
UKRAINIAN CATHOLIC UNIVERSITY

BACHELOR THESIS

Metaheuristic for personalized trip
planning

Author:
Yurii KAZAN

Supervisor:
Vasyl MYLKO

A thesis submitted in fulfillment of the requirements
for the degree of Bachelor of Science

in the

Department of Computer Sciences
Faculty of Applied Sciences

Lviv 2021

http://www.ucu.edu.ua
http://researchgroup.university.com
http://department.university.com

i

Declaration of Authorship
I, Yurii KAZAN, declare that this thesis titled, “Metaheuristic for personalized trip
planning” and the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

ii

“Thanks to my solid academic training, today I can write hundreds of words on virtually any
topic without possessing a shred of information, which is how I got a good job in journalism.”

Dave Barry

iii

UKRAINIAN CATHOLIC UNIVERSITY

Faculty of Applied Sciences

Bachelor of Science

Metaheuristic for personalized trip planning

by Yurii KAZAN

Abstract

Lviv’s second source of revenue is entertainment. The amount of different points
of interest is over a few thousand. Every day Lviv is visited by a large number
of tourists. Usually, they visit only the most famous places, that were suggested
to them by friends. Someone visits Lviv to try traditional dishes, someone to see
interesting places, someone who has a lot of money, and someone who has only a
few. Also, one person could visit Lviv for five days and the other only for one. And
each of them needs his own plan according to many parameters. Many services
simplify planning by giving enough required information in one place, but only a
few build path variants for you. What if there would be a service that will create
trip plans according to your parameters: such as budget and amount of days to
spend in Lviv could it make Lviv as a tourist place more effective and more widely
specialized? This is main theme of this work.
Code can be found here TourGuide Github

HTTP://WWW.UCU.EDU.UA
http://department.university.com
https://github.com/KazanYura/TourGuide

iv

Acknowledgements
I would like to thank Vasyl Mylko for the lots of help, that he gave me during this
work and Ukrainian Catholic University for big support during the last four years. I
am very grateful to my father because he taught me a lot and Java (a language which
I used almost everywhere even in this project) was basically taught to me by him.
Also, I would like to thank my wife, if she wouldn’t support me the whole time I
would gave up already at the beginning of this work.

v

Contents

Declaration of Authorship i

Abstract iii

Acknowledgements iv

1 Introduction 1
1.1 Problem statement . 1
1.2 Thesis structure and goals . 2

2 Literature review 4
2.1 Combinatorial Optimization Problems 4
2.2 Biologically Inspired Algorithms . 6

2.2.1 Evolutionary algorithms . 6
2.2.2 Stigmergic optimization algorithms 7
2.2.3 Swarm-based optimization algorithm 8

2.3 Botanically inspired algorithms . 9
2.3.1 Slime Mould Algorithm . 9

2.4 Water-flow like algorithm . 9

3 Design and implementation issues 10
3.1 Design . 10

3.1.1 Data model . 10
3.1.2 Math model . 11

3.2 Design issues . 13
3.2.1 Data gathering . 13
3.2.2 Routino adapter . 13

3.3 Implementation . 14
3.3.1 Architecture . 14
3.3.2 Storage . 15

4 Experiments 16

5 Conclusions 22

vi

List of Figures

1.1 Simple example . 2

2.1 Classification of COP algorithms . 5
2.2 Generic algorithm . 6
2.3 Ant colony algorithm . 7
2.4 Bat algorithm . 8

3.1 Project architecture . 14
3.2 Database table . 15

4.1 Experiment 1 (1 day 0 UAH City Center) 16
4.2 Experiment 2 (1 day 1000 UAH City Center) 17
4.3 Experiment 3 (2 days 0 UAH City Center) 17
4.4 Experiment 4 (2 day 1000 UAH City Center) 18
4.5 Experiment 5 (1 day 0 UAH Sykhiv) . 18
4.6 Experiment 6 (1 day 1000 UAH Sykhiv) 19
4.7 Experiment 7 (2 day 0 UAH Sykhiv) . 19
4.8 Experiment 8 (2 day 1000 UAH Sykhiv) 20

vii

List of Tables

4.1 Results numeric data . 21
4.2 Results fit best range . 21

viii

To my wife

1

Chapter 1

Introduction

Today recommendation systems are everywhere. They help people create a diet,
develop better writing skills, suggest courses, and much more. All of them have
something in common - they use some personal data of users to create a sugges-
tion that will fit the most. Also, the core value for the modern person is experience
amount - they would like to discover as much as possible. Traveling is one of the
experience sources, but trip planning is a pretty long process, which requires a lot
of effort. Many services such as Curiosio try to create personal plans for the specific
traveler to minimize planning time. The less time you spend on planning - the more
experience you get in your life. So such services are mandatory in the world, where
experience is the almost core value. They could be handy also for a person who lives
in Lviv but would like to experience it more. The final important thing to mention
that you could easily create extensions to this service for any additional needs to
generate a lot of market value.

The main idea of my work is to create a trip plan suggestion service that will give
the user a certain number of "good enough" variants to choose.

1.1 Problem statement

For a better understanding of the problem, imagine such a situation. You are
traveling to some specific city with some amount of time and money. Also, you
already have a place to spend nights. You don’t want to spend money on some
tours, or they are just not available. So what would you do?

For such cases, we can clarify the inputs and outputs of the future designed sys-
tem. As input parameters, we have such values:

• Money

• Time

• Night spend location

And as output, we need some trip plan which will be the most exciting.

Chapter 1. Introduction 2

FIGURE 1.1: Simple example

Let’s bring some simple example in order to understand things even better. Now
let’s consider two different cases:

• Traveler has over 500 money points and less than 6 hours - as the result he
couldn’t take the path DEF but he could take ABC.

• Traveler has more than 10 hours and less than 150 money points. In this exam-
ple, he could take the path DEF but not ABC.

• Traveler has less than 6 hours and less than 100 money points. He cannot take
any of this tours.

This example was shown in order to describe there is a personal part in this task.
If we take a look at path ABC or DEF we can see that amount of experience is the
same, and choice is different only because of special conditions.

The main conditions in this work will be money and time because all others are
much harder to take into account and even if they will be counted the result won’t
change dramatically. So after this example, we can finally understand what the prob-
lem is and start to build some solutions.

1.2 Thesis structure and goals

In this work, the next goals are going to be reached:

• Describing existing metaheuristic algorithms

• Exploring the main milestones of this problem.

• Applying one of the described algorithms to analyze the results.

Chapter 1. Introduction 3

This work will contain five chapters. The second one will be about main metaheuris-
tic algorithm groups with a brief explanation. The third one will contain information
about implementation and design issues. The fourth one will show results and anal-
ysis. The last one will contains conclusions.

4

Chapter 2

Literature review

2.1 Combinatorial Optimization Problems

Before we get to the math model of my solution, we need to discuss some theoret-
ical information. First of all, we will discuss what is "Combinatorial Optimization
Problem (COP)." "Combinatorial optimization is a topic that consists of finding an
optimal object from a finite set of objects."[from Wikipedia]. In other words, we have
some number of objects where each has a definite price and value, and we need to
create a subset according to some conditions. As you can see, trip planning is a com-
binatorial optimization problem: we have some set of possible paths, and we need
to select the most optimal for a certain case. There are many different algorithms for
solving such kinds of problems. All of them can be divided into categories. On the
next page, you could see that classification. We will take a look only at metaheuristic
methods as they are the main topic of my work. This chart was taken from [Hieu,
2011]

https://en.wikipedia.org/wiki/Combinatorial_optimization

Chapter 2. Literature review 5

FIGURE 2.1: Classification of COP algorithms

Chapter 2. Literature review 6

2.2 Biologically Inspired Algorithms

"The first metaheuristic algorithms class is biologically inspired. They can also be di-
vided into evolutionary, stigmergic optimization, and swarm-based optimization."[Hieu,
2011]. Each of these groups has something in common with others - they are based
on some animals’ behavior. All of the figures shown below were taken from [Hieu,
2011]

2.2.1 Evolutionary algorithms

Evolutionary algorithms are the algorithms that are based on the evolution of the
species; in general, they are based on the main evolutionary theory of Charles Dar-
win. The main idea is pretty simple, we have some starting state of "creatures" then
we simulate some kind of task for them and measure how good or bad these results
are. The best "creatures" pass a little bit changed parameters to the next generation,
and results of the next generation became better. In short, this process can be shown
on the next diagram.

FIGURE 2.2: Generic algorithm

Chapter 2. Literature review 7

2.2.2 Stigmergic optimization algorithms

This group’s main idea is to simulate animal interaction in order to perform some
action. My selected algorithm is from this category - the ant colony algorithm. The
main idea of which is to simulate the way ants build their paths from home to food.
In nature, everything happens the next way. During the first attempts, ants are
moving on different routes almost randomly but after each ant, some amount of
pheromones stays on this route. As the result, the more ants come through a certain
path - the more pheromones it has, and the fastest will have the biggest amount. Af-
ter some number of iterations, all ants will move only on the route with the biggest
amount of pheromones. Actually, pheromones are the main tool of communication
between ants, so this example can fully describe the idea of stigmergic optimization
algorithms. The next diagram will show how does this algorithm work.

FIGURE 2.3: Ant colony algorithm

Chapter 2. Literature review 8

2.2.3 Swarm-based optimization algorithm

This group looks very similar to the previous one, and they are close to each other.
These algorithms come from the social behavior of swarm-based animals or insects,
especially those in which the property of historical information exchange among in-
dividuals is magnified. We will take a bat algorithm as an example to this group.
The main idea is to use the echolocation of bats in order to solve optimization prob-
lems. We can set starting speed of the bat, its location, and loudness. After it finds
prey, it will change these parameters. Search is some kind of "random walk". Se-
lection of the best continues until certain stop criteria are met. This essentially uses
a frequency-tuning technique to control the dynamic behavior of a swarm of bats,
and the balance between exploration and exploitation can be controlled by tuning
algorithm-dependent parameters in the bat algorithm. A detailed introduction of
this and all the above algorithms is given by Yang [Yang, 2010]

FIGURE 2.4: Bat algorithm

Chapter 2. Literature review 9

2.3 Botanically inspired algorithms

2.3.1 Slime Mould Algorithm

"The Slime Mould Algorithm (SMA) is one of the recent nature-inspired algo-
rithms. It refers to the mathematical model ofsimulating the propagation wave of
slime mould when forming the optimal path for connecting foods.This model adap-
tively simulates the process of producing negative and positive feedback during the-
propagation wave. This algorithm is incorporated into different optimisation prob-
lems, includingthe engineering ones. The main two stages in the SMA algorithm are
called approaching food andwarp food." [Salah L. Zubaidi and Al-Khaddar, 2020]

This approach is pretty new and already is widely used. On the first stage mould
is "searching" for food. It navigate according to its odour in the air. This behaviour
can be described as math system. After food was found the behaviour of the slime
in conducting contraction of its venous structure. All additional information can be
found in Salah L. Zubaidi and Al-Khaddar, 2020

2.4 Water-flow like algorithm

This algorithm basis is rain. The main idea is the idea of drops falling and moving
afterward from the highest point to the lowest one. "Based on the property of water
flow always moving to lower regions, the authors simulated with the pouring of
water onto the terrain surface. In the field of image processing, the objective often
considered is to extract characters from backgrounds. Thus, a threshold process is
proposed to extract the valleys by the amount of filled water." [Hieu, 2011] There
are many different extensions to this algorithm. The main problem with it is, that
there is no "stop point" for iterations. Usage of this algorithm is also pretty hard. In
order to use it, you need to set gravity, rain power, and many other physics constants
(which can be different from the usual one). And after that simulate such eco-system.
Extensions were made in order to solve the problem with an unknown "stop point"
but they made the algorithm even harder. This is a very powerful approach, but it
won’t be used in this work.

10

Chapter 3

Design and implementation issues

3.1 Design

As was written above, the selected algorithm is the ant colony algorithm. But to com-
plete the task, we need not only the algorithm but also the model of measurement,
data model, and some other features which we will need during implementation.
In this chapter, I will show the main system design issues and also describe some
problems which I found during the process.

3.1.1 Data model

To begin with, we need to understand what information is needed to complete this
task. As it was said, we have three main condition

• Money

• Time

• Night spend location

So for time measurement, we need to know:

• How much time it takes to move between certain points.

• How much time it takes to "experience" that point.

• How much time it takes to move from point A to the night spend location.

Almost the same questions we need for money:

• How much money it takes to move between certain points.

• How much money it takes to "experience" that point.

• How much money it takes to move from point A to the night spend location.

Next and probably the most important question: "What is the experience of the
point?" The answer is pretty simple: the higher grade of the point is, the more expe-
rience it will give - so our experience measure is nothing else but point grade. This
measure isn’t the best possible (this will be discussed in "Problem topic"), but it is
"good enough", and that’s everything we need.

Chapter 3. Design and implementation issues 11

And now, I will answer all the previous questions. First of all, about moving from
point to point. To know the time, I need to build a path according to points location
and type of transport (car, bus, foot, etc). In this work, we will use only two types of
transport on foot and by taxi. (simply because other kinds of transport are hard to
include) The same comes for money. The next point is how to know the amount of
money and time spend in a certain place? For the money it is much easier, almost any
tourist attraction has a price listed somewhere, but the time spend is hard to predict.
Each person can spend a different time in the same attraction. For this reason, I will
use some general values. For example, time spent in parks will be 2 hours and near
some monument only 30 minutes. And the last question is answered pretty simple,
I will add the night spent point to the rest and needed values will be counted.

So to sum up, I need such information about each point

• Name -> to show on the screen.

• Location -> longitude, and latitude for analysis of paths.

• Type -> it will be needed to set constant values and also for some further opti-
mization.

• Grade -> main value of each point.

• Time and money spent on this point.

• Time of start working and time of stop working -> in order to not include
unavailable points.

3.1.2 Math model

First I will show you the list of function which will be used in this model.

• exist(i) – a function which shows if i-th point is in the trip.

• PathPoint(i,j) – returns point with i-th index on j-th day.

• PSTime(i) – time when i-th point start working

• PStTime(i) – time when i-th point stop working

• aTime(i) – arive time to i-th point.

• lTime(i) – leave time from i-th point.

• SpentTime(i)– time spent on i-th point.

• SpentMoney(i) – money spend on i-th point.

• TotalBudget – total budget of the trip

• grade(i)– grade of point.

• k(i) – number of points visited on i-th day.

• NPoint – total number of points from database.

• NDay – total number of days in trip.

• WH – const number of hours spend on the trip per day.

• mTS – time spent on moving between points.

• mBS – money spent on moving between points.

Chapter 3. Design and implementation issues 12

Next, I will define the main function, which will estimate how good or bad this
trip plan is. As it was said earlier main parameter here is grade.

NPoint

∑
i=0

exist(i) ∗ grade(i)

It simply states that if the point is in our trip then the total grade includes its grade.
So the total experience is nothing else than the sum of grades of each included point.

Finally, the most insane moment in this math model is constriction functions.

NPoint

∑
i=0

exist(i) ∗ SpentTime(i) + mTS ∈ [0.8 ∗ NDay ∗WH, NDay ∗WH]

This equality stated that time spent on experience must be in the range of 80-100
percent of available time. The same works for money.

NPoint

∑
i=0

exist(i) ∗ SpentMoney(i) + mBS ∈ [0.8 ∗ TotalBudget, TotalBudget]

These are the main constriction functions. According to them, each path will get
some final grade. If value, got from any of this sum, lands in the range 80-100, then
it got 1 point. If it lands in the 0-80 range, then 0, and finally, if it lands over 100, this
path will get -1000. Now I will show some other conditions.

∀i ∈ [0, NDay]→ k(i) < 10

Each day will have at most 10 points more points tire traveler.

mTS < 0.5 ∗
NPoint

∑
i=0

exist(i) ∗ SpentTime(i)

mBS < 0.5 ∗
NPoint

∑
i=0

exist(i) ∗ SpentMoney(i)

Moving must take less than half of trip time and the same for budget.

∀j ∈ [0, NDay]→
k(j)

∑
i=0

SpentTime(PathPoint(i, j)) < 2/3WH

Each day time spent on points is less than 2/3 of walking hours per day (if we add
here previous equality we will get that total walk time is less than walking hours).

∀i ∈ [0, NPoint] i f exist(i)→ aTime(i) > PSTime(i)

∀i ∈ [0, NPoint] i f exist(i)→ lTime(i) < PStTime(i)

To experience point we must enter after it is open and before it is closed.

Chapter 3. Design and implementation issues 13

3.2 Design issues

3.2.1 Data gathering

Data gathering was probably the hardest process (which is not related to the actual
implementation). The actual problem is that there is no such data source which will
fill all field that was described earlier. During this work, I looked at eight different
sources and each of them has some kind of problems. Lack of grades, unable to parse
(because the website was generated, and, as the result even the same components
had different class names) or something else (terms of use) were the main ones. Here
is the list of the best from used websites:

• https://www.tripadvisor.com/ –> generated and hard to parse

• https://lviv.travel/ –> lack of information

• https://virtual.ua/ua/ –> no grades.

3.2.2 Routino adapter

The next major issue was about "How would we build the path?" And the answer is
OpenStreetMaps. The next part was to find a dataset with Ukrainian routes and that
wasn’t so hard. But how to use this dataset was the main question. I was looking for
some free and easy service that works with OpenStreetMaps. And the one I choose
was Routino-router. It is written on C and can be used on Ubuntu from terminal.
But main code is on Java. So the idea was to use next construction:

ProcessBui lder processBui lder = new ProcessBui lder () ;
S t r i n g l i t e r a l _ t y p e ;
switch (type) {

case FOOT:
l i t e r a l _ t y p e = " f o o t " ;
break ;

case BUS :
l i t e r a l _ t y p e = " psv " ;
break ;

case CAR:
l i t e r a l _ t y p e = " motorcar " ;
break ;

default :
throw new I l l e g a l S t a t e E x c e p t i o n (" Unexpected value : " + type) ;

}
S t r i n g command =
" routino −router −−di r= s r c /main/resources/map_data " +
"−− l a t 1 =" + p1 . ge tPoint () . ge tLa t i tude () +
" −−lon1=" + p1 . ge tPoint () . getLongitude () +
" −− l a t 2 =" + p2 . ge tPoint () . ge tLa t i tude () +
" −−lon2=" + p2 . ge tPoint () . getLongitude () +
" −− t r a n s p o r t =" + l i t e r a l _ t y p e + "\n" ;
processBui lder . command(" bash " , "−c " , command) ;
t r y {

Process process = processBui lder . s t a r t () ;

Chapter 3. Design and implementation issues 14

3.3 Implementation

In this chapter I will tell you the main components of the designed system. One of
them was already described above.

3.3.1 Architecture

FIGURE 3.1: Project architecture

For better understanding, I will include in this chapter a corresponding image,
which includes the main flow and main components of my project. As it was stated
above, one of the components is the MySQL database and as the result HyberNate
DataBase Connector. Also, the visualization part is not included because it is not a
part of the main flow.
First of all, request - it consists of a number of days, the total amount of money and
also latitude and longitude of the night spend place, the importance of each of them
was already described above. The next step is to get all available places from the
database. Here Data Access Object or DAO is used. Because not each column is rep-
resented in corresponding class value, we need to have some middle stage to make
all systems work together.
Now we have data, but we need a connectivity matrix, so we send all this informa-
tion to Routino Router in order to build paths between each pair of points.
Everything is finally prepared to be used in Ant Colony Algorithm. And this algo-
rithm returns some number of paths (by default best 5). But it is not done yet. In
order to make some visualization we need to use Routino Router again to produce
the final path.
After all of these manipulations, we get a response that consists of big amount of
coordinates, which can be connected on the map, and the path is done.

Chapter 3. Design and implementation issues 15

3.3.2 Storage

As a storage I selected MySQL database. For this project I needed only one table
which will contain all information about places. So the structure is next one:

FIGURE 3.2: Database table

16

Chapter 4

Experiments

In this chapter, I will show few different outputs for different parameter sets. I would
like to add that these pictures were made after all other code and were simplified
(path is demonstrated as connected points, not as route). I made eight different
cases: Traveler has one day and 0 UAH and stays in the city center. Traveler has one
day and 1000 UAH and stays in the city center. Traveler has two days and 0 UAH
and stays in the city center. Traveler has two days and 1000 UAH and stays in the
city center. And four more with the same conditions but night spend is on Sykhiv.
Also, I will show you how total experience is changed and money/time spend.

FIGURE 4.1: Experiment 1 (1 day 0 UAH City Center)

This experiment was kind of "zero point" of all set. It was made in order to see how
different factors could change the result.

Chapter 4. Experiments 17

FIGURE 4.2: Experiment 2 (1 day 1000 UAH City Center)

FIGURE 4.3: Experiment 3 (2 days 0 UAH City Center)

Chapter 4. Experiments 18

FIGURE 4.4: Experiment 4 (2 day 1000 UAH City Center)

FIGURE 4.5: Experiment 5 (1 day 0 UAH Sykhiv)

Chapter 4. Experiments 19

FIGURE 4.6: Experiment 6 (1 day 1000 UAH Sykhiv)

FIGURE 4.7: Experiment 7 (2 day 0 UAH Sykhiv)

Chapter 4. Experiments 20

FIGURE 4.8: Experiment 8 (2 day 1000 UAH Sykhiv)

Chapter 4. Experiments 21

Now I would like to show you a table with some numeric data. From this table,
we could make some conclusions.

Total experience Total time spend Total money spend
Experiment 1 2.8 6.7 hours 0 UAH
Experiment 2 7.9 9.7 hours 495 UAH
Experiment 3 10.9 18.3 hours 0 UAH
Experiment 4 13.1 18.6 hours 981.2 UAH
Experiment 5 2.2 8 hours 0 UAH
Experiment 6 6.7 9.8 hours 655 UAH
Experiment 7 7.7 16.1 hours 0 UAH
Experiment 8 10.6 17 hours 765.8 UAH

TABLE 4.1: Results numeric data

Time fit 80-100% range Money fit 80-100% range
Experiment 1 No Yes
Experiment 2 Yes No
Experiment 3 Yes Yes
Experiment 4 Yes Yes
Experiment 5 Yes Yes
Experiment 6 Yes No
Experiment 7 Yes Yes
Experiment 8 Yes No

TABLE 4.2: Results fit best range

We can see the next thing:

• Time is the most important factor if we double the time the experience grows
more than three times.

• Money also affects experience, and it makes the traveler spend more time on
traveling (he could faster get to "night spend" using the car).

• Night spend point has some impact on the total experience. This impact is
even bigger than my expectation. (I was thinking - that if we had enough
money then the difference will be almost 0).

• Almost all routes get the best time range and one day trip missed money range
(I think it is really hard to spend 1000 UAH in one day just on a trip without
shopping)

22

Chapter 5

Conclusions

After all of these experiments, we can conclude that this system could build some
sorts of optimal paths. Also, we can see that Ant Colony Algorithm efficiency is
quite good even with a small number of extensions. There are many problems with
paths generated by this system.

• It takes too much time to generate anything.

• It takes too many resources (on my machine nothing else can run side by side
with this project).

• Results are not so accurate (they can be used only as of the first step of trip
creation).

The next extensions could be applied to solve the listed problems. The first and
the most efficient is to divide points by some kind of classification algorithm. This
will decrease the number of unnecessary calculations. (Not every point is accessible
according to the possibilities of the corresponding user).
The second important issue is the update of the dataset. This dataset was enough to
create such a simple model, but the better data is - the better the result is.
Finally, we can add many other extensions - such as weather and even mood, but it
will increase the complexity of the task. After these extensions, the next major one
is to run everything on some kind of server. (maybe to add Java Spring and change
the structure a little bit).
As we can see, this field of study has many directions to develop, many other algo-
rithms to use, and dataset to explore.

23

Bibliography

Hieu, Tran Trung (2011). A Water flow algorithm for optimization problems. National
University of Singapore.

Salah L. Zubaidi Iqbal H. Abdulkareem, Khalid S. Hashim Hussein Al-Bugharbee
Hussein Mohammed Ridha Sadik Kamel Gharghan Fuod F. Al-Qaim Magomed
Muradov Patryk Kot and Rafid Al-Khaddar (2020). Hybridised Artificial Neural
Network Model with Slime Mould Algorithm: A Novel Methodology for Prediction of
Urban Stochastic Water Demand.

Yang, Xin-She (2010). Nature-Inspired Metaheuristic Algorithms Second Edition. Luniver
Press.

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Problem statement
	Thesis structure and goals

	Literature review
	Combinatorial Optimization Problems
	Biologically Inspired Algorithms
	Evolutionary algorithms
	Stigmergic optimization algorithms
	Swarm-based optimization algorithm

	Botanically inspired algorithms
	Slime Mould Algorithm

	Water-flow like algorithm

	Design and implementation issues
	Design
	Data model
	Math model

	Design issues
	Data gathering
	Routino adapter

	Implementation
	Architecture
	Storage

	Experiments
	Conclusions

