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Abstract

In recent years the topic of optical flow has become well-spread due to computation
power support and optical flow estimation applications used on mobile phones and
edge devices: video editors, frame stabilizations, and autonomous driving feature
providers. This work analyzes multiple approaches to optical flow estimation and
finds the main problems of the optical flow methods: slow convergence and long
execution of the prediction algorithm. We propose to solve the slow convergence
and long execution time with hidden state refinement to provide the initialization
for optical flow estimation based on several previous frames and their hidden state
transformations, which imitates the pixel movement at the hidden state level. The
proposed method uses CNN, LSTM, and Transformer blocks which help to achieve
the optical flow estimation and hidden state refinement to speed up the system. We
used Sintel, KITTY-15, FlyingChairs, FlyingThings, HD1K, DAVIS, and YouTube-
VOS datasets for our experiment.
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Chapter 1

Introduction

Optical flow is a technique used in computer vision to estimate the motion of objects
between video frames. The core idea is that optical flow tries to predict the pixel
displacement for the whole scene. Hence, it is an essential tool for various appli-
cations, such as video compression, tracking, action stabilization, video restoration,
self-driving, and depth estimation.

Deep learning has become essential to solving different tasks because high-speed
GPU accelerators have become more accessible, and such methods outperform clas-
sical algorithmic ones. The standard solving method for optical flow also uses deep
learning and outperforms such methods, as presented in Horn and Schunck [Horn
and Schunck, 1981] or Lucas-Kanade [Lucas, Kanade, et al., 1981].

Result improvements were caused by the number of weights in the recent model
and the use of components that can understand the pixel movements. Most recent
methods [Bai et al., 2022; Huang et al., 2022; Jiang et al., 2021b; Teed and Deng, 2020;
Zhang et al., 2021; Zhao et al., 2022] use the standard pattern to get decent results:

1. Convolutional neural networks (CNNSs) help achieve quicker network gener-
alization and add the frame context. They allow getting low and high dimen-
sional features to perform further computation;

2. Correlation matrix generation is used as a contextual feature. The systems
perform it as a matrix or scalar multiplication of several frames;

3. Long iterative use of the method (~ 5 — 100 times) to generate only one optical
flow result. This part commonly uses recurrent neural networks (RNNs) or
custom blocks to train pixel shift detection.

Due to the number of inner iterations of the third point, we highlight that it is the
system bottleneck and takes significant time to execute. Especially now when mobile
phones and edge devices can execute a vast amount of deep neural network systems,
but they need more resources to perform as personal computers or servers. Indeed,
optical flow in mobile phones and edge devices has become an essential part of
such systems as video editors, frame stabilization, and autonomous driving feature
providers. Still, sometimes they cannot use the proposed relatively computationally
expensive model and requires lightweight versions of an original method.

Combining recent optical flow estimation models and edge devices, we can set
the critical points:

1. Some system parts require a lot of computation power or execution time;
2. Models have slow convergence due to the complexity of the optical flow task.

The recent state-of-the-art methods (RAFT [Teed and Deng, 2020], DEQFlow [Bai
et al., 2022], GMA [Jiang et al., 2021b], FlowFormer [Huang et al., 2022]) generate a
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cost volume, which is the multiplication of two frames features. This method helps
to add the context of possible pixel movements. Indeed, with the active use of trans-
former architecture for computer vision tasks, the method uses them for different
computation parts in the optical flow task: feature extraction, cost volume, updating
blocks, and others. FlowFormer [Huang et al., 2022] and GMFlowNet [Zhao et al.,
2022] are the best representations of attention use.

Currently, many networks (DEQFlow, GMA, FlowFormer) use the RAFT method
as the initial point and add new tricks or blocks which change architecture slightly
to achieve better results. We also use RAFT-like architectures as the initial point
because they achieve state-of-the-art results according to the endpoint error metric
(EPE), especially FlowFormer and DEQFlow ones. The FlowFormer method uses
transformer blocks to process the key RAFT components (cost volume function re-
sults and update block converge support). The DEQFlow method uses a custom
optimization framework based on the initial RAFT architecture. We combine Flow-
Former and DEQFlow approaches to use the transformer-based methods instead of
the pure RAFT to achieve better convergence than the previous works and add pixel
movement prediction as a custom initialization of the update block to test that with
such a technique:

1. We can speed up the training and model evaluation achieving the same results
as the original FlowFormer does without significant architecture change;

2. The hidden state refinement based on standard blocks (RNNs, LSTMs, CNNis,
Transformers) can work as fast as the DEQFlow framework for model training
and evaluation.

The idea of hidden state refinement follows that we expect linear movement
changes in sequential datasets. FlowFormer supports warm-up training, where the
following image pair uses the previous optical flow result to initialize the update
block. This technique gives better metric results, unlike without it. Hence, it proves
that reusing sequential data and previous optical flow predictions can use object
movement information to achieve better results.

As an alternative for the FlowFormer and DEQFlow combination, we propose
two hidden state refinement systems based on FlowFormer architecture and sequen-
tial movement forecasting. We estimate the next hidden state and optical flow based
on the previous ones one step ahead before using the time-consuming update block.
These forecasters have compact architectures, which help to reduce the update block
iterations both in the train and test stages, which solves one of the main bottlenecks
of the system and allows it to converge quicker as it uses the information from the
previous frames.

For our experiments, we have used KITTI-2015 [Geiger et al., 2013] and SINTEL
[Butler et al., 2012], FlyingChairs [Dosovitskiy et al., 2015], FlyingThings [Mayer et
al., 2016], and HD1K [Kondermann et al., 2016] datasets, the standard ones for op-
tical flow tasks, to compare results correctly. These datasets have a limited number
of sequential data. Hence we additionally have used DAVIS [Pont-Tuset et al., 2017]
and YouTube-VOS [Xu et al., 2018] datasets which contain long sequences of the
frames.



Chapter 2

Related work

We now review prior work on our method, focusing on neural-network-based opti-
cal flow, iterative optical flow, and optical flow optimization.

2.1 Neural-network-based optical flow

With the advancement of deep learning support, we see the progressive use of neural
networks to optimize different complex tasks, and optical flow estimation is no ex-
ception. Here we have many examples of coarse-to-fine pyramidic network usages
[Dosovitskiy et al., 2015; Ilg et al., 2017; Hui, Tang, and Loy, 2018; Hui, Tang, and
Loy, 2021] that generate features from image pairs and predict pixel displacement.

The FlowNet defined several ways to compute images: stack them into one ten-
sor and pass them through the network, or extract features from each image sepa-
rately and concatenate them to continue end-to-end training. The second approach
became the standard practice for the following approaches because it gave better fea-
ture representation and metric results. This network was hard to train due to slow
convergence and dataset size. FlowNet2 tried to solve both problems using dataset
schedulers, a stack of several neural networks, and a warping method. However,
this network took much time to train due to a convergence problem, and several
internal networks made FlowNet2 a large one.

PWC-Net [Sun et al., 2017] was the next step for the optical flow estimation. This
network had trainable feature encoders, a warping layer, and a cost volume layer,
adding extra information about pixel movement. Also, PWC-Net was s 17 times
smaller and easier to train than the FlowNet2 model. The cost volume function
was the correlation between the first image features and the second image warped
features.

2.2 Iterative optical flow

After the success of the cost volume layer, papers started to use and modify it. RAFT
(Fig. 2.1) is a paper in which the cost volume function was modified: it contained
several scales and 4D tensors, unlike PWC-Net 2D ones. The cost volume function
was one of several things that increased the method accuracy. They also used the
ConvGRU block, which iteratively predicted and corrected the optical flow estima-
tion. This block iteratively worked and generated more sophisticated optical flow
results. There are several reasons why iterative blocks can be beneficial:

1. Refinement. Iterative blocks allow the flow estimates to be refined over multi-
ple iterations. This can help reduce errors and noise in the estimates, resulting
in more accurate and reliable flow estimates.
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2. Regularization. Iterative blocks can also help to regularize the flow estimates,
preventing the estimates from becoming too noisy or unstable.

Handling occlusions. Iterative blocks can help to handle better occlusions,

which are areas in the image where one object occludes another, and the flow
cannot be accurately estimated. By refining the estimates over multiple iter-
ations, iterative blocks can better handle occlusions and improve the overall

accuracy of the flow estimates.

The FlowFormer (Fig. 2.2) architecture upgraded the RAFT model, which con-
tained the alternate-group transformer (AGT) layers in a novel latent space, and de-
codes the cost memory via a recurrent transformer decoder with dynamic positional
cost queries. The work core points were to reduce the flow leakage around object
boundaries, process details more precisely, and predict the hidden movement of ob-
jects: the objects could be covered by something, but even in the next appearance,

the optical flow method worked fine.

The authors used attention blocks to predict the object movement to achieve such
results. Our work also predicts the movement, but in our case, we predict the pixel



2.3. Optical flow optimization 5

Solver steps

e
4
4
L]

= and mucl 1 1h lent fran
3 . 3
N\ T Y me £
= “ =l de

Video frames - & "k‘ “¥ii £ ;

: =5 . 5 = ST 2l Los. G
7 = “W 2 ey E 2 i N = =
: L -, .,

0

O _ . e | - o] "~ o
Z) — fo» Zy —-.hl,[ 12 Zy = 2.

TEB

Frame 0 Frame 1 Frame 2 Frame 3

FIGURE 2.3: DEQFlow sequential fixed point reuse (the image from
[Bai et al., 2022)].

movements(not as the whole object) based on previous pair representations and hid-
den states.

Paper with transformer architectures [Huang et al., 2022; Zhang et al., 2021; Zhao
et al., 2022] usually add attention mechanism to transform features to cost volume
and after decode with it. The attention usage helps add extra context and filter
needed data from the cost volume layer while ignoring the layer massive noise.

2.3 Optical flow optimization

After the RAFT architecture success, it became the common starting point because
the results were great, the code was refactored well, and it was easy to modify.
Nonetheless, the RAFT model has several disadvantages:

1. 4D cost volume is too large, involving noisy data, which can complicate model
calculations accuracy or require much computation power to train layers to
understand this extra data.

2. The recurrent blocks use many iterations(~ 5 — 100) to achieve decent results.
This behavior is another bottleneck of the system.

The paper [Jiang et al., 2021a] tried to solve the problem of the dense 4D cost
volume. The key idea is to perform K-nearest neighbors to transform such data into
a sparse one. Results showed that data size significantly decreased, and the metrics
game had nearly the same results as the dense data presented.

The DEQFlow paper [Bai et al., 2022] tried to solve another problem of the sys-
tem speed-up. They used previous hidden states to start model execution from
them(Fig. 2.3) because we have an assumption that all our images were in the ac-
tion sequence. They also used Newton [Byrd et al., 2016], Broyden [Broyden, 1965],
and Anderson [Anderson, 1965] solvers to optimize the recurrent network, which
was modified to the single-layer network. Our method combines the DEQFlow im-
plementation and the FlowFormer (RAFT-based) approach. However, in our case,
we want to add the pixel movement information via a custom recurrent network
and initialization technique and use CNNs, RNNs, LSTMs, and Transformers.
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Background

As a result, we have several ways to research the optical flow speed-up: classical al-
gorithms, coarse-to-fine pyramidical networks, recurrent blocks with a cost volume
function, transformers, and custom optimization approaches.

Classical algorithms. We will consider the following algorithms: Lucas Kanade
and Horn-Schunck methods. They are simple to code and work even on embed-
ded devices with a good speed, but they are not accurate and lose the object pixel
displacement quickly.

Coarse-to-fine pyramidical networks. Papers presented coarse-to-fine pyramidical
network methods to improve the classical optical flow estimation accuracy. They
were done with CNN usage and contained more parameters to be flexible and un-
derstand the frame movement better. Such systems took much time to train to meet
their convergence, and the dataset selection was a crucial part of the process.

Recurrent blocks and cost volume function. This method solved the long conver-
gence problem of the optical flow task. The pyramidical system helped to collect
more sufficient features on different image scales, and the cost function added the
image context and the direction of possible pixel displacement. On top of cost func-
tion and features, the recurrent blocks tried to estimate the best optical flow image.
Recurrent blocks helped decode features and solved the task via small iterations
instead of just the coarse-to-fine approach, where significant shifts were used imme-
diately. Indeed, the recurrent blocks solved the problem, but they added extra time
to compute the pair of images.

Transformers. Using transformers for computer vision became a general behav-
ior. The attention mechanism added extra context and skillfully decoded difficult
areas of image pairs features. The extra context helped to achieve better results than
simple pyramidical networks with recurrent blocks. Hence, new custom architec-
tures with attention blocks became state-of-the-art approaches (FlowFormer, GM-
Net). Unfortunately, transformer networks became larger, and the execution time
was raised.

Custom optimization approaches. Using different tricks and non-standard optimiza-
tion methods (e.g., Newton, Broyden, and Anderson solvers) was quite beneficial.
Such methods achieved outstanding results, but the core architectures are related to
the initial RAFT version without any modifications.

Hence, we define the problems which we want to cover:

1. Apply the DEQFlow optimization approach to the state-to-the-art method (Flow-
Former);

2. Speed up the evaluation of the method with movement prediction to initialize
the optical flow without deterioration of the metrics.
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Problem setting and Approach to
Solution

This section highlights the research questions, problem statements, hypothesis, and
research plan.

4.1 Problem formulation

Following chapter 1, our research concentrates on exploring and addressing issues
related to optical flow slow convergence and inference time. These problems are
commonly encountered across the spectrum of contemporary, state-of-the-art method-
ologies. We have identified two central bottlenecks associated with optical flow fore-
casting:

1. The voluminous number of update block executions needed during both the
training and testing stages, which not only significantly demand computa-
tional resources but also time.

2. A sluggish convergence rate of models that is largely attributable to the inher-
ently intricate nature of optical flow tasks, creating a bottleneck in refining and
obtaining timely results.

Our strategy to tackle these challenges employs the use of hidden state refine-
ment models on sequential data. This approach permits the recycling and update of
hidden states and optical flow results derived from preceding image pairs, thereby
serving to:

1. Expedite the computational process of successive optical flow, thereby opti-
mizing efficiency and resource usage;

2. Introduce external information into the system, which acts as an additional
data input, leading to quicker convergence during the model training phase,
hence accelerating the overall computational process.

Our research revolves around two pivotal components, providing two perspec-
tives on optical flow speedup:

1. A fusion of the DEQFlow framework with the FlowFormer method. This com-
bination can leverage the inherent strengths of both methodologies. DEQ-flow
design has increased the speed of the RAFT approach, while the use of atten-
tion blocks has drastically increased the precision of the recurrent method.
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2. Forecasting optical flow based on previous hidden state. Refining FlowFormer
hidden state can provide learned warm-stared initialization of the recurrent
network. In RAFT, DEQ, authors show that reusing old flow and hidden state
improves the speed and precision. Learned representation of forecasted mo-
tion could further improve both measurements.

4.2 Research questions

Based on our problem statement, there are three main research questions.

Question 1. (Combination of DEQFlow and FlowFormer approaches). Can we
speed up the optical flow estimation using the DEQFlow framework with the Flow-
Former method?

Question 2. (Hidden state refinement for the following optical flow estimation).
Can we speed up the optical flow estimation using the network on the previous
hidden state of the optical flow pair of images, which will imitate pixel displacement
inertia prediction as the initialization for the update block?

Question 3. (Quality of hidden state refinement). Can the hidden state refinement
of the previous optical flow produce most of the refine for the following optical flow
estimation?

4.3 Combination of DEQFlow and FlowFormer approaches

Problem statement. Given image pairs, use the DEQFlow framework with the Flow-
Former method.

Hypothesis 1. A combination of DEQFlow and FlowFormer approaches can speed
up the model convergence and execution time.

DEQFlow and FlowFormer represent two state-of-the-art methods. Their respec-
tive characteristics allow for an amalgamation that can yield significant benefits.

Based on the distinct properties of these two methods, their combination al-
lows for optimized utilization of each method’s unique capabilities: use a better-
performed model for optical flow estimation and allow to converge with DEQFlow
methodology. It facilitates a more rapid functioning of the model system. This syn-
thesis opens avenues for update block iterations reduction and better convergence.

4.4 Hidden state refinement for the following optical flow es-
timation

Problem statement. Given the sequence of the images (e.g., eight images), use the
hidden state refinement of the previous optical flow estimation as the initialization
for the following image pairs.

Hypothesis 2. The hidden state refinement network can imitate pixel displace-
ment inertia prediction based on previous hidden states. The refinement network
output is used to initialize the update block, which leads to system speed up.

In the context of optical flow estimation, The update block of the optical flow
estimation is the most time-consuming part of the system. The significant part is
often used in the recurrent part, which can be executed ~ 5 — 100 times. By refining
and reusing information from prior computations, we aim to reduce the iterations
and, thus, the computational burden of the update block executions.
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4.5 Quality of hidden state refinement

Problem statement. Given the sequence of the images (e.g., eight images), use the
hidden state refinement of the previous optical flow estimation as the initialization
for the following image pairs with frozen update block weights.

Hypothesis 3. The hidden state refinement can handle most of the optical flow
estimation process based on pixel motion understanding; the update block is only
used to fix small image details.

We are confident that pixel motion understanding from the previous image pair
results can add an essential part to the optical flow estimation with the hidden state
refinement network and speed up the system execution by reducing the number of
recurrent update part iterations.

4.6 Approach

To structure the hypothesis testing, we need a structured plan. We have used the
following steps for it:

1. Problem formulation: Formulate questions and hypotheses.
2. Data understanding: Research the previous works.

3. System preparation: Propose the solutions to answer the questions and test the
hypothesis.

4. Modeling: Implement the proposed solutions and run experiments.

5. Evaluation: Evaluate the experiments and estimate the impact.

4.7 Compare with other solutions

In pursuit of a comprehensive understanding of the effectiveness of our proposed
solution, we have outlined a plan to compare it with the traditional approach of
optical flow estimation, with particular emphasis on the utilization of sequential
data. During our research, we found out that there are no papers dedicated to the use
of sequential data. This lack could be attributed to the limited number of sequential
datasets available for optical flow analysis.

We have chosen to test our solution on the Sintel dataset to substantiate our find-
ings and establish a benchmark. It contains sequences and is the standard bench-
mark for the most state-of-the-art approaches. Our analysis is methodically de-
signed to examine three key aspects:

1. End-Point Error (EPE) Comparison: We intend to compare the precision of
our method against others by evaluating the EPE, a commonly used metric for
assessing the precision of optical flow estimation methods;

2. Update Block Iterations and Time Consumption: An integral part of our eval-
uation involves examining the number of update block iterations our solution
requires and the corresponding time taken compared to other methods. This
analysis would provide insights into the computational efficiency of our solu-
tion;
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3. Differences in Flow Estimation: We also aim to assess the qualitative differ-
ences in flow estimation between our proposed solution and the current state-
of-the-art (SOTA) methods. This comparison will enable us to measure our
approach distinct advantages or potential limitations.

By focusing our evaluation across these three domains, we aim to present a com-
plete view of the performance of our proposed solution in the context of optical flow
estimation with sequential data usage.

4.8 Summary

Upon considering the problem statement, we formulated three research questions
that have been instrumental in shaping our research trajectory. The development
of these queries prompted us to hypothesize that the employment of hidden state
refinement could speed up the stages of model training and testing.

The primary basis for this hypothesis is the conjecture that hidden state refine-
ment, by leveraging information from previous image pairs, can infuse the system
with additional data. This supplemental information could enhance the system’s
ability to converge more efficiently and effectively. This approach may offer a novel
means of addressing the prevailing challenges in the field, ultimately leading to
more efficient and robust model performance.

Our hypothesis highlights the potential utility of past data use in the form of
hidden state refinement. This methodology augments the computational process
with historical context and paves the way for more rapid convergence due to the
increased data inputs. Thus, this approach could significantly accelerate both the
model train and test stages, thereby enhancing our system overall efficiency and
effectiveness.
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Chapter 5

Datasets

In order to conduct our empirical investigation, we have chosen several datasets
that are recognized as the gold standards for tasks relating to optical flow estimation.
These include the Sintel, KITTY-15, FlyingChairs, FlyingThings, and HD1K datasets.
Using these datasets lends credibility to our research and facilitates a more effortless
comparison of our results with those obtained using prior methods. These include
but are not limited to, LiteFlowNet [Hui, Tang, and Loy, 2018], LiteFlowNet2 [Hui,
Tang, and Loy, 2021], PWC-Net [Sun et al., 2017], FlowNet2 [Ilg et al., 2017], RAFT
[Teed and Deng, 2020], GMA [Jiang et al., 2021b], DEQFlow [Bai et al., 2022], and
FlowFormer [Huang et al., 2022].

Nonetheless, it is essential to note that some of these datasets do not come with
sequential annotation, which is crucial to our study. As a solution, we propose to cre-
ate these annotations on DAVIS and YouTube-VOS datasets using pre-trained mod-
els such as FlowFormer, DEQFlow, RAFT, and GMA. By averaging the predicted op-
tical flows from each of these models, we intend to generate a set of reliable ground
truth optical flow images that will serve as the baseline for our study. This approach
ensures the robustness of our experimental setup and helps maintain the consistency
and reliability of our findings.

Given the complex nature of optical flow estimation, a considerable volume of
datasets is employed to ensure comprehensive coverage of the problem scope. The
dataset chosen can often influence the progression of optical flow training, which
generally follows an interpolation from simple to complex configurations.

In the initial stages of training, we utilize the FlyingChairs dataset, which serves
as the foundation of our model. This complete training phase is instrumental in es-
tablishing the next version of the model upon which subsequent layers of complexity
are added.

Subsequently, using the checkpoint established with the FlyingChairs dataset as
a reference point, we train the model on the FlyingThings3D dataset. This step en-
ables us to introduce a more complex learning level, thereby enhancing our model
sophistication.

The next step in our training procedure involves continued system training us-
ing a combination of four datasets: Sintel, Kitti, HD1K, and FlyingThings3D. Com-
bining these datasets introduces a broader spectrum of scenarios and complexities,
expanding the model’s exposure and learning depth.

Lastly, we shift the focus towards training the hidden state refinement on sequen-
tial data. This final phase utilizes the Sintel, DAVIS, and YouTube-VOS datasets.

In this manner, we systematically graduate our model learning from relatively
simple scenarios to more complex ones, ensuring its robustness and adaptability
across various optical flow estimation tasks.
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FIGURE 5.1: Two examples from the Flying Chairs dataset (the image
from [Dosovitskiy et al., 2015]).

5.1 FlyingChairs

The FlyingChairs dataset (Fig. 5.1) represents a significant benchmark in optical flow
estimation. Designed with a clear intention to capture and represent the intricacies
of real-world motion, this dataset offers researchers a robust platform for evaluating
and developing novel methodologies for optical flow estimation.

FlyingChairs is a synthetically generated dataset that is comprised of a multi-
tude of image pairs, each accompanied by their respective ground truth optical flow
maps. The dataset consists of randomly "flying" images of chairs against various
background scenes. This approach to data generation ensures a broad coverage of
motion patterns and image structures.

The strength of the FlyingChairs dataset lies in its ability to introduce a high
degree of variability into the data. By encompassing a wide array of scenarios, in-
cluding diverse object shapes, motion paths, and background scenes, it challenges
estimators, demanding more than rote learning of typical patterns.

The dataset synthetic nature enables the exact computation of ground truth op-
tical flows, providing a valuable reference for the evaluation of optical flow estima-
tion methodologies. Providing a precise and comprehensive ground truth allows
researchers to gain detailed insights into the performance and reliability of their
models.

The FlyingChairs dataset consists of 22,872 image pairs. The authors split the
FlyingChairs dataset into 22,232 training and 640 test samples to provide local train-
ing and validation.

5.2 FlyingThings3D

The FlyingThings3D dataset (Fig. 5.1) is an innovative resource within the field of
optical flow estimation, extending beyond traditional dataset compositions to pro-
vide a comprehensive and challenging landscape for model development and eval-
uation.

As a synthetic dataset, FlyingThings3D consists of a broad collection of image
pairs accompanied by their corresponding ground truth optical flow maps. The
dataset distinguishes itself by creatively using randomly oriented 3D objects. This
robust and varied representation of motion patterns provides a rich environment for
optical flow estimators to learn from and adapt to.

A crucial feature of FlyingThings3D is its complexity, stemming from the diverse
set of motion trajectories, object shapes, and background scenes it encompasses. The
dataset is particularly renowned for its highly complex, non-rigid, and multi-object
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FIGURE 5.2: Examples from the FlyingThings3D dataset (the image
from [Mayer et al., 2016]).

scenarios, which push the boundaries of what optical flow estimation models can
handle.

Despite its synthetic nature, FlyingThings3D mimics real-world challenges due
to its design principles. The ground truth optical flows are accurately calculated,
providing a reliable benchmark for gauging the performance and accuracy of optical
flow estimation methods.

The FlyingThings3D dataset has more than 39,000 stereo frames in 960 x 540
pixel resolution, which covers a vast environment with significant randomness. The
authors aimed to create the dataset without concentrating on a particular task or
enforcing strong naturalism.

5.3 Sintel

The Sintel dataset (Fig. 5.3) is a widely recognized benchmark in optical flow esti-
mation. Derived from the open-source animated short film "Sintel" by the Blender
Institute, this dataset provides a versatile and challenging array of real-world optical
flow scenarios.

Unlike synthetic datasets, the Sintel dataset captures the complexities and nu-
ances of real-world motion. It encompasses various conditions, including varying
lighting, diverse textures, and intricate motion patterns, providing a comprehensive
and rigorous test for optical flow estimation algorithms.

The Sintel dataset comprises various image sequences with corresponding ground
truth optical flow maps. Naturalistic factors such as changes in illumination, atmo-
spheric effects, and detailed textural features exemplify its complexity. The variety
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FIGURE 5.3: By row from the top: Albedo Pass (flat, unshaded), Clean
Pass (smooth shading, reflections), Final Pass (rendered with large
number of effects) (the image from [Butler et al., 2012]).

in the types of motion, from slow and smooth to fast and abrupt, adds another level
of challenge, making it an ideal dataset for pushing the boundaries of optical flow
estimation techniques.

Moreover, the Sintel dataset offers two distinct versions for each sequence: a
"clean" version and a "final" version. The clean version lacks atmospheric effects and
includes basic shading and motion blur. In contrast, the final version incorporates
additional realistic elements such as defocus blur, complex illumination effects, and
intricate textures.

The dataset under consideration comprises 1,064 synthetic stereo images, each
of which is accompanied by its corresponding ground truth disparity data. Encom-
passing 23 unique sequential scenes, the dataset offers a varied landscape for the
execution of computer vision tasks.

Each image within the dataset, both RGB and disparity, boasts a resolution of
1024 x 436 pixels. This degree of detail challenges optical flow estimation models,
pushing their capacity to discern and precisely predict fine-grained motion patterns.
Thus, the dataset provides a substantial and challenging resource for developing and
evaluating sophisticated optical flow estimation methodologies.

54 KITTI

The KITTI dataset, named after the Karlsruhe Institute of Technology and Toyota
Technological Institute, where it was developed, stands as an integral benchmark in
optical flow estimation.

Uniquely tailored to vehicular scenarios, the KITTI dataset captures the complex-
ities of autonomous driving. It comprises a diverse collection of images captured
from a moving vehicle, thereby introducing an assortment of real-world scenarios
and providing a rigorous environment for developing and evaluating optical flow
estimation methodologies.

The KITTI dataset is distinguished by its high-resolution stereo images, which
are accompanied by accurate and meticulously annotated ground truth data. These
include labels for various scenarios, including road, city, residential, and campus en-
vironments, providing various real-world scenes. The high resolution of the images
in the KITTI dataset, combined with their capture from a moving vehicle, presents
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FIGURE 5.4: By row from the top: sample image (left) and labeled

masks of dynamic regions (right), stereo image (left) and flow ground

truth (right), uncertainties for stereo image (left) and flow (right) (the
image from [Kondermann et al., 2016]).

a challenging environment for optical flow estimators. The need to precisely esti-
mate the motion of other vehicles, pedestrians, and static objects within these com-
plex urban environments pushes the boundaries of what optical flow algorithms can
achieve.

The dataset has 12,919 images and ground truth data for the optical flow esti-
mation. Both image pairs and optical flow ground truth have a 1392 x 512 pixels
resolution.

5.5 HDI1K

The HD1K dataset (Fig. 5.4) is a benchmarking resource within the domain of opti-
cal flow estimation that is noted for its high-definition content. This dataset contains
images of a much higher resolution than those typically found in other optical flow
datasets. The resolution of image pairs and optical flow samples is 2560 x 1080 pix-
els. This feature elevates the complexity and sophistication of the dataset, pushing
the boundaries of optical flow estimation research.

HDIK comprises many image pairs (1000 samples), each provided alongside
its corresponding ground truth optical flow map. The high resolution of these im-
ages enables the dataset to capture finer details and more intricate motion patterns,
thereby challenging the capabilities of optical flow estimators. The images in the
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FIGURE 5.5: Example of the samples from the DAVIS dataset (the
image from [Pont-Tuset et al., 2017]).

dataset depict a diverse range of scenarios, offering a robust environment for algo-
rithm training and evaluation.

5.6 DAVIS

The DAVIS (Densely Annotated Video Segmentation) dataset has been a cornerstone
in video segmentation, acting as a platform to evaluate algorithms related to this
area. The DAVIS dataset offers high-quality, annotated video sequences to advance
the development and assessment of video object segmentation techniques.

The DAVIS dataset (Fig. 5.5) includes various scenes, covering different object
categories and situations and featuring numerous challenges, such as occlusions,
motion blur, and changes in scale, viewpoint, or appearance. The original DAVIS
dataset (DAVIS16) consists of 50 high-definition video sequences, each featuring a
single annotated object. In contrast, the DAVIS17 dataset, an extension of the origi-
nal, comprises 150 video sequences, each featuring multiple annotated objects.

These videos were carefully selected to represent different aspects of the video
object segmentation problem, such as the need to track objects as they move through
space or accurately separate objects from their backgrounds when these objects have
complex shapes or are partially occluded.
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FIGURE 5.6: Example of the samples from the YouTube-VOS dataset
(the image from [Xu et al., 2018]).

The DAVIS dataset, with its dense annotations and diverse video content, offers
a robust and challenging benchmark for evaluating and improving video object seg-
mentation methods. The dataset’s wide use in the field signifies its importance in
advancing state-of-the-art techniques.

In the case of optical flow and hidden state refinement tasks, the DAVIS dataset
can help to improve the final metrics because it contains a large variety of sequences
for the training stage, occlusions, and complex scenes with multiple objects, and the
segmentation problem is related to the optical flow estimation one. We propose to
use this dataset and annotate it with the FlowFormer, GMA, and DEQFlow methods.

5.7 YouTube-VOS

The YouTube-VOS (YouTube Video Object Segmentation) dataset (Fig. 5.6) is a cru-
cial resource for developing and assessing video object segmentation approaches.
This dataset provides a significant augmentation in size and diversity compared to
its predecessors and has been instrumental in the evolution of video object segmen-
tation.

The YouTube-VOS dataset consists of 4519 video sequences. The dataset is com-
piled from YouTube videos and comprises a broad range of scenarios, making it
more representative of real-world situations.

What sets the YouTube-VOS dataset apart is its scale and diversity. The dataset is
significantly larger than previous datasets, offering more than 90 object categories,
and covers various scenarios and situations. The dataset also introduces new chal-
lenges for the segmentation task, such as the presence of multiple objects of the same
class in a video and object appearance changes due to viewpoint changes, deforma-
tion, and occlusions. The YouTube-VOS dataset is divided into training and valida-
tion sets, enabling the development and validation of algorithms in a standardized
manner. The training set contains 3,471 video sequences of 65 categories, while the
validation set comprises 507 video sequences of 65 categories.

This dataset is also suitable for the optical flow estimation task due to its com-
plexity, large number of sequences, support of occlusions, and different viewpoints.
As for the DAVIS dataset, we annotate the YouTube-VOS dataset with the latest
SOTA methods: FlowFormer, GMA, and DEQFlow methods
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5.8 Summary

This chapter presents a comprehensive overview of the datasets used in our empir-
ical study of optical flow estimation. We began by discussing the commonly used
benchmark datasets: Sintel, KITTY-15, FlyingChairs, FlyingThings, and HD1K, elu-
cidating their unique characteristics and their role in model training. The unavail-
ability of sequential annotations in some of these datasets led us to propose gener-
ating annotations on DAVIS and YouTube-VOS datasets using pre-trained models
like FlowFormer, DEQFlow, RAFT, and GMA. The chapter further detailed the sys-
tematic graduation of model training from simple to complex scenarios, ensuring
the model robustness and adaptability. In-depth descriptions of individual datasets
- FlyingChairs, FlyingThings3D, Sintel, KITTI, HD1K, DAVIS, and YouTube-VOS -
were also provided, detailing their unique attributes and relevance to optical flow
estimation tasks.
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Chapter 6

Experiments

This chapter contains an experimental part to verify the hypothesis, evaluate them
and compare it with the state-of-the-art results. The main focus is to check the com-
bination of the DEQFlow and FlowFormer and hidden state refinement to produce
an optical flow estimation speed up and model convergence based on sequential
data and additional information from the previous pair of frames.

6.1 Preparation

As an initial point of our research, we considered state-of-the-art methods, especially
DEQFlow and FlowFormer. This choice is motivated by three primary objectives:

1. They are achieving one of the best results in the Sintel and KITTI datasets;

2. We intend to explore the potential of combining the unique attributes of DE-
QFlow and FlowFormer, hypothesizing that the final combination may yield
enhanced precision and novel insights into optical flow estimation;

3. We aspire to employ hidden state forecasting techniques based on the architec-
tural design of FlowFormer.

A significant challenge in this research is the support of sequential data for the
training and evaluation stages. This lack has resulted in many established pipelines,
such as RAFT, FlowFormer, and GMA, being unequipped to use sequential data.
To address this, we propose modifications to these pipelines, enabling them to pro-
cess frame pairs sequentially and share relevant information to subsequent frame
computations, thereby enhancing model performance and precision.

Recognizing the need for more sequential data, we have turned to video seg-
mentation datasets, specifically DAVIS and YouTube-VOS. By applying the Flow-
Former approach to these datasets, we have generated a vast supply of sequential
data, which we then utilize in our hidden state forecasting approach. This strategy
broadens our understanding of optical flow estimation and enables the development
of more effective and efficient optical flow estimation techniques.

6.2 Hypotheses check

This section is aimed at testing the hypotheses that were derived earlier. We have
three central hypotheses.
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6.2.1 Combination of DEQFlow and FlowFormer approaches

Experiment 1. Combine the DEQFLow and FlowFormer approaches and train them
as the standard optical flow method.

This experiment combines the FlyingChairs, FlyingThings3D, Sintel, KITTI, and
HDIK datasets. We train the pipeline with the standard logic for optical flow esti-
mation to converge systems better: from simple datasets to more complex ones.

Hardware. 4x NVIDIA RTX 3090 24Gb, AMD EPYC 7402 24-Core Processor, 128
GB RAM, 1T storage

Configuration. Batch size: 16, iterations (number of batches): 360,000, train time:
72 hours, feature and context encoders: Twins [Chu et al., 2021], GMA [Jiang et al.,
2021b]: disabled, pretrain: from scratch

To integrate the abilities of DEQFlow and FlowFormer, we embarked on a multi-
step training regime, each designed to progressively familiarize the model with the
details of optical flow estimation.

1. The first phase involved training the model over 120,000 iterations on the Fly-
ingChairs dataset. This relatively simple dataset served as a launchpad, in-
troducing the model to the fundamental principles of optical flow estimation,
thus establishing the rudimentary understanding needed to tackle more com-
plex scenarios.

2. Building on the foundation established in the previous step, we subjected the
model to a further 120,000 iterations using the FlyingThings3D dataset. This
dataset, known for its intricate scenarios and instances of occlusions, allowed
the model to learn the details of complex pixel movement and build robust
strategies to handle occlusions effectively.

3. Finally, we trained the model to a further 120,000 iterations using the FlyingTh-
ings3D, Sintel, KITTI, and HD1K datasets. This diverse mixture of datasets,
each reflecting a different aspect of the real-world environment, was instru-
mental in sharpening the model’s ability to generalize across varied settings.

The decision to disable the GMA module was particularly significant during our
training stage. While known for leveraging global and hidden object movement to
evade occlusions, this module was potentially intrusive to our experimental objec-
tives. By keeping it inactive, we ensured that our pipeline performance could be
more precisely assessed, thus facilitating more explicit comparisons with other ex-
perimental results.

Results. We evaluated our results on the Sintel dataset with different sequence
lengths (two and three sequential frames), previous hidden states and results share,
and a warm start.

Clean Final
Method EPE | 1px | 3px | 5px | EPE | 1px | 3px | 5px
Seq=2 1.480 | 92.83 | 96.80 | 97.74 | 1.202 | 89.34 | 95.01 | 96.62

Seq=3, state share | 1.618 | 92.44 | 96.48 | 97.45 | 1.393 | 89.01 | 94.59 | 96.22
Seq=3, warm start | 1.558 | 92.56 | 96.60 | 97.56 | 1.247 | 89.28 | 94.87 | 96.48

TABLE 6.1: DEQFlow and FlowFormer combination metric results.

From Table 6.1, we can see that the combination of the FlowFormer and DE-
QFlow gives us worse results than the original FlowFormer paper (EPE: 0.48). We
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Clean Final
Method Tterations | Seconds | EPE | Iterations | Seconds | EPE
Seq=2 53.3837 0.4119 | 1.480 | 53.6615 0.4117 | 1.202

Seq=3, state share | 53.1969 0.4143 | 1.618 | 53.2185 0.4144 | 1.393
Seq=3, warm start | 53.2746 0.4138 | 1.558 | 53.5059 0.4125 | 1.247

TABLE 6.2: DEQFlow and FlowFormer combination time usage.

10k 20k 30k 40k 50k 0 10k 20k 30k 40k 50k

FIGURE 6.1: RefinerV1 and RefinerV2 EPE results during training.

also can see from Table 6.2 that state sharing gives us fewer iterations than other our
experiment methods.

As a result, we can partially prove hypothesis 1 due to the reduction of the itera-
tions, but the final EPE metrics are worse than the FlowFormer has.

6.2.2 Hidden state refinement for the following optical flow estimation

Experiment 2. Use hidden state refinement methods for the optical flow estimators .
This experiment shows that hidden state refinement can speed up the optical flow
system and reduce the number of update block execution, which is the bottleneck of
the latest state-of-the-art systems (FlowFormer, GMA, DEQFlow).

Configuration. Batch size: 16, iterations (number of batches): 54,000, train time:
48 hours, feature and context encoders: Twins [Chu et al., 2021], GMA [Jiang et al.,
2021b]: disabled, pretrain: from the FlowFormer Sintel model.

In this section, we propose two versions of the hidden state refinement models,
which predict the next optical flow before update block execution, and reduce the
number of the update block steps.

The first version (RefinerV1) of the hidden state forecaster contains two main
blocks: StateRefiner and StateMixer.

The StateRefiner uses an attention mechanism to predict the pixel displacement
from the first output of the optical flow to the following one. The keys of the atten-
tion approach are the source frame (n-1 position in the sequence), the queries are the
target frame (n position in the sequence), and the values are the flow and hidden
state of the current frame pair. As an output, we get a new optical flow image and
an updated hidden state for the update block usage.

T
Attention(Q,K, V) = softmax(Q

Vd

% 6.1)
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After it, we get information from the context network based on the frame (n po-
sition in the sequence) and send this data with the output of StateRefiner into the
StateMixer. This block uses multiple convolutions and ResNet blocks to achieve
proper data mixing. The output of the mixer is the combination of the refined opti-
cal flow and hidden state which the update block process can decode.

The second version (RefinerV2) of the hidden state forecaster uses the same
StateRefiner as the first architecture contains, but we use RecurrentStateMixer.

RecurrentStateMixer is built with a combination of convolution and recurrent
neural networks. The convolutions work as feature extractors, and recurrent net-
works help to converge the system.

During our experiment, we added the stop criteria to the update block, which
helped to reduce the number of update block iterations. The logic of the stop criteria
is: we stop iterations if the relative optical flow change is less than constant. In our
case, we have used 0.001.

Clean Final
Method | Iterations | Seconds | EPE | Iterations | Seconds | EPE
1 12 0.2143 | 0.4339 12 0.2134 | 0.6309

3.8904 0.1734 | 0.4605 4.0135 0.173 0.659

3.8022 0.1949 | 0.4587 | 3.9173 0.1946 | 0.6453
3.9577 0.1798 | 0.4775 | 4.0876 0.1794 | 0.6814
3.8307 0.1959 | 0.4545 3.9222 0.1953 | 0.6431
3.9577 0.1804 | 0.4775 | 4.0876 0.1794 | 0.6814

N Ul = Wi

TABLE 6.3: Time spent based on refinement methods. From top to
bottom: baseline with sequence 2; baseline with sequence 2 and stop
criteria; RefinerV1, sequence 3, state share, stop criteria; RefinerV1,
sequence 3, stop criteria, warm start; RefinerV2, sequence 3, state
share, stop criteria; RefinerV2, sequence 3, stop criteria, warm start.

Results. From Table 6.3 we define that stop criteria effectively reduce the num-
ber of iterations without strong code changes. Both versions of the refiner slightly re-
duced the iterations, but the RefinerV1 gave better results. This means that sequence
refinement methods can help reduce the update block iterations without wasting
time on additional optical flow computation. Hence, hypothesis 2 is proven.

Clean Final
Method | EPE 1px 3px 5px EPE 1px 3px 5px
1 0.434 | 94.367 | 97.89 | 98.681 | 0.631 | 91.504 | 96.531 | 97.846
0.461 | 94.06 | 97.815 | 98.647 | 0.659 | 91.065 | 96.464 | 97.811
0.459 | 93.986 | 97.783 | 98.643 | 0.645 | 91.01 | 96.415 | 97.802
0.478 | 93.959 | 97.772 | 98.61 | 0.681 | 90.929 | 96.348 | 97.724
0.455 | 93.998 | 97.79 | 98.641 | 0.643 | 91.034 | 96.419 | 97.799
0.478 | 93.959 | 97.772 | 98.61 | 0.681 | 90.929 | 96.348 | 97.724

N Ul = W N

TABLE 6.4: Refiner metric results. From top to bottom: baseline with

sequence 2; baseline with sequence 2 and stop criteria; RefinerV1, se-

quence 3, state share, stop criteria; RefinerV1, sequence 3, stop crite-

ria, warm start; RefinerV2, sequence 3, state share, stop criteria; Re-
finerV2, sequence 3, stop criteria, warm start.
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FIGURE 6.2: The example of optical flow forecasting. Left image: out-
put from the RerinerV1, center and right images: last iteration of the
update block.

6.2.3 Quality of hidden state refinement

Experiment 3. Use hidden state refinement methods for the optical flow estimators to
prove that the output of the hidden state forecaster can contain most of the optical
flow result . We assume that on short time spans movement is close to linear. Hence
we can predict the following image pair optical flow result or most of it with good
quality.

Configuration. Batch size: 16, iterations (number of batches): 54,000, train time:
48 hours, feature and context encoders: Twins [Chu et al., 2021], GMA [Jiang et al.,
2021b]: disabled, pretrain: from the FlowFormer Sintel model.

In this section, we delve into the foundational building blocks of our empiri-
cal investigation, providing an exhaustive analysis of the datasets harnessed in our
study of optical flow estimation. Sintel, KITTY-15, FlyingChairs, FlyingThings, and
HDIK are used to train the primary FlowFormer approach. We have used the Sin-
tel, DAVIS, and YouTube-VOS datasets to train the refinement models because they
support image pair sequences. The sequential dataset ideology helps to detect pixel
displacement to the nearest future with good results.

Clean Final
Method | EPE 1px 3px 5px EPE 1px 3px 5px
1 5.415 | 66.761 | 77.818 | 82.062 | 5.148 | 66.86 | 77.679 | 82.03

2 5959 | 64.858 | 76.85 | 81.527 | 5.714 | 64.798 | 76.723 | 81.317
3 5.441 | 66.849 | 77.678 | 81.841 | 5.151 | 66.832 | 77.516 | 81.813
4 5959 | 64.858 | 76.85 | 81.527 | 5.714 | 66.832 | 76.723 | 81.317

TABLE 6.5: Refiner output metric results. From top to bottom: Refin-
erV1, sequence 3, state share; RefinerV1, sequence 3, warm start; Re-
finerV2, sequence 3, state share; RefinerV2, sequence 3, warm start.

Results. From Table 6.5 we can conclude that with state sharing and warm start,
we achieve decent optical flow results, which can follow the directed linear move-
ment and forecast the new result event without seeing the next frame (n+1 in a se-
quence). RefinerV1 gives better results even than the light warm start approach.
Hence hypothesis 3 is proven.

6.3 Models

This section is geared towards an in-depth dissection and exploration of refinement
models, critically examining their structures, functionalities, strengths, and limita-
tions in diverse scenarios. The proposed solution contains three models: DEQFlow
with FlowFormer (deg-flow-former), RefinerV1, and RefinerV2.
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FIGURE 6.3: Refiner module architecture.

6.3.1 DEQFlow with FlowFormer

The proposed model in this study amalgamates two state-of-the-art methods: DE-
QFlow and FlowFormer. Several reasons underscore the rationale behind this amal-
gamation:

Firstly, both methods have demonstrated superior performance in achieving top
results based on the Sintel and Kitti datasets. DEQFlow, as a framework, can be
aptly fitted to most optical flow models. This compatibility underlines its value and
applicability across various use cases.

Secondly, the foundational model (RAFT) upon which DEQFlow is based needs
to be updated in light of the state-of-the-art results. This outmoded nature necessi-
tates a refresh to maintain relevance and achieve improved performance.

Thirdly, the DEQFlow model inherently supports sequential data, which is ad-
vantageous when dealing with real-world dynamic environments. The ability to
process sequential data makes the model more robust and accurate.

Lastly, the DEQFlow model offers significant benefits by accelerating model op-
timization and execution. Speed is an essential aspect of model performance, as
real-time or near-real-time processing is often required in many applications of op-
tical flow models.

Hence, we have elected to incorporate the FlowFormer as the new foundational
model for the DEQFlow framework. We have designated a FlowFormer update it-
eration model segment as the primary target for DEQFlow optimization. The com-
ponents of this iterative part encompass the following steps:

Firstly, the process involves encoding flow tokens. These flow tokens are needed
for further convenient computation for the attention mechanism.

Secondly, the model decodes the cost volume into cost memory. The cost vol-
ume represents the dissimilarity between two images for all possible displacements,
while the cost memory distillates them and stores these computed dissimilarities.

Lastly, the model employs a Gated Recurrent Unit (GRU) in its architecture.
GRUs are equipped to handle iterative improvement of optical flow.

6.3.2 Hidden state refiners

The main goal for the hidden state refiners is to support the model convergence and
its update block iteration reduction. This is facilitated by using sequential data and
utilizing the outcomes of prior optical flow analyses to refine the following results
based on pixel inertia. The two constituent elements of the hidden state refiners are
the Refiner and the StateMixer.
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FIGURE 6.4: StateMixer module architecture from RefinerV1 (top)
and RefinerV2 (bottom).

With its incorporated attention mechanism, the Refiner (Fig.6.3) aims to allocate
the displacement of pixels from a prior image pair to the following one. By exploit-
ing the inertia of motion, it contemporizes the optical flow movement and updates
the hidden state of the block. In order to achieve this, the Refiner accesses images
from the current pair to establish a correlation with optical flow and hidden state
results, thereby forecasting the upcoming one. This model comprises an attention
block and Convolutional Neural Networks (CNNs), which serve to project and en-
code the data.

After the application of the Refiner, the StateMixer (Fig.6.4) is executed. Its desig-
nated role is to optimally amalgamate features derived from the FlowFormer context
network and the refined data. We offer two variants of the StateMixer; one devoid of
a recurrent part and another inclusive of one. Consequently, we have two possible
combinations of the Refiner and StateMixer: RefinerV1 (without a recurrent part)
and RefinerV2 (with a recurrent part).

Both iterations of the StateMixer employ Residual Neural Network (ResNet)
blocks to counteract the fading gradient, thereby facilitating network convergence.
We have utilized four ResNet blocks to incorporate optical flow results (previous
optical flow and refined one) and three additional blocks to predict the succeeding
hidden state for the update block. This prediction is based on the refined output and
one result from the context network.

In RefinerV2, we have enhanced the StateMixer by integrating a Gated Recurrent
Unit (GRU) to the output of the results to forecast the hidden state. The rationale be-
hind this modification was to mimic the update block logic and create a more signif-
icant constraint for the changes in the hidden state. This sophisticated methodologi-
cal approach empowers the model to process temporal information more efficiently
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while minimizing computational complexity and reducing training time.

6.4 Results

Clean | Final

Method EPE | EPE
RAFT 0.76 1.22
DEQFlow 0.73 1.02
DEQFlow-FlowFormer | 1.618 | 1.393
GMA 0.62 1.06
FlowFormer 0.434 | 0.631
1 0.461 | 0.659

2 0.459 | 0.645

3 0.478 | 0.681
4 0.455 | 0.643

5 0.478 | 0.681

TABLE 6.6: Refiner metric results. (1): baseline with sequence two

and stop criteria; (2): RefinerV1, sequence three, state share, stop cri-

teria; (3): RefinerV1, sequence three, stop criteria, warm start; (4):

RefinerV2, sequence three, state share, stop criteria; (5) RefinerV2, se-
quence three, stop criteria, warm start.

We have reached specific practical observations in light of our empirical inves-
tigations and analysis. A key finding from our experimentation is the suboptimal
performance of the combination of DEQFlow and FlowFormer for optical flow es-
timation. Despite this outcome, we have discerned that this combination still has
utility in expediting the training process for optical flow estimators like FlowFormer,
GMA, and RAFT, thus facilitating a more efficient computational model.

Our study further revealed the commendable performance of hidden state fore-
casters. These forecasters leverage the information from the preceding image pair to
update it and provide the initialization for the update block to RAFT-like architec-
tures.

Fig. 6.5 shows the reduction of the End-Point Error (EPE) as a function of itera-
tive steps, compared against the ground truth data without applying any stopping
criteria. The visual data underscores the superior efficacy of RefinerV2 when com-
pared with the current state-of-the-art (SOTA) method, FlowFormer.

The enhanced performance of RefinerV2 can be largely attributed to the use of
sequential data and the hidden state refinement methods, which use Convolutional
Neural Networks (CNNs), Attention, and Recurrent Neural Networks (RNNs).

The use of sequential data is critical to RefinerV2 improved results. The refined
hidden states, enhanced by the capabilities of CNNs, Attention, and RNNSs, facilitate
transmitting valuable information from previous frames to the current one, thereby
minimizing the error rate. Thus, through the judicious employment of sequential
data and the refinement of hidden states via convolutional, attention, and recur-
rent neural networks, RefinerV2 has demonstrated notable improvements over the
state-of-the-art method, FlowFormer. These findings underscore the significance of
these advanced methodologies in enhancing performance in optical flow prediction,
paving the way for future research advancements in this domain.

As we turn to Table 6.6, encapsulates a comparative analysis of our methodolo-
gies with other well-established models. Even with the effort put into our methods,
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FIGURE 6.5: EPE convergence of the methods during iterations.

it becomes clear that they do not surpass the state-of-the-art FlowFormer method in
precision. However, such comparisons ground our research within the broader field
context, providing valuable insights for future work.

During our research, we gleaned several insights into the practical implications
of our methods. Notably, they demonstrate the potential to decrease the number
of update block executions, a critical factor when considering model speed. This
capability effectively addresses the bottleneck issue in model speed up, thereby en-
hancing the efficiency of the entire optical flow estimation process.
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Conclusions

The thesis studies optical flow forecasting based on hidden state refinement. This
research prime objective is to enhance the speed of RAFT-like architectures and op-
timize the convergence of training data by leveraging the information from the pre-
ceding image pair.

Throughout this thesis, we have explicated the state-of-the-art methods in detail,
shedding light on their functionalities and pointing out their inherent limitations.
Further, we meticulously cataloged the datasets employed and delineated the proce-
dural pipeline for our distinctive combination of DEQFlow and FlowFormer, along-
side two hidden state refinement methods variants. This comprehensive approach
enabled us to rigorously test three hypotheses and establish comparable results with
state-of-the-art methods.

As an academic endeavor, the implications of this thesis transcend mere empiri-
cal findings. Indeed, it enriches the scholarly understanding of the domain of hidden
state refinement for optical flow forecasting. This study, in its entirety, contributes
to the evolution of the discourse on optical flow forecasting by providing fresh per-
spectives on methodological approaches and their practical ramifications.

Moreover, our exploration into the domain of hidden state refinement and its
applications to optical flow forecasting underscores the potential of these strategies
in addressing contemporary challenges in the field.
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Appendix A

Code

A.1 Refinement code

The full code you can find in the GitHub repository of the hidden-state-refinement-

for-optical-flow-forecasting! and deq-flow-former?.

1

class StateRefiner(nn.Module):
def __init__(self, cfg, dim, heads=4, dim_head=128):

def forward(self, prev_frame, curr_frame, prev_flow, prev_net, prev_inp):
prev_frame, curr_frame = self.prepare_image_feats(
prev_frame, curr_frame)
prev_flow_features = self.increase_flow_dims(prev_flow)
heads, _, _, h, w = self.heads, *prev_frame.shape
q = self.to_q(curr_frame)
k = self.to_k(prev_frame)
g, k = map(
lambda t: rearrange(t, b (bW d) xy -> b h x y d’, h=heads), (q, k)

q = self.scale * q

sim = einsum(’b h x yd, bhuvd->bhxyuv’, q, k)
sim = rearrange(sim, b hx yuv ->b h (x y) (uv)’)
attn = sim.softmax(dim=-1)

out_flow = self.precess_v(
attn, prev_flow_features, heads, h, w, self.to_v_flow,
self .project_flow

)

out_flow = self.reduce_flow_dims(out_flow)

out_net = self.precess_v(
attn, prev_net, heads, h, w, self.to_v_net,
self.project_net

)

out_inp = self.precess_v(
attn, prev_inp, heads, h, w, self.to_v_inp,
self.project_inp

Ihttps://github.com/unexpectedjourney/hidden-state-refinement-for-optical-flow-
forecasting

Zhttps://github.com/unexpectedjourney/deq-flow-former


https://github.com/unexpectedjourney/hidden-state-refinement-for-optical-flow-forecasting
https://github.com/unexpectedjourney/hidden-state-refinement-for-optical-flow-forecasting
https://github.com/unexpectedjourney/deq-flow-former
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)

out_flow = prev_flow + self.gamma_flow * out_flow
out_net = prev_net + self.gamma_net * out_net
out_inp = prev_inp + self.gamma_inp * out_inp
return out_flow, out_net, out_inp

class StateMixer (nn.Module):

def

def

__init__(self):
super (StateMixer, self).__init__()
self.flow_out = nn.Sequential(
nn.Conv2d(4, 128, 3, padding=1),
nn.RelLU(),
ResidualBlock(128, 128),
ResidualBlock(128, 128),
nn.Conv2d (128, 256, 3, padding=1),
nn.RelLU(),
ResidualBlock (256, 256),
ResidualBlock (256, 256),
nn.Conv2d (256, 2, 3, padding=1),
nn.RelLU(),
)
self .net_inp_out = nn.Sequential(
nn.Conv2d (512, 256, 7, padding=3),
ResidualBlock (256, 256),
ResidualBlock(256, 256),
ResidualBlock (256, 256, activate=False),
)
self .gamma_flow = nn.Parameter (torch.tensor(0.5))
self.gamma_net = nn.Parameter(torch.tensor(0.5))
self.gamma_inp = nn.Parameter (torch.tensor(0.5))

forward(
self,
flow_init,
net_init,
inp_init,
flow_ref,
net_ref,
inp_ref,

flow
flow
net_inp
net_inp = self.net_inp_out(net_inp)

net, inp = torch.split(net_inp, [128, 128], dim=1)
torch.tanh(net)

torch.relu(inp)

torch.cat([flow_init, flow_ref], dim=1)
self.flow_out (flow)

net

inp

flow = (1 - self.gamma_flow) * flow_init + self.gamma_flow * flow
(1 - self.gamma_net) * net_init + self.gamma_net * net
(1 - self.gamma_inp) * inp_init + self.gamma_inp * inp

net
inp
return flow, net, inp

torch.cat([net_init, inp_init, net_ref, inp_ref], dim=1)
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