlapped, we should prevent spectral leakage. Win-
dowing is a technique that helps to reduce this effect by multiplying the signal with
a window function before taking the Fourier Transform, removing the edge effects.
The Hamming window is a popular window function used for this purpose because
it provides a good compromise between main lobe width and side lobe attenuation.
The Hamming window has a bell-shaped curve that smoothly tapers the edges of
the signal to zero, reducing spectral leakage. We use it to process sample chunks
before feature extraction.
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3.2.3 Features extraction

As features representations, we use different cepstral coefficients. Cepstral features
are commonly used in audio spoofing detection because they are effective in captur-
ing the unique properties of the vocal tract and can be used to distinguish between
genuine and spoofed speech signals.

For each audio chunk, we extract 20 first coefficients of CQCC (see Figure 3.2),
MFCC (see Figure 3.3), IMFCC (see Figure 3.4), and LFCC (see Figure 3.5).

FIGURE 3.2: Example of CQCCs of audio chunk

FIGURE 3.3: Example of MFCCs of audio chunk

FIGURE 3.4: Example of IMFCCs of audio chunkl

The reason for using the first 20 cepstral coefficients is that they correspond to
the lower frequency components of the speech signal, which are more important for
capturing the characteristics of the vocal tract. The first few cepstral coefficients typ-
ically correspond to the overall amplitude of the speech signal, while higher-order
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FIGURE 3.5: Example of LFCCs of audio chunk

coefficients capture finer details of the spectral envelope. The higher-order cepstral
coefficients generally capture less important information about the spectral envelope
and can be more sensitive to noise and other distortions in the speech signal.
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Chapter 4

Proposed approach

In this chapter, firstly, we define the problem statement. Secondly, we describe the
model architecture, key components, and objective functions. Finally, we define the
metrics we use to evaluate the results.

4.1 Problem statement

The problem is developing an effective and robust audio spoofing detection system
that can accurately differentiate between genuine human speech and spoofed wave-
forms. The goal is to improve the system’s efficiency, keeping the system robust
and reliable. The audio spoofing detection task involves training a machine learning
model that accurately classifies audio samples as genuine or spoofed based on their
acoustic characteristics and temporal patterns.

Audio spoofing detection has several challenges that should be handled to build
an efficient and reliable system. First, attackers use diverse strategies to create audio
spoofs, such as voice conversion, speech synthesis, and impersonation, with physi-
cal devices or deepfakes. Each spoofing technique introduces different acoustic arti-
facts, making capturing and analyzing various spoofing patterns necessary.

The second thing is that collecting a diverse and representative dataset of gen-
uine and spoofed audio samples is challenging in real-world scenarios. The system
should be capable of identifying known spoofing methods while being resilient to
unknown or novel attacks and simultaneously distinguishing bonafide speech.

Last but not least, audio spoofing detection needs to be performed in real-time.
The system should process waveforms efficiently, providing prompt and accurate
decisions without introducing excessive latency.

4.2 Model architecture

The proposed model combines the encoder, based on the Self-Supervised Audio De-
tection Scheme (Jiang et al., 2020) and LCNN (Light CNN) based classifier (Lavren-
tyeva et al., 2017) to create a comprehensive and powerful system for audio spoofing
detection. This model aims to effectively differentiate between genuine and spoofed
waveforms, ensuring the security and reliability of speaker verification systems.

In the first step of the model, the encoder is used. It is designed to capture wave-
forms’ acoustic characteristics and temporal patterns. It consists of several compo-
nents that work together to extract encoded compact representations from the input
audio based on cepstral representations of the input signal.

Following the encoder, the model incorporates the LCNN-based classifier.
LCNN, or Light CNN, is a lightweight convolutional neural network architecture
specifically designed for face recognition tasks (Wu et al., 2018). In the proposed
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FIGURE 4.1: General pipeline of model for spoofed audio classifica-
tion

model, LCNN is adapted for the audio spoofing detection task, leveraging its ability
to extract high-level discriminative features.

The LCNN-based classifier consists of multiple convolutional layers followed by
fully connected layers. These layers learn hierarchical representations of the input
audio features, gradually capturing more abstract and discriminative information.
The model benefits from the design principles of LCNN, such as lightweight convo-
lutional filters and efficient parameter utilization, which enable it to achieve accurate
and efficient classification results. The output of the LCNN-based classifier provides
the final prediction of the audio sample, indicating whether it is genuine or spoofed.

By combining the encoder and LCNN-based classifier, the model leverages the
strengths of both components. The encoder captures fine-grained acoustic character-
istics and temporal patterns, while the LCNN classifier focuses on extracting high-
level discriminative features. This multi-stage approach allows the model to learn
and differentiate between genuine and spoofed waveforms effectively.

The code of the proposed solution is available on GitHub. 1

4.2.1 Feature extractor

The encoder is an important part of the proposed audio spoofing detection model. It
is used to extract the feature representation using neural networks and is trained on
cepstral audio representations. It consists of convolutional blocks, residual blocks,
a temporal convolutional network (TCN), a non-linear projector, and batch normal-
ization layers that are applied sequentially to obtain the most useful speech char-
acteristics into a more compact representation called embedding. The models were
trained on CQCC, LFCC, MFCC, and IMFCC representations of the input speech
signal. These features are calculated as described in sections 3.2.2 and 3.2.3. To
transform the embeddings into cepstral features, workers are used. The chosen loss
function is the average Mean Squared Error (MSE) loss between the workers’ output
and corresponding cepstral features.

Each input to the neural network is a 3-dimensional tensor with the shape of
B × 1 × T, where B - batch size, T defines the length of the input signal, which is,
in our case, 110250 (corresponding to signal with the sampling rate of 22050 Hz and
5 seconds length); input sequence is normalized into the range from -1 to 1. The
output tensor has a size of B × H × W, where B - batch size, H has a size of 128
in our case, and W can vary depending on input waveform length I, kernel sizes,
strides, padding parameters of convolutions in convolutional and residual blocks,
and also, from the number of residual blocks. In our case, W depends on the kernel
size of convolutions in residual blocks and the number of residual blocks.

1https://github.com/d-ivashchenko/AudioSpoofingDetection

https://github.com/d-ivashchenko/AudioSpoofingDetection
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Convolutional Blocks

The encoder begins with two Convolutional blocks. Each Convolutional block ap-
plies a 1-dimensional convolution operation, followed by batch normalization and a
parametric rectified linear unit (PReLU) activation:

PReLU(x) = max(0, x) + a min(0, x) (4.1)

where a is a trainable parameter.
These convolutional layers aim to simulate the windowing of the input signal.

The first layer has a kernel size of 220 and a stride of 1, which allows applying a
trainable smoothing on the window of 1 ms long. Also, it has a changeable parame-
ter of the number of output channels, which varies in our case from 8 to 32 channels.
The parameter defines how he second layer has a kernel size of 20 and a stride of 10.
Batch normalization layers normalize the activations within each mini-batch, help-
ing to stabilize and accelerate the training process, improving the model’s ability to
generalize, and reducing the impact of covariate shifts.

Residual Blocks

Following the Convolutional blocks, the encoder incorporates Residual blocks (Res-
Block). They consist of two Convolutional blocks (ConvBlock) connected with skip
connections. The skip connections allow the model to capture both shallow and
deep contextual information, improving the ability of the model to train.

ConvBlock 1 takes the input data with I channels and applies a 1-dimensional
convolution operation. The convolutional layer convolves the input with a kernel
of size K and a stride of size S. The output channels are increased in F times, so the
number of output channels is I · F.

ConvBlock 2 operates on the output of ConvBlock 1. It applies a 1-dimensional
convolution with the same number of input and output channels of size I · F, using
a kernel of size K and a stride of 1.

The skip connection preserves the input data by applying a 1-dimensional con-
volution with a kernel size calculated based on the stride and padding of ConvBlock
1 and stride of size S. This ensures that the skip connection has the same number of
output channels as ConvBlock 2.

The output of ConvBlock 2 is combined with the output of the skip connection
using element-wise addition. This fusion of information allows for the preservation
of important features while enabling the flow of gradients during backpropagation.
The resulting output is the final output of the ResBlock, containing enriched repre-
sentations.

We use kernel sizes K from 7 to 11, stride S = 2, multiplication factor F = 2,
and a number of input channels for the first ResBlock I from 8 to 32. For different
models, we use 3 or 4 ResBlocks connected sequentially.

Temporal Convolutional Network (TCN)

After ResBlocks, a Temporal Convolutional Network (TCN) is applied to model the
temporal dependencies within the audio. The model (proposed in Bai, Kolter, and
Koltun, 2018) consists of multiple TemporalBlocks, where each block applies dilated
convolutions to capture long-range temporal patterns. The dilation rate increases
exponentially with each block (multiplied by 2), allowing the model to effectively
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FIGURE 4.2: Architectural elements in a TCN
(Source: Bai, Kolter, and Koltun, 2018, Fig. 1)

capture temporal dependencies at various scales. The TCN aids in learning tempo-
ral patterns that are crucial for distinguishing between genuine and spoofed wave-
forms.

The Temporal Block (4.2) takes a 1-dimensional sequence of data as input and
applies a series of operations. The block starts with two 1-dimensional convolutional
layers. The first convolutional layer applies a dilated convolution operation to the
input sequence. The dilation parameter determines the spacing between the values
in the convolution kernel. By increasing the dilation parameter in each subsequent
block, the network can capture information over larger receptive fields, allowing it
to model long-term dependencies in the data. Weight normalization is applied to
these convolutional layers, which helps with stabilizing the learning process.

After each convolutional layer, a Chomp1d operation is performed. Chomp1d
trims the rightmost elements from the output of the convolutional layer to ensure
that the output sequence has the same length as the input sequence. This operation
helps maintain the causality of the network. The ReLU activation function is ap-
plied after each Chomp1d operation. ReLU introduces non-linearity and helps the
network capture complex patterns in the data. After each ReLU activation, dropout
is applied.

Also, a residual connection is established between the output of the second con-
volutional layer and the block’s input. If the number of input channels is different
from the number of output channels, a 1 × 1 convolution is applied to match the
dimensions.

We use convolution kernel size K = 2, the number of output channels of 128 or
256, 1 or 2 temporal blocks. Also, we use the dropout rate of 0.2, which means that
during training, approximately 20% of the output values of the network’s neurons
in the specified layer or block will be randomly set to zero.

Non-Linear Projector

After the TCN, the encoder incorporates a Non-Linear Projector. This module per-
forms non-linear transformations on the output of the TCN. The Non-Linear projec-
tion consists of 3 components: 2 linear fully-connected layers with nonlinear activa-
tion function - hyperbolic tangent (tanh). The Non-Linear Projector serves multiple
purposes, including introducing non-linear mappings and reducing dimensionality.
In our case, the output of this layer is the output of the encoder and has the size of
B × H × W, where B is the batch size, H and W are the embedding sizes, H = 128,
W depends on other parameters of the encoder.
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Workers

The worker is a small neural network comprising two components: a fully-
connected layer and a convolutional layer. It is designed for transforming input
data, which is embedding, calculated with an encoder model, with one size into out-
put data with a different size. The fully-connected layer takes the input data and
performs a linear transformation to map it to a lower-dimensional space. The con-
volutional layer then operates on the transformed data, applying a 1-dimensional
convolution with a specific kernel size, stride, and padding to fit the needed output
size.

Workers are not used for the classification task; their only purpose is to trans-
form 2-dimensional embedding from the encoder model to the corresponding 2-
dimensional audio representations, which are cepstral feature representations in our
case, during the self-supervised training step. Workers are fed by the encoded rep-
resentation calculated by the encoder model. Moreover, the encoder is trained with
regression tasks via workers: the average mean squared error (MSE) between these
small neural networks and corresponding feature representations propagates back
to the encoder to generate suitable audio embeddings.

4.2.2 Classifier

Our implementation is based on Light CNN (LCNN) model (Lavrentyeva et al.,
2017), which is a convolutional neural network architecture designed for efficient
and accurate image classification. It consists of multiple convolutional layers, max-
feature-map, and max-pooling operations. The model takes input images and ap-
plies a series of convolutional and MFM operations to extract hierarchical features.
Max pooling is performed to downsample the feature maps. The extracted fea-
tures are then passed through fully connected layers for classification. The LCNN
model is known for its compact structure, computational efficiency, and strong per-
formance in various image classification tasks.

Max-Feature-Map operation

Max-Feature-Map (MFM) serves as an activation function, and it is defined as:

yij = max(xk
ij, xk+ N

2
ij ), ∀i = 1, H, j = 1, W, k = 1, N/2 (4.2)

where x is the input tensor of size H × W × N, y is the output tensor of size H ×
W × N

2 , H defines the number of features, W defines the size in temporal domain, N
defines the number of channels (see Fig. 4.3). MFM plays the role of feature selector
(Lavrentyeva et al., 2017).

LCNN architecture

The model takes as input an embedding with size B × H × W, where B is the batch
size, H and W are the embedding sizes, H = 128, W depends on other parameters
of the encoder. The LCNN-based classifier has the following structure: Conv1 →
MaxPool → Conv2a → Conv2b → MaxPool → Conv3a → Conv3b → MaxPool →
Conv4a → Conv4b → MaxPool → FC1 → FC2.

The main structural block is an MFM layer consisting of a 2-dimensional convo-
lution with MFM activation. The first MFM layer, Conv1, has one input channel, 16
output channels, a kernel size of 5, stride 1, and padding 2. MFM layers Conv2a,
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FIGURE 4.3: Max-feature-map activation
(Source: Lavrentyeva et al., 2017, Fig. 3)

Conv3a, and Conv4a take the output feature maps from the previous layer as input
with input channels I of 16, 24, and 32, respectively, and perform a 1 × 1 convolu-
tion operation with output channels I, stride S = 1 and padding P = 0. MFM layers
Conv2b, Conv3b, and Conv4b take the output feature maps from the corresponding
layers and perform a 3 × 3 convolution operation with stride S = 1 and padding
P = 1. The output from these layers has 24, 32, and 16 channels, respectively. After
layers Conv1, Conv2b, Conv3b, and Conv4b, max pooling operations are applied
with a kernel size of 2 × 2 and no padding.

The output feature maps are then flattened and passed through a fully connected
MFM layer, FC1, which has an input size determined by the spatial dimensions of
the feature maps and outputs an embedding of size E, which is, in our case, 64 or
128. Finally, the embedding is fed into a linear layer, FC2, which produces the final
classification output of size, corresponding to the number of classes, which is 2 in our
case. The weights of FC2 are initialized with a normal distribution with a standard
deviation of 0.001.

4.3 Loss functions

Along with standard cross-entropy loss with softmax activation, custom loss func-
tions for classifiers are often used in spoofed audio detection tasks to address spe-
cific challenges and characteristics of the problem. Spoofed audio detection involves
distinguishing between genuine and manipulated/fake audio recordings. This task
may have imbalanced class distributions between bonafide and spoofed samples. In
such cases, using a softmax can lead to a bias towards the majority class. This bias
can result in poor performance in detecting spoofed audio. In our work, we used
three different loss functions: softmax, AM-Softmax, and OC-Softmax.

4.3.1 Softmax

A Softmax loss for a binary classification task can be defined in the following way:
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LS =
1
N

N

∑
i=1

log(1 + e(wyi−w1−yi )
T xi) (4.3)

where xi is the embedding vector of the i-th sample, yi ∈ {0, 1} is the label of the i-th
sample, w0, w1 are weight vectors for bonafide and spoofed speech respectively, N
is the number of samples.

4.3.2 AM-Softmax

AM-Softmax (Additive Margin Softmax) (Wang et al., 2018) introduces an additive
margin term to the standard softmax loss, aiming to increase the angular margin
between different classes’ feature representations. By incorporating this margin,
AM-Softmax encourages more discriminative feature learning, making the decision
boundaries between classes more distinct. The AM-Softmax can be defined in the
next way:

LAMS =
1
N

N

∑
i=1

log(1 + eα(m−(ŵyi−ŵ1−yi )
T x̂i)) (4.4)

where x̂i is the normalized embedding vector of the i-th sample, yi ∈ {0, 1} is the la-
bel of the i-th sample, ŵ0, ŵ1 are normalized weight vectors for bonafide and spoofed
speech respectively, α is the scaling factor (α = 20 in our case), m is the angular mar-
gin (m ∈ {0.8, 0.3,−0.3} in our case), N is the number of samples.

4.3.3 OC-Softmax

Training a compact embedding space for bonafide speech in voice spoofing detection
is reasonable. However, if we also train a compact embedding space for the spoof-
ing attacks, it may overfit (Zhang, Jiang, and Duan, 2021) to known attacks. The
proposed loss function One-class Softmax (OC-Softmax) (Zhang, Jiang, and Duan,
2021) solves this issue by introducing two different margins to obtain more compact
both bonafide and spoofed speech representations in latent space simultaneously.
The loss function can be formulated as follows:

LOCS =
1
N

N

∑
i=1

log(1 + eα(myi−ŵT
0 x̂i)(−1)yi ) (4.5)

where x̂i is the normalized embedding vector of the i-th sample, yi ∈ {0, 1} is the
label of the i-th sample, ŵ0 is the normalized weight vector for bonafide speech,
m0, m1 are angular margins for bonafide and spoofed speech respectively (m0, m1 ∈
{0.8, 0.3, 0.2,−0.3} in our case), α is the scaling factor (α = 20 in our case), N is the
number of samples.

4.4 Metrics

The equal error rate (EER) is the main statistic we will use to evaluate the results. The
EER is the location on a ROC or DET curve where the false acceptance and rejection
rates are equal.

Another widely used evaluation metric is tandem detection cost function (t-
DCF), proposed in Kinnunen et al., 2019. It includes the costs for missed attacks,
false alarms, and prior probabilities for these events. A lower result means better
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performance. The evaluation results of the discussed systems are presented in Table
4.1.

TABLE 4.1: Metrics achieved on the evaluation part of the ASVspoof
2019 dataset (LA) with different Spoofing Audio Detection (SAD) sys-

tems.

SAD system EER (%) t-DCF

CQCC + GMM (Alzantot, Wang, and Srivastava, 2019) 9.57 0.2366
LFCC + GMM (Alzantot, Wang, and Srivastava, 2019) 8.09 0.2116

CQCC + ResNet (Alzantot, Wang, and Srivastava, 2019) 7.69 0.2166
MFCC + ResNet (Alzantot, Wang, and Srivastava, 2019) 9.33 0.2042

LFB + ResNet (Chen et al., 2020) 1.26 -
MFCC + ResNet (pre-trained) (P. et al., 2020) 5.32 0.1514

LFCC + ResNet + OC-Softmax (Zhang, Jiang, and Duan, 2021) 2.19 0.059
LPS + LCNN (Lavrentyeva et al., 2019) 4.53 0.1028
LCNN + transformer (Wu et al., 2020) 4.07 0.102
LC-GRNN (Gomez-Alanis et al., 2019) 6.28 0.1523

AA-SIST (Jung et al., 2021) 0.83 0.0275
SAMO (Ding, Zhang, and Duan, 2022) 1.08 0.0356
SSAD (LCNN-big) (Jiang et al., 2020) 5.31 -
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Chapter 5

Experiments and Results

This chapter provides a detailed description of the conducted experiments and their
results. All the experiments can be naturally divided into two parts: experiments
with the encoder and experiments with the classifier. Our goal was to improve the
inference of the model, keeping the accuracy as high as possible.

5.1 Experiments with encoder

The encoder used in these experiments is based on the SSAD (Jiang et al., 2020)
encoder, a specialized architecture designed for detecting speech falsification. Our
model also incorporates unsupervised training techniques on various cepstral coef-
ficients, like LFCC, MFCC, IMFCC, and CQCC. The encoder can learn meaningful
representations from audio data without relying on labeled annotations by leverag-
ing unsupervised training on these features. This self-supervised approach helps to
enhance the encoder’s ability to capture relevant features and patterns that distin-
guish between genuine and spoofed audio.

One of the significant drawbacks is that the mentioned architecture is a complex
model with multiple layers and a significant number of parameters. Due to this,
training and inference of the SSAD encoder can be computationally intensive and
challenging. Thus, the decision was to modify this architecture and reduce the num-
ber of layers and parameters. Since the exact parameters of the SSAD model are
unknown, the results cannot be reproduced with high accuracy. Nevertheless, we
took the starting parameters from the similar PASE encoder (Pascual et al., 2019).

The optimizer used for training the model is Stochastic Gradient Descent (SGD),
initialized with a learning rate of 0.001 and a momentum value of 0.9. The training
process involves running the model for a total of 10 epochs. The batch size was
set to 50. The experiments are performed on Google Colab. The Tesla T4 GPU was
utilized. TensorBoard was used for monitoring and visualizing the training progress
and performance of the SSAD encoder.

5.1.1 Number of channels in ResBlocks

The first parameter we chose to experiment with was the number of channels of
1-dimensional convolutions. They are determined by the number of input chan-
nels I for the first ResBlock (see 4.2.1). We proposed an encoder with three residual
blocks with a 1-dimensional convolution kernel size of 11 and one temporal block in
TCN with 256 output channels for the experiment. Table 5.1 shows the results. The
"Number of input channels I" column indicates the parameter being evaluated for
each model. The "Train average MSE" and "Dev average MSE" columns represent
the average mean squared error (MSE) obtained during training and evaluation on
the development set on the last epoch, respectively. The "Number of parameters"
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column indicates the total number of parameters in each model that are learnable
during training.

TABLE 5.1: Comparison of encoders with different numbers of input
channels in ResBlocks

Num. of input channels I Train average MSE Dev average MSE Num. of parameters

32 0.0516 0.0555 2925064
16 0.0525 0.0565 936200
8 0.0529 0,0557 396552

Analyzing the results, we can see that the model with 32 input channels reached
the lowest MSE values both on training and validation sets. This suggests that a
higher number of input channels in the ResBlocks leads to better performance in
terms of MSE. However, it is worth noting that the model with 32 input channels also
has the highest number of trainable parameters, indicating a higher complexity. On
the other hand, reducing the number of input channels to 16 or 8 slightly increases
the MSE values but significantly reduces the number of trainable parameters.

The results suggest a trade-off between model complexity (number of parame-
ters) and performance (MSE). From that point of view, it is reasonable to use 16 or 8
channels, keeping in mind the purposes of the research.

5.1.2 Number of temporal blocks and output channels in TCN

Another component that can influence the performance and inference speed of the
encoder is TCN. We conducted the experiments with two base models. The first
model has 3 residual blocks with 8 input channels for the first ResBlock and convo-
lutions with a kernel size of 11. The numerical results of these models are shown in
Table 5.2.

TABLE 5.2: Comparison of encoders with different architectures of
TCN for the first proposed model

TCN architecture Train avg. MSE Dev avg. MSE Num. of parameters

1 temporal block with 256 output channels 0.0529 0.0557 396552
1 temporal block with 128 output channels 0.0524 0.0558 256648

2 temporal blocks with 128 and 128 output channels 0.0522 0.0556 322696
2 temporal blocks with 128 and 256 output channels 0.0524 0.0558 503688

From the results, we observe that the architecture with two temporal blocks with
128 and 128 output channels achieves the lowest average MSE on both the training
and development sets. The model stands out as a favorable choice, providing a good
trade-off between accuracy and model complexity.

The second model has 3 residual blocks with 16 input channels for the first Res-
Block and convolutions with a kernel size of 11. The metrics for trained models are
shown in Table 5.3.

TABLE 5.3: Comparison of encoders with different architectures of
TCN for the second proposed model

TCN architecture Train avg. MSE Dev avg. MSE Num. of parameters

1 temporal block with 128 output channels 0.0519 0.0562 755208
1 temporal block with 256 output channels 0.0525 0.0565 936200

2 temporal blocks with 256 and 256 output channels 0.052 0.056 1199368
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The results show that the architecture with 1 temporal block and 128 output
channels achieves the lowest average MSE on the training set, and the architecture
with 2 temporal blocks with 256 and 256 output channels shows the best perfor-
mance on the development set. However, it is a lot more complex, so it offers a
worse balance between accuracy and model complexity. Thus, the first model is
preferable for our goals.

5.1.3 Number of residual blocks

In this experiment, we tried to explore how the number of residual blocks impacts
the encoder model. For this purpose, we took two different base architectures. They
both have 8 input channels for the first ResBlock and convolutions with a kernel size
of 11, but different TCN layers structures: the first one has 1 temporal block with 128
output channels, and the second one has 2 temporal blocks with 128 and 256 output
channels. The results of the experiment are described in Table 5.4.

TABLE 5.4: Comparison of encoders with different numbers of resid-
ual blocks

TCN architecture Num. of ResBlocks Train avg. MSE Dev avg. MSE Num. of parameters

1 temporal block with 128 output channels 3 0.0524 0.0558 256648
4 0.0517 0.0557 757386

2 temporal blocks with 128 and 256 output channels 3 0.0524 0.0558 503688
4 0.0529 0.0562 1004426

In terms of training average MSE and development average MSE, the results
show that increasing the number of residual blocks can lead to better performance.
Especially for the first TCN architecture, the model with 4 residual blocks achieved
the lowest training and development MSE. On the contrary, for the second TCN
architecture, the model with 4 residual blocks did not outperform the model with 3
blocks in terms of MSE. At the same time, as the number of residual blocks increases,
the number of trainable parameters also increases drastically, which can impact the
inference speed of the model. For these reasons, using 4 residual blocks instead of 3
is not worthwhile.

5.1.4 Convolution kernel size

In this experiment, we compare encoders with different kernel sizes of convolutions
in the residual blocks to evaluate their impact on the performance of spoofing audio
detection. As the base model, we trained an encoder with 3 residual blocks and 16
input channels for the first ResBlock, one temporal convolution layer with a number
of output channels 128. Three kernel sizes, 7, 9, and 11, were examined. Table 5.5
shows the results.

TABLE 5.5: Comparison of encoders with different kernel sizes of con-
volutions in the residual blocks

Kernel size Train avg. MSE Dev avg. MSE Num. of parameters

7 0.053 0.0566 497160
9 0.0522 0.0555 626184

11 0.0519 0.0562 755208

Overall, the experiment demonstrates that the choice of kernel size in the convo-
lutional layers of the residual blocks significantly affects the encoder’s performance.
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The results show that the encoder with a kernel size of 11 achieves the lowest av-
erage MSE on the training set. However, the encoder with a kernel size of 9 shows
promising results with a lower average MSE on the development set. Also, we con-
ducted the experiment with the changed number of output channels from the tem-
poral block to 256 and compared it with the previously trained model (Table 5.6),
and it has shown the same pattern between the models with a kernel size of 9 and
11.

TABLE 5.6: Comparison of encoders with different kernel sizes of con-
volutions in the residual blocks with another TCN architecture

Kernel size Train avg. MSE Dev avg. MSE Num. of parameters

9 0.0527 0.056 807176
11 0.0525 0.0565 936200

5.2 Experiments with classifier

As was mentioned earlier, the classifier model is based on the LCNN model (Lavren-
tyeva et al., 2017). It was designed for audio or speech-related classification tasks.
As input, it takes the embeddings generated from the encoder and learns to identify
discriminative features from it to differentiate between genuine and spoofed speech.

Unlike Jiang et al., 2020, in our work, the encoder aims to learn more general
audio embeddings. In order to obtain a more discriminative latent space representa-
tion for our specific task, we incorporated loss functions such as AM-Softmax (Wang
et al., 2018) and OC-Softmax (Zhang, Jiang, and Duan, 2021) in our training process.
We encourage the encoder to learn more distinct and separable embeddings in the
latent space by introducing additional angular margin constraints. This is particu-
larly beneficial for audio classification tasks.

For classifiers, we used three encoder models, which were trained for 10 epochs
in the same setup from the previous section:

• with 3 residual blocks with 32 input channels for the first ResBlock and a 1-
dimensional convolution kernel size of 11 and 1 temporal block in TCN with
256 output channels (Encoder 1)

• with 3 residual blocks with 16 input channels for the first ResBlock and a 1-
dimensional convolution kernel size of 9 and 1 temporal block in TCN with
128 output channels (Encoder 2)

• with 3 residual blocks with 8 input channels for the first ResBlock and a 1-
dimensional convolution kernel size of 11 and 2 temporal blocks in TCN with
128 and 128 output channels (Encoder 3)

The experiment setup for the classifier involved the utilization of different opti-
mizers and settings. Specifically, the LCNN optimizer optimized the Adam model
with a learning rate of 10−5, β1 = 0.9, β2 = 0.999, and ϵ = 10−8. The OC-Softmax
and AM-Softmax loss functions employed the SGD optimizer with a learning rate
of 0.01. The training process was conducted for 10 epochs. The batch size was set
to 25. The experiments are performed on Google Colab. The Tesla T4 GPU was uti-
lized. TensorBoard was used for monitoring and visualizing the training progress
and performance of the model.
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5.2.1 Softmax loss

Our first experiment was training the classifier with the encoder fine-tuning using
the softmax loss function. Also, we tried the LCNN embedding size of 128 and 64,
which is the size of the output of the FC1 layer of the classifier (see 4.2.2). The results
are shown in Table 5.7.

TABLE 5.7: Classifier with Softmax loss performance on validation
data

Encoder LCNN embedding size Min Dev EER, % Num. of parameters

Encoder 1 128 7.454 5717882
Encoder 1 64 8.684 4341626
Encoder 2 64 8.57 2059130
Encoder 3 64 8.583 1739258

Based on the performance metrics, Encoder 1, with an LCNN embedding size of
128, achieves the lowest EER. At the same time, that model has the highest number
of parameters, which means it is a lot more complex. For that reason, it is better to
choose models LCNN embedding size of 64.

5.2.2 AM-Softmax loss

In this experiment, we measured the impact of changing the margin between the
bonafide and spoofed speech in latent space using the AM-Softmax loss function.
The margin parameter determines the separation between different classes in the
learned embedding space (Wang et al., 2018). It controls the degree of intra-class
compactness and inter-class separability. Choosing an appropriate margin value is
crucial to ensure a good balance between class discrimination and model stability.
The LCNN embedding size was set to 64. The results are described in Table 5.8.

TABLE 5.8: Classifier with AM-Softmax loss performance on valida-
tion data

Encoder Margin m Min Dev EER, % Num. of parameters

Encoder 1 0.8 6.88 4341754
Encoder 1 0.3 5.651 4341754
Encoder 1 -0.3 7.928 4341754
Encoder 2 0.8 5.516 2059258
Encoder 2 0.3 4.938 2059258
Encoder 2 -0.3 8.648 2059258
Encoder 3 0.8 8.436 1739386
Encoder 3 0.3 8.404 1739386
Encoder 3 -0.3 7.458 1739386

For Encoder 2, a margin value of 0.3 achieves the lowest minimum development
EER of 4.938%. Similarly, for Encoder 1, a margin value of 0.3 reaches the minimum
EER of 5.651%. This indicates that the model can better separate the classes in the
learned embedding space with a smaller margin, leading to improved discrimina-
tion between spoofed and genuine audio samples. However, as the margin value
deviates further from this optimal value, the performance worsens with higher EER
values. This could indicate that the latent space should have more dimensions to
have the ability to separate the classes with a desired margin.
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5.2.3 OC-Softmax loss

Another loss function we considered was the OC-Softmax. This function was de-
veloped for this task, and the main ideas were to introduce two different margins
for both classes and classify whether the sample belongs to bonafide speech or not
Zhang, Jiang, and Duan, 2021. We assumed that with this idea, the classifier would
be more flexible and less likely to overfit on known spoofing algorithms. The results
are shown in Table 5.9. m0 corresponds to genuine speech margin and m1 to spoofed
speech margin.

TABLE 5.9: Classifier with OC-Softmax loss performance on valida-
tion data

Encoder m0 m1 Min Dev EER, % Num. of parameters

Encoder 1 0.8 0.2 7.565 4341690
Encoder 1 0.3 -0.3 5.118 4341690
Encoder 2 0.8 0.2 4.689 2059194
Encoder 2 0.3 -0.3 4.652 2059194
Encoder 3 0.8 0.2 7.537 1739324
Encoder 3 0.3 -0.3 7.277 1739324

The analysis suggests that OC-Softmax loss, particularly with margin values of
m0 = 0.3 and m1 = −0.3, enhances the classifier’s ability to discriminate between
genuine and spoofed audio samples. Encoder 2 with these margin values appears
to be the most effective configuration, delivering the lowest minimum development
EER.

5.3 Model evaluation

We found the parameters and models that are less complex and perform well from
the preceding experiments. We took Encoder 1 and Encoder 2, margin m = 0.3 for
AM-Softmax, and margins m0 = 0.3, m1 = −0.3 for OC-Softmax. The classifiers
were trained for 40 epochs instead of 10, with the same optimization parameters but
with 50% learning rate decay every 10 epochs. For evaluation, the models with the
lowest development EER were selected. In Table 5.10, the results of the evaluation
are given. The last column denotes the average classification time on the one chunk
of the length of 5 seconds. The measurement was performed with a batch size of 1
and averaged all samples from the evaluation set.

TABLE 5.10: Performance of the models on development and evalua-
tion sets

Encoder Loss Epoch Dev EER, % Eval EER, % Avg. classification time, ms

Encoder 1 Softmax 33 6.27 12.8 3.89
Encoder 1 AM-Softmax 12 5.73 13.71 6.26
Encoder 1 OC-Softmax 34 4.1 12.12 6.75
Encoder 2 Softmax 11 7.53 14.55 3.87
Encoder 2 AM-Softmax 26 4.0 12.06 6.25
Encoder 2 OC-Softmax 40 4.72 12.55 6.54

In the case of Encoder 2, the AM-Softmax loss demonstrates the best performance
on both the development and evaluation sets with EERs of 4.0% and 12.06%, respec-
tively. This indicates that the AM-Softmax loss not only improves the performance
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on the development set but also generalizes well to unseen data. It achieves the low-
est EER among all the models, suggesting that the AM-Softmax loss helps in learning
more discriminative and robust representations for spoofed audio detection. How-
ever, further analysis is necessary to understand the generalization capabilities of
the models and investigate overfitting issues.

It is worth noting that the number of epochs required for convergence varies
across the models and loss functions. Models with OC-Softmax loss took the highest
number of epochs to converge: 34 for Encoder 1 and 40 for Encoder 2.

Another thing is that the introduced loss functions increase the classification
quality relative to Softmax loss. At the same time, these functions do not affect the
inference speed of the model significantly, they all show near real-time performance.

An interesting point is how the encoder learns to extract discriminative features
from the input signal via the classifier training. In Fig. 5.1 we see the representation
from the Encoder 2 after unsupervised training during the 10 epochs. In Fig. 5.2 we
can see the same representation from Encoder 2 after supervised training with the
LCNN classifier and AM-Softmax loss function during the 40 epochs, and the start-
ing initialization of the model was with weights, trained via unsupervised learning
for 10 epochs. It is worth mentioning that there are common patterns, but the repre-
sentation changed significantly during the training.

FIGURE 5.1: Features representation of Encoder 2 after unsupervised
training

FIGURE 5.2: Features representation of Encoder 2 after fine-tuning
with the classifier
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Chapter 6

Conclusion

6.1 Discussion and future work

The choice of encoder architecture plays a crucial role in the performance of the
models. Encoder 2 demonstrates better results than Encoder 1 and Encoder 3 across
all the loss functions. Nevertheless, it is less complex than Encoder 1. This high-
lights the importance of designing encoder architectures to capture and preserve the
relevant audio features necessary for spoofed audio detection.

Further investigation and experimentation with different encoder architectures
can improve performance. Different audio representations, such as LPS or Gamma-
Tone Cepstral Coefficients (GTCC), could be used for training the encoder. There
can be a lot of improvements with TCN usage for better capturing the temporal de-
pendencies in the audio data. The hyperparameters, such as the size of the kernel of
the temporal block, dropout rate, number of temporal blocks, and output channels,
can be optimized to outperform the proposed models. Additionally, the classifier
can be improved by introducing additional MFM and pooling layers to reduce the
dimensionality of the learned representations.

The results of the experiments indicate the effectiveness of different loss func-
tions and encoders in spoofed audio detection. The analysis shows that the choice of
the loss function can significantly impact the performance of the models. The AM-
Softmax and OC-Softmax losses consistently outperform the Softmax loss, achiev-
ing the lowest EER on both the development and evaluation sets. This suggests that
the AM-Softmax and OC-Softmax losses help learn more discriminative and robust
representations for distinguishing between genuine and spoofed audio. A better hy-
perparameter optimization can lead to potential quality improvements for these loss
functions.

It is worth mentioning that while the models perform well on the development
set, there is a slight drop in performance on the evaluation set. This suggests some
overfitting to the development set or lacking generalization to unseen data. Fu-
ture work could address these challenges by employing data augmentation or using
other datasets of human speech to enrich the sample.

6.2 Conclusion

This paper focused on audio spoofing detection’s important and challenging task.
We have gained valuable insights into the state-of-the-art methods employed in this
field through an analysis of various techniques and approaches.
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We started by investigating the characteristics of audio spoofing attacks and the
potential vulnerabilities of automatic speaker verification systems. This founda-
tional knowledge provided the necessary context for developing effective counter-
measures against spoofing attempts.

After that, we explored the use of various features, such as CQCC, LFCC, MFCC,
and IMFCC, and assessed their effectiveness in capturing relevant information for
spoofing detection. Based on the previous study, we developed encoder and clas-
sifier architectures for effective spoofing detection. Additionally, we analyzed the
impact of different loss functions, such as Softmax, AM-Softmax, and OC-Softmax,
on the performance of the spoofing detection classifiers. These findings highlighted
the importance of carefully selecting and fine-tuning the loss function to enhance the
discriminative power of the models.

Throughout this thesis, we also considered the computational efficiency of the
proposed systems, recognizing the need for real-time or near-real-time deploy-
ment in practical scenarios. Therefore, we optimized our models and algorithms
to achieve a balance between detection accuracy and computational speed, mak-
ing them suitable for real-world applications. Considerable attention was also paid
to the problem of the lack of labeled data and semi-supervised approaches to ad-
dress this issue. Overall, the results obtained from our experiments and evaluations
demonstrated the efficacy of the developed audio spoofing detection systems.

In conclusion, this thesis has advanced our understanding of audio spoofing at-
tacks and their detection and laid the groundwork for future research and develop-
ment in this area. We hope that the insights and methodologies presented here will
lead to the development of the research field, giving the opportunity to improve the
existing techniques.
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