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by Roman VEI

Abstract

The recent advance in generative adversarial networks has shown promising results
in solving the problem of head reenactment. It aims to generate novel images with
altered poses and emotions while preserving the identity of a human head from a
single photo. Current approaches have limitations, making them inapplicable for
real-world applications. Specifically, most algorithms are computationally expen-
sive, have no apparent tools for manual image manipulation, require audio or take
multiple input images to generate novel images.

Our method addresses the single-shot face reenactment problem with an end-to-
end algorithm. The proposed method utilizes head 3D morphable model (3DMM)
parameters to encode identity, pose, and expression. With the proposed approach,
the pose and emotion of a person on an image is changed by manipulating its 3DMM
parameters. Our work consists of a face mesh prediction network and a GAN-based
renderer. A predictor is a neural network with simple encoder architecture that re-
gresses 3D mesh parameters. A renderer is a GAN network with warping and ren-
dering submodules that renders images from a single source image and target image
3DMM parameters.

This work proposes a novel head reenactment framework that is computation-
ally efficient and uses 3DMM parameters that are easy to alter, making the proposed
method applicable in real-life applications. It is first to our knowledge approach
that simultaneously solves two of these problems: 3DMM parameters prediction
and face reenactment, and benefits from both.

HTTP://WWW.UCU.EDU.UA
http://department.university.com
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Chapter 1

Introduction

Neural networks have become a hot field to research in recent years. The main factor
of its growth is increased computational abilities and stored data. In combination
with optimized algorithms, these factors make a revolution in our world.

Some impossible tasks a few years ago become realistic now, and authors com-
pete to increase the quality bar even higher. One of these tasks is face emotions
and position editing, namely Face Reenactment. In this task, the model inputs one
or more images of the same person and additional inputs, which encode emotion
or pose transformation in the clear for the model format. These format examples in-
clude keypoints, 3DMM parameters, audio, or face boundaries. The model produces
an image with the same person but with an altered pose and emotion as described
in additional inputs.

Creating personalized head avatars is a trending topic of research. With this tech-
nology, everybody can easily create their persona without special tools and wasting
time. It is crucial because additional user flow simplification can significantly im-
prove user experience and create a competitive advantage in business.

During the face reenactment, the model, firstly, extracts identity, pose, and ex-
pression metadata. After that, it applies another set of poses and expressions to
produce a novel image with the same person from a different viewpoint. Using this,
we can animate people in photos and edit their appearance.

In recent years, multiple attempts have been made to develop algorithms that
can generate custom emotions. Some can model avatars with high realism but need
multiple photos and manual input. Another group can create a virtual head from a
single image but does not pretend on photorealism. Moreover, they are not applica-
ble in real-life scenarios because of slow processing run-time, lack of inputs from a
user, or low-quality predictions.
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FIGURE 1.1: Example of Face Reenactment: generating rotated faces
from front one using our approach

1.1 Contributions

Our work addresses the single-shot face reenactment problem end-to-end from a
single image input. We will use 3DMM [Blanz and Vetter, 1999; Booth et al., 2018b;
Booth et al., 2018a] parameters to encode identity, pose, and expression. The pro-
posed approach edits the pose and emotion of a real person on an image by manip-
ulating its 3DMM parameters. As a result, our method is easy-to-use and requires
only one ordinary RGB image as an input.

In summary, the main contributions of this work are:

• Combining face mesh estimation and face reenactment tasks

• Discovering architecture changes that take away main visual disadvantages of
previous approaches: mouth discriminator, residual connections, PNCC con-
ditioning during training

• Develops robust data preprocessing pipeline, taking into account prior knowl-
edge about human faces

• Optimizing model performance to make it applicable in real-life applications

• Providing a method for emotion manipulation from an arbitrary image
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Chapter 2

Related Works

Many approaches can generate talking head videos only for specific identities [Gar-
rido et al., 2015; Bregler, Covell, and Slaney, 1997; Chang and Ezzat, 2005; Liu and
Ostermann, 2011]. For example, [Suwajanakorn, Seitz, and Kemelmacher-Shlizerman,
2017] synthesizes only the mouth region and combines it with a frame from a large
video corpus of that person. Despite the high accuracy and photorealism, this method
is hard to use in real-world scenarios because of the large video corpus. Moreover,
it is not extendable for new identities. Other algorithms need additional metadata
like audio to work [Chen et al., 2020; Doukas, Zafeiriou, and Sharmanska, 2020; K R
et al., 2019]. There are multiple criteria to categorize all these methods for image
editing.

Firstly, avatar synthesis algorithms can be divided into two groups based on the
number of images needed to work. In the first group, we have algorithms that need
multiple frames; in another group - there are one-shot algorithms.

Number of algorithms [Cao et al., 2021; Wu et al., 2018; Kim et al., 2018; Thies
et al., 2020; K R et al., 2019; Wang et al., 2019; Doukas et al., 2020] are working
in a many-to-many manner. ReenactGAN [Wu et al., 2018] uses CycleGAN [Zhu
et al., 2017] to convert the facial boundary heatmaps between different persons to
increase the quality of the decoder. The method presented by [Kim et al., 2018] can
synthesize high-resolution and realistic facial images with GAN. [Thies et al., 2020]
animates the expression of the source video by swapping the source face with the
rendered image. The problem with all these approaches is that they require many
pictures of the specific identity for training and only work on them.

[Doukas, Zafeiriou, and Sharmanska, 2020; Zakharov et al., 2020; Yao et al., 2021;
Wang, Mallya, and Liu, 2020; Siarohin et al., 2020; Ren et al., 2021; Yin et al., 2022;
Zhang et al., 2021; Bounareli, Argyriou, and Tzimiropoulos, 2022] need only a sin-
gle frame as an input. These approaches are more challenging but provide more
flexibility in real applications.

Another way to divide most face reenactment approaches is based on which in-
puts they use for conditioning source to driving image transformation:

• landmark-based

• motion-based

• 3D-based

• audio-based

• explicit

Landmark-based methods utilize facial landmarks as conditions to render ani-
mated source image. [Wang et al., 2019] injects landmarks as a conditional input
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through AdaIN [Huang and Belongie, 2017] blocks. [Zakharov et al., 2020] uses
SPADE [Park et al., 2019] blocks to build rendering network based on the landmark
skeleton.

Motion-based methods model a relative motion field from source to driving im-
ages [Wiles, Koepke, and Zisserman, 2018; Siarohin et al., 2020; Wang, Mallya, and
Liu, 2020]. X2Face directly estimates a dense motion field. First Order Motion Model
(FOMM) [Siarohin et al., 2020] uses self-supervised 2D keypoints to estimate mul-
tiple local sparse motions and then aggregates them into one dense motion flow to
wrap the initial image. One-Shot Talking Heads [Wang, Mallya, and Liu, 2020] from
NVIDIA researchers go even further and estimate 3D self-supervised keypoints.

In recent year the most popular approach is to use 3DMM parameters as a con-
ditional input:

• HeadGAN [Doukas, Zafeiriou, and Sharmanska, 2020] uses PNCC (rendered
from 3DMM parameters) images for guiding reenactment network.

• GIF [Ghosh et al., 2020] and StyleRig [Tewari et al., 2020] use pre-trained Style-
GAN [Karras, Laine, and Aila, 2018] and 3DMM parameters for conditioning.

• PiRenderer [Ren et al., 2021] maps original 3DMM parameters through the
Mapping Network to get internal representation.

Audio-based methods use the audio signal for conditioning. Some of them di-
rectly use audio: [Song et al., 2018; Zhou et al., 2019]. Another part - map au-
dio to the middle representations, such as landmarks [Suwajanakorn, Seitz, and
Kemelmacher-Shlizerman, 2017] or 3DMM parameters [Yi et al., 2020]. However,
these methods require multiple frames, and audio conditioning is not deterministic
and does not generalize well.

Explicit methods for source to driving image transformation use such approaches
as [Yin et al., 2022; Bounareli, Argyriou, and Tzimiropoulos, 2022]. They use Style-
GAN [Karras, Laine, and Aila, 2018] under the hood and train it to learn pose and
expressions transformation explicitly from images.

2.1 First Order Motion Model (FOMM)

First Order Motion Model (FOMM) [Siarohin et al., 2020] is one of the first papers
describing image animation using neural networks. It is not designed explicitly for
face animation. Still, this approach is widely used as a baseline for this task because
of its generalization.

Their method assumes a source image and a frame of a driving video frame as
inputs. The unsupervised keypoint detector extracts motion representation (sparse
keypoints and local affine transformations). The dense motion network uses the
motion representation to generate optical flow and the occlusion map. The generator
uses the source image and the outputs of the dense motion network to render the
target image.
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FIGURE 2.1: First Oreder Motion Model architecture from the paper

Despite the popularity of this approach, it has significant disadvantages, like
low-quality rendering and the number of artifacts (especially near the eyes and
mouth). Moreover, it is hard to specify concrete emotion and finetune it.

2.2 3D Morphable Model (3DMM)

3D morphable model (3DMM) [Blanz and Vetter, 1999; Booth et al., 2018b; Booth
et al., 2018a] is a statistical model that inputs the shape and texture of a face and
outputs a vector representation. The first versions of 3DMMs are based on principal
component analysis (PCA). A face is represented by a linear combination of those
orthogonal bases with the largest eigenvalues. The current state-of-the-art model
is FLAME (Faces Learned with an Articulated Model and Expressions) [Li et al.,
2017]. This model uses a linear shape space trained from 3800 scans of human heads.
FLAME combines this linear shape space with an articulated jaw, neck, eyeballs,
pose-dependent corrective blend shapes, and other global expression blend shapes.
As a result, this approach could be used for face shape and expression encoding.

FIGURE 2.2: FLAME [Li et al., 2017] model variations for shape, ex-
pression, pose, and appearance.

FLAME model has decoder which renders head from those parameters. One
of the rendering output options is PNCC (Projected Normalized Coordinate Code)
image. It is used with slight modifications inside our network to encode pose, shape,
and expressions as input. The main properties of this image are:

• 3D mean face is normalized to 0-1 with the 3D coordinate of each point being
called Normalized Coordinate Code

• Project the 3D face with parameter p using Z-buffer

• Encode the depth at each point using RGB values
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FIGURE 2.3: PNCC image examples

2.3 DAD-3DNet

DAD-3DNet [Martyniuk et al., 2022] is a recently published model that computes 3D
mesh representation consistent with the FLAME [Li et al., 2017] topology. It is only
part of the publication, but it was considered the most interesting for our research,
along with its large dataset with images and corresponding 3D meshes.

The model is trained to predict 3DMM parameters in an end-to-end manner.
Those 3DMM parameters are used to get 3D mesh representation using the FLAME
decoder. The architecture of this model is similar to detection models: CNN encoder
as a backbone inside the BiFPN [Tan, Pang, and Le, 2019] pyramid. As an output, this
model has two branches: first - 3DMM parameters, second - standard 2D keypoints.
This additional branch helps improve the prediction quality of this model and is
used only during training.

The advantages of this model are that it can be easily trained and fix one of the
biggest challenges of face reenactment task: extracting 3DMM parameters from the
image.

FIGURE 2.4: DAD-3DNet [Martyniuk et al., 2022] architecture design
from original paper

2.4 Generative Adversarial Networks

The generative adversarial networks (GANs) [Goodfellow et al., 2014] were intro-
duced in 2014. They propose a framework for estimating generative models via an
adversarial process.

The GAN training strategy is a competition between two models. The first gen-
erator model tries to predict the meaningful output from noise, and the second -
discriminator tries to distinguish the actual image from the generated. Inside these
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models, we use NNs with an encoder-decoder structure. Mathematically, we can
describe this process in such a way:

min
G

max
D

x ∼ PrE[log(D(x))] + x̃ ∼ PgE[log(1 − D(x̃))] (2.1)

Where Pr is the data distribution and Pg is the model distribution.
This straightforward training setup became one of the most fundamental works

in the recent decade. Not surprising that a lot of SOTA approaches used GANs or
their variations for different tasks.

2.5 Fast Bi-Layer

Zakharov [Zakharov et al., 2020] proposes an architecture that renders head avatars
from a single photograph. Their approach is decomposed into two blocks. The first
block is a pose-dependent low-quality image synthesized by a small neural network.
The second block is defined by a pose-independent texture image that contains high-
frequency details. The texture image from the first block is generated separately and
only once. After that, on each video frame, this texture warped and added to the
coarse image to ensure a high effective resolution of the talking head. As input, this
model needs image frame person landmarks to initialize and driving landmarks on
each step for inference. Figure 2.5 overview of the model architecture.

FIGURE 2.5: Fast BiLayer model Zakharov et al., 2020 architecture
overview.

Despite its speed, this approach has multiple limitations. The quality of outputs
is lower compared to other methods. Another limitation is the usage of landmarks
for shape and emotion encoding: it is impossible to get the source face shape and
add custom expressions.

2.6 StyleHEAT

StyleHEAT [Yin et al., 2022] is recent approach used for Face Reenactment. Their
pipeline consists of four components:

• Pre-trained StyleGAN [Karras, Laine, and Aila, 2018]

• Video-driven Motion Generator
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• Audio-driven Motion Generator

• Calibration Network

From a source image, they obtain the feature maps and style vectors via GAN
inversion methods. Video or audio is used as additional inputs to predict motion
fields using a Video-driven Motion Generator and Audio-driven Motion Genera-
tor, respectively. A predicted motion field warps StyleGAN feature maps, and this
warped feature map goes through Calibration Network to enhance predictions. This
calibrated feature map is then fed into the StyleGAN for the final face generation.
The biggest drawback of this approach is that it is hard to use this method on real
images. GAN inversion is not very stable and leads to a lack of identity preservation.

FIGURE 2.6: StyleHEAT pipeline Yin et al., 2022 overview from au-
thors paper.

2.7 HeadGAN

HeadGAN [Doukas, Zafeiriou, and Sharmanska, 2020] is a new model that over-
comes issues with 2D landmarks using parameters from the FLAME [Li et al., 2017]
3D head model. Their architecture consists of a dense flow network and a rendering
network.

Image concatenated with rendered PNCC used as an input. A dense flow net-
work is based on convolution and SPADE [Park et al., 2019] blocks in which driving
PNCCs are injected. This network outputs flow. After that, a source image and fea-
ture maps are warped with this output flow. To renderer, inputs are three driving
PNCCs. Inside the renderer, they are mixed with warped features and source images
from Denseflow inside SPADE blocks and output the final image. Figure 2.7 shows
two parts of the model.
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FIGURE 2.7: Architecture of HeadGAN [Doukas, Zafeiriou, and Shar-
manska, 2020].

This method allows simple face emotion manipulation of the source image using
3DMM parameters. Despite that, the most significant limitation is also related to
them. We need to solve the optimization process to get these parameters, which
takes a while. Because of that, we cannot use this model in real applications.

FIGURE 2.8: HeadGAN Demo [Doukas, Zafeiriou, and Sharmanska,
2020] of image manipulation via 3DMM parameters.

2.8 PiRenderer

Ren et al. [Ren et al., 2021] proposed the end of the 2021 year a neural rendering
model PiRenderer. Given a source image and target 3DMM parameters, this model
generates realistic results with the accurate motion of the person from a source im-
age.

The proposed model has three parts:

• the Mapping Network - maps 3DMM parameters into latent space

• the Warping Network - generates warping flow, which preserves movement

• the Editing Network - enhance predictions and generate missing parts

The Mapping Network maps motion descriptors into latent vectors. These latent
vectors guide the Warping Network, which produces a coarse image by predicting
warping flow and using it on the source image. Although Warping Network is effi-
cient at spatial transformations, it introduces artifacts and cannot fill missing parts
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of the content. Therefore, for this purpose, the authors add the Editing Network,
which modifies coarse warped images and generates a final prediction.

FIGURE 2.9: Architecture of PiRenderer [Ren et al., 2021].

As an extension, the authors provide an audio-driven facial reenactment model.
This model is a recurrent network similar to LSTM [Hochreiter and Schmidhuber,
1997] that inputs previously generated k motions and audios as conditional infor-
mation.
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Chapter 3

Proposed Methods

Despite many papers in this field, all described above methods have several limita-
tions.

Firstly, head reenactment should generate parts of the human face that are in-
visible or occluded in the reference image. Moreover, there is no tolerance for small
algorithm mistakes. Multiple approaches [Ren et al., 2021; Doukas, Zafeiriou, and
Sharmanska, 2020] use two-stage pipelines to tackle this challenge. The first model
predicts warped images, and the second one enhances predictions and fills the gaps.

The second problem is the difficulty of efficiently encoding driving pose and
emotion into the pipeline. For example, most state-of-the-art methods [Zakharov
et al., 2020; Zakharov et al., 2019; Siarohin et al., 2020; Wang et al., 2019] use facial
landmarks to guide the synthesis. They usually lead to identity preservation prob-
lems during the reenactment as keypoints encode identity information. It is visible
when the head geometry of the source person differs from that of the person in the
driving video.

The last and most significant problem is related to the end-to-end deploying of
such models. Even recent papers, like [Doukas, Zafeiriou, and Sharmanska, 2020;
Ren et al., 2021; Yin et al., 2022], don’t solve the problem of retrieving 3DMM pa-
rameters for the unseen images in the wild.

We propose a new approach that combines advantages of face reenactment and
3D-mesh prediction fields. It is a two stage algorithm consisting of the following
building blocks:

• 3DMM Parameters Predictor - predicts 3DMM parameters from an image

• FLAME Decoder - decodes 3DMM parameters into vertices

• External C++ library - renders PNCC image from vertices

• Warping Network - outputs warped source image

• Enhancing Network - enhances output and generates missing parts
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FIGURE 3.1: General architecture of our approach.

The first stage is the PNCC Estimation Pipeline. This part has 3DMM Param-
eters Predictor, which inputs RGB images and outputs 3DMM parameters. These
3DMM parameters can be intuitively modified to get the target 3DMM parameters.
After that, these parameters are decoded through FLAME Decoder and generated
PNCC images using an external C++ library.

Original image, source PNCC image, and target PNCC images are fed to the
second stage - Face Reenactment Pipeline. Firstly, it goes through the Warping
Network to output the warped source image to look like a target. Secondly, this
warped image is enhanced by Enhancing Network.

This network outputs the person from the source image, but emotions and pose
for them are obtained from the target PNCC image. This architecture solution over-
came external time-consuming parameters calculation [Zakharov et al., 2020; Doukas,
Zafeiriou, and Sharmanska, 2020; Ren et al., 2021] or not an intuitive representation
of the source and driving poses [Siarohin et al., 2020; Zakharov et al., 2020]. As a
result, we can use our method everywhere without additional preprocessing, and it
is a much easier solution for deployment in real-life scenarios. As a bonus, we wrap
all these stages into Triton Inference Server. Because of that, our method is used
end-to-end from the arbitrary image.

3.1 Model Architecture

3.1.1 PNCC Estimation Pipeline

FIGURE 3.2: Overview of 3DMM parameters prediction pipeline.

The main block of the PNCC Estimation Pipeline is Face Mesh Predictor, which pre-
dicts 3DMM parameters from a single photo. This network consists of a backbone
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(feature extractor) inside a BiFPN [Tan, Pang, and Le, 2019] and a Regression Mod-
ule that directly predicts the 3DMM parameters vector. Deterministic FLAME Layer
takes 3DMM vector as an input and outputs 3D head model vertices. Because of this
light setup, predictions of 3DMMs would be near real-time and easily incorporated
into the face reenactment module. This pipeline also uses an external C++ library to
generate PNCCs from the given 3DMM parameters. The process of getting PNCC
images is shown in Fig. 3.2.

3.1.2 Face Reenactment Pipeline

FIGURE 3.3: Overview of face reenactment pipeline.

The Face Reenactment pipeline is responsible for actual face rendering. Our archi-
tecture has warping and enhancing modules similarly to [Doukas, Zafeiriou, and
Sharmanska, 2020; Ren et al., 2021; Zakharov et al., 2020]. The general overview of
the pipeline is shown in Fig. 3.3.

The Warping Network is used to predict warping flow which makes an initial
"rough" transformation between the source image and driving PNCC. This network
inputs concatenated RGB source image with source PNCC and has three convolu-
tions to downscale the initial image shape. After that model has multiple SPADE
blocks followed by Pixel Shuffle blocks to return to the initial scale. We eject infor-
mation about driving PNCC into SPADE blocks. Because of that, our network learns
warping flow, which can make source image or encoder features aligned with the
target PNCC face position.

The Mapping Network maps target 3DMM parameters into intermediate space.
This type of network is used in [Karras, Laine, and Aila, 2018; Ren et al., 2021] and
primarily consists of sequential linear layers followed by Relu activation.

The Enhancing Network enhances warped image and fills missing parts. It con-
sists of three convolutions and multiple SPADE-AdaIN blocks in different resolu-
tions to encode driving PNCC into the final image output. Into the SPADE blocks,
we eject warped source image or warped source features, and into the AdaIN block
- mapped parameters of the target 3DMM parameters. This network learns how to
map the driving PNCC image into the reenacted RGB image. The 3DMM parame-
ters before injecting into AdaIN blocks are processed through the mapping network
similarly to [Karras, Laine, and Aila, 2018; Ren et al., 2021]. We add a residual con-
nection between warped image and enhanced output to boost predictions’ quality.



Chapter 3. Proposed Methods 14

Block Output size

Input (6, 512, 384)
7x7 Conv2D (32 ch.) + Inst. Norm. + Relu (32, 512, 384)
3x3 Conv2D (128 ch.) + Inst. Norm. + Relu (128, 256, 192)
3x3 Conv2D (256 ch.) + Inst. Norm. + Relu (512, 128, 96)

SPADE Block (512, 128, 96)
Pixel Shuffle (128, 256, 192)
SPADE Block (128, 256, 192)
Pixel Shuffle (32, 512, 384)

7x7 Conv2D (2 ch.) (2, 512, 384)

TABLE 3.1: Warping Network architecture.

Block Output size

Input (106)
Linear + Relu (128)
Linear + Relu (128)
Linear + Relu (128)
Linear + Relu (128)
Linear (128)

TABLE 3.2: Mapping Network architecture.

The Enhancing Network predicts only changes needed to add to a warped image,
but not the whole image from scratch, like in [Doukas, Zafeiriou, and Sharmanska,
2020].

Block Output size

Input (3, 512, 384)
7x7 Conv2D (32 ch.) + Inst. Norm. + Relu (32, 512, 384)
3x3 Conv2D (128 ch.) + Inst. Norm. + Relu (128, 256, 192)
3x3 Conv2D (256 ch.) + Inst. Norm. + Relu (512, 128, 96)

SPADE Block (512, 128, 96)
AdaIN Block (512, 128, 96)
Pixel Shuffle (128, 256, 192)
SPADE Block (128, 256, 192)
AdaIN Block (128, 256, 192)
Pixel Shuffle (32, 512, 384)
SPADE Block (32, 512, 384)
AdaIN Block (32, 512, 384)
SPADE Block (32, 512, 384)

7x7 Conv2D (3 ch.) (3, 512, 384)
Residual Connection (3, 512, 384)
Clamp (-1, 1) (3, 512, 384)

TABLE 3.3: Enhancing Network architecture.
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3.1.3 SPADE/AdaIN Blocks

The SPADE/AdaIN blocks similarly to [Doukas, Zafeiriou, and Sharmanska, 2020]
consists of SPADE layer introduced by Nvidia [Park et al., 2019] or AdaIN layer
[Huang and Belongie, 2017], convolutions and leaky relu activations.

SPADE/AdaIN Block

SPADE/AdaIN Layer
Leaky Relu + 3x3 Conv2D
SPADE/AdaIN Layer
Leaky Relu + 3x3 Conv2D

TABLE 3.4: SPADE Block architecture.

3.2 Losses

In our pipeline we train model on two stages. The face mesh predictor is trained by
minimizing the following total loss:

LMeshPrediction = λ1L3D + λ2LProj + λ3LShape + λ4LReg

where λ1, λ2, λ3, λ4 is a coefficients with values 50., 0.1, 1. and 1. respectively. Those
values are taken from [Martyniuk et al., 2022] authors.

During second stage we trained face reenactment model using this combined
loss:

LFaceReenactment = λ5LWarped +λ6LEnhanced +λ7LMouth +λ8LStyle +λ9LPerceptual +λ10LReID

where λ5, λ6, λ7, λ8, λ9, λ10 is a coefficients with values 1., 1., 1., 50., 10. and 10.
respectively. These losses are proved their importance in such papers as [Ren et al.,
2021; Doukas, Zafeiriou, and Sharmanska, 2020; Yin et al., 2022]. These lambdas are
taken from [Doukas, Zafeiriou, and Sharmanska, 2020] authors. The only ReID loss
was added for better face preservation (lambda chosen empirically).

3.2.1 3D-Head Loss (L3D)

This loss is used to measure how good our 3DMM parameters are by comparing
them to ground truth in a 3D space. The predicted parameters from the Face Mesh
Predictor go through FLAME Decoder to obtain vertices VPred, the same applied to
ground truth 3DMM parameters to get VGT.

To get more representative results, we use only vertices that are mentioned as
"head" (vPred, vGT) and normalize ϕ them to fit into the unit cube. More formally, this
loss can be described below:

L3D = |ϕ(vPred)− ϕ(vGT)|2

3.2.2 Reprojection Loss (LProj)

This loss measures how well our 3DMM parameters can be reprojected into a 2D
image. We project 3D vertices of head mesh onto the image to compute them. Such
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pipeline is repeated on target 3DMM parameters to get ground truth. After that,
these reprojected vertices were compared via L1 distance.

3.2.3 Shape Loss (LShape)

Our Face Mesh Predictor must be consistent and output the same shape 3DMM pa-
rameters on the same person. To achieve this, shape loss compares shape parameters
on a set of images with the same person via L1 loss.

3.2.4 Regularization Loss (LReg)

We add additional regularization loss to prevent parameter explosion to ensure that
our 3DMM parameters remain small. This loss is calculated as a mean value of
normalized shape and expression values.

3.2.5 Warping Network Loss (LWarped)

Similar to [Doukas, Zafeiriou, and Sharmanska, 2020; Ren et al., 2021], one of the
face reenactment losses is a GAN loss between warped and target images. This
loss guides our Warping network to predict warping flow correctly. We derive that
Hinge loss has better visual quality than Wasserstein variations during multiple ex-
periments.

LD = −E
[
min

(
0,−1 + D

(
IWarped||ITgtPNCC)

)]
− E

[
min

(
0,−1 − D

(
ITgt||ITgtPNCC

))]
LG = −E

[
D
(

IWarped||ITgtPNCC
)]

The additional step we found necessary is a PNCC conditioning. We stack our
target image with target PNCC and make it 6-channel. This extra stacking provides
additional information for the discriminator to focus more on the face.

3.2.6 Enhancing Network Loss (LEnhanced)

This loss makes sure that Enhancing Network outputs as real images as possible. It
is similar to Warping Network Loss, with the only difference that here we measure
how good IEnhanced enhanced image is.

LD = −E
[
min

(
0,−1 + D

(
IEnhanced||ITgtPNCC)

)]
− E

[
min

(
0,−1 − D

(
ITgt||ITgtPNCC

))]
LG = −E

[
D
(

IEnhanced||ITgtPNCC
)]

3.2.7 Mouth Loss (LMouth)

During experiments, we found out that the eyes and mouth have the most signif-
icant problems with quality because of their complexity. To improve the quality
of generated mouth region, we add additional GAN Loss over those pixels. After
preprocessing, we heuristically estimate where the mouth is located and create a
corresponding m mask to determine this region. After that, we use the same En-
hancing Network Loss, but only over masked pixels of enhanced (IEnhanced|m) and
target (ITgt|m) images.

LD = −E
[
min

(
0,−1 + D

(
(IEnhanced|m)||(ITgtPNCC|m))

)]
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−E
[
min

(
0,−1 − D

(
(ITgt|m)||(ITgtPNCC|m)

))]
LG = −E

[
D
(
(IEnhanced|m)||(ITgtPNCC|m)

)]
3.2.8 Style Loss (LStyle)

Sometimes only GAN loss is not enough to produce high-quality images. Such
losses tend to make predictions more "blurry." We use additional L1 losses between
warped/real and enhanced/real images to handle this issue and make output im-
ages sharper.

LStyle = |IEnhanced − ITgt|1 + |IWarped − ITgt|1

3.2.9 Perceptual Loss (LPerceptual)

To increase the quality of images even more, we use widespread perceptual loss
over the research community [Doukas, Zafeiriou, and Sharmanska, 2020; Ren et al.,
2021; Yin et al., 2022; Wang, Mallya, and Liu, 2020; Zakharov et al., 2020]. This loss
is calculated as an L1 distance between activation maps of the pre-trained VGG-19
network.

LPerceptual = ∑
i
|ϕi (It)− ϕi

(
Îw

)
|1

3.2.10 Person Re-identification Loss (LReID)

To better preserve a reenacted person’s identity, we use auxiliary Reid loss. We use
the pre-trained ρ Reid model [Deng et al., 2019] to calculate face embeddings inside
this loss. The loss is a cosine similarity between embeddings derived from predicted
and target faces.

LReID =
ρ(IEnhanced) · ρ(ITgt)

||ρ(IEnhanced)||2 · ||ρ(IEnhanced)||2

3.3 Inference

3.3.1 Template Selection

Another important topic is how to generate driving 3DMMs from source parame-
ters. A simple solution is to get parameters responsible for expressions from a set of
images with different emotions. The negative side of this approach is the problem
with the disalignment of shape and expression parameters. Sometimes Face Mesh
Predictor cannot distinguish those parameters well. So, your final output would not
have as preserved identity as possible because of this additional face shape infor-
mation introduced in driving 3DMMs. To tackle this challenge, we generate not one
driving expression parameters per emotion but a set of them. We preprocess the
CFEE [Du, Tao, and Martinez, 2014] dataset with labeled emotions and save corre-
sponding 3DMM parameters into a small database. During inference, we find the
most similar shape parameters to our image and use their expression parameters to
get driving 3DMMs
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3.3.2 Deploy using Triton

The proposed method is further integrated into the Triton Inference Server to test its
throughput and efficiency. Triton is a framework from Nvidia that makes it possible
to run different types of ML models and process as many requests as possible by the
provided hardware. It supports different backends:

• PyTorch backend - to run PyTorch models

• Python backend - custom Python functions

• ONNX backend - ONNX models

• Tensorflow backend - Tensorflow models

In addition, it has built-in features to handle concurrent requests, run multiple in-
stances of the same model, model management, efficient GPU utilization, and more.
To deploy our model on Triton, we split our model into the following parts inside
the model registry:

• Face Mesh Predictor Prepossessing Model (Python Backend) - model, which
resizes the initial image.

• PyTorch Face Mesh Predictor Model (PyTorch Backend) - the traced PyTorch
model itself which outputs 3DMM parameters.

• Face Mesh Predictor Postprocessing Model (Python Backend) - model, which
rescale 3DMM parameters.

• Face Mesh Predictor Ensemble Model (Ensemble Backend) - a particular type
of Triton model that describes how multiple models can interact. We configure
all our models above into one pipeline and use it in the future end-to-end,
extracting 3DMM parameters from an arbitrary image.

• PyTorch Face Reenactment Model (PyTorch Backend) - the traced PyTorch
model itself which outputs reenacted images.

• Face Reenactment Model (Python Backend) - model works end-to-end and
outputs reenacted images from a single photo. This model calls a Face Mesh
Predictor Ensemble Model and PyTorch Face Reenactment Model using Busi-
ness Logic Scripting to get 3DMM parameters and finally reenacted images.

With the following setup, we make our model dockerizable and achieve impres-
sive results on reenacting side:

Our model can generate set of 15 different person emotions and need up to 1.1
second to handle one request. Here is an example of final results:
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Concurrency Throughput (infer/sec) Latency (sec)

1 Request 0.8 1.266
2 Requests 0.92 2.163
3 Requests 1 3.053
4 Requests 0.98 4.079
5 Requests 1 5.113
6 Requests 0.98 6.107

TABLE 3.5: Inference speed of reenacted model in end-to-end manner
using Triton Inference Server on Nvidia Titan RTX

FIGURE 3.4: Generated emotions of Leonardo Di Caprio.
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Chapter 4

Datasets

4.1 Face Mesh Prediction Datasets

4.1.1 NoW ("Not quite in-the-Wild")

This dataset is used as a benchmark for the RingNet [Sanyal et al., 2019] face recon-
struction pipeline, containing high-resolution 3D face scans of 100 different subjects
and their corresponding images.

FIGURE 4.1: Image samples from [Sanyal et al., 2019] project site.

4.1.2 FaceScape

This large-scale detailed 3D face dataset [Yang et al., 2020] contains 18,760 3D faces
taken from 938 people performing 20 different expressions. These images are also
taken in laboratory conditions.

FIGURE 4.2: Side-by-side comparison of image and 3D Face model
from [Yang et al., 2020] project site.
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4.1.3 DAD-3DHeads

It is a newly presented dataset with images and corresponding 3D Meshes taken in
the wild. It has 44,898 images collected from various sources.

For each image, they provide 5,023 vertices of the FLAME mesh. This dataset has
39% front, 52%, and 9% atypical poses, where half of them are with expressions. We
utilize this dataset the most because of its size, diversity, and accuracy. These photos
are labeled with a custom labeling tool that ensures the quality of the annotations.

FIGURE 4.3: Diverse image samples from [Martyniuk et al., 2022] pa-
per.

4.2 Face Reenactment Datasets

4.2.1 Cmbiometrics

It is a dataset with cropped face images from [Nagrani, Albanie, and Zisserman,
2018] researchers based on the VoxCeleb [Nagrani, Chung, and Zisserman, 2017]
dataset, which contains nearly 2.4 million images of 1.2k persons on 20.4k scenes.
This dataset is used as a baseline for face reenactment tasks because of the many
photos per person. The VoxCeleb dataset was constructed by extracting shots from
YouTube where celebrities are speaking. The length of each video varies from 4 to
20 seconds. On the negative side, the images’ resolution is usually low-quality.

FIGURE 4.4: Samples from Cmbiometrics [Nagrani, Albanie, and Zis-
serman, 2018] dataset.
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4.2.2 Radboud Faces Database (RaFD)

A Radboud Faces Database [Langner et al., 2010] is a collection of pictures of 67
models (both adults and children, males and females) displaying eight emotional
expressions. These pictures are taken in laboratory conditions and used for valida-
tion because of their high quality.

FIGURE 4.5: A model with different emotions from [Langner et al.,
2010] paper.

4.2.3 Compound Facial Expressions of Emotions Database (CFEE)

The CFEE [Du, Tao, and Martinez, 2014] dataset contains 5,060 facial images labeled
with seven primary emotions and 15 compound emotions for 230 subjects. All im-
ages are pictured in laboratory conditions.

FIGURE 4.6: Multiple people with sad emotion from [Du, Tao, and
Martinez, 2014] project.
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4.2.4 The Ryerson Audio-Visual Database of Emotional Speech and Song
(RAVDESS)

The Ryerson Audio-Visual Database of Emotional Speech and Song [Livingstone
and Russo, 2018] is another dataset made in laboratory conditions. It contains 7,356
files (total size: 24.8 GB). The database contains 24 professional actors (12 female, 12
male). Images include calm, happy, sad, angry, fearful, surprised, and disgusted ex-
pressions. Each expression is produced at two levels of emotional intensity (normal
and strong), with an additional neutral expression.

FIGURE 4.7: Different people with different emotions from [Living-
stone and Russo, 2018] authors.
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Chapter 5

Evaluation

5.1 Metrics

Our experiments focus on getting fast and accurate image face reenacting. For these
purposes, we compared the rendered image with the ground-truth one using well-
known visual metrics:

• LPIPS (Learned Perceptual Image Patch Similarity) - this metric compares
deep network activations on different images. The authors of this metric [Zhang
et al., 2018] found that this approach worked surprisingly well as a perceptual
similarity metric, which was true across different network architectures. Also,
they slightly improved scores by linearly "calibrating" networks - adding a lin-
ear layer on top of off-the-shelf classification networks. We use variation with
AlexNet [Krizhevsky, Sutskever, and Hinton, 2017] model inside in our exper-
iments.

• CSIM (Cosime Similarity) - this is another model-based metric that measures
the dot-product of face embeddings. We use the already pre-trained Reti-
naFace [Deng et al., 2019] model to get those embeddings. When predicted,
the score is high, and target faces look similar and return similar embeddings.

• FID (Frechet Inception Distance) - is a metric that calculates the distance be-
tween feature vectors calculated for predicted and target images. Lower scores
indicate that the two groups of images are more similar, with a perfect score of
0.0, meaning that the two are identical.

• PSNR (Peak Signal-to-noise Ratio) - is the ratio between the maximum possible
value of a signal and the power of distorting noise that affects the quality of its
representation. The main difference between MSE and PSNR that it measures
not absolute error, but tries to incorporate luminance and contrast terms inside.

PSNR = 10 · log10

(
MAX2

I
MSE

)
(5.1)

where I, K are original and corrupted images and MAXI - maximum value on
image. For RGB images used sum of PSNR across all channels.

• SSIM (Structure Similarity) - is a perceptual metric that quantifies the image
quality degradation that is caused by processing such as data compression or
by losses in data transmission.

SSIM(x, y) =
(
2µxµy + c1

) (
2σxy + c2

)(
µ2

x + µ2
y + c1

) (
σ2

x + σ2
y + c2

) (5.2)
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where µx the average over x, µy the average over y, σx the variance over x, σy
the variance over y, σxy the covariance of x and y, c1, c2 - constants to prevent
division by zero.

5.2 Benchmark

We contact the authors of [Doukas, Zafeiriou, and Sharmanska, 2020] to get a bench-
mark protocol. We reenacted every video in the VoxCeleb [Nagrani, Chung, and
Zisserman, 2017] test set. Firstly, we use the first video frame as a source image and
all subsequent frames as driving photos for reenactment independently. After that,
we calculate the metric for each pair of generated and driving image and average
them to get the final metric.

FIGURE 5.1: Video sample from Voxceleb [Nagrani, Chung, and Zis-
serman, 2017] test set.

For visual quality comparison, we randomly sample images from VoxCeleb [Na-
grani, Chung, and Zisserman, 2017] and generate a table of those images to see the
differences in approaches. We use the same person images as a source and drive
photos for self-reenactment, and images of different identities for cross-reenactment.
Another crucial part is that we use segmented images only because our focus is on
face generation. Because of that, during evaluation, all approach results are seg-
mented.

For visual judgment, we generate a set of images with the same person and dif-
ferent emotions. To achieve this, we randomly select faces from a collection of pic-
tures with neutral emotions from the CFEE [Du, Tao, and Martinez, 2014] dataset
and generate multiple reenacted images of them with different expressions.
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Chapter 6

Experiments

6.1 Experiment Setup

All proposed networks were trained on 3 NVIDIA RTX A6000 GPUs with 48Gb of
VRAM and 64 CPU cores. We pre-train the Face Mesh Predictor model during the
first stage using batch size 64 and training for 200 epochs. With this pre-trained
model, we preprocess all our face reenactment datasets. It takes 2 weeks to train the
final Face Reenactment model with batch size 8 on each GPU. The primary valida-
tion metrics were SSIM and PSNR during the training. Another important part was
visual validation because those metrics do not always show the real quality of the
models.

6.2 Dataset Preperation

6.2.1 Preprocessing steps

A significant limitation of a big part of methods is the usage of easy but limited
preprocessing steps from a [Siarohin et al., 2020] paper. Firstly, the long hair with
this approach might be cropped. Secondly, 256x256 and all other rectangular sizes
are not very efficient for storing human faces with long hair. Finally, 256x256 is
not enough to preserve the quality applicable in real-life projects. To tackle those
problems, we decided to increase the training image size to 512x384. This size stores
more useful information inside and has higher image quality. In this image, the
person’s head is slightly higher than the center to ensure we can handle long hair
and some head accessories. Finally, this image is segmented, preserving all hair, and
saved on disk. The same approach was used for rendered PNCC.

6.2.2 Dataset super-resolution

Face reenactment datasets need to be additionally processed. First, 3DMM param-
eters are calculated and generated PNCC based on these parameters. Secondly, the
segmented head from the image removes the background and makes training more
stable. PNCCs are rendered using C++ code and Python wrapper with slight modi-
fications from [Guo et al., 2020; Guo, Zhu, and Lei, 2018]. After these steps, an addi-
tional step was applied - super-resolution of all images using Wang et al., 2021. This
step increases the quality of generated images without additional artifacts because
current versions of academic datasets have low-resolution images, so our approach
benefits more from this.
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FIGURE 6.1: Example of super resolution on dataset.

6.3 Results

To evaluate our results we compare them to [Siarohin et al., 2020] (FOMM), [Wang,
Mallya, and Liu, 2020] (Head Synthesis) and [Zakharov et al., 2020] (Bilayer) models.

Model PSNR SSIM LPIPS FID CSIM

BiLayer 14.009 0.571 0.311 39.146 0.412
Head Synthesis 22.955 0.779 0.136 14.382 0.523
FOMM 23.615 0.797 0.139 14.541 0.583
Ours 24.077 0.803 0.118 12.655 0.598

TABLE 6.1: Comparison of different method results on VoxCeleb [Na-
grani, Chung, and Zisserman, 2017] dataset.

It is clear from the table that BiLayer has the lowest results compared to all other
models. In contrast, our model is comparable to FOMM and HeadSynthesys, with
only slightly better results. Our method mainly focused on 3DMM manipulation
and has no significant advantages in reenacting an image task. Although, our ap-
proach provides excellent visual results on emotion manipulation tasks.

For better visual understanding, we provide two large tables with a comparison
of self-reenactment (source and driving images have the same person) and cross-
reenactment (source and driving images have a different people) tasks. In the last
figure of this section, we provide pictures of people with generated emotions from
a single neutral photo - the primary purpose of our algorithm. To summarize, we
achieved a high emotion manipulation quality and optimized our end-to-end ap-
proach.
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FIGURE 6.2: Visual comparison of methods on self-reenactment task
on Cmbiometrics dataset.
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FIGURE 6.3: Visual comparison of methods on cross-reenactment task
on Cmbiometrics dataset.
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FIGURE 6.4: Images of people with generated emotions on CFEE.
dataset.

6.4 Ablation Studies

Experiment SSIM PSNR FID LPIPS

- perceptual loss 0.8428 26.073 7.401 0.0746
default 0.8518 26.678 8.17 0.0632
+ 3DMM params injection 0.8588 26.974 7.309 0.0603
+ PNCC conditioning 0.8653 27.266 7.008 0.0583
+ mouth discriminator 0.8634 27.295 5.328 0.0581
+ residual connections 0.8642 27.24 6.526 0.0585

TABLE 6.2: Ablation studies for our method.

We perform multiple experiments with minor changes to validate our hypothe-
ses to understand how those tweaks influence the final results. Our ablation studies
could be described as follows:
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• Default setup without Perceptual Loss

• Default setup

• Default setup with additional Mouth Discriminator

• Default setup with additional PNCC Conditioning inside losses

• Default setup with residual connections between warped image and enhanced
output

• Default setup with additional 3DMM parameters injection into a model

From a table, we see that all our changes increase the scores, so all of them we add as
a contribution. As an additional experiment, we validate that Perceptual VGG Loss
indeed improves the quality of predictions.
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Chapter 7

Conclusions

7.1 Result Summary

This work presents a novel two-stage algorithm to solve the problem of face reen-
actment. We increase the overall speed of the proposed method by avoiding time-
consuming direct optimization of 3DMM parameters from 2D landmarks. To our
knowledge, we are the first to combine Face Reenactment and Face Mesh Predic-
tion task and inference model in an end-to-end manner using 3DMM parameters.
The essential benefit of these parameters is easy-to-use face manipulation and no
need for additional steps, like face boundary generation or keypoints reprojection.
In addition, we managed to increase the quality of rendered images through multi-
step data preprocessing and architecture tweaks (residual connections, proper image
size). Finally, we demonstrate the computational efficiency of the proposed method,
making it applicable for real-world applications.

7.2 Points to improve

The next major things which could be improved are:

• Experimenting with model replacing it with StyleGAN-like architectures

• Gathering a dataset with higher quality images

• Proposing benchmark in a face reenactment field
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