
UKRAINIAN CATHOLIC UNIVERSITY

BACHELOR THESIS

Development of cross-platform file system
manager

Author:
Vitalii VOLIANSKYI

Supervisor:
Igor BEREZHNYJ

A thesis submitted in fulfillment of the requirements
for the degree of Bachelor of Science

in the

Department of Computer Sciences
Faculty of Applied Sciences

Lviv 2021

http://www.ucu.edu.ua
http://researchgroup.university.com
http://department.university.com

i

Declaration of Authorship
I, Vitalii VOLIANSKYI, declare that this thesis titled, “Development of cross-platform
file system manager” and the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

ii

“Software and cathedrals are much the same – first we build them, then we pray.”

Sam Redwine

iii

UKRAINIAN CATHOLIC UNIVERSITY

Faculty of Applied Sciences

Bachelor of Science

Development of cross-platform file system manager

by Vitalii VOLIANSKYI

Abstract

Information storage is one of the most important functions of any OS. That is
why there exist such concepts as file and file system. In short, files are information
objects that contain data or programs, and the file system, respectively, is a way of
organizing these objects.

However, since operating system users are often human, it is not enough to store
information, it is also necessary to provide a convenient way to work with it. This
is where file managers come into play. We use them almost every time we use a
computer and therefore they are extremely required to be fast and convenient. This
is what this work is about.

HTTP://WWW.UCU.EDU.UA
http://department.university.com

iv

Acknowledgements
First of all, I want to sincerely thank Igor Berezhnyj, who made large impact into

the project, introduced a lot of new ideas and always helped me with my questions.
Thanks to Oleh Farenyuk for the idea of this project and most importantly for the
knowledge to put it into life.

Finally, I want to thank my parents and friends, who everyday support me.

v

Contents

Declaration of Authorship i

Abstract iii

Acknowledgements iv

1 Introduction 1
1.1 Motivation . 1
1.2 Task definition . 1

2 Existing solutions 2
2.1 Total Commander . 2
2.2 Directory Opus . 3
2.3 Windows Explorer . 5
2.4 Q-Dir . 6
2.5 Nautilus . 7

3 Approach 10
3.1 Background . 10

3.1.1 File system . 10
3.1.2 Main architectural concepts . 11

3.2 Tools . 12
3.3 Application architecture . 12

4 Main features 14
4.1 File operations . 14

4.1.1 Open . 14
4.1.2 Create . 14
4.1.3 Copy . 15
4.1.4 Cut . 15
4.1.5 Paste . 15
4.1.6 Delete . 16
4.1.7 Rename . 16
4.1.8 Shortcuts . 16
4.1.9 Properties . 17

4.2 Filtering . 18
4.3 Sorting . 18
4.4 Navigation line . 19
4.5 Global search . 19
4.6 Favorite paths . 20
4.7 Cloud drives support . 21
4.8 Information panel . 22

vi

5 UI/UX Design 25
5.1 General overview . 25
5.2 User flow . 31
5.3 Themes . 32

5.3.1 Light theme . 33
5.3.2 Dark theme . 33

6 Evaluation 35
6.1 Testing environment . 35
6.2 Results . 35

7 Summary 37
7.1 Conclusion . 37
7.2 Future work . 37

A References 38

Bibliography 39

vii

List of Figures

2.1 Total Commander . 2
2.2 Directory Opus . 3
2.3 Windows Explorer . 5
2.4 Q-Dir . 6
2.5 Nautilus . 7

3.1 File systems comparison . 11
3.2 MVC architecture . 11
3.3 QExplorer UML Diagram . 13

4.1 Properties window . 17
4.2 Sorting header . 18
4.3 Favorites widget life cycle . 21
4.4 Cloud storages market growth . 21

5.1 First application prototype . 25
5.2 Final application prototype . 26
5.3 One file, one folder, multiselection and blank space context menus

from left to right . 27
5.4 Favorite paths window . 27
5.5 Navigation line . 28
5.6 Combobox for swapping drives . 28
5.7 "Edit" drop-down menu . 28
5.8 Global search window . 29
5.9 "Options" drop-down menu . 29
5.10 Two modes of cloud storage widget . 29
5.11 Total memory chart . 30
5.12 Types distribution chart . 30
5.13 Drives information widget . 31
5.14 . 32
5.15 Light theme . 33
5.16 Dark theme . 33

6.1 Performance metrics . 35

viii

List of Tables

2.1 Pros and cons of Total Commander . 3
2.2 Pros and cons of Directory Opus . 4
2.3 Pros and cons of Windows Explorer . 6
2.4 Pros and cons of Q-Dir . 7
2.5 Pros and cons of Nautilus . 8
2.6 File managers comparison . 9

3.1 Used tools . 12

4.1 File types and extensions mapping . 23

6.1 Code metrics #1 . 36
6.2 Code metrics #2 . 36

ix

List of Abbreviations

OS Operating System
FTP File Transfer Protocol
CD Compact Disc
DVD Digital Video Disc
CPU Central Processing Unit
RAM Random Access Memory
SSD Solid-State Drive
NTFS New Technology File System
TLC Triple-Level Cell
DDR Double Data Rate
SPD Serial Presence Detect
CLI Command Line Interface
API Application Programming Interface
MVC Model View Controller

x

Dedicated to my loving parents

1

Chapter 1

Introduction

1.1 Motivation

A file manager is a computer program that provides a user interface for working
with a file system and files. File manager allows you to perform the most common
operations on files - creating, opening, editing, moving, renaming, copying, delet-
ing, changing attributes and properties, searching for files and assigning rights. In
addition to the basic functions, many file managers include a number of additional
features, such as networking, backup, printer management, etc. They are often ac-
companied by additional utilities that make life easier for the user. For many users,
the favorite file manager often acts as a shell, replacing some of the standard file
management tools available in the operating system.

However, for people who have experience in this area, it is obvious that today’s
file managers are far from ideal. Some do not have enough functionality, which is
why some specialists cannot use them. Standard solutions provided by operating
system developers, such as Windows Explorer or Nautilus for Ubuntu, immediately
come to mind. There is also another extreme, oversaturation with functionality,
which affects other characteristics, such as ease of use. An example is Total Com-
mander, a favorite manager for many people. However, when someone installs it,
they immediately get lost in many buttons and features that they will never use. A
critical shortcoming of some managers is UI/UX design problems. The developers
are trying to put in their project everything that competitors have, but do not notice
that their product is almost impossible to use. In terms of user experience, it stuck
in the nineties.

1.2 Task definition

So I want to create my own file manager, in which I will try to neutralize all the
shortcomings that I have repeatedly encountered.

Requirements:

• Fast

• Convenient

• Adaptive

• Optimal functionality

• Cross-platform

2

Chapter 2

Existing solutions

2.1 Total Commander

FIGURE 2.1: Total Commander

Total Commander is a two-pane file manager for 32 and 64-bit Windows operating
systems that allows you not only to simplify routine file operations (copy, paste,
delete, move, etc.), but also has a lot of additional useful options.

Main features:

• Show/select files with specific search pattern, size, date or contents.

• Enhanced search function with full text search in any files across multiple
drives.

• Command line for starting of programs with parameters.

• Split/Combine big files.

• Custom columns view to show additional file details.

Chapter 2. Existing solutions 3

• Compare files by content.

• Search for duplicate files.

• HTML- and Unicode-Viewer in Lister.

• Built-in FTP client supports most public FTP servers, and some mainframes.

• Configurable main menu.

• Archive handling.

• Parallel port transfer function (direct cable connection).

Total commander general features

Pros Cons

Plugins support

Very stable

Allows to work without a mouse

Customizable

Multifunctional

Need to spend a lot of time for custom
configuration

Hard to get used to

TABLE 2.1: Pros and cons of Total Commander

2.2 Directory Opus

FIGURE 2.2: Directory Opus

Directory Opus is a powerful and easy-to-use file manager that provides all basic
file operations. The capabilities of the manager don’t differ in something special in

Chapter 2. Existing solutions 4

comparison with similar programs. Developers point out that Directory Opus was
conceived mainly as a replacement for the standard Windows Explorer. Thus, this
application will facilitate the work with files, making it more convenient and com-
fortable. Directory Opus supports working with archives, provides FTP access, pro-
cesses music and graphics files, syncs with OneDrive cloud storage, and much more.

Main features:

• Single or dual file displays, with single or dual trees.

• Folder tabs let keep multiple folders open and switch quickly between them.

• Integrated viewer pane to preview many common image and document file
formats.

• View and edit file metadata (EXIF, MP3, PDF, etc).

• Sorting, grouping, filtering and searching.

• Support for FTP, Zip, 7-Zip, RAR and many other archive formats.

• Access content on portable devices like phones, tablets and cameras.

• Built-in tools including synchronize, duplicate file finder, image converter and
uploader.

• Print or export folder listings, copy file listings to the clipboard, calculate folder
sizes.

• Queue multiple file copies for improved performance.

• Support for CD/DVD burning.

• Fully configurable user interface - colors, fonts, toolbars, keyboard hotkeys.

• Full scripting interface supports VBScript, JScript or any compatible installed
Active Scripting language.

Directory opus general features

Pros Cons

Customizable UI

Tabs

Ongoing application maintenance and
customer support

Intimidating to inexperienced users

Takes a lot of memory

Expensive

TABLE 2.2: Pros and cons of Directory Opus

Chapter 2. Existing solutions 5

2.3 Windows Explorer

FIGURE 2.3: Windows Explorer

Windows Explorer is an application that implements a graphical user interface for
accessing files in the Microsoft Windows operating system. Explorer is now the de
facto mainstay of the graphical user interface for Windows. Everything that the user
sees after Windows boots - desktop icons, taskbar, start menu is Windows Explorer.

Main features:

• Access frequently used commands.

• Navigate directly to a different location, including local and network disks,
folders, and web locations..

• Perform instant searches, which show only those files that match what you
typed in the Search box for the current folder and any of its subfolders.

• Display common folders, such as Favorites, SkyDrive, Homegroup (a shared
network), This PC, and Network.

• Extended file information (metadata).

• Customizable interface.

• Cloud drive support.

• Drives cleanup.

• Optimize and defragment drives.

Chapter 2. Existing solutions 6

Windows Explorer general features

Pros Cons

Preinstalled on Windows

Good choice for users with low re-
quirements

Overly simplistic

Little functionality

Unconfigurable

TABLE 2.3: Pros and cons of Windows Explorer

2.4 Q-Dir

FIGURE 2.4: Q-Dir

Q-Dir is a file manager with a four-pane interface, support for zip archives, FTP and
highlighting folders and files with different extensions. By default, Q-Dir uses a
four-pane interface (4 windows), but provides the ability to customize the interface,
allowing you to specify 3 or 2 panels with a vertical or horizontal arrangement. Q-
Dir is tightly integrated with Windows Explorer. For example, the standard panel
views are used. Lists, tables, thumbnails - everything is taken from the standard
Windows tool.

Main features:

• File management in 4-window with tabs.

• Folder size with extra information.

Chapter 2. Existing solutions 7

• Color filter for files and folders.

• Directory structure with visible tree branches.

• Based on the MS Windows OS File Manager.

• Full Unicode Support.

• Save folder combinations as favorites.

• Mark selected folders and files.

• Improved quad explorer file preview.

• Multilingual.

• Low System Resource usage.

Q-Dir general features

Pros Cons

Lightweight

Tabs

Customizable

Free

Some bugs

Some critical features such as search
are missing

TABLE 2.4: Pros and cons of Q-Dir

2.5 Nautilus

FIGURE 2.5: Nautilus

Chapter 2. Existing solutions 8

Nautilus is a file manager for the GNOME and Unity desktop environments. In
Ubuntu, it is installed as the main file manager as well as the desktop manager.

Main features:

• Connect and disconnect storage devices (hard drives, network drives, flash
drives, optical drives, etc.).

• Work with remote servers (FTP, SSH, WebDAV, SMB).

• View thumbnails of files (videos, images, PDF, DJVU, text files).

• View properties of files and directories (including additional properties on sep-
arate tabs using third-party applications).

• Create, modify, delete files and directories (including using file templates lo-
cated in the / Templates or / Templates directory).

• Run scripts and applications.

• Search files and directories by name.

• Place files and directories on the desktop.

• Burn CD / DVD discs (using Brasero).

Nautilus general features

Pros Cons

Easy to use

Minimalistic

Supported on all Linux distributions

Very little functionality

Unconfigurable

Memory leaks

Many bugs

TABLE 2.5: Pros and cons of Nautilus

Chapter 2. Existing solutions 9

File manager Total Comman-
der

Directory
Opus Explorer Q-Dir Nautilus qExplorer

Supported sys-
tem

Windows, Win-
dows CE, An-
droid

AmigaOS,
Windows Windows Windows Linux Windows,

Linux, macOS

Search for files
using regular
expressions

+ + - + + +

FTP client + + + - + -

Text search in
files + + - - - +

Multiselection + + + + + +

Archive han-
dling - + + + + -

Configurable
user interface + + + + - +

Saving fa-
vorites folders + - + + - +

Multilingual + + + + + -

Cloud storage
support - - + - - +

System info
panel - - - - - +

Global file
search + + + + + +

Multiple panes + + - + - +

Built-in com-
mand line + - - - - -

TABLE 2.6: File managers comparison

10

Chapter 3

Approach

3.1 Background

3.1.1 File system

File system - the order that determines the method of organization, storage and nam-
ing of data on media in computers, as well as in other electronic equipment. The file
system determines the format of the content and physical storage of information,
which is grouped as files. The file system connects the storage medium on the one
hand and the file access API on the other. When an application accesses a file, it has
no idea how the information is located in a particular file, as well as on what physi-
cal type of media (CD, hard disk, magnetic tape, flash memory block) it is recorded.
All the program knows is the file name, its size and attributes. It receives this data
from the file system driver. It is the file system that determines where and how a file
will be written to physical media (such as a hard drive).

In terms of the operating system, the entire disk is a set of clusters (usually 512
bytes or larger). File system drivers organize clusters into files and directories (which
are actually files that contain a list of files in that directory). The same drivers keep
track of which of the clusters are currently in use, which are free, and which are
marked as faulty. File systems. In addition to user files, the file system also contains
its own parameters (such as block size), file descriptors (file size, location, snippets,
etc.), file names, and a directory hierarchy. It can also store security information, ad-
vanced attributes, and other settings. Basically, it depends on the type of file system,
which there are a lot of even in terms of single operating system.

Chapter 3. Approach 11

FIGURE 3.1: File systems comparison

3.1.2 Main architectural concepts

The program is built according to the MVC pattern. It is divided into three separate
parts. Model is responsible for storing data and its structure. View is responsible
for presenting this data to the user, ie program interface. Controller controls com-
ponents, receives signals in response to user actions (changing the position of the
mouse cursor, pressing a button, entering data into a text box) and transmits data to
the model.

FIGURE 3.2: MVC architecture

Role of model is played by different business logic and file system representa-
tion. In order to get software access to the file system, Qt library was used, namely
the QFileSystemModel class. This class provides access to the local filesystem and
different ways to interact with it. It is quite well optimized in terms of performance.
It uses QFileSystemWatcher to automatically keep all the information up to date.
Official Qt documentation. QFileSystem. View part is represented with Qt widgets
structure described in ui forms. All of these widgets inherit QWidget class and can
be used to display different data, receive user input and also serve as a container for
other widgets. As mentioned above view is connected to model with controller. In
this case it is signals. They are triggered when user performs specific action. Each
signal has some slot(usual C++ function) connected to it. When signal is triggered,
corresponding slot is executed.

Chapter 3. Approach 12

3.2 Tools

Name Version Purpose

Programming language C++ 11 Serves to provide basic syntax and
define program behavior.

Project assembly automa-
tion system CMake 3.19.2

Used to automate building software
from source code. Checks for the
presence of the necessary libraries
and includes them, builds projects
under different compilers and oper-
ating systems.

Compiler MinGW g++ 8.1.0

Converts source code written on
C++ into semantically equivalent
machine code that is required to run
a program by a computer.

Software development
framework Qt 5.15.2

One of the most convenient frame-
works for GUI application develop-
ment. Qt provides not only suit-
able set of class libraries, but also
a specific application development
model. An important advantage of
Qt is its well thought out and logical
set of classes, which provides high
level of abstraction. In addition, Qt
is cross-platform and in order to run
the program on another OS, you just
need to recompile the source code.

Library for building charts Qt Charts 5.15.2

Provides a set of easy to use chart
components. It uses the Qt Graphics
View Framework, therefore charts
can be easily integrated to user in-
terfaces.

IDE for writing code Qt Creator 4.14.0
The best development environment
for Qt. Has native ui forms support
as well as built-in UI Building Tool.

IDE for creating ui forms Qt Designer 4.14.0

Used to create and configure Qt de-
signer forms(*.ui) These forms rep-
resent a tree of widgets in XML for-
mat(QML) and will be converted to
C ++ code that can be compiled.
This way you can much more flexi-
bly customize the appearance of the
widget when it has a complex struc-
ture and it makes no sense to build
it directly in the code.

TABLE 3.1: Used tools

3.3 Application architecture

Chapter 3. Approach 13

FIGURE 3.3: QExplorer UML Diagram

14

Chapter 4

Main features

4.1 File operations

4.1.1 Open

• Description
Ability to open different items in the file system. To open a file you need to
double-click on it or select the appropriate option in the context menu. Af-
terwards the file will be opened using a default program. To open a folder,
double-click it. Current directory in corresponding panel will be updated.

• Purpose of use
Reading and writing files as well as navigating through the file system tree is
one of the most important functions of any file manager.

• Realisation
Opening files is based on bool QDesktopServices::openUrl(const QUrl &url)

function. We get file absolute path using QString QFileInfo::absoluteFilePath()
and insert it as an argument. This action is connect to double-clicking and cor-
responding context menu option. Folder opening is realised by default when
connecting QTableView and QFileSystemModel .

4.1.2 Create

• Description
Creating files and folders. To do this, select the appropriate option in the con-
text menu, then enter the name. The item will appear in the current directory.
Thanks to multiselection, it has become possible to create a folder with pre-
defined content. To do this, select a few items, call the context menu and create
a folder. Once created, it will contain all the selected items.

• Purpose of use
Creating new nodes and elements is one of the important functions of the file
system, which also needs to be managed.

• Realisation
Creation of files is realised using

bool QFile::open(int fd, QIODevice::OpenMode mode, QFileDevice::
FileHandleFlags handleFlags = DontCloseHandle)

Chapter 4. Main features 15

After calling this function Qt will create file which does not exists for now
and and the end it will be automatically closed. In case if such file exists cer-
tain custom behavior is established. File creator will try to add some counter
at the end of the file name in the cycle, so the following file names can be
produced: filename(1).txt, filename(2).txt, etc... The same works for folders,
but bool QDir::mkpath(const QString &dirPath) is used instead of open
function for files.

4.1.3 Copy

• Description
Marks an item as to be copied. This is needed to know exactly what needs to
be pasted in future. Multiselection is supported.

• Purpose of use
Often the user may need a duplicate of folder or file. For example, to try or test
something. The original version must be preserved in case of a negative result.

• Realisation
Since it’s just marking, there is no complicated logic. All selected entries are
placed in the global buffer, from which they will be taken in case of pasting.

4.1.4 Cut

• Description
Cutting is the same as copying, except that the source is not saved. After cut-
ting, we will have only one copy of the item, but in the target directory instead
of the original. Multiselection is supported.

• Purpose of use
Cutting is actually a directory change. This way, user can move the item
through the file system tree.

• Realisation
The same thing happens as in case of copying with one difference. At the end
of this process, the global variable bool toCut is assigned a value true .

4.1.5 Paste

• Description
Pasting is directly related to copying and cutting. While in the previous step
we marked file/folder as to be copied/cut, now we execute this operation,
specifying the target directory. Only then items will appear there.

• Purpose of use
To choose target directory and confirm cut/copy operation execution.

• Realisation
In the case of files, the following function
bool QFile::copy(const QString &fileName, const QString &newName)

is used. It copies file from source location(1st argument) to destination loca-
tion(2nd argument). With folders, everything is a little harder. It is necessary

Chapter 4. Main features 16

to iterate recursively over initial directory twice. During the first time, we cre-
ate the same directory structure in the target location as in the original one. For
more details about creation, see 4.1.2 During the second time - copy all the files
in turn to the appropriate locations created during the previous iteration. After
that, global variable bool toCut is checked. In case of true , file/folder is
deleted from destination location. For more details about deletion, see 4.1.6

4.1.6 Delete

• Description
Remove files or entire folders from the file system. After that, the memory they
occupied on the hard drive will be freed. Multiselection is supported.

• Purpose of use
Clear the memory occupied by unnecessary files

• Realisation
Various access and rights checks occur before deletion begins. If these checks
fail, corresponding warning will be displayed. In case of success, file/folder
will be deleted. The removal functions are provided by Qt by default. For files
it is bool QFile::remove() , folders - bool QDir::removeRecursively() .

4.1.7 Rename

• Description
File name is a string of characters that uniquely identifies a file/folder in direc-
tory. File names are built according to the rules adopted in a particular file and
operating system. File names are also used in absolute/relative path building
so you can access it everywhere. This feature allows to change such identifier.

• Purpose of use
Renaming files is important to better understand what each file is. This way,
you can roughly evaluate its content without even opening it.

• Realisation
Before renaming a file, it is checked whether the user can edit it:
info.permission(QFile::WriteUser) After passing this check, the file is re-

named using the functions:

bool QFile::rename(const QString &newName);
bool QDir::rename(const QString &oldName, const QString &newName);

Case when such file/folder already exists is dealt the same way as for creation
4.1.2.

4.1.8 Shortcuts

• Description
In terms of file system, shortcut is a handle that allows the user to find a file
or resource located in a different directory or folder from the place where the
shortcut is located. Shortcuts Feature allows to create shortcuts for files and
folders. When you open the file shortcut, the corresponding file will open,
when you open the folder shortcut, current directory in the active panel will
change.

Chapter 4. Main features 17

• Purpose of use
Sometimes file can be strongly tied to its directory and its location cannot be
changed. However, the user often accesses this file and would like to do so
from a convenient location without changing the location of the file. Shortcuts
are needed to provide this capability. They provide quick access to any element
of the file system.

• Realisation
Creation of shortcuts is based on bool QFile::link(const QString &linkName)
function. When user wants to create a shortcut for a specific file, this function is
called. Arguments are the absolute path of the file and the same path but with
.lnk extension, which is actually an extension of the shortcuts. For folders, the
process is identical.

4.1.9 Properties

• Description
Window with detailed information about chosen item. This information con-
tains the following data: file name, type(file, directory symbolic link, etc), size,
parent folder, group(Unix systems), owner(Unix systems), date when this item
was created, last modified date.

FIGURE 4.1: Properties window

• Purpose of use
User may need some additional information about file. Things like size, abso-
lute path and type can be extremely useful to find out.

• Realisation
Usual popup window, filled with content from QFileInfo class.

Chapter 4. Main features 18

4.2 Filtering

• Description
Filtering in the application is implemented using a special field. In this field
you can enter both the full file name and the template by which you want to
search for it. Regular expressions are supported.

• Purpose of use
Quick and easy replacement for global search, but with some limitations. Saves
time when you need to find a file by its name within a single directory.

• Realisation
When the user confirms his input, a certain custom function is triggered. Based
on this input, a request is formed, after which the appropriate filters are ap-
plied to the file system model.

QStringList filters;
QString request = "*";
request.append(item_name);
request.append("*");
filters << request;
filters << ".";
filters << "..";
model->setNameFilters(filters);

4.3 Sorting

• Description
Sorting in the project is implemented using a header located on top of each
panel. You can click on the category of interest and sort all the entries in as-
cending/descending order.

FIGURE 4.2: Sorting header

• Purpose of use
Sorting may be useful in many situations. For example, find the largest/latest
modified/oldest, etc. file in the folder.

• Realisation
To represent the file system QTableView is used. By default it has header
which is actually QHeaderView class. To be able to use it for sorting, only the
basic configuration is needed.

tableView->horizontalHeader()->setStretchLastSection(true);
tableView->horizontalHeader()->setSortIndicator(0, Qt::

AscendingOrder);
tableView->horizontalHeader()->setSectionResizeMode(0,

QHeaderView::Stretch);

Chapter 4. Main features 19

4.4 Navigation line

• Description
The navigation line serves to display and control the user’s location in the file
system tree. It contains the absolute path of current directory. Each time it
changes, the line text is also updated. In addition, you can enter your path and
if it is valid, then by pressing the appropriate button, you will go to the desired
directory. Each panel has its own navigation line.

• Purpose of use
Used to display the absolute path of the current directory, as well as quickly
go to the user-specified path.

• Realisation
Usual QLineEdit widget and there is no complicated logic behind it. When
user clicks enter on keyboard, input is checked for validity and there happens
a transition to it. In addition, whenever the directory is changed, the new
absolute path is written to the appropriate navigation line.

4.5 Global search

• Description
Allows you to search for a file throughout the file system according to the
following criteria: file name, containing text, parent directory. As the search
engine finds the files, they will appear in a list where they can be opened.
Does not support binaries and archives.

• Purpose of use
A very powerful mechanism that makes it easy to find anything in the file
system. It is enough for the user to know at least a certain set of characters and
most likely the search will be successful if there are not many such files.

• Realisation
After user confirms his input, data received from three fields is validated and
processed. In case if path field is empty, root directory is used. If file name
is not specified - the search engine does not take it into account and file with
any name is the search target. The same thing happens when text field is not
filled. To iterate over directories in order to find searched files QDirIterator
is used:

QDirIterator it(path, filter, QDir::AllEntries | QDir::NoSymLinks
| QDir::NoDotAndDotDot, QDirIterator::Subdirectories);

Afterwards search function is started in the new thread using std::thread
from C++ concurrent library. The purpose is to not stop main application flow
with such a long-term process. Files will appear in the window as they are
found and user can interact with them even if search process has not finished
yet. As mentioned above, iteration over directories is being executed. In case if
user wants to search for containing text some additional operations are needed.

Chapter 4. Main features 20

If the file fits all the parameters, engine must also check it for containing text.
To do so file should be opened and scanned with QTextStream :

QFile file(fileName);
if (file.open(QIODevice::ReadOnly)) {

QString line;
QTextStream in(&file);
while (!in.atEnd()) {

line = in.readLine();
if (line.contains(text, Qt::CaseInsensitive)) {

foundFiles << files[i];
break;

}
}

}

Once all the files have been found or the window has been closed, search pro-
cess finishes.

4.6 Favorite paths

• Description
Feature to save and go to frequently used directories. If desired, user can save
frequently visited directories, edit them, and delete them if they are no longer
needed.

• Purpose of use
Often important folders can be located very deeply and therefore inconvenient
to access. To simplify the user’s life and save his time this feature has been
implemented. The main advantage over shortcuts is that the list of favorite
paths is available anywhere, because it is not tied to the file system. Thus, user
has not to go to the folder with shortcuts, but simply press one button.

• Realisation
The main role in the implementation of this feature is played by two basic
widgets: FavoritePathWidget and FavoritePathWidgetContainer . As can
be seen from their names, first one corresponds to a favorite path and can be
added by the user, the other serves as a container for paths and can be called
with the appropriate button. When user tries to add a new path, first of all it
passes simple validation.

if (QDir(path).exists() && !path.isEmpty()) {
return true;

}
return false;

After successful validation, the widget is created and added to the container.
Slot with opening of the corresponding folder is connected to this widget. In
order to preserve path even after application is closed, it must be added to
some external storage. In our case it is simply a config file in which string
representation of a path is written. In addition, there is a local cache, which
loads all the entries in order to not read them from the file every time. This

Chapter 4. Main features 21

way, all interactions go through this cache and only after closing the widget,
changes are applied to the main storage.

FIGURE 4.3: Favorites widget life cycle

From ui point of view there are no limitations on the amount of entries as they
are located in QScrollArea and after they can no longer be displayed within
the container, a slider will be added automatically.

4.7 Cloud drives support

• Description
Widget that allows you to quickly open your cloud storage, as well as provides
additional information about it: username, used memory, types distribution.
Supports not only OneDrive but any other storage as long as it has local repre-
sentation on the device.

• Purpose of use
Cloud storage is a model of storing data in a computer, in which digital data
is stored in logical pools, and physical storage covers several servers (usually
in several places). Cloud storage gives users instant access to a wide range
of resources and applications hosted in another organization’s infrastructure
through a web service interface. The main advantage is that it is not tied to
something local, you can use it from any device anywhere. Recently, the cloud
storage market has shown tremendous growth. Cloud storage

FIGURE 4.4: Cloud storages market growth

• Realisation
As mentioned above, each cloud storage has its own local representation on

Chapter 4. Main features 22

the user’s device. They are usually located in the home folder. To get cross-
platform access to this location: QString QDir::homePath() . Afterwards it
begins widget setup. We create click signal and emit it in case of
void CloudDriveWidget::mousePressEvent(QMouseEvent *event) . Open-

ing a local disk folder connects to this signal. Also, additional information
is extracted using the QFileInfo class, as well as the type distribution mech-
anism. For more information, see 3. Having this information, we can fill the
widget with it, after what it is ready to use.

4.8 Information panel

Information panel, located in right side of the interface displays different informa-
tion about file system, directory where user is located, existing drives, etc. It contains
three widgets:

1. Total memory distribution chart

• Description
Pie chart is divided into two sections: outer and inner. The inner one
shows how memory is distributed between virtual disks. The outer one
shows the distribution between occupied and free memory for each of the
disks. For more information from ui point of view, see 11

• Purpose of use
The user should always be aware of the state of his memory. This way,
it can be determined which disk is the highest priority to use, how large
files it can store, and when to clear the memory for future use.

• Realisation
The Qt Charts library was used as a basis for building charts. Information
about memory state was taken from QStorageInfo class:

qint64 QStorageInfo::bytesTotal();
qint64 QStorageInfo::bytesFree();

Having this information, total memory distribution chart can be easily
built:

DonutBreakdownChart chart = new DonutBreakdownChart();
for (QStorageInfo info : infoList) {

QPieSeries *series = new QPieSeries();
series->setName(info.rootPath());
series->append("Free", info.bytesAvailable());
series->append("Used", info.bytesTotal() - info.

bytesAvailable());
donutBreakdown->addBreakdownSeries(series);

}

2. Drives information widget

• Description
The widget shows more detailed information about each of the disks

Chapter 4. Main features 23

present in the operating system, including name, capacity, file system
type, whether the disk is mounted and whether it is read-only. For more
information from ui point of view, see 13

• Purpose of use
There are many use cases where it could be useful. Unmounted discs can-
not be used until they are re-mounted manually. Read-only discs cannot
accept any changes. Many factors also depend on the type of file system.

• Realisation
Drives information widget is represented by QTabWidget with n tabs,
where n is equal to number of drives. To get information about all drives:
QList<QStorageInfo> QStorageInfo::mountedVolumes() . After that,

we iterate over this list, extract the required information from each en-
try(drive) and fill widget with it.

3. Types distribution chart

• Description
Pie chart has dynamic number of slices. Each of these slices represents a
specific file type.

Type Extensions

Audio aif, cda, mid, midi, mp3, mpa, ogg,
wav, wma, wpl

Archive 7z, arj, deb, pkg, rar, rpm, gz, z, zip

Data csv, dat, db, log, mdb, sav, sql, xml

Executable apk, bat, bin, com, exe, gadget, jar,
msi, wsf

Image ai, bmp, gif, ico, jpeg, jpg, png, ps,
psd, svg, tif, tiff

Programming file c, cgi, pl, class, cpp, cs, h, java, php,
py, sh, swift, vb

System bak, cab, cfg, cpl, cur, dll, dmp, drv,
icns, ico, ini, lnk, msi, sys, tmp

Video
3g2, 3gp, avi, flv, h264, m4v, mkv,
mov, mp4, mpg, mpeg, rm, swf,
vob, wmv

Text doc, docx, odt, pdf, rtf, tex, txt, wpd

TABLE 4.1: File types and extensions mapping

Chapter 4. Main features 24

This way, it can be estimated type distribution in the current directory.
When the directory is changed, the chart is updated. For more informa-
tion from ui point of view, see 12

• Purpose of use
Can be useful to characterize a directory in terms of existing file types,
check for extra types, and quickly understand what it is used for.

• Realisation
The Qt Charts library was used as a basis for building charts. First of all
we get all the files in current directory using
QFileInfoList QDir::entryInfoList(QDir::Filters filters);

After that we iterate over this list, define type of each file and then in-
crease the counter of the corresponding entry in QMap <QString, int> .
Having this distribution, QChart can be easily built.

QPieSeries *series = new QPieSeries();
QMapIterator<QString, int> it(typesDistributionMap);
while (it.hasNext()) {

it.next();
series->append(it.key(), it.value());

}
QChart typesChart = new QChart();
typesChart->addSeries(series);

25

Chapter 5

UI/UX Design

5.1 General overview

FIGURE 5.1: First application prototype

Chapter 5. UI/UX Design 26

The figure above shows the first prototype of the planned application. Many details
have been preserved in the final version, although of course some have been recon-
sidered, some removed, and some things added. For example, the set of buttons for
controlling your favorite paths has changed, the information panel has been shifted
to the right, and new widgets, such as cloud storage, have been added to it. In addi-
tion, the overall appearance of the application has changed slightly. Now let’s take
a look at the final version of the design.

FIGURE 5.2: Final application prototype

1. Files list view
This list is the place where all files and folders are displayed. The elements are
arranged one after another sorted in alphabetic order by default. A certain set
of additional information is shown for each element. This is the icon assigned
to the file in the operating system, name, type, size and date of the last modifi-
cation. You can use header section to sort by each of the columns. For detailed
information about sorting, see ??
User can interact with files list in many ways. The main purpose is navigation.
We can move from one folder to another, thus moving through the file system.
If you double-click a file, it will be opened with the standard program assigned
to it. For some additional operations you need to call the context menu. This
can be done by right-clicking anywhere in the list. Depending on the location
of the click, a menu will open with a specific set of actions shown on the figure
below. For detailed information about file operations, see 4.1

Chapter 5. UI/UX Design 27

FIGURE 5.3: One file, one folder, multiselection and blank space con-
text menus from left to right

Multiselection is also supported. This allows you to select multiple items and
perform an operation for the entire group.

2. Button to open search filter
After clicking this button there appears search filter. To hide it you need to

click this button once more. For detailed information about filtering, see ??

3. Button to open favorite paths window
After clicking this button there appears favorite paths window. It contains in-
put field to add new path, button to confirm adding and container for existing
favorites.

FIGURE 5.4: Favorite paths window

By default in input line current path is entered, which saves a lot of time for
user as usually if someone wants to add folder to favorites, he is in it at the
moment. After entering the path you need to press the button on the right or
just Enter on the keyboard. If the path is valid, it will appear in the list, after
which it can be interacted with in three ways. The first option is to go to the
directory by left-clicking on the appropriate item. The second one is to delete
favorite path by clicking on the cross button. The third one is to edit it, after
which another validation will be performed. For detailed information about
favorite paths feature, see 4.6

Chapter 5. UI/UX Design 28

4. Navigation line

FIGURE 5.5: Navigation line

This line represents the path in the file system where the user is currently lo-
cated. Thus, each time you go to the directory, the path written in this field will
change. This will make it easier for the user to navigate. In addition, you can
write some path in the navigation line and, if it is valid, there will be a tran-
sition to the appropriate directory. Each panel has its own line. For detailed
information about navigation, see 4.4

5. Combobox for swapping drives

FIGURE 5.6: Combobox for swapping drives

After clicking, a popup list with all drives appears. Available on Windows
only. For detailed information about navigation, see 4.4

6. "File" drop-down menu
Not used yet, added for options that will appear in the future.

7. "Edit" drop-down menu
For now "Edit" drop-down menu contains option to call global search.

FIGURE 5.7: "Edit" drop-down menu

Search window contains three input fields for file name, containing text and
target directory. After entering data user should press find button(or just Enter
on the keyboard) and all the found files will be displayed as it is shown on the
figure below. For detailed information about global search, see 4.5

Chapter 5. UI/UX Design 29

FIGURE 5.8: Global search window

8. "Options" drop-down menu

FIGURE 5.9: "Options" drop-down menu

For now, in "Options" menu one can change application theme.

9. "Help" drop-down menu
Not used yet, added for options that will appear in the future.

10. Cloud storage widget
This widget displays various information about cloud storage. After clicking

on "Details" button, the distribution of file types on the drive is shown. To close
this view "Close" button should be clicked. For detailed information about
cloud drives support, see 4.7

FIGURE 5.10: Two modes of cloud storage widget

11. Total memory chart

Chapter 5. UI/UX Design 30

FIGURE 5.11: Total memory chart

The chart above shows distribution of total device memory. This is Pie Chart
with few slices depending on amount of drives. For each of these slices there
are two outer sections: used memory and free memory. So it can be easily de-
termined how loaded each disk is. For detailed information about information
panel, see 4.8

12. Types distribution chart

FIGURE 5.12: Types distribution chart

The chart shows the distribution of types in the folder. Updated when you
move to another directory. Labels are shown outside the slices to make it easier
to visually perceive a large number of types. For detailed information about
information panel, see 4.8

13. Drives information widget

Chapter 5. UI/UX Design 31

FIGURE 5.13: Drives information widget

Widget displays some information about all existing drives in the file system.
User can swap between drives with buttons above. The active tab button
changes color to make it intuitive which one the user is currently on.
For detailed information about information panel, see 4.8

5.2 User flow

Chapter 5. UI/UX Design 32

5.3 Themes

Recently, the trend to add a dark theme to applications and sites has become popular.
Many studies have already appeared on this topic, the opinion of scientists is as
follows.

While the dark theme may provide a number of benefits for some visually im-
paired users - particularly those with cataracts, research results point to the benefit of
positive polarity for users with normal vision. In other words, for users with normal
vision, a light theme will lead to better performance in most cases.

These results are best explained by the fact that with positive contrast polarity
there is more light and therefore more pupil contraction. The result is fewer spherical
aberrations, greater depth of field, and an overall better ability to focus on detail
without eye strain.

FIGURE 5.14

At the same time, it is necessary to allow users to switch to a dark theme at
will - for three reasons: there may be long-term effects, with a light theme; some
visually impaired people will work better on a dark theme; and some users just like
the dark theme. (We know that people rarely change the default settings, but they
should be able to do so.) It is unlikely that people will change the display mode
for a random site, but if they are using a website or application, they may need this
option. In particular, applications designed to be read in electronic forms (such as
books, magazines, and even news sites) should suggest a feature theme to topics.
And this option should ideally apply to all screens of this site or application. For
more details, see Dark Mode vs. Light Mode: Which Is Better?

Chapter 5. UI/UX Design 33

5.3.1 Light theme

FIGURE 5.15: Light theme

The primary color used in this theme is white(#FFFFFF). It covers about 85% of
the application area. All the other elements such as symbols, borders, icons, etc. are
mostly black(#000000). When you activate some elements, they change their color
to visually emphasize the user’s action. This activation color is royalblue(#0066CC).
There are many borders in the interface. It is done to highlight elements and let user
know exactly where he can interact with them and where he can not. It could be
done using background color, as it is in dark theme case, but for the light one it was
decided to leave this color the same for most elements, so the borders are the best
choice.

5.3.2 Dark theme

FIGURE 5.16: Dark theme

Chapter 5. UI/UX Design 34

The primary color used in this theme is darkslategray(#2B2C2D). It serves as a
background color for all the main elements of the interface. In order to be able to dis-
tinguish the elements, the background color of the window was set to black(#101012).

Silver(#BABABF) was chosen as the color of the font and icons. It was done to
ensure that body text passes WCAG’s AA standard of at least 4.5:1 when applied to
surfaces at the highest (and lightest) elevation. In our case contrast ratio is equal to
7.23 which is pretty optimal. As with the light theme, there is an activation color that
is also royalblue(#0066CC).

35

Chapter 6

Evaluation

6.1 Testing environment

OS: Windows/Ubuntu

CPU: number of CPU cores: 8, number of threads: 16, base clock: 3.6GHz, L1 cache:
512KB, L2 cache: 4MB, L3 cache: 32MB

Motherboard: chipset: AMD X570, form factor: ATX, CPU support: AMD Socket
AM4, memory support: dual-channel

RAM: memory type: DDR4, capacity: 16GB (8GBx2), tested speed: 3200MHz, tested
latency: 16-18-18-38, SPD speed: 2133MHz

SSD: capacity: 1TB, read speed: up to: 550 MB, write speed: up to: 520 MB, cell
type: TLC

6.2 Results

FIGURE 6.1: Performance metrics

Chapter 6. Evaluation 36

Class name Lines Methods

MainWindow 575 28

SearchWindow 179 11

StatisticsWidget 129 5

Properties 98 17

CreationUtils 89 5

ConfigParser 82 5

StatisticsUtils 78 4

CloudDriveWidget 73 6

DonutBreakdownChart 73 4

DirectorySizeCalculationUtils 66 5

CopyPasteUtils 56 3

RenameUtils 48 3

Class name Lines Methods

DeletionUtils 46 3

CloudDriveUtils 42 3

CloudDrive 41 8

FavoritePathsContainer 34 3

MainSlice 30 5

DiscView 22 2

SwapDrivesUtils 22 2

CopyPathUtils 19 1

FavoritesMainWindow 17 3

NavigationUtils 15 1

FiltersUtils 15 1

PropertiesWindow 12 2

TABLE 6.1: Code metrics #1

Type Purpose Number of
lines

.cpp Main business logic and application
behavior definition 1956

.h Declaration of different constructs,
such as classes, enums, etc. 774

.css Describing the presentation of an
application 558

.ui Definition of application compo-
nents 811

Total 4099

TABLE 6.2: Code metrics #2

37

Chapter 7

Summary

7.1 Conclusion

In this work we have created fast, convenient and easy-to-use file manager, that
meets all modern user needs. Quite a few things have not been implemented, for
different reasons, but in general all expectations are justified. Some new features
have been introduced in file manager development, that are not often seen in this
area, such as info panel, favorites directories, few themes and so on. And still a lot
of things that will be written below need to be improved and corrected.

7.2 Future work

Features to be implemented:

• FTP Client
Program for easy access to FTP server. This way, the file manager becomes
a FTP client through which you can receive files over the network. Feature
has not yet been implemented, due to the fact that the new version of Qt has
removed support for FTP, and switch to the previous version requires a lot of
time to adapt the code.

• Built-in command line
Command line interface(CLI) to interact with operating system by entering
various commands. This feature was already in the project, but it had to be
removed due to the large number of bugs and the amount of time required to
fix them. The main problem is that the project is cross-platform, and API is
significantly different on different operating systems.

• Drag and drop
So far, only external drag&drop is supported. This means that we can drag
and drop files into other programs, but we can’t do it inside the file manager.

Known bugs:

• Names in columns is changing from bold to regular on click

• Cloud drives are not found on some pcś

• Parts of the charts are not visible on some screen resolutions

• The slider covers an important part of the interface

• Style issues: wrong borders, extra margins and paddings, violation of the color
theme in some places, etc.

38

Appendix A

References

qExplorer GitHub repository

https://github.com/YmiR1710/BachelorWork

39

Bibliography

Cloud storage. URL: https://en.wikipedia.org/wiki/Cloud_storage.
Dark Mode vs. Light Mode: Which Is Better? URL: https://www.nngroup.com/articles/

dark-mode/.
Directory opus general features. URL: https://www.gpsoft.com.au/program/program.

html.
File systems. URL: https : / / cms . ucu . edu . ua / pluginfile . php / 135728 / mod _

resource/content/1/Lec_3_OS.pdf.
Nautilus general features. URL: https://help.ubuntu.ru/wiki/nautilus.
Official Qt documentation. QFileSystem. URL: https://doc.qt.io/qt-5/qfilesystemmodel.

html.
Q-Dir general features. URL: http://www.softwareok.com/?seite=Freeware/Q-Dir.
Shortcuts. URL: https://en.wikipedia.org/wiki/Shortcut_(computing).
Total commander general features. URL: https://www.ghisler.com/featurel.htm.
Windows Explorer general features. URL: https://www.informit.com/articles/

article.aspx?p=2163343&seqNum=2.

https://en.wikipedia.org/wiki/Cloud_storage
https://www.nngroup.com/articles/dark-mode/
https://www.nngroup.com/articles/dark-mode/
https://www.gpsoft.com.au/program/program.html
https://www.gpsoft.com.au/program/program.html
https://cms.ucu.edu.ua/pluginfile.php/135728/mod_resource/content/1/Lec_3_OS.pdf
https://cms.ucu.edu.ua/pluginfile.php/135728/mod_resource/content/1/Lec_3_OS.pdf
https://help.ubuntu.ru/wiki/nautilus
https://doc.qt.io/qt-5/qfilesystemmodel.html
https://doc.qt.io/qt-5/qfilesystemmodel.html
http://www.softwareok.com/?seite=Freeware/Q-Dir
https://en.wikipedia.org/wiki/Shortcut_(computing)
https://www.ghisler.com/featurel.htm
https://www.informit.com/articles/article.aspx?p=2163343&seqNum=2
https://www.informit.com/articles/article.aspx?p=2163343&seqNum=2

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Motivation
	Task definition

	Existing solutions
	Total Commander
	Directory Opus
	Windows Explorer
	Q-Dir
	Nautilus

	Approach
	Background
	File system
	Main architectural concepts

	Tools
	Application architecture

	Main features
	File operations
	Open
	Create
	Copy
	Cut
	Paste
	Delete
	Rename
	Shortcuts
	Properties

	Filtering
	Sorting
	Navigation line
	Global search
	Favorite paths
	Cloud drives support
	Information panel

	UI/UX Design
	General overview
	User flow
	Themes
	Light theme
	Dark theme

	Evaluation
	Testing environment
	Results

	Summary
	Conclusion
	Future work

	References
	Bibliography

