
UKRAINIAN CATHOLIC UNIVERSITY

MASTER THESIS

Large-scale product classification for
efficient matching in procurement systems

Author:
Ihor HRYSHA

Supervisor:
Samuel GRONDAHL

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science

in the

Department of Computer Sciences
Faculty of Applied Sciences

Lviv 2022

http://www.ucu.edu.ua
https://www.linkedin.com/in/ihor-hrysha/
https://www.linkedin.com/in/sam-grondahl/
https://apps.ucu.edu.ua/en/data-science/
https://apps.ucu.edu.ua/en/

ii

Declaration of Authorship
I, Ihor HRYSHA, declare that this thesis titled, “Large-scale product classification for
efficient matching in procurement systems” and the work presented in it are my
own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

iii

“There are three constants in life... change, choice and principles.”

Stephen Covey

iv

UKRAINIAN CATHOLIC UNIVERSITY

Faculty of Applied Sciences

Master of Science

Large-scale product classification for efficient matching in procurement systems

by Ihor HRYSHA

Abstract

We consider the problem of recommending relevant suppliers given detailed request
context in a procurement setting. The fundamental recommendation in procurement
systems is that a single query has potentially hundreds of relevant suppliers associ-
ated. A complicating factor is that, for most suppliers, we do not have a complete
listing of product and service offerings, in contrast with most literature in the space
of product search. An additional difficulty is introduced by the fact that queries are
generated by users operating within large procurement organizations, each building
queries in idiosyncratic but internally consistent ways, and each organizing activi-
ties according to a unique internal product taxonomy. The central research question
that we aim to address is: can we utilize this vast but inconsistently structured set
of product data that allows us to derive semantic meaning across users and con-
texts? We propose several fully and semi-supervised approaches and benchmark
them using a proprietary dataset that includes large-scale procurement data as well
as supplier-provided catalogs. Finally, and uniquely, we experimentally validate the
performance of our preferred model in a live production setting.

HTTP://WWW.UCU.EDU.UA
https://apps.ucu.edu.ua/en/

v

Acknowledgements
First of all, I would like to thank the entire Fairmarkit team for smooth onboard-

ing to the enterprise-grade procurement, and especially Viktor Kushch for the op-
portunity to work on significant problems, the solution of which makes our world a
little better.

Special thanks to my supervisor Sam Grondahl for all the ideas, conversations,
and freedom of choice he has given me. Thanks to the entire Data Science depart-
ment for meaningful conversations that helped bring us closer to the truth. Noah
Yusen, thank you for helping to deal with such diverse data sources.

Last but not least, it is essential to mention the whole Ukrainian Catholic Univer-
sity community. You create a beautiful space where everyone can grow and become
a better version of themselves. I am personally grateful to Oleksii Molchanovskyi
for his enthusiasm and empathy. The support you have provided was a crucial part
of my success in finishing the program.

vi

Contents

Declaration of Authorship ii

Abstract iv

Acknowledgements v

1 Introduction 1
1.1 Rise of procurement centered solutions 1
1.2 Economic motivation . 1
1.3 Thesis goals and structure . 2

2 Related Work 4
2.1 Automated procurement process . 4
2.2 Problem Setting . 5

2.2.1 General-purpose recommender algorithms 5
2.2.2 Supplier recommendation in procurement 6
2.2.3 Product classification in supplier search 6

2.3 Approaches to product classification . 8
2.3.1 Fully supervised approach . 8
2.3.2 Self- and unsupervised approaches 8
2.3.3 General and domain specific SOTA 8
2.3.4 Different approaches to hierarchical classification 10

3 Dataset 12
3.1 Overview of existing datasets . 12
3.2 Data collection . 13
3.3 Diversity of product information . 14
3.4 Data preprocessing . 15
3.5 Taxonomy depth selection . 16
3.6 Data processing pipeline . 17
3.7 Final dataset . 18

4 Experiments 19
4.1 Metrics . 19
4.2 Class imbalance . 20

4.2.1 Data approach to class imbalance 21
4.2.2 Algorithmic approaches to class imbalance 22

4.3 Baseline classifiers . 23
4.4 Transformer-based classifiers . 25
4.5 Effect of using additional descriptive fields 25
4.6 Hierarchical label structure . 26

4.6.1 Improvement of local classifier per parent node 26
4.6.2 Hierarchical classification with transformer-based models . . . 28

vii

4.7 Effect of Using unlabeled data . 29

5 Results 31
5.1 Future work . 31
5.2 Application of the classifier in supplier search 32
5.3 Discussions . 32

A Relation between the received offers of bidders and savings 34

B Example of prepared dataset 35

Bibliography 36

viii

List of Figures

2.1 Automated procurement process. 4
2.2 Filtering Techniques of Recommender Systems Aleksandrova, 2017 . . 6
2.3 Modern search engine architecture. 7
2.4 Deep Hierarchical Classification architecture by Gao et al., 2020 10

3.1 UNSPSC taxonomy levels example. SunTec, 2019 16
3.2 Dataset creation pipeline. 17
3.3 The distribution of samples per class in the final dataset. 18

4.1 Distribution of top 30 classes. 21
4.2 Approaches used for our experiments. Flat - one multi-class classi-

fier - red line. Blue line denotes global approach which we use with
Transformer models. And LCPN, green boxes, which are used with
fastText models. 26

4.3 Jumping local classifiers per parent node are green boxes. Green arrows
show the flow of prediction, omitting the second level of taxonomy. . . 27

4.4 Overview of the (1) pretraining and (2) fine-tuning procedure, which
combines a transformer model with a language modelling head first
and afterwards with a task-specific classification head. Brinkmann
and Bizer, 2021 . 30

A.1 Relation between the received offers of bidders and savings in Spain
by García Rodríguez et al., 2020 . 34

A.2 Relation between the received offers of bidders and savings in Ukraine
. 34

ix

List of Tables

3.1 Data sources and the amount of labeled data. 13
3.2 Buyer product data . 14
3.3 Supplier product data . 15
3.4 Resulting labeled dataset structure . 16
3.5 Statistics of labeled sample in our dataset by level in UNSPSC taxonomy 17
3.6 Final dataset after deduplication and balancing 18

4.1 Calculation of hierarchical F1 score. 20
4.2 Comparation of different undersampling techniques applied to our

dataset . 22
4.3 Improvements on model performance, while using weighted loss func-

tion . 23
4.4 Experiments on the baseline classifiers. 24
4.5 Experiments on fastText supervised model. 24
4.6 Experiments on the transformer-based model. A default classification

head is used with a different body model. 25
4.7 Experiments on combination of different descriptive fields for both

model types . 26
4.8 Hierarchical LCPN models and quantization experiments 28
4.9 Experiments on RNN head of transformer-based model 28
4.10 Experiments on the impact of unlabeled data 29

B.1 Example of prepared dataset . 35

x

List of Abbreviations

NLP Natural Language Processing
UNSPSC United Nations Standard Products and Services Code
SKU Stock Keeping Unit
MRO Maintenance Repair and Operations

xi

Dedicated to my loving wife and children. Thank you for the
support and patience.

1

Chapter 1

Introduction

1.1 Rise of procurement centered solutions

Information technology is increasingly penetrating our daily and business lives. In
recent years, user expectations of information systems have dramatically changed.
The information system was considered the only common source of truth, where one
could either enter data or view reports. Nowadays, users expect the system to be an
intelligent partner who can help make decisions and minimize time spent on routine
tasks. User-faced information systems are increasingly integrated with cloud solu-
tions, allowing them to collect the necessary information and learn to understand
user intent better.

We can observe the rapid growth in procurement automation services over the
last decade. A prominent example of public procurement is the reformation of gov-
ernment tenders and the creation of the ProZorro1 information system in Ukraine.
Medium and large-sized businesses try to automate the processes of their procure-
ment departments through the adoption of systems that help keep track of all events,
helping find the best suppliers. However, in the case of commercial organizations,
such tenders are not always publicly available or may be difficult for supplier repre-
sentatives to access. Bensch, 2012; Zhang and Wang, 2005. Therefore, procurement
departments have to do a lot of manual operations to communicate, summarize and
process the information received from suppliers to make a final decision and award
the winner.

A well-conducted procurement request should attract as many suppliers as pos-
sible, stimulate competition between them, and, as a result, the buyer should receive
the best market prices for products and services that they plan to purchase García
Rodríguez et al., 2020. However, how to bring information about the intention of
buying some product to the market and help the buyer choose the most relevant
suppliers.

Many US-based startups recognized and understood how to exploit such a gap
and started to develop solutions. Procurement startups have been snowballing over
the last few years, narrowing their focus to nonstrategic procurement and tail spent
optimization. A bright representative of such startups is Fairmarkit 2 — which
mainly focused on tail spent optimization.

1.2 Economic motivation

There are some apparent differences between the startups and the Ukrainian Pro-
Zorro. Nevertheless, they still share the same goal, which is quite simple: to save

1https://prozorro.gov.ua/
2https://www.fairmarkit.com/

https://prozorro.gov.ua/
https://www.fairmarkit.com/

2 Chapter 1. Introduction

buyer organizations money by stimulating competition between suppliers on the
market.

We analyzed open public procurement in Ukraine and found that about 39%
had just one tender participant, the tender winner. The reasons for single-bidder
tenders may vary. They can be a natural monopoly on resources by the supplier
or an early indicator of unfair tender condition, ineffective information about the
tender, or low market interest Fazekas, 2019. Such similarities can be found in the
public procurement process of some European countries. According to various data
sources, the level of single bid tenders ranges between 30-40% and depends on the
country and category of supplies.

Another research conducted in Spain by García Rodríguez et al., 2020 shows the
relationship between the number of participants and the relative cost savings that
the procuring entity can obtain (Figure A.1). The level of such economy on the ten-
der price reaches a plateau of 35% Fazekas, 2019. It shows the real market price for
the products and services. We have done similar research on tenders conducted by
governmental organizations, and Figure A.2 demonstrates an almost identical trend.
Assuming that an ideal condition is a sufficient number of bidders — more than 4
per tender, we lose over UAH 137 billion (approx. USD 4.8 billion) savings due to
the lack of a sufficient number of participants. The collection of similar statistics for
Ukrainian commercial companies is challenging, as this information is not publicly
available, and they use RFQ documents that do not have an initial price. However,
empirical 3+ bids per RFQ is the expected threshold of quality of a deal. In addition
to the obvious financial benefits, commercial organizations want to increase inde-
pendence from suppliers through diversification. Besides, many companies are try-
ing to position themselves as socially responsible businesses. Keeping in mind this
goal, procurement departments try to attract suppliers not only for financial moti-
vation but also to consider other factors: sustainability, support for local businesses,
support of minority-owned businesses, etc.

Thus, despite the differences between governmental and commercial organiza-
tions, the fact remains that as many relevant suppliers as possible are one of the
crucial factors of a successful procurement.

1.3 Thesis goals and structure

In Chapter 1, we make a brief overview of the procurement solutions and answer
the question of why it is essential to recommend an optimal set of suppliers from an
economic standpoint.

There is much research in a community dedicated to the recommendations in
eCommerce. We start Chapter 2 by emphasizing the difference and complexity of
recommendations in procurement. We review different approaches and discuss their
applicability to our specific domain. In this section, we formalize the primary goal
of our research - creating the classifier to use as one of the filters in the search engine.
The rest of the section overviews different text classification algorithms.

We claim that for our specific task, no appropriate dataset exists. We start Chap-
ter 3 with the requirements for the dataset we have and compare existing datasets.
We continue with a detailed explanation of the data collection and data transfor-
mation pipeline. We describe our practical steps to shape our data to the format to
be used in our experiments. In this section, we measure different dataset version
quality.

1.3. Thesis goals and structure 3

The best version of the dataset is used in Chapter 4 to conduct experiments. In
our research, we iterate each dataset sequentially, trying to improve the classifier
performance. Most of our experiments aim at revealing the main properties of the
data we use.

In the final Chapter 5, we summarize the results of the research and share our
thoughts and suggestions about its future directions.

4

Chapter 2

Related Work

2.1 Automated procurement process

There exist considerable differences in the procurement process in the commercial
and government organization. However, the general flow of a procurement process
remains the same and is schematically shown in Figure 2.1.

FIGURE 2.1: Automated procurement process.

The process starts with the initial step of the creation of a request document (re-
quest for quotation/proposal, tender notice). The specification of products/services
organizations wish to purchase is attached in the free form to the requested docu-
ment. Request document is the basis for all future transactions. In the automated
setting, given the request context, the intermediate system tries to identify the best
matching set of suppliers. Notified suppliers study the request and specification
documents and submit a bid based on internal catalogs (listing of products/services
they can offer). If the purchase is made in an auction mode, the suppliers are mo-
tivated by the fact that they can directly affect the result by lowering the price. The
result in auction mode is usually determined automatically. If the purchase does not
involve an auction, the buyer chooses the best (according to various criteria) bidder
compared to others.

2.2. Problem Setting 5

The supplier and the buyer of a particular company have their internal product
catalogs. For example Commerce XML 1 and Catalog Interchange Format2 stan-
dards were designed to expose supplier catalogs to the buyer. Nevertheless, a level
of adoption of such standards among suppliers is low. As a rule, in the procurement
process, the subject of procurement is described as an unstructured text. Reducing
the space of unstructured product descriptions to a more compact representation,
as a feature vector (embedding vector) or mapping, such unstructured data to some
generally accepted taxonomy would simplify the further development of supplier
recommendation systems and allow the adoption of a wide range of algorithms de-
veloped for eCommerce domain.

2.2 Problem Setting

2.2.1 General-purpose recommender algorithms

In academic literature, the "recommender system" was mentioned in Koren, Bell,
and Volinsky, 2009 by providing an example of the Netflix Prize competition. It is
defined as the large sparse matrix that stores relations between “product” columns
and “customer” rows, which can be used to retrieve hidden connections using ma-
trix factorization techniques. The main focus of such recommendations is to find
similarities between customer preferences and recommendations based on trans-
actions of similar customers (collaborative filtering) Aleksandrova, 2017. Another
commonly used approach in practice is the analysis of products and the recommen-
dation of similar products (content-based filtering). The implementation of such an
approach requires a well-prepared catalog of products and services with descriptive
features, which this type of recommendation can be based on Sarwar et al., 2001.
In addition to collaborative and item-based filtering, other approaches either use a
combination of the above two or use additional sources of information about the
relationships between entities (social graph filtering, expert knowledge filtering).

Unfortunately, the procurement recommender system has two significant limita-
tions that do not allow one to fully leverage the above approaches Zhang and Wang,
2005:

1. Another entity is introduced — the supplier, which is the subject of the rec-
ommendation. Even though the customer is interested in purchasing certain
products, the system should recommend a list of the most relevant suppliers.

2. There is no general catalog of products and services. In contrast to the clas-
sic recommendation systems, where the concept of "product" corresponds to
some record in the lookup list, procurement documentation of the client usu-
ally describes in free form text the subject of the procurement or can attach a
specification document that contains information about goods in unstructured
form.

Solving the problem of introducing an additional entity, the supplier converts
the “client-product” matrix to the third-order tensor, which stores “buyer-product-
supplier” relations Zhang and Wang, 2005. Factorization of tensors Karatzoglou et
al., 2010 is a less-studied problem than factorization of matrices, but many works in
the field exist that help to solve this problem. However, to prepare such a tensor, we
need to have a complete list of products (or classes), not unstructured descriptions.

1http://cxml.org/
2SAP documentation

http://cxml.org/
https://help.sap.com/docs/ARIBA_PROCUREMENT/43cc25c2fa9d4789b058784e816a2af8/dd8d3c2df018101482eddb270f0237ad.html?locale=en-US

6 Chapter 2. Related Work

FIGURE 2.2: Filtering Techniques of Recommender Systems Aleksan-
drova, 2017

In our opinion, this problem is the least researched in the academic community and
requires the most attention.

2.2.2 Supplier recommendation in procurement

According to Wikipedia, information retrieval is the process of obtaining informa-
tion system resources that are relevant to an information need from a collection of
those resources. The main applications of information retrieval techniques are men-
tioned above (recommender systems, search engines). Many authors do not sep-
arate them and consider recommendation systems to be zero-query search Belkin
and Croft, 1992. We consider it appropriate to separate these concepts to make them
less ambiguous. Although the term recommender system in procurement has his-
torically been used to define such systems, we will understand it as a search engine
since the requester aims to find the most relevant suppliers according to a previously
specified query (description of products and services, previous transaction history,
geolocation, etc.). In the following section, we will try to separate the concepts of
recommender system and search engine and give an overview of the latter, as well
as identify places where the task of product classification is appropriate.

2.2.3 Product classification in supplier search

Modern search engines are usually complex composite systems, which consist of
two fundamental stages:

2.2. Problem Setting 7

FIGURE 2.3: Modern search engine architecture.

1. Filtering. In this step, the system’s task is to reject negative instances as quickly
as possible. The result of this step should contain as many true positive in-
stances as possible, but they can occur in the wrong order.

2. Ranking. The filtered data obtained in step 1 is sorted for a specific user re-
quest context. As a result, we get a sorted list with more relevant documents
at the top. This step is computationally more complex.

On the filtering stage, a weighted ensemble of techniques is used to find the most
relevant documents. The search query is compared to all documents in the search
collection. Basic search techniques can be divided into the following types:

• Calculation of token frequency. Classic methods that work on the inverse in-
dex by counting the number of tokens in each document (term frequency) and
weighing them to the frequency of occurrence in the whole dataset (inverse
document frequency) Robertson, Zaragoza, et al., 2009; Chris Manning, Pandu
Nayak, 2018.

• Search in a certain taxonomy. All documents are classified into one or more
classes beforehand. The query is classified at runtime, and the result is matched
within the prepared classes in the database Ziegler, Lausen, and Schmidt-
Thieme, 2004; Isinkaye, Folajimi, and Ojokoh, 2015.

• Dense vector representations search. At the stage of preparation, embedding is
stored in some database. At runtime, the vector representation of the request
is compared with all embedding in the dataset Mu, Yang, and Yan, 2019; Li
et al., 2019.

• Tree-based search. This method does not require prior preparation of the dataset.
The model contains vector representations in the form of a binary tree, in
which the leaf nodes contain links to the specific documents Chang et al., 2021.

8 Chapter 2. Related Work

The above approaches are well-studied in eCommerce domains where the search
subject is products and services. In our research, we suggest applying this knowl-
edge to the procurement domain, where the subject of the search is a list of optimal
suppliers, and information about the product is only a part of the search query.

2.3 Approaches to product classification

2.3.1 Fully supervised approach

The first attempts to build a general-purpose classifier based on United Nations
Standard Products and Services Codes (UNSPSC) were made in the early 2000s. For
example, the authors of GoldenBullet Ding et al., 2002 tried to create a tool that
would help content managers do less routine work; the authors of another work
developed the whole approach around the data of a particular procurement ser-
vice Abbott and Watson, 2011. The project’s goal was to accelerate the transition
from custom taxonomy to UNSPSC. The authors of both papers note that one of the
biggest problems was the lack and imbalance of data. Therefore, in addition, they
are widely trying on Information retrieval technologies (Apache Lucene) and other
more specific tools (jColibry) Abbott and Watson, 2011.

2.3.2 Self- and unsupervised approaches

Several approaches try to take into account the position of the word in the sentence
and the "influence" of its direct neighbors. For example, word2vec can be trained as
a shallow neural network that tries to guess direct word neighbors given a partic-
ular word in context (or vice versa predict the word in the context given its neigh-
bors) Mikolov et al., 2013. The trained model can be used to map words to some
space of predefined dimensionality. One of the downsides of using word2vec model
is that it works strictly with the dictionary of the previously known words. So for
some rare or derived words, there could be undefined embedding. The author of
fastText, Bojanowski et al., 2017, tried to solve the problem of unknown words in dic-
tionaries and dictionary length by using the letter n-grams, splitting, and vectorizing
unknown words, or storing infrequent words in the dictionary as a set of n-grams.
For some cases, Simple Word-Embedding-Based Models show close to state of the
art (SOTA) results Shen et al., 2018. Alternative approaches such as Doc2Vec Le and
Mikolov, 2014 suggest training in addition to encoding the sentence sequence num-
ber in the dataset by introducing the concept of document context into the input
matrix.

2.3.3 General and domain specific SOTA

For most NLP tasks, de facto, standard models are built on the encoder-decoder
architecture using multi-head attention. One of the most prominent techniques is
BERT Devlin et al., 2018. For example, in the transformers library Wolf et al., 2020,
the models are usually pre-trained on large datasets, and the end-user needs to fine-
tune the model on their specific dataset. The trained model can be utilized as an end-
to-end tool or an embedding model. The apparent advantages of these transformers
are the following a) they capture more accurately the semantics of words through
the mechanism of "attention" Vaswani et al., 2017 b) they can be used as a universal
tool through the support of many languages.

2.3. Approaches to product classification 9

RoBERTa by Liu et al., 2019 was pretrained with the Masked Language Modeling
(MLM) objective. Taking a sentence, the model randomly masks 15% of the words on
the input, then runs the entire masked sentence through the model and has to predict
the masked words. Such procedure is different from traditional Recurrent Neural
Networks (RNNs) that usually see the words sequentially or from autoregressive
models like GPT, which internally mask the future tokens. It allows the model to
learn a bidirectional representation of the sentence.

DistilBERT by Sanh et al., 2019 is one of the lightest transformers models, smaller
and faster than BERT, which was pretrained on the same corpus in a self-supervised
way, using the BERT base model as a teacher. It means it was pretrained as an au-
tomatic process to generate inputs and labels from those texts using the BERT base
model. More precisely, it was pretrained with three objectives: MLM and Distilla-
tion loss/Cosine embedding loss. The latter two were used to align with the teacher
model and generate hidden states and probabilities as close as possible to the BERT
base model.

Besides the original transformers, several attempts were made by teams of large
marketplaces to approach the extreme classification of products and services. For
example, the Amazon Chang et al., 2021 team suggested considering the problem of
searching for products given a request as a multilabel classification problem where
each label corresponds to a particular product. They use a tree-based algorithm for
semantic matching using XR-Linear (PECOS). Inference takes sublinear (log) time.
A beam search algorithm is used to get b most relevant clusters (leaf nodes with
products). The same team tried to use BERT Chang et al., 2019 for a similar problem
and made an attempt to adopt transformer-based architectures for the XMC task.
They were inspired by the information retrieval approach (index→match→rerank),
where the BERT model improves only the matching step.

Researchers from Walmart Labs handle the product classification as a mapping
task of new products coming to their platform with a particular node in taxon-
omy Sun et al., 2014. They named their solution Chimera, which combines the out-
put of the models’ prediction and human-crafted business rules for classification.
In cases where the machine can not reliably determine the category, Chimera sends
the task to crowdsourcing. If the latter is unable to make an unambiguous decision,
system forwards the task to an in-house expert, who creates new categories or sets
of new rules.

The task of classifying all goods can be considered an open-world task, which
tries to include the definition of an unknown category in the model. In the recent
paper Xu et al., 2019, researchers use a two-step approach also motivated by in-
formation retrieval techniques. The first step, which they call ranker, finds a list
of top-k nearest examples for each seen class and forms clusters. The second step,
meta-classifier, produces the probability that x belongs to the seen class c based on
top-k examples from this class.

As we can see, there is no single right way to solve the product classification
problem with an extreme number of classes, especially due to the fact that many
researchers consider it in different ways Tsagkias et al., 2021. Most papers describe
a stack of several models and business applications that work well in certain con-
ditions and with specific business data. So we are inspired by the diverse ideas of
the industry leaders and understand that we can get most answers from the deep
understanding of data we possess.

10 Chapter 2. Related Work

2.3.4 Different approaches to hierarchical classification

Many ways to exploiting the hierarchical structure of the target categories during
classification procedures have been presented by Silla and Freitas, 2011, and Stein,
Jaques, and Valiati, 2019 grouped them into three primary groupings:

1. flat: during the training and testing phases, ignores the hierarchy by flattening
it to the level of leaf nodes - standard multi-class classification;

2. global: a single classifier while taking the hierarchy into account and may use
a top-down strategy at the testing phase;

3. local approaches: uses the hierarchy structure to build classifiers using local in-
formation, i.e., only the data that belongs to a particular node is considered to
learn one or many classification models per each node.

(a) local classifier per node (LCN) a binary classifier for each node;

(b) local classifier per parent node (LCPN) a multi-class classifier for each parent
node plus root classifies;

(c) local classifier per level (LCL) a multi-class classifier for the entire hierarchy
level.

All systems constructed utilizing this local categorization technique employed a
top-down strategy during the testing phase. They predict a class at the top level and
then use that knowledge to forecast deeper beneath the candidates’ nodes based on
the previous step only in a recursive fashion until they reach a leaf node or meet the
blocking conditions.

FIGURE 2.4: Deep Hierarchical Classification architecture by Gao et
al., 2020

One of the earliest end-to-end hierarchical deep learning approaches was intro-
duced by Gao et al., 2020. The authors proposed a neural network that is composed

2.3. Approaches to product classification 11

of three steps. The first one, the Flat Neural network, giver root representation pro-
duces level representations in Hierarchical embedding network. Level representa-
tions are the concatenations of current level representation with the parent repre-
sentations. Representations, constructed in such a way, transformed by the softmax
function are used to calculate the hierarchical loss.

Rhinobird team(Yang et al., 2020), the winning team of the SWC2020MWPD
challenge, used the Transformers Bert model embedding step and applied Dynamic
Masked Softmax to deal with hierarchy.

The contest organizers built upon this idea and proposed an RNN head that se-
quentially predicts a node for each level in the product hierarchy, achieving slightly
better results with simpler model architecture.

They used encoded by transformer’s [CLS] token embedding. Inside the classi-
fication head, they concatenated it with a hidden state. Based on the concatenated
matrix, a linear layer predicts the first level in the product hierarchy. A second lin-
ear layer updates the hidden state. The updated hidden state is fed back into the
RNN to predict the next level in the product hierarchy. This procedure is repeated
in a loop until it reaches the bottom-most level. Generally speaking, the use of global
approach to building a hierarchical classifier with the intention to teach the model
to distinguish relations given the hidden state of the previous level.

12

Chapter 3

Dataset

3.1 Overview of existing datasets

The problem of text classification is one of the main ones in NLP. Many datasets are
de facto standards for building models and comparing quality. However, the specific
nature of our work imposes certain limitations:

1. Syntactic differences of product titles. Most textual information consists of prod-
uct titles, which are nouns and adjectives. Thus, full sentences are not repre-
sented in most datasets.

2. Asymmetry. Suppliers describe goods in more detail, and buyers are limited to
the abbreviated name.

3. Many data providers. One dataset combines products from different data providers.

4. Labeling with open standard. The taxonomy of product classes used for labeling
the dataset should be open and widely spread.

Over the past couple of years, we can see the rise of product-based datasets
Tsagkias et al., 2021. For example, the WDC Product Data Corpus by Primpeli,
Peeters, and Bizer, 2019 is compiled based on open data from the Common Crawl
1 project. It contains information from many providers, but there is no single tax-
onomy that can be used as a label, so it cannot be utilized for our classification
task. The same research group Zhang et al., 2020 prepared a handcrafted dataset
for the MWPD2020 challenge labeled with GS12 taxonomy, which contains good
properties, but the coverage of classes is insufficient for our task. Icecat Dataset 3

has a professionally curated catalog of products labeled with UNSPSC taxonomy,
whereas it primarily focuses on a narrow domain of consumer electronics and IT
hardware products. Lin, Das, and Datta, 2018 overview another dataset submitted
by the Rakuten data challenge 2018, which was collected based on data only from
one provider, and was labeled with their proprietary taxonomy.

Thus, to the best of our knowledge, there is no such dataset that could be used
to address our particular requirements. For this purpose, we decided to create our
own dataset, which is a combination of product descriptions from different suppli-
ers and purchase order history data from different buyers. In this section, we will
describe the process of collecting and preparing data that would satisfy the limita-
tions mentioned above. Various taxonomies, their advantages and disadvantages,
and the motivation for choosing the UNSPSC taxonomy are described in detail.

1https://commoncrawl.org/
2https://www.gs1.org/standards/gpc
3https://icecat.biz/en/menu/channelpartners/index.html

https://commoncrawl.org/
https://www.gs1.org/standards/gpc
https://icecat.biz/en/menu/channelpartners/index.html

3.2. Data collection 13

3.2 Data collection

At the initial stage of our research, the only available data was historical transaction
information about spending uploaded by buyers to the Fairmarkit4 platform. Such
information was unified to one structure but remained heterogeneous by its nature,
as different companies build procurement processes differently. For example, all
buyers categorize their spending using different internal taxonomies, and its depth
varies from the 1st to 4th level of them.

Historical procurement data of a buyer for a particular supplier contains only
partial information about the products and services that were purchased in the past.
Unfortunately, such historical data does not contain full information about all prod-
ucts that a supplier can offer. Not all suppliers are ready to prepare product catalogs
with a unified structure for machine processing.

We decided to take a proactive approach and began collecting full catalog infor-
mation from the supplier’s website. As a proof of concept, we decided to analyze
most popular suppliers’ that were mentioned in buyer’s spend data. Most of the
selected suppliers are global companies with the main focus on North America and
European Union. The products offered by selected suppliers fall into so-called Main-
tenance, Repair, And Operations(MRO) domain and are purchased by any type of
buyers. Examples of such suppliers are given in dataset example table B.1.

While this collection of information should increase the visibility of the supplier
for the buyers, it can also overload their servers with inefficient traffic. We decided
to perform such data extraction in the least active business hours and make no more
than one request per second. The broad scraping task is simplified due to the wide
adoption of the Semantic Web approach Berners-Lee, Hendler, and Lassila, 2001;
Guha, Brickley, and Macbeth, 2016. We followed best practices of extracting data
from web resources and build our data ingestion pipeline as two steps flow:

1. Crawler. As an input, the crawler takes a list of domains, explores them, and
collects a list of pages from the sitemaps. Then it tries to “understand” if the
given domain is an eCommerce resource, and if so, it transfers all the pages to
the Scraper.

2. Scraper. A scraper downloads each page from the given list and tries to get
different types of meta-information on pages (RFDa, JSON-LD, etc.) to obtain
high-quality structured product information.

Data Source Amount Labeled with UNSPSC
taxonomy

Labeled with
specific taxonomies

Supplier’s catalogs 7 537 458 30.1% 94.9%
Buyer’s historical data 13 970 232 21.0% 36.1%
All sources 21 507 690 24.4% 56.7%

TABLE 3.1: Data sources and the amount of labeled data.

As we can see from Table 3.1, only a small subset of data is labeled with UNSPSC
codes. This subset could be used for training. However, most of the data is either
unlabeled(75.6%) or labeled with provider-specific taxonomy.

4Tail spend optimization platform https://www.fairmarkit.com/

https://www.fairmarkit.com/

14 Chapter 3. Dataset

3.3 Diversity of product information

The main two parties in the procurement process, a supplier and a buyer, provide
product data with different levels of detalization. This data serves different pur-
poses for both parties. The main goal of the buyer’s procurement department is to
express their needs, given the data they possess. As we can see from table 3.2 in
some cases, a buyer may not know the specific name of the product or all its char-
acteristics. For example, 1 GALLON OF OIL PAINT is pretty generic, but it clearly
indicates two main properties that are important for the buyer - volume and type of
paint. In addition to unstructured information about the product title, in rare cases,
buyers may have information about the serial number, SKU, model, or specific man-
ufacturer. Statistics on the occupancy of such fields in our dataset are presented in
table 3.2. As a rule, the need is not limited to one product, and several products may
be listed in a document request (RFQ).

Field
records

populated,%
median length

Examples

Title
13 970 149

100%
37

Apple USB-C to Lightning Cable
KALE LEAVES FROZEN
1 GALLON OF OIL PAINT.

Category
5 041 067

36.1%
23

extr/mix/pump/pell - extruder, mixers, melt pumps and pelletizers
recruit:preemplscrn : recruitment
hvac and refrigeration : gen ind

Brand
1 446 946

10.3%
8

ULINE
N/A
MRC

Identifier
421 935

3.1%
9

S-1259BL
UNKNOWN
2474-XXXX

TABLE 3.2: Buyer product data

A supplier possesses more comprehensive information about the catalog of the
products sold and a full list of its characteristics. Product title is used for marketing
purposes, e.i. a supplier tries to provide maximum information while being limited
by title length constraints. In our dataset, the average length of the title field is
43 characters which is aligned with reported statistics in similar datasets Zhang et
al., 2020. The table 3.3 represents the main product fields statistics collected from
suppliers’ websites. As an example, we provide supplier product data that might be
relevant for buyers 1 GALLON OF OIL PAINT request.

As we can see from the example, the title is a composite of leaf-level supplier
category, brand, and key properties. The main difference in suppliers’ product data
is additional fields - properties, photos, and full descriptions. Properties field con-
tains semistructured key-value map. Full description is a full text that describes the
main product properties mixed with autogenerated marketing text. The full descrip-
tion along with properties fields are the least represented ones in our dataset, so we
decided not to use them in our final dataset.

We also decided to exclude fields that contain unique identifiers (such as serial
numbers, models, and product codes) from our final dataset. In most cases, such in-
formation is presented in a product title and generates tokens with a low frequency.

3.4. Data preprocessing 15

Field # records
populated, % Example

Title 7 537 456
100% BEHR 1 gal. White Oil-Base Semi-Gloss Enamel Paint

Category 7 149 848
94.9% Paint > Paint Colors

Brand 4 007 524
53.2% BEHR

Identifier 6 676 880
88.6% 380001

Properties 2 505 923
33.2%

Approximate Coverage (sq. ft.) : 400
Base Material : Oil Based
Color Family : White
Hexadecimal Value : F8F9F5
Number of coats recommended : 2
Sheen : Semi-Gloss
Surface Material Use : Brick,Drywall,Metal,Plaster,Stucco,Wood
Transparency: Solid

Full description 3552842
47.1%

BEHR Oil-Base Semi-Gloss Enamel is formulated for easy application
with a roller, sprayer or brush.
It is ideal for application on siding and trim.
This mildew-resistant formula will help protect both interior
and exterior surfaces from scuffs, rust and household chemicals.
Ideal for metal and wood doors, trim and cabinetry
Excellent flow and leveling
Durable hard finish
...

Image 6 368 495
84.5% -

TABLE 3.3: Supplier product data

Wirojwatanakul and Wangperawong, 2019 during the modeling phase have success-
fully used product image embedding and applied different fusion mechanisms to
combine data of different modalities. We decided not to use images for training as,
in most cases, we do not have images during the evaluation phase.

The only required field used in the model training process is the Product Name.
A significant part of the dataset is unlabeled, and we try to use this data during an
unsupervised step of our pipeline in later experiments in section 4.7.

3.4 Data preprocessing

The resulting dataset has been collected from over 36 data providers. We manually
reviewed the primary data providers, and for specific cases, we applied provider-
specific transformations. Nevertheless, in most cases, the transformation pipeline
looked the same:

1. Filter out serial numbers and codes from titles with regular expressions

2. Cleaning Personally Identifiable Information.

3. Clear short titles(less than 2 token) and small tokens(less than 3 characters)

4. Filter out non English titles

16 Chapter 3. Dataset

Field Buyer Data Seller Data Data type # records
populated, %

Title + + string(250) 3872954
100%

Category + + string/categorical 3606278
93.3%

Full description + - string 895426
23.1%

Code + + string(8) 3872954
100%

TABLE 3.4: Resulting labeled dataset structure

We applied deduplication to the subset of Title and Code fields. Such steps have
significantly improved data quality in our base. Table 3.4 shows a labeled subset of
the data after transformation and deduplication. Data contained in Title and Code
fields is the main input to the model. In most cases, the full path to the root node
is given, but sometimes only a leaf class is provided. Effect of Category and Full
description fields on model performance is described in Section 4.5.

3.5 Taxonomy depth selection

The choice of taxonomy motivated by the amount of labeled data in our dataset.
However, in addition to choosing the proper taxonomy, it is also essential to choose
the appropriate depth level to which the labels will be aligned. Samples labeled
with high levels will be too generic. Labeling samples with lower taxonomy levels
might be expensive in usage and understanding. Users will spend a lot of time
distinguishing between differences in similar categories.

FIGURE 3.1: UNSPSC taxonomy levels example. SunTec, 2019

Analyzing the distribution of available data in Table 3.5, we can see that most
of the data is labeled using the Commodity level. No data is lost when using the
Segment level, but the model trained on such dataset will be too generic. We have
empirically chosen the third taxonomy level as an optimal balance between data loss
and class coverage. Our assumption is also confirmed by Payne and Dorn, 2011, who
claim that the three-level taxonomy is the optimal choice for procurement tasks.

So at this stage of our dataset creation pipeline, we filtered out all records labeled
explicitly with Segment or Family levels, amounting almost to 141K samples. We also
translated all records of Commodity level to Class level. On the one hand, we have
lost 5524 classes, but on the other, transition to parent level gives us a median of 96

3.6. Data processing pipeline 17

Samples Classes Samples in class
Level # loss # loss min Q1 med Q3 max
1. Segment 3872954 0 57 7074 143 2214 10192 56925 1011274
2. Family 3846989 25965 378 6753 1 43 414 2987 585555
3. Class 3732000 140954 1607 5524 1 10 96 637 420905
4. Commodity 3258773 614181 7131 0 1 4 24 140 276038

TABLE 3.5: Statistics of labeled sample in our dataset by level in UN-
SPSC taxonomy

samples per class compared to 24 while using the 4th level. This step allowed us
to obtain a unified dataset labeled with the third level of UNSPSC taxonomy, which
consists of 3,732K samples labeled with 1607 classes.

3.6 Data processing pipeline

Schematically, all the steps for creating a dataset described in this section, which will
be used for further experiments, are shown in Figure 3.2.

Source specific preprocessing

Generic preprocessing

Labeled dataset

Concatination,

column unification

Split labeled/
unlabeled

 Label unificatio
 Language filatratio
 Prepocessin
 Deduplication

Class balancing

Unlabeled dataset

Prepared dataset

Taxonomy .pkl

Data Source 1-5

Other Sources

FIGURE 3.2: Dataset creation pipeline.

It is worth noting that, by design, our pipeline provides the functionality of
switching between labelling taxonomies. Our dataset consists of two files: the flat
prepared dataset file labelled with the leaf level nodes of taxonomy, and, addition-
ally, we store a file that contains a graph-based structure(tree) that represents the
relation between parent nodes in taxonomy. Taxonomy file is a serialized Python
wrapper class over the DiGraph class of NetworkX 5 library Hagberg, Swart, and S
Chult, 2008. The taxonomy class in our implementation serves two main purposes.
It helps to calculate hierarchical metrics, and it is also used to train hierarchical ver-
sions of classifiers that are presented in Section 4.6.

5https://networkx.org/

https://networkx.org/

18 Chapter 3. Dataset

3.7 Final dataset

After applying balancing as described in section 4.2, we partially lost data (33%) and
could cover fewer classes (713), but on the other hand, we achieved better quality.

Field Buyer Data Seller Data Data type # records
populated, %

Title + + string(250) 701850
100%

Category + + string/categorical 701850
100%

Full description + - string 321046
45.7%

Code + + string(8) 701850
100%

TABLE 3.6: Final dataset after deduplication and balancing

Statistics on the final dataset are shown in Table 3.6.

FIGURE 3.3: The distribution of samples per class in the final dataset.

The distribution of samples per class in the final dataset is presented in Figure
3.3. We can see that the long tail of 205 overrepresented classes is limited to 2000
samples. Sample of final dataset is given in B.1.

19

Chapter 4

Experiments

In the beginnig of this chapter, we describe the metrics we collect to compare model’s
quality in all of our experiments. We use various approaches trying to establish a
good baseline.

In the last three sections, we try to consider the various properties of our data
and take them into account when modeling. The following properties of our dataset
did affect the choice of modeling techniques:

1. Multiple fields with product information in a different format (title, descrip-
tion, category).

2. Hierarchical structure of labels (product categories).

3. The presence of a significant part of unlabeled data.

In the following section, we will describe all the experiments aimed at incorpo-
rating those properties into our models.

4.1 Metrics

For all our experiments we report three metrics. The main metric, we use to compare
model quality is macro F1(mF1). In this metric, each class equally contributes to
the final score. To understand whether the improvements is in influenced by better
performance in dominant classes we report weighted F1(wF1). Another additional
metric we use is hierarchical F1(hF1). This metric captures predictions on all levels of
taxonomy and could explain the best path in the graph with the classifier.

The most widely spread metrics for classification are:

Accuracy A TP+TN
TP+TN+FP+FN

Precision P TP
TP+FP

Recall R TP
TP+FN

F1 F1
2·P·R
P+R

For our imbalanced datasets, reporting of F1, which is the harmonic mean of
precision and recall, makes sense. In our multi-class imbalanced setting, the macro-
averaging is used to understand how well the classifier can distinguish between
different classes. Marco-averaging compares each class separately with the other
classes, treating them as one.

mP =
∑|C|

i Pi

|C| ; mR =
∑|C|

i Ri

|C| ; mF1 =
2 · mP · mR
mP + mR

; (4.1)

where,

20 Chapter 4. Experiments

C - set of classes.
Additionally, we will report weighted average F1:

wP =
∑|C|

i Pi · ni

∑i ni
; wP =

∑|C|
i Ri · ni

∑i ni
; wF1 =

2 · wP · wR
wP + wR

; (4.2)

where,
C - set of classes, ni - count of samples in class.
The above metrics do not consider the node level to measure the misclassification

impact, Kiritchenko, Matwin, Famili, et al., 2005 propose an approach that extends
the traditional precision and recall. Instead of taking account of only the real and
predicted leaf nodes, their measures augment the objects considering that each tuple
belongs to all ancestors of the class it has been assigned to, except for the root node.
The authors call these measures hierarchical precision (hP) and hierarchical recall
(hR), which are suitable to calculate a hierarchical F1 measure (hF1) as defined in
equations 4.3. Stein, Jaques, and Valiati, 2019 compare hierarchical measure based
on the sets of nodes in the path with the one that uses the least common ancestor
proposed by Kosmopoulos et al., 2015. Nevertheless, for our case, with a single label
on leaf level and tree-based category, both hierarchical measures can be simplified to:

hP =
∑i |Ai ∩ Âi|

∑i |Âi|
; hR =

∑i |Ai ∩ Âi|
∑i |Ai|

; hF1 =
2 · hP · hR
hP + hR

; (4.3)

where,
Âi - the set of all ancestors nodes, including label node, predicted,
Ai - the set of all ancestors nodes, including label node, real.
Table 4.1 is the result of the prediction of a hierarchical model on some test

data. As in UNSPSC, code hierarchy is encoded considering code as a set of nodes
(’12183600’ is a set of ’12’, ’1218’, ’121836’). For simplicity, we provide only code in
the table. The root node of the category tree is not used in hierarchical metrics.

yi ŷi Ai Âi Ai ∩ Âi
12234500 12234500 12, 1223, 122345 12, 1223, 122345 12, 1223, 122345
16310800 16120800 16, 1631, 163108 16, 1612, 161208 16
48011400 31010000 48, 4801, 480114 31, 3101 ∅

|∑ | 9 8 4

TABLE 4.1: Calculation of hierarchical F1 score.

Thus, we received the following results:

hP =
4
8

; hR =
4
9

; hF1 =
8

17
;

Our experiments will operate both plain and hierarchical versions of classifier
models, so both types of metrics will be reported.

4.2 Class imbalance

At first glance, our dataset has significant coverage of 1607 distinct classes. However,
not all of this information can be used for model training. The long tail distribution
of elements with a significant number of classes with less than ten samples makes it
almost impossible to use it in training. In fact, we observed the Pareto rule in action,

4.2. Class imbalance 21

where 20% of a class covers 80% of the data. We think that the main prerequisites
for such imbalance are:

1. Not all types of products are widely sold on the Internet. The top of the most fre-
quent categories in our dataset 43211500 Computers are widely spread in eS-
hops.

2. Categories that have a limited set of products. For example, the number of unique
products in the 11101700 Base Metals category will not frequently change over
time. In our dataset, there are 85 samples, and most of them are approximate
duplicates.

3. Mistakes. Mistakes made at the data input stage lead to the emergence of cat-
egories with a small number of elements. While manually checking some
classes with a single sample, we identified that some of them do not corre-
spond to the chosen class.

FIGURE 4.1: Distribution of top 30 classes.

For most machine learning algorithms, imbalances of dataset classes lead to worse
results Batista, Prati, and Monard, 2004. A number of data and algorithmic solu-
tions to the class-imbalance problem have already been suggested and aggregated
by Kotsiantis, Kanellopoulos, Pintelas, et al., 2006. At the data level, these solu-
tions include: random oversampling with replacement, random undersampling, di-
rected oversampling (no new samples are created, the choice of samples to replace
is informed rather than random), directed undersampling (the choice of examples
to eliminate is informed), oversampling with informed generation of new samples,
and combinations of the above techniques. At the algorithmic level, solutions in-
clude adjusting the various classes’ costs to counter the class imbalance.

4.2.1 Data approach to class imbalance

Data augmentation for a text can be pretty tricky, and one could achieve great results
dealing with text only when such information is in the form of vectors Padurariu and

22 Chapter 4. Experiments

Breaban, 2019. Therefore, we leave the oversampling experiments for further re-
search. As for our dataset, we focused on the undersampling techniques. For conve-
nience. we have used imblearn Python package 1 presented by Lemaître, Nogueira,
and Aridas, 2017. The Random Undersampler strategy was chosen for our pipeline.

Number of Samples in class Metrics
Name Samples Classes min Q1 med Q3 max mF1 wF1

Initial dataset 3814K 1607 1 10 96 637 420K - -

No upper bound
L 100; 2584K 713 101 251 295 2802 282K 73.5 89.3

Fully balanced
L 2000; U 2000; 412K 206 2000 2000 2000 2000 2000 88.3 88.3

Soft Capping
L 100; q0.95 + 10%; 1832K 713 101 251 595 2802 41K 79.7 88.4

Hard Capping
L 100; U 2000; 682K 713 101 251 595 2000 2000 80.8 83.9

TABLE 4.2: Comparation of different undersampling techniques ap-
plied to our dataset

We compared the results of different oversampling techniques from Table 3.5. We
trained FastText model with default hyperparameters for 50 epochs for each derived
dataset. At this particular stage, we mostly were focused on the combination of good
class coverage and high macro F1. Our initial dataset contained 15 classes with only
one sample. So we empirically defined a lower boundary with at least 100 samples
per class and No upper bound. We’ve attempted to create Fully balanced dataset, and
despite the highest mF1 score(88.3), we were not satisfied by class coverage of 206 -
most of the data was lost.

For Soft capping we apply dynamic upper boundary as a 95th percentile on sam-
ple counts; additionally, for each class above, we add a 10% sample. On the contrary,
for Hard Capping dataset, we set a constant upper bound and downsample all classes
that were above it. Both methods produce datasets with 713 classes and last showed
better by 1.1% result in mF1. We will consider this dataset as the main one for our
further experiments.

4.2.2 Algorithmic approaches to class imbalance

After balancing on data level in our dataset, a difference between a dominant class
and the smallest one can reach 20x at the worst. So it also makes sense to toler-
ate data imbalance on the model level. The loss function is a hyperparameter for
Facebook fastText model implementation. Thus, detailed experiments on hyperpa-
rameter typing are described in section 4.3. For most deep learning models from the
transformer library (Wolf et al., 2020), the default loss function for the sequence clas-
sification head is a cross-entropy criterion. The most straightforward way to deal
with class imbalances is by incorporating the inverse-frequency class weights wc to
penalize errors of dominant classes:

ℓ(x, y) = L = {l1, . . . , lN}⊤, ln = −
C

∑
c=1

wc log
exp(xn,c)

∑C
i=1 exp(xn,i)

yn,c (4.4)

1https://imbalanced-learn.org/

https://imbalanced-learn.org/

4.3. Baseline classifiers 23

where x is the input, y is the target, wc is the inverse of class frequency,
C is the number of classes, and N spans the minibatch dimension
Another improvement to the weighted loss function was proposed by Cui et al.,

2019. Authors introduce the concept of Effective number of samples; the main idea is
that as the number of samples increases, the additional benefit of a newly added
data point diminishes:

wc =
1

Enc

Enc =
1 − βbc

1 − β
ln = −

C

∑
c=1

wc log
exp(xn,c)

∑C
i=1 exp(xn,i)

yn,c (4.5)

Enc is effective number of classes and wc its inverse and β is hyperparameter
(0.999 used in our case)

As we can see from Table 4.3 we have gained additional improvement where we
used class weights. The inverse-frequency of class weighting provides better results
with +1.8% improvement on mF1.

Model mF1 wF1
RoBERTa + CE loss 79.7 83.7
RoBERTa + Inverse Frequency Weighted + CE loss 80.8 84.8
RoBERTa + Inverse Effective Number of Samples + CE loss 80.5 84.9

TABLE 4.3: Improvements on model performance, while using
weighted loss function

After conducting experiments with class balancing, we are guided by the follow-
ing rules to build the final version dataset:

1. Exclude all classes that contain less than 100 samples

2. Use all samples without changes from the classes with the amount ranging
between 100 and 2000 samples per class.

3. For all classes with more than 2000 samples per class, apply hard capping to
2000 samples.

4. Consider algorithmic penalization of loss function for model architectures where
it is applicable during further experiments.

4.3 Baseline classifiers

As shown in earlier work on the classification of products and services using UN-
SPSC Abbott and Watson, 2011; Ding et al., 2002, the basic model for that task was
Naive Bayes probabilistic model. We decided to take this approach as the starting
point for our research. In the same paper, the authors also used the third level of
UNSPSC (class level) as a label. The method showed promising results on the initial
dataset.

As an improvement, we suggested using word vector representation models:
word2vec and fastText. This models generate embeddings on word level, so we join
non-zero word vector by averaging as proposed in Joulin et al., 2016a for word2vec

24 Chapter 4. Experiments

generated embeddings. For fastText embeddings, motivated by the original imple-
mentation 2 we additionally apply normalization of word embeddings before aver-
aging. On contrast doc2vec, which was designed to catch relations between words in
the context of a sentence, producing Paragraph vector and makes results comparable
with the above two methods.

We used the Gensim package Řehůřek and Sojka, 2010 for described above train-
ing of unsupervised models and wrapping them with a sklearn Buitinck et al., 2013
TransformationMixin. This approach helped us to simplify usage in the sklearn
pipeline as a transformation step. Embeddings generated by the transformation
were used to train simple classification models. We also used Logistic Regression
and Random Forest classifiers. Additionally, we assumed that each embedding
could capture different important title properties, and, for this reason, we decided
to combine different embeddings pairwise.

Embedding Model / Classifier mF1 wF1 hF1
Naive Bayes Classifier 0.601 0.753 0.800
word2vec / Logistic Regression 0.593 0.710 0.780
doc2vec / Logistic Regression 0.350 0.441 0.467
fastText / Logistic Regression 0.633 0.752 0.789
word2vec + doc2vec / Logistic Regression 0.594 0.710 0.780
doc2vec + fastText / Logistic Regression 0.621 0.750 0.768
word2vec + fastText / Logistic Regression 0.631 0.768 0.796

TABLE 4.4: Experiments on the baseline classifiers.

Both classification of prepared word2vec and fastText embeddings showed re-
sults close to Naive Bayes. We can observe a significant difference between macro
and weighted F1 scores, up to 10 points, which means that model works better in
predicting dominant classes. Any of the embedding combinations does not intro-
duce significant improvements, and the classifier shows the result close to the best
embedding of the combination Table 4.4.

Despite the fact that fastText showed the best results, there exists a main draw-
back of the presented approach. Embedding and classification are two separate
models, and loss function errors from the classifier are not propagated to the em-
bedding model. The original implementation tries of fastText to overcome this issue
in train supervised mode. This mode introduces an additional fully-connected layer
on top of the averaged word-level embeddings.

Hyperparameters mF1 wF1 hF1
hierarchical softmax 0.703 0.751 0.791
negative sampling 0.732 0.796 0.833
negative sampling/dim 200 0.743 0.803 0.839
softmax 0.805 0.837 0.864
softmax/dim 200 0.812 0.842 0.869
softmax/dim 100/ngrams 2 0.834 0.868 0.891

TABLE 4.5: Experiments on fastText supervised model.

We tried different settings of fastText supervised model, and in all cases, it per-
forms better than the separate embedding transformation and classification model
on top. The results obtained in this experiment are presented in Table 4.5. We have

2https://github.com/facebookresearch/fastText/blob/master/src/fasttext.cc

https://github.com/facebookresearch/fastText/blob/master/src/fasttext.cc

4.4. Transformer-based classifiers 25

tested different loss functions, and softmax showed the best results in all cases. How-
ever, the training of the models using softmax was relatively more time-consuming,
about 69 minutes, compared to the 3-4 minutes for hierarchical softmax approxi-
mation. Additionally, we grid searched over the dimensionality of latent space. By
default model uses 100 dimensionalities. There is a slight improvement while chang-
ing to 200 and no change to model performance. On the other hand number of word
n-gramms increases model performance by almost 3 points. We will refer to the best
model from this experiment as the baseline for the following experiments.

4.4 Transformer-based classifiers

In the previous experiments, we tried to reproduce the historical development of
different approaches used to text classification, especially product titles. At the cur-
rent moment, the best result in most NPL tasks is achieved by the transformer-based
model.

The transformer is an umbrella term that refers to the family of encoder-decoder
models with multihead attention layers. In general case each model from trans-
former library consists of two parts: "body" - the language model which was pre-
trained on big dataset and top layer "head" that are designed to solve specific task
(classification, sentiment analysis, named-entity recognition). We used the classifi-
cation head with the default settings and changed different bodies to understand the
best balance between train time and model performance.

Hyperparameters F1 wF1 hF1
Baseline 0.834 0.868 0.891
XLNet 0.645 0.747 0.799
DistilBERT 0.651 0.751 0.803
RoBERTa 0.804 0.847 0.876

TABLE 4.6: Experiments on the transformer-based model. A default
classification head is used with a different body model.

All the models converged fast and were early stopped with patience in five se-
quential steps. We started with default hyperparameters. Due to hardware limi-
tations, the batch size was set to 32 and changed to 16 for XLnet. We have tuned
the learning rate. Table 4.6 shows the best results for each of the model underlying
model bodies. As we can see, RoBERTa showed the best performance while remain-
ing relatively fast to train. It took 4h 30m (2.5 epochs) on Tesla V100 graphical card
with 16GB of RAM to train the best model.

4.5 Effect of using additional descriptive fields

There are multiple strategies for incorporating data of different modalities in a clas-
sifier. For example, fusion model architecture is proposed, where different layers
encode each field, and the returned vectors are concatenated before passing to the fi-
nal fully-connected layer Wirojwatanakul and Wangperawong, 2019. Nevertheless,
we will take the most straightforward way for our experiments by concatenating
different fields and their combinations with the title. While using RoBERTa model,
input was trimmed to 500 tokens due to the input sequence limitation.

As we initially expected, the category field, which is populated for most samples,
significantly boosted both models’ performance. Unfortunately, product description

26 Chapter 4. Experiments

Model Fields mF1 wF1 hF1
fastText Title 0.834 0.868 0.891
fastText Title+Cat 0.907 0.915 0.934
fastText Title+Desc 0.829 0.859 0.893
fastText Title+Cat+Desc 0.900 0.911 0.928
RoBERTa Title 0.804 0.847 0.876
RoBERTa Title+Cat 0.896 0.912 0.930
RoBERTa Title+Desc 0.814 0.853 0.887
RoBERTa Title+Cat+Desc 0.887 0.903 0.928

TABLE 4.7: Experiments on combination of different descriptive
fields for both model types

in combination both with title and with title + category field has shown either mi-
nor degradation or no improvements. Therefore, we decided to use categories in
addition to title fields for our further experiments.

4.6 Hierarchical label structure

Since our labels are organized into UNSPSC taxonomy, we can leverage such hierar-
chy during modeling and/or evaluation. In previous experiments we were using flat
approach. In the current section, we will try to apply LCPN with fastText submod-
els and a global approach with Transformer models. Additionally, we will propose
custom improvement over LCPN.

FIGURE 4.2: Approaches used for our experiments. Flat - one multi-
class classifier - red line. Blue line denotes global approach which we
use with Transformer models. And LCPN, green boxes, which are

used with fastText models.

4.6.1 Improvement of local classifier per parent node

The quality of the classifier predictions is dependent on the number of classes the
model should distinguish. Theoretically, UNSPSC could have 99 class per level at
most, but there is only 22 at most in our dataset. For example, if we train the classifier

4.6. Hierarchical label structure 27

only on the first level of the label hierarchy, the accuracy could reach 0.93. The
most natural way to start is a local classifier per parent node. We need K classifiers
in the vanilla setting, where K is the amount of parent nodes plus root. Despite
the simplicity, we found two main problems with the application of LCPN to our
dataset:

1. Multiplication of error. The deeper the taxonomy is, the more erroneous our
classifier becomes, as the probability of unsuccessful prediction affects next-
level prediction. For example, with 3 levels of depth with an accuracy of 0.93
at each level, we will get (0.93)3 ≈ 0.804 of the final prediction. So we should
consider the tradeoff between the number of classes for a single classifier and
the depth of prediction tree.

2. Hardware limitation. Modern models consume RAM at evaluation time, and,
in the case of the LCPN approach, the result composite classifier will be lin-
early scaled by a factor of K.

FIGURE 4.3: Jumping local classifiers per parent node are green boxes.
Green arrows show the flow of prediction, omitting the second level

of taxonomy.

To address the above two problems, we propose a new method, to which we will
refer as Jumping local classifier per parent node (JLCPN). The main idea is to omit
the middle levels of taxonomy and create a classifier for root and leaf parents level
(second level in our case). As we can see from the figure 4.3 classifier’s tree simplifies
the depth of UNSPSC taxonomy. For our particular case, choosing the described
above level is optimal. However, the proposed approach could also be generalized to
dynamic search over the space of depth and class quantity per subclassifier, exposing
them as hyperparameters of the hierarchical model.

JLCPN allowed us to reduce the composite model by 220 second-level subclassi-
fiers. Nevertheless, even when applying this improvement, each subclassifier with
optimal hyperparameters that were found in section 4.5 makes a 900 Mb memory
footprint. It leads to a ≈50Gb footprint when the full composite model is fully
loaded to the memory. It is a hardware constraint for us at the current moment,
so we applied the quantization technique.

Joulin et al., 2016b adapted product quantization method to store word embed-
dings. They managed to circumvent quantization artifacts without a significant loss

28 Chapter 4. Experiments

in accuracy. They claim that their improvement decreases a memory footprint by
two orders of magnitude than fastText while having the optimal balance between
memory usage and accuracy.

Model/Hyperparameters mF1 wF1 hF1

fastText Flat
Cat | softmax/dim 100/ngrams 2 0.907 0.915 0.934

fastText Flat
Cat | softmax/dim 100/ngrams 2 | quantized 0.897 0.901 0.924

fastText LCPN
Cat | softmax/dim 100/ngrams 2 | quantized 0.889 0.899 0.913

fastText JLCPN
Cat | softmax/dim 100/ngrams 2 | quantized 0.917 0.926 0.940

TABLE 4.8: Hierarchical LCPN models and quantization experiments

As we can see from Table 4.8 we started from the best result we achieved in the
previous experiment, which we refer to as Flat. The quantized version of the Flat
model had minor degradation in performance. We consider this as a reasonable cost
for removing hardware constraints. The quantized model consumes 9x less RAM
compared to the full version. Quantization allowed us to build a vanilla hierarchical
LCPN version of the model. LCPN also showed performance degradation, and we
can explain this by the Multiplication of Error mentioned above. Therefore, the best
results were achieved by our JLCPN with more than 1% in mF1 and 0.6% in hF1.
It is also worth mention that in out production setting, user can provide top level
category. This prior knowledge allows us to omit root-level classifier and go straight
to the corresponding subclassifier. The effect is hard to measure but we expect it to
improve the overall quality of the prediction.

4.6.2 Hierarchical classification with transformer-based models

Theoretically, we could apply LCPN(or leaner JLCPN version) approach to any clas-
sifier model. Nevertheless, memory constraint is hard to deal with for transformer-
based models. As a quick fix, we tried to use a single pretrained body of transformer
that will be used as embedding transformation of inputs. Moreover, multiple classi-
fication heads will form the JLCPN hierarchical classifies. Such an approach has not
shown any improvement and actually produced worse results than the flat version.
It could be explained by the fact that the only trainable parameters were the head’s
fully-connected layer weights. Furthermore, the body remained in frozen mode. So,
we decided to test RoBERTa with RNN head for our dataset.

Hyperparameters mF1 wF1 hF1
RoBERTa Flat 0.896 0.912 0.930
RoBERTa RNN head 0.910 0.922 0.953

TABLE 4.9: Experiments on RNN head of transformer-based model

A model with an RNN head allowed us to improve performance by 1.4 points in
mF1 over the flat version. Even though the current version model is slightly worse
in mF1(-0.7% compared to JLCPN), it showed the best hierarchical F1 0.953.

4.7. Effect of Using unlabeled data 29

4.7 Effect of Using unlabeled data

Only a part of the documents was labeled in our initial dataset, and an unlabeled
subset did not participate in the training. One possible approach to using such an in-
homogeneous dataset for our task is to divide it into two steps. At first, using all the
available data in our dataset, we train an unsupervised (also called self-supervised)
model that encodes words (make embeddings) in the most optimal way. In the sec-
ond step, the classifier is trained on the embeddings for the data obtained for the
labeled part.

In the next improvement step, we decided to incorporate knowledge of unla-
beled product data in our pipeline. Each model or its implementation has its own
way of the combination of supervised and unsupervised approaches.

Authors of fastText, Grave et al., 2018, created pretrained sets of vectors for 157
common languages, including English3. Their models were trained on publicly
available Common Crawl and Wikipedia datasets. For our experiments, we have
taken all product title information that we had in our dataset and trained unsurpris-
ingly set of vectors with same dimensionality (300) and other setting as Mikolov et
al., 2018 did.

Then we used both our and open sets of vectors as preloading a model before
supervised-mode training. It is worth mentioning that we have not seen any exam-
ples of work that supports doing so. Many practitioners claim that any remaining
influence of the original word-vectors may have diluted to nothing, as they were
optimized for other tasks.

Furthermore, the goals of word-vector training are different in unsupervised
mode (predicting neighbors) and supervised mode (predicting labels). However,
a similar type of transfer learning is common for transformer-based models, so we
decided to empirically try this approach.

Liu et al., 2019 claim that transformer-based models were originally trained on
big datasets, including the ones mentioned above. The library itself provides a con-
venient way to train Language Models from scratch 4, but our dataset is relatively
small, and the cost of training a full model is high (Sharir, Peleg, and Shoham, 2020).
Domain-specific Language Modelling is used to overcome this issue. The pretrained
model body is fitted to the domain using the same objective function as it was orig-
inally trained on. In the case of RoBERTa, MLM objective is a cross-entropy loss in
predicting the masked tokens.

Hyperparameters mF1 wF1 hF1
RoBERTa Flat 0.896 0.912 0.930
RoBERTa MLM Flat 0.903 0.918 0.935
fastText Cat | dim 300 0.838 0.870 0.897
fastText Open | Cat | dim 300 0.839 0.870 0.898
fastText Our | Cat | dim 300 0.842 0.875 0.901

TABLE 4.10: Experiments on the impact of unlabeled data

All the models shown in Table 4.10 are trained in a flat (non-hierarchical man-
ner); title and category fields have been used. For fastText models, dimensionality

3https://fasttext.cc/docs/en/crawl-vectors.html
4https://huggingface.co/blog/how-to-train

https://fasttext.cc/docs/en/crawl-vectors.html
https://huggingface.co/blog/how-to-train

30 Chapter 4. Experiments

FIGURE 4.4: Overview of the (1) pretraining and (2) fine-tuning pro-
cedure, which combines a transformer model with a language mod-
elling head first and afterwards with a task-specific classification

head. Brinkmann and Bizer, 2021

300 was applied, and all other hyperparameters were set to default. Any of the pre-
trained vector sets used in the experiment has not changed metrics significantly. We
can conclude that the effect of initial vectors is decaying during supervised training.

Similarly to Brinkmann and Bizer, 2021 we obtained small improvement to the
baseline (only 0.7 point in mF1) on domain-specific trained model body. Neverthe-
less, we believe that this approach could be improved by combining the hierarchical
approach described above.

31

Chapter 5

Results

5.1 Future work

In our research, we tried to solve the applied problem of improving suppliers’ rec-
ommendations (search) in terms of incomplete information about the catalog of
products from suppliers. We have suggested that if there is no direct match of the
title of the product in our historical records, then the best approximation may be
suppliers that can offer products that belong to the same category as the products
in the request. To achieve this, we decided to build the product classifier model and
used the generally accepted taxonomy as labels.

Our research efforts were equally spread between dataset preparation and model
selection steps. Our research was built sequentially: the next experiment was depen-
dent on the results of the previous one. The main conclusions and suggestions for
future work are as follows:

1. Information was collected from different data sources, and we have managed
to unify it into a single format by identifying similar fields. However, some
data source information remains too diverse. So we plan to train at least two
classifiers separately for suppliers and buyers.

2. We applied a couple of undersampling strategies to overcome major dispro-
portion in data classes. Nevertheless, we used rigid boundaries. Making such
boundary search a part of the pipeline will also make sense. For some classes,
it is also applicable to use oversampling approach.

3. In order to overcome the remaining but still significant imbalance after ran-
dom undersampling, we have tested two weighted techniques. Both of them
showed better results than the unweighted classification head. There are more
robust algorithmic approaches that can be applied to our dataset.

4. Our pipeline handles the transition between different taxonomies used as la-
bels by design. However, we have only used UNSPSC. As a future step, we
propose using domain-specific taxonomy and building transition riles.

5. We have shown that fastText, being not a novice but an industry-proven solu-
tion, shows quite similar and sometimes better to SOTA model results. Models
that require fewer resources and time to train are much faster to iterate on. We
are planning to iterate more on transformer-based models in the future.

6. More data is not always the best choice. We concatenated the title field with
category and description. Moreover, while usage of category data showed im-
provements, the usage of the description field showed degradation in perfor-
mance. We suggest trying different separate embedding strategies for different
fields and using a resulting vector in the classifier as a future improvement.

32 Chapter 5. Results

7. Among the different approaches to hierarchical classification, we have cho-
sen LCPN. We proposed an improvement to the LCPN, omitting middle-level
nodes, making the tree of the label taxonomy shallower. To the best of our
knowledge, we are the first who apply such an approach. As a possible direc-
tion for future work, we offer to generalize this approach to any tree structure
and maximum nodes per classifier as a hyperparameter of such a model.

8. Due to existing hardware limitations, the LCPN approach is not applicable
to transformer-based models. We applied the RNN head to iterate over tax-
onomy layers. This method has not shown any significant improvements, so
experiments with other architectures(GRU, LSTM) are a good choice for future
work.

9. Last but not least, we have tried to use an unlabeled part of our data. Experi-
ments showed minor improvements over the baseline. Nevertheless, we have
not tested this model with other techniques described above due to the time
limitations, and we leave it for future work.

5.2 Application of the classifier in supplier search

We’ve backtested the classifier on the main task - finding the best suppliers. We’ve
tried two approaches how to combine search engine results and categories predicted
by the classifier:

1. Filtering. In the first stage, all documents(product information attached to a
particular supplier) in the database are filtered using the categories predicted
by the classifier. This reduced subset is used by a search engine. Unfortunately,
this approach showed worse results compared to a search on a full database.
Considering specific cases, we concluded that the main reason is insufficient
coverage, as the classifier did not cover most of the categories encountered in
incorrect results.

2. Boosting. With this approach, the first stage calculates the search engine score
for all documents. For those documents where there is a coincidence of cate-
gories within the query, the score is multiplied by a factor. Additionally, we
cut off all predictions with a probability below 0.7. This approach helped to
improve search results (we were mainly focused on recall@10).

For example, for the search phrase, WHITE BOARD CLEANER previous version
of the system return a list with top whiteboard sellers. The classifier correctly clas-
sifies such request as cleaning and janitorial supplies, which lead to a more relevant
list of suppliers.

5.3 Discussions

We set ourselves the ambitious goal of learning to classify all possible products and
services. However, in reality, such a task turned out to be:

1. Impossible. Most of our research was spent collecting and improving the
dataset. However, a significant number of strict assumptions were made and
the resulting dataset covered only a small part of the underlying taxonomy.

5.3. Discussions 33

2. Unpractical. We analyzed the use of the model and possible future usage sce-
narios, which significantly narrowed the model’s scope.

Therefore, we decided to create our own taxonomy, which will connect suppliers
with buyers and will supplement the information about the product they exchange.
We plan to replace the UNSPSC taxonomy with our taxonomy.

Another drawback of our dataset was the large percentage of unlabeled data. We
only used buyer and supplier categories representation as additional tokens concate-
nated with a title for our classifier. However, most samples contain a semistructured
representation that can be transformed into a tree-based taxonomy. Our initial task
of classifying goods turns into a taxonomy mapping, a much narrower task in our
case. For example, for one source with 1.2m samples, we only need to map 400
supplier categories. With a little effort, most of the dataset can be labelled.

At the moment, the users do not influence the choice of categories. We plan
to use humans in the loop and influence users’ choice of categories as well as the
evaluation of classifier performance. We believe that a crowdsourcing approach will
help us get a sustainable flow of high-quality labeled data. We assume that we will
be able to link most categories of buyer/supplier in the early stages of receiving
such information in the data processing. Furthermore, such information could be
just used as-is in the recommendation stage.

34

Appendix A

Relation between the received
offers of bidders and savings

FIGURE A.1: Relation between the received offers of bidders and sav-
ings in Spain by García Rodríguez et al., 2020

FIGURE A.2: Relation between the received offers of bidders and sav-
ings in Ukraine

35

Appendix B

Example of prepared dataset

Data Provider Tite/Category UNSPSC
Suppler’s Catalogs

beaed.com Tag Coverall 10.5x6 Blk/Fl Grn Relief/Control Valve 55121503

globalindustrial.com
Aquaverve Touchless Cold Water Cooler,
Silver W/ Black Trim
Category: Water Coolers

48101710

grainger.com
8 in Work Boot, 10, EE, Men’s, Black,
Composite Toe Type, 1 PR
Category: Safety-Toe Work Boots and Shoes

46181605

grainger.com Transom Kit, Material: Steel, Overall Height: 10 ft
Category: Wire Partition Components 30152001

graybar.com Pendant Stations, Pushbutton, Yellow
Category: Pendant Stations 39121561

graybar.com C-Rail, 72 in. Long
Category: DIN Rails 39121410

hdsupplysolutions.com Sylvania® LED Bulb 10W A19, 2,700K, Package Of 6
Category: LED 39101628

hdsupplysolutions.com Kwikset® Delta Satin Nickel Dummy Lever
Category: Commercial Exit/Entry 46171503

lawsonproducts.com Hex Cap Screw Grade 8
Category: Hex Cap Screws and Hex Bolts 31161501

shi.com CTO5 400PD G6 MINI I3 8GB 500GB W10P 64
Category: Desktops and Workstations 43211507

shi.com CTO MEDIATEK MT7921 WLS 6 +BT5.2 WLAN
Category: Network Interface Cards 43201409

Buyer’s historical data

buyer 1
ULTRASONIC RAIL INSPECTION SERVICES
ALL REVENUE TRACK, 2 TIMES A YEAR FOR THEE
± 145 MILES PER EACH TEST, PRICE PER MILE (FY24)

25000000

buyer 1 MLT, 24V 25000000

buyer 2 Techlog Product Owner 2021- Q3-Q4- Techlog
Product Owner 01Jul2021 - 31Dec2021 81111504

buyer 2 Air King 30" 3 speed industrial oscillating fan #9175 27110000
buyer 3 Professional Services - Stack power cable 43221700
buyer 3 ASCO Rebuild Kit 27110000

TABLE B.1: Example of prepared dataset

36

Bibliography

Abbott, Alastair A and Ian Watson (2011). “Ontology-aided product classification: a
nearest neighbour approach”. In: International Conference on Case-Based Reasoning.
Springer, pp. 348–362.

Aleksandrova, Marharyta (2017). “Matrix factorization and contrast analysis tech-
niques for recommendation”. PhD thesis. Université de Lorraine.

Batista, Gustavo EAPA, Ronaldo C Prati, and Maria Carolina Monard (2004). “A
study of the behavior of several methods for balancing machine learning training
data”. In: ACM SIGKDD explorations newsletter 6.1, pp. 20–29.

Belkin, Nicholas J and W Bruce Croft (1992). “Information filtering and informa-
tion retrieval: Two sides of the same coin?” In: Communications of the ACM 35.12,
pp. 29–38.

Bensch, Stefan (2012). “Recommender systems for strategic procurement in value
networks”. In.

Berners-Lee, Tim, James Hendler, and Ora Lassila (2001). “The semantic web”. In:
Scientific american 284.5, pp. 34–43.

Bojanowski, Piotr et al. (2017). “Enriching word vectors with subword information”.
In: Transactions of the association for computational linguistics 5, pp. 135–146.

Brinkmann, Alexander and Christian Bizer (2021). “Improving hierarchical product
classification using domain-specific language modelling”. In: Proceedings of Work-
shop on Knowledge Management in e-Commerce.

Buitinck, Lars et al. (2013). “API design for machine learning software: experiences
from the scikit-learn project”. In: ECML PKDD Workshop: Languages for Data Min-
ing and Machine Learning, pp. 108–122.

Chang, Wei-Cheng et al. (2019). “X-bert: extreme multi-label text classification with
using bidirectional encoder representations from transformers”. In: arXiv preprint
arXiv:1905.02331.

Chang, Wei-Cheng et al. (2021). “Extreme multi-label learning for semantic match-
ing in product search”. In: Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery & Data Mining, pp. 2643–2651.

Chris Manning, Pandu Nayak (2018). Introduction to Information Retrieval. https://
web.stanford.edu/class/cs276/handouts/lecture12-bm25etc.pdf. Accessed:
2022-06-17.

Cui, Yin et al. (2019). “Class-balanced loss based on effective number of samples”.
In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 9268–9277.

Devlin, Jacob et al. (2018). “Bert: Pre-training of deep bidirectional transformers for
language understanding”. In: arXiv preprint arXiv:1810.04805.

Ding, Ying et al. (2002). “Goldenbullet: Automated classification of product data in e-
commerce”. In: Proceedings of the 5th international conference on business information
systems. Citeseer.

Fazekas, Mihály (2019). “Single bidding and non-competitive tendering procedures
in EU co-funded projects”. In: Brussels: European Commission, Directorate-General

https://web.stanford.edu/class/cs276/handouts/lecture12-bm25etc.pdf
https://web.stanford.edu/class/cs276/handouts/lecture12-bm25etc.pdf

Bibliography 37

for Regional Policy. https://ec. europa. eu/regional_policy/en/information/publications/reports/2019/singlebidding-
and-non-competitive-tendering.

Gao, Dehong et al. (2020). “Deep hierarchical classification for category prediction
in e-commerce system”. In: arXiv preprint arXiv:2005.06692.

García Rodríguez, Manuel J et al. (2020). “Bidders recommender for public procure-
ment auctions using machine learning: data analysis, algorithm, and case study
with tenders from Spain”. In: Complexity 2020.

Grave, Edouard et al. (2018). “Learning Word Vectors for 157 Languages”. In: Pro-
ceedings of the International Conference on Language Resources and Evaluation (LREC
2018).

Guha, Ramanathan V, Dan Brickley, and Steve Macbeth (2016). “Schema. org: evolu-
tion of structured data on the web”. In: Communications of the ACM 59.2, pp. 44–
51.

Hagberg, Aric, Pieter Swart, and Daniel S Chult (2008). Exploring network structure,
dynamics, and function using NetworkX. Tech. rep. Los Alamos National Lab.(LANL),
Los Alamos, NM (United States).

Isinkaye, Folasade Olubusola, Yetunde O Folajimi, and Bolande Adefowoke Ojokoh
(2015). “Recommendation systems: Principles, methods and evaluation”. In: Egyp-
tian informatics journal 16.3, pp. 261–273.

Joulin, Armand et al. (2016a). “Bag of tricks for efficient text classification”. In: arXiv
preprint arXiv:1607.01759.

Joulin, Armand et al. (2016b). “FastText.zip: Compressing text classification models”.
In: arXiv preprint arXiv:1612.03651.

Karatzoglou, Alexandros et al. (2010). “Multiverse recommendation: n-dimensional
tensor factorization for context-aware collaborative filtering”. In: Proceedings of
the fourth ACM conference on Recommender systems, pp. 79–86.

Kiritchenko, Svetlana, Stan Matwin, A Fazel Famili, et al. (2005). “Functional annota-
tion of genes using hierarchical text categorization”. In: Proc. of the ACL Workshop
on Linking Biological Literature, Ontologies and Databases: Mining Biological Seman-
tics.

Koren, Yehuda, Robert Bell, and Chris Volinsky (2009). “Matrix factorization tech-
niques for recommender systems”. In: Computer 42.8, pp. 30–37.

Kosmopoulos, Aris et al. (2015). “Evaluation measures for hierarchical classification:
a unified view and novel approaches”. In: Data Mining and Knowledge Discovery
29.3, pp. 820–865.

Kotsiantis, Sotiris, Dimitris Kanellopoulos, Panayiotis Pintelas, et al. (2006). “Han-
dling imbalanced datasets: A review”. In: GESTS international transactions on com-
puter science and engineering 30.1, pp. 25–36.

Le, Quoc and Tomas Mikolov (2014). “Distributed representations of sentences and
documents”. In: International conference on machine learning. PMLR, pp. 1188–1196.

Lemaître, Guillaume, Fernando Nogueira, and Christos K Aridas (2017). “Imbalanced-
learn: A python toolbox to tackle the curse of imbalanced datasets in machine
learning”. In: The Journal of Machine Learning Research 18.1, pp. 559–563.

Li, Jie et al. (2019). The Design and Implementation of a Real Time Visual Search System
on JD E-commerce Platform. DOI: 10 . 48550 / ARXIV . 1908 . 07389. URL: https :
//arxiv.org/abs/1908.07389.

Lin, Yiu-Chang, Pradipto Das, and Ankur Datta (2018). “Overview of the sigir 2018
ecom rakuten data challenge”. In: eCOM@ SIGIR.

Liu, Yinhan et al. (2019). “Roberta: A robustly optimized bert pretraining approach”.
In: arXiv preprint arXiv:1907.11692.

https://doi.org/10.48550/ARXIV.1908.07389
https://arxiv.org/abs/1908.07389
https://arxiv.org/abs/1908.07389

38 Bibliography

Mikolov, Tomas et al. (2013). “Distributed representations of words and phrases and
their compositionality”. In: Advances in neural information processing systems 26.

Mikolov, Tomas et al. (2018). “Advances in Pre-Training Distributed Word Repre-
sentations”. In: Proceedings of the International Conference on Language Resources
and Evaluation (LREC 2018).

Mu, Cun, Binwei Yang, and Zheng Yan (2019). “An empirical comparison of FAISS
and FENSHSES for nearest neighbor search in hamming space”. In: arXiv preprint
arXiv:1906.10095.

Padurariu, Cristian and Mihaela Elena Breaban (2019). “Dealing with data imbal-
ance in text classification”. In: Procedia Computer Science 159, pp. 736–745.

Payne, Joe and William R Dorn (2011). Managing Indirect Spend: Enhancing Profitability
Through Strategic Sourcing. Vol. 557. John Wiley & Sons.

Primpeli, Anna, Ralph Peeters, and Christian Bizer (2019). “The WDC training dataset
and gold standard for large-scale product matching”. In: Companion Proceedings
of The 2019 World Wide Web Conference, pp. 381–386.

Řehůřek, Radim and Petr Sojka (May 2010). “Software Framework for Topic Mod-
elling with Large Corpora”. English. In: Proceedings of the LREC 2010 Workshop on
New Challenges for NLP Frameworks. http://is.muni.cz/publication/884893/
en. Valletta, Malta: ELRA, pp. 45–50.

Robertson, Stephen, Hugo Zaragoza, et al. (2009). “The probabilistic relevance frame-
work: BM25 and beyond”. In: Foundations and Trends® in Information Retrieval 3.4,
pp. 333–389.

Sanh, Victor et al. (2019). “DistilBERT, a distilled version of BERT: smaller, faster,
cheaper and lighter”. In: arXiv preprint arXiv:1910.01108.

Sarwar, Badrul et al. (2001). “Item-based collaborative filtering recommendation al-
gorithms”. In: Proceedings of the 10th international conference on World Wide Web,
pp. 285–295.

Sharir, Or, Barak Peleg, and Yoav Shoham (2020). “The cost of training nlp models:
A concise overview”. In: arXiv preprint arXiv:2004.08900.

Shen, Dinghan et al. (2018). “Baseline needs more love: On simple word-embedding-
based models and associated pooling mechanisms”. In: arXiv preprint arXiv:1805.09843.

Silla, Carlos N and Alex A Freitas (2011). “A survey of hierarchical classification
across different application domains”. In: Data Mining and Knowledge Discovery
22.1, pp. 31–72.

Stein, Roger Alan, Patricia A Jaques, and Joao Francisco Valiati (2019). “An anal-
ysis of hierarchical text classification using word embeddings”. In: Information
Sciences 471, pp. 216–232.

Sun, Chong et al. (2014). “Chimera: Large-scale classification using machine learn-
ing, rules, and crowdsourcing”. In: Proceedings of the VLDB Endowment 7.13, pp. 1529–
1540.

SunTec (2019). UNSPSC Data Classification Services. https://www.suntecindia.com/
unspsc-data-classification-services.html. Accessed: 2022-05-25.

Tsagkias, Manos et al. (2021). “Challenges and research opportunities in ecommerce
search and recommendations”. In: ACM SIGIR Forum. Vol. 54. ACM New York,
NY, USA, pp. 1–23.

Vaswani, Ashish et al. (2017). “Attention is all you need”. In: Advances in neural in-
formation processing systems 30.

Wirojwatanakul, Pasawee and Artit Wangperawong (2019). “Multi-label product
categorization using multi-modal fusion models”. In: arXiv preprint arXiv:1907.00420.

http://is.muni.cz/publication/884893/en
http://is.muni.cz/publication/884893/en
https://www.suntecindia.com/unspsc-data-classification-services.html
https://www.suntecindia.com/unspsc-data-classification-services.html

Bibliography 39

Wolf, Thomas et al. (2020). “Transformers: State-of-the-art natural language process-
ing”. In: Proceedings of the 2020 conference on empirical methods in natural language
processing: system demonstrations, pp. 38–45.

Xu, Hu et al. (2019). “Open-world learning and application to product classifica-
tion”. In: The World Wide Web Conference, pp. 3413–3419.

Yang, Li et al. (2020). “Bert with Dynamic Masked Softmax and Pseudo Labeling for
Hierarchical Product Classification.” In: MWPD@ ISWC.

Zhang, Xuirui and Hengshan Wang (2005). “Study on recommender systems for
business-to-business electronic commerce”. In: Communications of the IIMA 5.4,
p. 8.

Zhang, Ziqi et al. (2020). “MWPD2020: Semantic Web Challenge on Mining the Web
of HTML-embedded Product Data.” In: MWPD@ ISWC.

Ziegler, Cai-Nicolas, Georg Lausen, and Lars Schmidt-Thieme (2004). “Taxonomy-
driven computation of product recommendations”. In: Proceedings of the thirteenth
ACM international conference on Information and knowledge management, pp. 406–
415.

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Rise of procurement centered solutions
	Economic motivation
	Thesis goals and structure

	Related Work
	Automated procurement process
	Problem Setting
	General-purpose recommender algorithms
	Supplier recommendation in procurement
	Product classification in supplier search

	Approaches to product classification
	Fully supervised approach
	Self- and unsupervised approaches
	General and domain specific SOTA
	Different approaches to hierarchical classification

	Dataset
	Overview of existing datasets
	Data collection
	Diversity of product information
	Data preprocessing
	Taxonomy depth selection
	Data processing pipeline
	Final dataset

	Experiments
	Metrics
	Class imbalance
	Data approach to class imbalance
	Algorithmic approaches to class imbalance

	Baseline classifiers
	Transformer-based classifiers
	Effect of using additional descriptive fields
	Hierarchical label structure
	Improvement of local classifier per parent node
	Hierarchical classification with transformer-based models

	Effect of Using unlabeled data

	Results
	Future work
	Application of the classifier in supplier search
	Discussions

	Relation between the received offers of bidders and savings
	Example of prepared dataset
	Bibliography

