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Abstract

Anomaly detection in images helps to identify abnormal or unusual patterns in im-
ages relative to normal data. This issue is crucial in various domains, such as detect-
ing abnormal areas in medical imaging, surface inspection, or photo editing. Many
of the proposed methods require additional markup on the images. One way to
solve this problem is image reconstruction. This method does not require additional
markup on training data and trains on normal images. In this study, we present an
approach that solves the Image Reconstruction problem by exploiting the Sinusoidal
Representation Network (SIREN). SIREN is capable of modeling complex signals
with great detail in small regions. We experimentally combined different loss func-
tions for our architecture to improve the visual perception of the image. This study
will also describe the different approaches we have tried in image reconstruction
and our method’s evolution.
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Chapter 1

Introduction

The development of computing machines and algorithms over the past 50 years
has passed the stage of a new digital revolution. This has affected almost all parts
of our lives and several industries - healthcare, manufacturing, finance, etc. Mean-
while, the field of digital image processing has grown exponentially in recent years.
Tasks of digital image processing include classification, feature extraction, image
compression, image restoration, and anomaly detection on images.

The popularity of automatic quality control in various domains is snowballing
because automation will lead to faster and more accurate quality control. Auto-
mated systems can work without interruption providing faster and more robust
control. The control with such systems is most often done by inspecting the visual
appearance of an object. A search of the defects in images among ordinary translates
to finding anomalous patterns that are not appropriate for the inspected object. De-
fect detection on the images could be helpful in various fields like fraud detection,
health care, cybersecurity, etc. There is a long history of using different algorithms
for finding anomalous samples. Classic approaches have a desirable performance
on low-dimensional data, but images are high-dimensional, and algorithms are suf-
fering under the curse of dimensionality. When there is a vast amount of data and
is sparse, more training is needed to solve a problem. Therefore we need a more ap-
propriate way for image analysis. Since Convolutional Neural Networks can work
with high-dimensional data, they became a state-of-the-art method for image clas-
sification, segmentation, object detection, anomaly detection, etc. Neural networks
are capable of modeling complex distributions of data. Therefore they apply to a
wide range of problems such as anomaly detection and image generation. Neural
networks could learn high-quality features at different levels that are extracted from
images. Then these features are used to train a binary classification algorithm for
anomaly detection. Instead of using a classification algorithm that is supervised in
its manner, we could use these features to train unsupervised method like One-Class
SVM[39]. This problem could also be solved by the generative model approach, like
deep convolutional generative adversarial networks that work well for anomaly de-
tection problems.

Sitzman et al. proposed a new method for signal representation parametrized
by neural networks that could be used for image generation and further fore anomaly
detection[41]. They showed that periodic activation functions are well suited for rep-
resenting complex natural signals and their derivatives. These representations are
capable of modeling signals with great detail. Implicit neural representation com-
bined with other image anomaly detection methods could be potentially helpful for
anomaly detection on images.
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In Chapter 2, we provide the overview of the methods which were used during
our study and anomaly detection approaches. In Chapter 3, we define the problem
of anomaly detection and present an overview of the future work. In Chapter 4,
we describe our SIREN based approach to anomaly detection with discriminator
for anomaly score calculation. In Chapter 5, we describe experiments which were
conducted, providing visual examples of the reconstruction on different dataset and
details about implementation. Chapter 6 shows the results of best model reconstruc-
tion on damaged images and as anomaly scores. Finally in Chapter 7 we summarize
the results and provide possible next steps.
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Chapter 2

Related works

2.1 Implicit Neural Representations with Periodic Activation
Functions

Signal representation is predominantly the way we look at an image. We can
consider a signal as a function of several variables or a vector in a particular space.
Different representations of the signal help to identify its additional properties. Sitz-
mann and others[41] suggested a brand-new method for representing any natural
signal. Classic signal representation techniques are primarily discrete. For example,
pictures are represented as a grid of pixels. Their proposed method allows represent-
ing the signal as a continuous function, for example, mapping the pixel coordinates
to the RGB values. There is no such function that would parameterize a raw image
as a mathematical formula. However, they tried to approximate this function with a
neural network.

In general, they described a class of functions Φ that maps x to the particu-
lar value while satisfying the constraint F where Φ is parametrized with a neural
network.

F(x, Φ,∇xΦ,∇2
xΦ, . . .) = 0, Φ : x → Φ(x)

Constraint F specifies the relationship between the domain of the signal and
the value of interest. These are the coordinates of the pixel on the grid and its inten-
sity value in RGB or grayscale in the images. The use of continuous representations
of the signal has several notable advantages over discrete representations. The fact
that the function is defined on a continuous interval of x allows representing the
picture with great detail without reference to the size of the grid in discrete repre-
sentation. However, this ability is limited by the neural network’s capacity used for
the parametrization of the function. Such representation is not only continuous but
also differentiable. That implies that higher-order gradients and derivatives can be
calculated analytically, which is beneficial in various applications.

Some previous studies have tried to use Rectified Linear Unit (ReLU) based
multilayer perceptrons (MLPs) for implicit neural representations. These studies
have shown that models with ReLU do not have enough capacity to model the signal
in great detail and its derivatives. Such results could be explained by the fact that
RELU is a partially linear function. Its first derivative is zero or one, and the second
is always zero. The authors propose using sine as an activation function for implicit
neural representations to address this problem.

Φ(x) = Wn(φn−1 ◦ φn−2 ◦ . . . φ0)(x) + bn, xi → φi(xi) = sin(Wixi + bi)

Where φi is an i-th layer of the MLP.
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Since the sine function is not linear and the derivative of a sine function is
cosine (phase-shifted sine function), it will have the ability to model the high-order
derivatives better. It follows that the derivative of the sinusoidal representation net-
work (SIREN or MLP with sine activation function) is itself a SIREN with all the
network properties, and this does not hold for any other non-linearity. Exploiting
SIRENs and a specific constraint F is possible to study not only the relationship be-
tween x and Φ(x) but also the relationship between x and derivatives of Φ(x), which
can be beneficial in various problems.

With a specific weights initialization scheme that controls the distribution of
activations, it is possible to build deeper networks and achieve faster convergence
than with activation functions such as ReLU, RBF-ReLU, ReLU with positional en-
coding, and other non-linearities

One example of implicit neural representation is image fitting. Consider the
case when needed to find a function that will map pixel coordinates on a grid to
their RGB value.

φ : R2 → R3, x → Φ(x)

D = {xi, f (xi)}

The dataset D used to fit the image consists of pairs of coordinates xi and the
pixel’s value at that coordinate f (xi). The only constraint F that needs to be set is
that function Φ must output a pixel intensity value based on f (xi) and itself, which
can be translated into the loss function L = Σi||Φ(xi)− f (xi)||2. The network, which
was supervised using only pixel intensity values, represented the ground truth im-
age and its derivatives. Considering other approaches, only the ReLU with posi-
tional encoding could represent ground truth image and in the representation of
derivatives succeeded only SIREN.

FIGURE 2.1: Comparison of different activation functions fiiting an
image[41].
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In this paper, the authors have shown many applications of implicit neural
representations of signals such as image, video, and audio representation, solving
first-order differential equations, 3D shape reconstruction, and learning space of im-
plicit functions. The last application shows that the SIREN could not only learn one
function but is also capable of parametrizing the whole space of functions. On the
example of images, we can learn the global prior over images with a similar appear-
ance and then use the parameterized space of functions for the image inpainting
task. We decided to use this property of the SIREN in our work for anomaly detec-
tion on images.

2.2 Generative Adversarial Network

Supervised machine learning models are divided into two categories: discrim-
inative and generative models. They approach the problem from two different an-
gles. Discriminative algorithms directly model the conditional probability of the
target Y given data samples X, p(y|x). It finds the decision boundary between
classes. Generative models are algorithms that make predictions by approximat-
ing joint probability distribution p(x, y). Afterward, conditional probability p(y|x)
could be obtained by using Bayes Theorem. That is, they explicitly model the dis-
tribution of data. Discriminative learning algorithms are preferred in many tasks
since they need fewer data and are more computationally efficient than generative
algorithms. Probabilistic computations in Maximum Likelihood Estimation inside
generative models are difficult to approximate.

Goodfellow et al.[13] proposed Generative Adversarial Networks (GANs),
which tackle this problem by introducing a new way of training a generative model
as a supervised learning problem that involves two models: a generative model G
and a discriminative model D. GANs are unsupervised models that use supervised
loss during the training process. Exploiting prior noise pz(z), most often sampled
from Gaussian Distribution, generative model D learns distribution pg over the data.
Discriminative model D(x; θd) is responsible for classifying whether sample x came
from data distribution or generative model distribution pg[12]. D(x) outputs the
probability of whether x belongs to the pdata. Discriminative model is trained to
maximize the probability of correctly distinguishing samples from pdata and pg when
Generator is trained to minimize log(1− D(G(z))).

In other words, generative model G and discriminative model D are playing
a min-max game where they try to reach Nash equilibrium[33] with the following
value function V(G, D):

min
G

max
D

V(D, G) = Ex∼pdata(x)[log D(x)] + Ez∼pz(z)[log(1− D(G(z)))]

The order in which we maximize the value function relative to the discrim-
inator and then minimize relative to the generator is essential because we need to
improve our generator relative to the best discriminator. During GAN training, it is
necessary to have a balance between the discriminator and the generator; in terms of
game theory, they need to be in equilibrium because if the discriminator trains faster
and can distinguish samples from different distributions, then the generative model
G will not be able to approximate data distribution pdata well.
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2.2.1 Conditional Generative Adversarial Network

In Generative Adversarial Network without conditioning, we cannot control
modes of data being generated. Mehdi and Mirza[32] proposed to condition any
extra information y to direct the generation process to a specific mode depending on
y. They called it the Conditional Generative Adversarial Network (CGAN). Adding
conditioning yields the following GAN value function V(G, D):

min
G

max
D

V(D, G) = Ex∼pdata(x)[log D(x|y)] + Ez∼pz(z)[log(1− D(G(z|y)))]

They trained CGAN on the MNIST [30] dataset where the property we want
to control will be a digit from 0 to 9. With the help of CGAN, it is possible now to
control the generation of samples with a particular mode during the test time.

In our work as additional information for the generation process, additional
information was the features of the cropped image after the last layer of the feature
extractor.

2.2.2 Improved training for GANs

Finding a balance between the discriminator and the generator during GAN
training is not a trivial task. Salimans, Goodfellow et al.[36] highlighted the prob-
lems that arose during GANs training and suggested different approaches to tackle
these problems. Training involves gradient descent to minimize the objective func-
tion, which does not guarantee the Nash equilibrium, and therefore training fails to
converge. Simultaneous minimization of the cost function for the discriminator and
the generator does not guarantee the algorithm’s convergence. If the cost function of
the discriminator is minimized, then the cost function of the generator can increase,
and therefore the algorithm may not converge in many cases. Second-way GAN
training that can fail is the situation where discriminator gradients point to similar
directions. If the generator produces a very plausible output, then it can continue to
generate only this output.

In this paper, the authors showed many approaches to stabilize the training
and improve the convergence of GANs, one of which is feature matching which pre-
vents the generator from overfitting on the operating discriminator. They introduce
a new objective that pushes the generator to match the expected value of the features
on intermediate layers of the discriminator. The new objective for the generator is
defined as:

||Ex∼pdata f(x)−Ez∼pz(z)f(G(z))||22
The second approach that they introduce is minibatch discrimination, which

tackles the GAN problem of mode collapse. Since the discriminator processes each
example separately, there is no relation between the gradients of these examples,
and they can point in analogous directions which cause mode collapse. To avoid
the collapse of the generator minibatch discrimination is used. This is a technique
where the discriminator looks at several examples in combination, not separately.
Additional information in the minibatch allows generating perceptually appealing
images posthaste[36]. They also proposed an Inception score for measuring the qual-
ity of the images and other minor improvements for the GAN training. We experi-
mented with some of them in our work.
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2.2.3 Wasserstein Generative Adversarial Network

To address the vanishing gradients problem and mode collapse, Martin Ar-
jovsky et al.[4] proposed to exploit Wasserstein distance instead of Kullback-Leibler
divergence[28]. Wasserstein distance is intractable in the original form, but using
Kantorovich-Rubinstein duality, it can be simplified to:

W (Pr, Pθ) = sup
‖ f ‖L≤1

Ex∼Pr [ f (x)]−Ex∼Pθ
[ f (x)]

Where Pr, Pθ are two distributions and f is the 1-Lipschitz function that satis-
fies the following constraint:

| f (x1)− f (x2)| ≤ |x1 − x2| .

In order to calculate Wasserstein distance f is learned by a discriminator net-
work D without any activation function at the end and single scalar output. Func-
tion f acts as a critic and evaluates the generated image. The higher the rating, the
closer the generated image is to the real one. Without any additional constraint on
weights, discriminator D could output any real number. In order for the function to
satisfy the 1-Lipschitz conditions, they clip the weights after each gradient update
to the range [-0.01, 0.01]. In later work, gradient penalty was proposed to satisfy the
1-Lipschitz restrictions. We experimented with different GAN architectures during
our work on anomaly detection on images, including Wasserstein GAN.

2.3 Anomaly Detection

Anomaly detection is a problem of identifying non-conforming items in the
dataset. These non-conforming items are often called outliers or anomalies. Their
appearance may indicate objective internal changes or external interventions. Out-
lier detection has various use cases across different industries, including monitoring
data-centers monitoring infrastructure, medical signal analysis, transaction moni-
toring, and spam detection. In almost every quantitative discipline, applications for
outlier detection could be found. There are three main classes of approaches to tackle
this problem.

2.3.1 Supervised anomaly detection

One class of anomaly detection approaches is supervised learning. To do this,
we should possess a labeled dataset of normal and abnormal observations. Outliers
are infrequent events that make up a small fraction of the data relative to standard
samples. For anomaly detection with supervised learning, binary classification is
performed. Most classification machine learning algorithms are made under the
assumption that we have an equal number of samples in each class. This results
in bad performance of the classification algorithm, especially for the poorly repre-
sented class. Impaired performance in a minority class is a problem because the
anomaly detection algorithm aims to classify unusual samples correctly and there-
fore is more delicate to errors in the minority class. Besides, the labeled dataset could
be non-representable of all the possible outliers. During training, the classification
algorithm may see an anomaly not at all similar to the training sample.
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Also, abnormal samples on the test network may be from a different distribu-
tion altogether. A trained classification algorithm will not detect them, which will
worsen the test results. Therefore most of the anomaly detection algorithms are ei-
ther statistical or unsupervised.

2.3.2 Semi-supervised anomaly detection

Semi-supervised anomaly detection algorithms are using a dataset with only
regular samples without any outliers. The algorithm learns the general data model
and then determines the anomalies by the substantial deviation from the data model.
These methods are also called one-class classifiers. One of the most famous algo-
rithms for semi-supervised anomaly detection is One-Class SVM[39]. During train-
ing, SVM sees only data without anomalies, and then this model classifies anomalies
and standard samples on test data. It tries to alienate data instances from the origin
in kernel space, leading to complex structures that describe the dataset. One-Class
SVM tries to find a function that is positive for areas with high density and negative
for low density. Although One-class SVM is a semi-supervised method, by using
soft-margin, it becomes unsupervised.

Approaches based on the autoencoders[27] suggest that it can learn similar
patterns in a normal signal, and it will be able to reconstruct them well. Autoen-
coders are a class of neural networks which goal is to produce output most similar
to the input. They compress input into the latent space and then reconstructing the
output from this low-dimensional representation. Autoencoders suggest that if the
model is learned to reconstruct normal data, it will not reconstruct the anomaly.

2.3.3 Unsupervised anomaly detection

The most flexible setup for anomaly detection, which does not require addi-
tional information, is unsupervised learning. These approaches do not differentiate
between training and test samples. They detect anomalies based only on the inter-
nal properties of the data. Since anomalies are rare and unknown during training,
the problem is reduced to modeling the distribution of regular data and introducing
measurements in space to detect anomalies. Unsupervised anomaly detection has
three major classes: Nearest-neighbor methods, Clustering methods, and Statistical
algorithms.

The most straightforward way of anomaly detection is k-nearest-neighbors[3]
which is different from the k-nearest-neighbors classification algorithm. This method
is designed to detect global anomalies and is not capable of detecting local anoma-
lies. Initially, the distance to the k nearest neighbors is calculated for each point, and
then an anomaly score is calculated. Based on the variation of the algorithm, the
distance to kth-NN or the average of k-NNs is taken. Value of the anomaly score is
highly dependent on the distance we choose and the data normalization. Therefore
is not a trivial task to select an appropriate threshold for outliers.
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The second commonly used anomaly detection technique is clustering-based,
which groups regular training data into clusters. If the new points do not belong
to any of the clusters, they are considered anomalous. By type of clustering, algo-
rithms are divided into single and multi-class methods. DBSCAN is most often used
to detect anomalies with the help of clustering[10]. For each point, the neighbors in
a particular neighborhood with a radius of ε are counted. If this value is greater than
the minimum number of points, then a cluster is created, and this process continues
on the neighbors’ neighbors. Then for a new point, distance to core points of the
cluster is calculated, and if this distance is more significant than ε, the point is con-
sidered anomalous. K-means[24] and other clustering methods, such as hierarchical
clustering, are less preferable but could work in specific cases.

Third anomaly detection technique purposes estimating the probability den-
sity distribution of the normal data. Density estimation on a training dataset is a
straightforward method of anomaly detection. A new point that lies in an area of
high density is classified as normal, in another case, it is an anomaly. The most com-
mon methods used in this class of algorithms are Kernel Density Estimation and
Gaussian Mixture Model. Gaussian distribution is often used to model the data. A
more versatile approach is the Gaussian Mixture Model which is a linear combina-
tion of normal distributions with the following formula for probability density:

PGM(x) =
1

NGM

NGM

∑
j

{
aj

1

(2π)d/2
∣∣Σj
∣∣1/2 exp

{
−1

2
(
x− µj

)T Σ−1
j

(
x− µj

)}}

Means and covariances of the single Gaussian component are optimized using
the Expectation-Maximization algorithm.

2.3.4 Anomaly detection in computer vision

Anomaly detection is a huge problem that occurs in various fields. GANs have
successfully been applied to model high-dimensional data distribution. Generative
adversarial networks can model normal data behavior using the adversarial learn-
ing process and then detect anomalies by measuring anomaly score [37]. The vast
majority of GANs approaches to anomaly detection are based on an idea proposed
by [8]. GAN maps samples from noise prior to data distribution in the original for-
mulation, and the discriminator tries to distinguish between generated and actual
samples. In this work, Bidirectional Generative Adversarial Network (BiGAN) was
introduced. BiGAN extends this training process by adding the inverse mapping of
the output data back to latent space. This strategy is a basis for anomaly detection
using GANs. Schlegl et al. proposed AnoGAN[38], a deep convolutional genera-
tive adversarial network for anomaly scoring strategy using the mapping from im-
age space to latent space. Efficient GAN-Based Anomaly Detection (EGBAD) was
introduced as a first approach using BiGAN architecture[44]. EGBAD allows com-
puting anomalies without optimization step like in AnoGAN. Inspired by BiGAN,
AnoGAN, and EGBAD, Akcay et al. introduced the new approach GANomaly[2].
They trained Autoencoder to learn low dimensional representations simultaneously
with GAN for learning the manifold of regular samples. This approach was an im-
provement because it requires nothing but a generator and discriminator network
as in the original method.
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Some of the recent studies proposed alternative anomaly detection approaches
based on image completion. Haselmanm et al., in two consecutive works[18][17],
proposed deep learning based approach for anomaly detection on images. In the
first paper, a convolutional neural network (CNN) is used for image completion on
the image patches to reconstruct its pattern. Since the network is trained only on
normal image patches, it should reconstruct them well. Then by taking a pixel-wise
difference of input and output anomaly score is obtained. In the second work, they
used a fully convolutional network (FCN) for defect segmentation. They proposed
to generate artificial defects on normal data and then train the model in a supervised
setting.
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Chapter 3

Problem Formulation

FIGURE 3.1: Example of image anomaly detection[5]

People are very good at recognizing whether they have seen this image before,
whether it is something new or abnormal. So far, machine learning approaches fail
to detect anomalies among ordinary objects well enough. There are many applica-
tions where detecting anomalies will be helpful. One of the critical factors for op-
timization in production is the automatic detection of anomalies. We can recognize
outliers by visual inspection of an object and search for non-conforming patterns on
it. For humans, this does not cause any problems, but it is pretty tricky for com-
puters. Unlike other computer vision tasks, anomaly detection suffers from many
problems such as class imbalance, different appearance of anomalies, and undis-
covered anomalies. Anomalies are infrequent. In addition, they can be of different
textures, sizes, and shapes. Different appearances make it very difficult to collect
data in order to cover all types of anomalies. Some algorithms are designed in a
semi-supervised setting. They are trained using only standard samples.

Recently, deep learning is widely used in the field of computer vision. Deep
learning algorithms are capable of modeling complex non-linear data patterns and
acquire unbelievable results in many areas. Deep generative models as one part
of deep learning could model the distribution of the data. Generative Adversarial
Network is an essential branch in deep generative modeling. This algorithm can
learn to model data distribution and reproduce it. Since GANs can learn to represent
data distribution, some recent studies exploited it for anomaly detection. GANs
are the most potent generative models which generate the most plausible results.
GANs combined with the latest advances in computer vision could bring anomaly
detection techniques to a higher level.
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The signal can be presented with the help of different representations. A new
approach to representation was proposed by Sitzmann et al., in which a fully con-
nected neural network with periodic activation function (SIREN) is used to param-
eterize the image. This approach can model the signal in great detail and its deriva-
tives. They also showed that with the help of Hypernetwork, it is possible to gen-
eralize over the space of SIRENs, which makes it possible to solve inverse problems
like image inpainting. If we can learn such a prior over SIRENS that parameterize a
set of images, it can be used in semi-supervised anomaly detection, where we learn
the appearance of normal data.

In the scope of this study, we rely on SIREN as a primary approach for im-
age reconstruction. We also used many techniques to directly train SIREN via an
adversarial training framework combined with loss functions for image quality im-
provement. Summarizing, in this work, we focus on the following directions:

• Impact of Triplet Loss as a loss function for discriminator network D.

• Investigate the Sinusoidal representation network for the anomaly detection
task.
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Chapter 4

Method

Our approach has the following essential components: Objective Function,
Crop convolution decoder, Periodic activation for image reconstruction, and Dis-
criminator as anomaly estimator, described in the corresponding sections below.
We focus on different approaches to improve the reconstruction capabilities of our
method. We study combinations of different loss functions and various architecture
variations. Besides, we tested embeddings of the trained discriminator with Triplet
loss for anomaly score calculation.

Four our method training, we experimented with a combination of several
loss functions. Our primary loss for the reconstruction was the Mean Squared Error
(MSE). With the help of MSE, the Generator can learn a good reconstruction on a
training set but still could have bad perceptual quality on a validation set.

4.1 Network architecture

Our approach is a classical auto-encoder image-to-image translation network.
From now on, we will call it a Generator (G). Where Decoder (Dec) is based on
SIREN with different variations in architecture. One of the branches in this study is
training Dec as a GAN with different setups of the Discriminator (D). The goal is
to train G that takes the image with the cropped center(IC) as an input to Encoder
(Enc), Enc learns data representation in the cropped region based on patterns from
the area around the crop and removes image noise, Dec reconstructs cropped part of
IC.

When we train G as a GAN, D takes the output IR and compares it with the
entire input image I I . Training should be done on a set of images without anomalies.
After training, G is able to reconstruct cropped area as it is normal, and D can evalu-
ate a level of abnormality after compassion between normally reconstructed IR and
abnormal I I . We also study the reconstruction capabilities of the Generator without
an additional discriminator evaluation during training.
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4.1.1 Crop convolution encoder

Generator G takes an image I I with a cropped center and tries to reconstruct
the missing region. To train the SIREN on a set of images, we need to provide sup-
plementary information to the input. In our work, as additional information, we
used high-level feature representations obtained from the convolutional neural net-
work encoder (Enc). If we feed an image with a cropped center to Enc, then closer
to the last layer, most of the values in the filter responses will be zero. To overcome
this problem, we propose to use Enc with Crop Convolutions instead.

Crop convolution works the same as the regular convolution(conv.) layer. It
slides through the height and width of the image with a given stride producing the
image representation of the given receptive field. We changed the convolution in
such a way that when the kernel slides through the image, it touches the cropped
center only by a certain number of pixels. During our study, we experimented with
activation functions for our encoder. We used the sine activation function with the
initialization scheme described in Section 4.1.2. This experiment did not give im-
provements in both the reconstruction quality and training speed. Therefore we de-
cided to use ReLU as an activation function for our Enc. As a weights initialization,
we used Kiaming Initialization[19] which considers the non-linearity of the ReLU
activation function.

During the training, the input to our Enc is a fixed size 64x64 grayscale image.
The image is passed through a stack of crop conv layers, where filters with a recep-
tive field of size 3x3 are used. The stride of the convolution is fixed to 1 pixel. The
spatial padding of each crop convolution layer is 1. This is done in order to reduce
the original size by two times after each layer. Crop convolution layers are followed
by Fully-connected (FC) layers which have 512 channels. FC was added to diminish
the size of the feature map, which reduced the input size to the SIREN several times.
Many experiments have been conducted with the last layers of the encoder to give
the decoder input the most expressive vectors. The best results were obtained with
1 FC layer with 512 activations.

To standardize the inputs to layers for each minibatch, we use batch normal-
ization after each layer. It helps to reduce the number of epochs needed to train the
Enc and stabilize the training process[23].
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4.1.2 Sinusoidal representation network

With the SIREN, we can obtain a continuous representation of the signal (im-
age), and it introduces a new method for solving the inverse problem like image
inpainting. It is possible to fit a continuous SIREN representation by using only par-
tial observations of the discrete signal. Many image processing problems could be
solved by using this property.

As it is described in Section 2.1, to parametrize a single image with the SIREN,
we need a dataset D. In order for SIREN to be able to parameterize the whole dataset
of images, we added latent low-dimensional code to each pair of coordinates xi in
dataset D. We experimented with different sizes of latent code vector.

FIGURE 4.1: Example of JPEG-like artifacts

The function described in Section 4.2 can also act as a constraint for the SIREN.
Style and perceptual loss also ensure that the output pixel intensity depends on the
intensities of the original image f (xi). To parametrize an image, we need constraint
C. It has been shown experimentally in Section 5.6 that a combination of perceptual,
style and MSE losses can be also a good constraint for SIREN.

The final SIREN architecture during our study consists of 5 fully connected
(FC) layers with 512 activations. To stabilize gradient flow and create deep archi-
tectures, SIREN needs to be initialized with control over the activation distribution.
A unique weight initialization scheme was designed by Sitzmann et al., which en-
sures that at the input to each sine activation is normally distributed with a standard
deviation of 1. Weights are drawn from the distribution:

wi ∼ U (−
√

6/n,
√

6/n)

First layer of the SIREN is initialized with weights so that the sine function
spans multiple periods from [-1, 1]. The frequency of the first sinus activation was
experimentally selected and is equal to 30. This initialization scheme grants SIREN
fast and robust convergence using Adam optimizer[26].

sin (ω0 ·Wx + b)
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4.1.3 Discriminator as anomaly estimator

For the image abnormality evaluation, we exploit a discriminator trained with
the Triplet loss function, which is often used in metric learning tasks[21]. Triplet Loss
is a distance-based function with the following three inputs: anchor and positive are
of the same class and negative, a different class from the anchor.

First, we calculate embeddings for every of three inputs by feeding them to
discriminator D, whereafter the Triplet loss function is calculated. The goal of the
loss function is to minimize the distance between the anchor (a) and positive (p)
while maximizing it between the anchor and negative (n). Mathematically we can
write triplet loss in the following form. Where d is a distance function used for
calculation and margin m is manually selected.

L = max(d(a, p)− d(a, n) + m, 0)

Margin helps in the following two situations. In the first situation, the distance
to the positive and negative is the same, and we need the distance to be less to the
positive class. In the second case, the distance to the negative class is greater, but
we still want to increase it slightly. Margin is used for such cases and is selected
concerning the task.

During generator G training, the discriminator acts as an adversary. It dis-
tances the embeddings of the reconstructed image IR from the ground truth image
embeddings I I and brings the I I closer to the embeddings of the rotated image IRot.
We had an assumption that in such a setting, the discriminator would be able to
generate rotation invariant embeddings. It has been shown that adversarial training
improves the result of image inpainting on some datasets. The loss function of the
discriminator can be written as:

L = max(d(I I , IRot)− d(I I , IR) + m, 0)

Image with an anomaly is used during test time as an input to the generator.
We crop the center from the anomalous picture, and the generator must reconstruct it
without an anomaly. Then cosine distance is used for the abnormality evaluation. By
measuring the distance between the original image and reconstruction cos(I I , IR),
we obtain an anomaly score. Final discriminator loss function can be written as :

Ldis = max(cos(I I , IRot)− cos(I I , IR) + m, 0)

The discriminator is a three-layer CNN with 4-th FC. The network has 5x5 con-
volution in every Conv layer. PReLU[20] was used after each layer as an activation
function. To reduce the dimensions of the feature maps, we added max-pooling af-
ter each layer. Also, it makes the network more robust to the changes in the feature
positions in the image. To reduce overfitting and improve generalization, we used
the Dropout layer[42] with p=0.2.
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4.2 Objective

Reducing the MSE does not guarantee that the reconstructed region will have
a flawless transition to neighboring pixels. Therefore the objective function of our
method inspired by Guilin Liu et al.[31] is a combination of multiple loss functions.
Given an input I I and reconstructed IR, we compute MSE, which in addition is also
a perfect constraint for the SIREN-based encoder, which is described in Sec 4.1.2. For
this purpose, any pixel-wise loss would be suitable, but we have empirically found
that the MSE behaves best of all.

Lmse = ∑
i

∥∥∥I I
i − IR

i

∥∥∥2

To calculate the next pair of losses, we exploited the VGG-16 network proposed
by Karen Simonyan and Andrew Zisserman as a loss network[40]. VGG-16 consists
of 16 layers, including thirteen convolutions with 3x3 filters and fully connected
layers. Stride and padding of all layers are fixed to 1 pixel. For further purposes,
features only from convolution and pooling layers were used.

Convolution Neural Network (CNN) learns spatial hierarchies of features via
backpropagation. If we feed an input image I I to the CNN, it will be encoded in each
layer by the filter responses. The perceptual loss function computes the difference of
feature representations of I I and IR after each convolution layer[25]. Let Ψp be the
activation of pth layer of the CNN. We can define perceptual loss as follows:

Lperceptual =
p−1

∑
p=0

∥∥∥ΨII

p −ΨIR

p

∥∥∥
1

The perceptual loss function is used to compare the style and context of two
images. Perceptual loss is very similar to the per-pixel loss functions, and it is more
often used in computer vision applications. In our case, it improves the quality
of the reconstruction for some experiments described in Section 5.6. We use the
VGG-16 network pre-trained for image classification on ImageNet[7] to calculate
the perceptual loss.

As the last component for our objective function, we use style loss[25]. Style
loss is similar to perceptual loss, but we construct a Gram matrix before calculating
L1 distance. To determine the style of the image concerning the context, we need to
calculate the gram matrix. We construct a gram matrix by computing the correlation
of feature representations on different layers.

GI
p = (ΨI

p)
ᵀ(ΨI

p)

Where GI
p is a product between vectorized feature maps on layer p. If we

calculate the same gram matrix for ground truth and reconstruted image, two can
be compared to calculate the difference in style between I I and IR. Style loss is
defined as follows:

Lstyle =
P−1

∑
p=0

1
CpCp

|Kp(GI I

p − GIR

p )|1

Suppose feature representations on the pth layer have the shape Hp×Wp×Cp,
the gram matrix will be of shape Cp × Cp. Kp is a normalization factor which equals
1/(Hp ×Wp × CP).
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The final generator objective is a weighted sum of the previously described
loss functions with experimentally selected coefficients. It has the following form:

Lgen = Lmse + 0.01Lperceptual + 0.1 Lstyle

Generator and discriminator are trained with a joint loss function combined
with a previously described generator loss function and discriminator loss function
from Section 4.1.3. The objective for full network training is combination of genera-
tor and discriminator objective functions.

Ltotal = Ldis + 10Lgen

4.3 Anomaly score

Since the final discriminator is trained with triplet loss with cosine distance,
we can determine the anomaly score by measuring the distance between I I and IR

discriminator embeddings. Further, we need to determine the threshold, which will
determine whether there is an anomaly in the image. To obtain cosine distance we
need to subtract the cosine similarity from one. For two vectors, cosine similarity is
given as follows:

similarity = cos(θ) =
A · B
‖A‖‖B‖ =

∑n
i=1 AiBi√

∑n
i=1 A2

i

√
∑n

i=1 B2
i

distance = 1− similarity



19

Chapter 5

Experiments

5.1 Implementations details

We used a standard toolkit for Machine Learning. Solutions and experiments
described in this paper were implemented on Python 3.8 (Van Rossum and Drake,
2009)[43], which interpreted high-level, general-purpose programming language.
For the construction and training of the neural networks, PyTorch 1.5 (Paszke et
al., 2019)[34] was chosen over TensorFlow (Abadi et al., 2015)[1], as it is more intu-
itive and works on dynamic graph concept. The whole pipeline is constructed using
PyTorch Lightning[11] since, once implemented, it is possible to add new function-
ality rapidly. For the visualization of the learning process, Tensorboard was used
because it is effortless to plot losses and images. In order to process images, manip-
ulate with matrices and do visualizations, we employ Opencv[6], NumPy[16], and
Matplotlib[22].

This section will provide an overview of the experiments that have been per-
formed. Calculation of the abnormality score will be conducted only for the best
experiments on two datasets.

5.2 Datasets

Two primary datasets were used to train the generator. The first dataset con-
sists of aircraft rivets. Rivets are used to connect two metal sheets on an airplane.
Counting and inspecting the rivets is a crucial step in inspecting the aircraft. The
first task we faced during our study was to find out if there was an anomaly in the
image of the rivet. The dataset used in our work was assembled independently and
consisted of 80 rivets of the same type. They were collected from the images of the
aircraft’s skin. Many experiments have been conducted to select the correct sample
to train our algorithm. We decided to return all the rivets so that the orientation of
the cross coincided. An example of rivets is illustrated on Fig 5.1

In order to test the ability of the generator to capture patterns, we tested it
on the Pattern Dataset[29], which consists of big-scale images of 32 different knit
patterns. The network was trained on 64x64 patches cropped from a single image of
this dataset. We applied Elastic Transform to the image before cutting the patches
so that the patches did not look the same during training and were curved (Fig 5.1).
This dataset has been used in recent experiments with and without a discriminator.
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Both datasets were divided into three parts train 60%, validation 20%, and test
20%. Artificially generated anomalies were added to the test sample to calculate the
anomaly score.

(A) Aircraft rivets dataset (B) Texutres dataset

FIGURE 5.1: Sampels from two main datasets used during our study.

During the discriminator training, as we described in Section 4.1.3, we bring
the embedding of the original image closer to the rotated one. The rotated images
were obtained through a random rotation taken from the interval [-90, 90] degrees.
The generator was trained on similar images because this method can only fit images
with similar global context (i.e., patterns or objects).

5.3 Training details

All generator variations were trained on NVIDIA RTX 2080, using Adam opti-
mizer for all network parts. We use different learning rates for the discriminator and
other generator parts equal to 0.0001 and 0.000005, respectively. Since Adam[26] is
recommended to use for SIREN training and we found no meaningful reason to use
another algorithm. All the parts of the generator except the SIREN encoder are ini-
tialized using Kaiming Initialization[19]. SIREN initialization algorithm is described
in Section 4.1.2
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5.4 Experiments with Generator

Initially, experiments were performed with convolutional layers in the encoder.
Since the center of the image was cut out, there were many zeros in the final feature
maps during the convolution process. It worsened the final reconstruction of the
generator. It was decided to use a crop conv layer in the encoder that affects the cut
center only by a certain number of pixels. Thus, we obtained feature vectors that
improved the reconstruction of the SIREN-based generator.

Many experiments with the encoder architecture have also been performed.
First, we fed the generator vector from the last convolutional layer with a dimension
of 4096 values. During training with this configuration, the generator took up more
than 10 gigabytes of GPU memory. To reduce the size of the input vector, we added
an FC layer with 512 channels. This reduced the overall size of the models by 4
gigabytes. By adding batch normalization, we accelerated the generator training.
The final model was trained for 5 thousand epochs. Training it for a longer time leads
to divergence and poor results on a validation set. Such a large number of epochs can
be explained by the fact that the SIREN needs many iterations to fit a set of images.
The best-performing model has good reconstruction results but lacks variability in
the generated images and sometimes has a poor transition to neighboring pixels, as
is illustrated in Fig 5.2.

FIGURE 5.2: Example of generator reconstructions with the best pa-
rameters. From left to right: Ground truth, Cropped, Reconstruction

Experiments were performed with different sizes of the central cutout and
data sets. We hypothesized that by turning all the rivets in one orientation, we
would improve the reconstruction. We used damaged test images to look at the
quality of the reconstruction. This experiment showed that the model is not able
to generate images with good perceptual quality. We also used the loss function in
Hasselman paper to train our generator. The generated images in both experiments
were monotonous and of poor quality. These experiments are illustrated in Fig 5.3
and Fig 5.4.
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FIGURE 5.3: Reconstructions of the generator trained with convolu-
tional layers in encoder.

FIGURE 5.4: Reconstructions of the generator trained with Hassel-
man loss.
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5.5 Discriminator

We added a discriminator to the architecture to increase the variety of images
generated and make them less blurry. First, we utilize a deep convolutional dis-
criminator first described in the DCGAN paper by Alec Radford Luke Metz[35] as
a binary classifier that takes an image and outputs the probability that the input
image is real or generated. The discriminator loss function, which is used in this
experiment, is described in Section 4.1.3. Since the SIREN needs many iterations to
learn, the discriminator learned faster and thus did not allow the generator to fit
the images. We tried the different approaches described in Section 2.2.2 to balance
the training of our network. The best reconstruction we could get is shown in Fig
5.5. To improve image quality and training stability (eliminate mode collapse), we
utilize the WGAN discriminator delineated in Section 2.2.3. We used WGAN with a
gradient penalty for weight clipping. This is an extension of the original WGAN. In
such a setting, the discriminator acts as a critic and outputs a single scalar value. It
is worth pointing out that models with discriminator were capable of fitting a train
set of images perfectly but could not generalize well enough to perform anomaly
detection. Reconstructions of the training set are illustrated in Fig 5.6.

(A) Experiment with WGAN
discriminator

(B) Experiment with DCGAN discriminator

FIGURE 5.5: Experiments results of different discriminator architectures
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FIGURE 5.6: Example of reconstruction on the training dataset. From
left to right: Cropped , Ground truth, Reconstruction

We trained a discriminator with the Triplet loss as an objective function. The
goal was to calculate the abnormality score of the image during test time with dis-
criminator embeddings. Two main distance functions used during our study are
Euclidean and Cosine. During the experiments, we constructed different variations
of Triplet loss:

1. cos(IR, IRot)− cos(I I , IRot) + m

2. Discriminator objective described in 4.1.3

3. Triplet with Euclidean distance

We changed both the dimension of the feature vector from the discriminator
and the distance function used in the Triplet loss calculation to compare different
configurations. We experimented with cosine distance in Triplet loss to obtain sim-
ilar discriminator embeddings for original and rotated images. To compare each of
these loss functions, we trained a model with experimentally best hyperparameters.
Since the network had better reconstruction with cosine distance, we used it in fur-
ther experiments.

FIGURE 5.7: Results with first loss function
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(A) Results with second loss
function

(B) Results with third loss function

FIGURE 5.8: Experiments results with different loss functions

In many cases, the discriminator trained much faster than the generator and
did not allow the latter to create good reconstructions. We tried to train the gen-
erator once in a certain number of epochs and reduced the learning rate every few
epochs with the help of Step Scheduler. In this setup, our model began to overfit
after 2,000 iterations. We fixed the learning rate an order of magnitude smaller than
the generator and took away the scheduler, which helped balance the training. The
final learning rate for the discriminator is 0.0001.

We wanted to test whether the model is capable of recovering repetitive pat-
terns. To do this, we used multiple images of knit patterns from the dataset de-
scribed in Section 5.2. We fed a few repetitive patterns to the generator, and it tried
to reconstruct the missing region. The result of the model can be seen in Fig 5.9.
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FIGURE 5.9: First attempt with textures dataset
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5.6 Experiments with the objective function

The perceptual loss compares feature representations of two images on dif-
ferent representations levels of the Loss network. We wanted our generator to get
information about the pattern present in the image and reconstruct it. However,
additional information from perceptual loss was not enough to obtain reconstruc-
tion with the correct pattern and good perceptual quality. In order to catch the style
relative to the context of the image, we added style loss. Experimentally selecting
the coefficients, we obtained a reasonable reconstruction of the train set. The recon-
struction on the validation data was very noisy and did not have a clear structure.
Summing up these experiments, we can say that our model cannot learn a data set
that is very different from image to image.

FIGURE 5.10: Trained with perceptual

FIGURE 5.11: Trained with perceptual and style combined

FIGURE 5.12: Comparison of reconstruction only with different loss
functions

FIGURE 5.13: Single example from texture validation set

In order to train the model on similar patterns, we performed experiments on
the data described in Section 5.2. Experiments have shown that the model can learn
patterns in the image, but there is still room for improvement.
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FIGURE 5.14: Reconstructions on the training set

FIGURE 5.15: Reconstructions on the validation set

5.6.1 Loss Network

To calculate perceptual and style losses that measure perceptual and semantic
differences between images, we make use of a pre-trained 16 layer VGG network[40]
on ImageNet[7]. ImageNet consists of more than 14 million images with approx-
imately 21 thousand classes of objects. Features extracted from the convolutional
parts of the network were used to calculate the losses.
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Chapter 6

Results

All the anomaly scores in this chapter are calculated with cosine distance be-
tween discriminator embeddings. To evaluate different experiments on a particular
dataset, Discriminator weights were taken from the experiment with the best per-
ceptual quality and variety of generated images. In this section, we will evaluate
our generator’s reconstruction based on the anomaly score on damaged test images
of two distinct datasets. First, we will evaluate the reconstruction of rivets with and
without a discriminator and then review the results on the texture dataset. The final
models for all experiments were trained with the loss function from the section.

6.1 Results on the rivets dataset

As shown in Table 6.1 and Table 6.2, the reconstruction without a discriminator
have worse results than with it. The combined training of the generator with the
discriminator improved both the visual appearance of the reconstruction and the
anomaly scores. The low anomaly scores can be explained by the fact that the center
of the rivet itself is black, and therefore the distance between I I and IR is not so large.
In such cases, we can use a small value for the threshold. It is also noticeable that the
reconstruction with the discriminator is not so blurred and has a better transition to
neighboring pixels.

6.2 Results on the textures dataset

From Table 6.3 we can see that the model can not consistently well restore the
pattern present in the picture. The model lacks the information that comes from
the encoder in order to recover the pattern correctly. The problem may also be with
the small size of the input to the generator. In the general anomaly scores on the
texture dataset are pretty high. Nevertheless, this is understandable because the
model gives something in between several inputs.
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Damaged image Reconstruction Score

0.427

0.396

0.598

TABLE 6.1: Anomaly score with reconstruction from generator

Damaged image Reconstruction Score

0.415

0.465

0.623

TABLE 6.2: Anomaly score with reconstruction from generator with
discriminator
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Damaged image Reconstruction Score

0.978

0.945

0.939

TABLE 6.3: Anomaly scores on textures dataset
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Chapter 7

Conclusion and Future work

7.1 Conclusion

In this work, we provide a method for unsupervised anomaly detection by
using a sinusoidal representation network. We also investigated network training
with a discriminator that uses a triplet loss function and showed its effect on the
reconstruction of the missing image region.

We focused on the encoder part of the network and built our custom Crop
convolution layer, which showed better reconstruction results than the standard 2D
Convolution layer.

We examined discriminator architectures of different GANs, namely WGAN[4],
DCGAN[32], and WGAN-GP[14], and found that discriminator with Triplet loss
shows better results in image inpainting task.

We studied various losses and showed that a combination of Mean squared er-
ror, perceptual and style loss produce reconstructions with better perceptual quality.
Also, training with a combination of loss functions improves texture reconstruction.

We showed that the sinusoidal representations network (SIREN) could be used
in anomaly detection. Besides we propose an end-to-end training pipeline for the
SIREN without the use of HyperNetworks[15].

In our opinion, the approach to anomaly detection with a sinusoidal represen-
tation network has great potential and must be explored further.

7.2 Future work

For the future work we consider the following directions. We want to explore
how this approach behaves on different datasets and try our method for reconstruc-
tion of larger images. We also want to explore an approach where the missing region
is not the center but a random part of the image. We plan to investigate whether our
approach can be applied to a dataset with a large number of images with different
context.

Improve feature representations that act as additional information for the de-
coder. Features from the Vision Transformer encoder[9] preserve global context in
contrast to the features of the CNN. This will help in the reconstruction of the image
with repetitive patterns.

Finally, we want to provide a broad comparison of existing unsupervised
anomaly detection methods with our.
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Appendix A

GitHub repository link: https://github.com/YuraYelisieiev/Anomaly-detection-
with-sinusoidalrepresentation-network
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