
UKRAINIAN CATHOLIC UNIVERSITY

BACHELOR THESIS

Monitoring network traffic and detecting
attacks using eBPF

Author:
Sofiia TESLIUK

Supervisor:
Halyna BUTOVYCH

A thesis submitted in fulfillment of the requirements
for the degree of Bachelor of Science

in the

Department of Computer Sciences
Faculty of Applied Sciences

Lviv 2021

http://www.ucu.edu.ua
https://www.linkedin.com/in/sofiia-tesliuk/
https://www.linkedin.com/in/galynabutovych/
http://researchgroup.university.com
http://department.university.com

i

Declaration of Authorship
I, Sofiia TESLIUK, declare that this thesis titled, “Monitoring network traffic and de-
tecting attacks using eBPF” and the work presented in it are my own. I confirm
that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

ii

UKRAINIAN CATHOLIC UNIVERSITY

Faculty of Applied Sciences

Bachelor of Science

Monitoring network traffic and detecting attacks using eBPF

by Sofiia TESLIUK

Abstract

Network safety is a vital aspect of our current life. Lots of servers are becoming
targets for attackers who want to reduce their performance or even get access to sen-
sitive data. To prevent attacks, constant monitoring and analysis of network traffic
is highly recommended and even required.

eBPF is an interesting technology of Linux that allows investigation and exten-
sion of kernel behavior, including access to raw network packets and their process-
ing.
The main goal of this thesis is to explore the possibilities of eBPF in the context of
creating a program for network traffic monitoring and analysis for attack prevention.

The project is open-sourced and will be available for further expansion and mod-
ification.

HTTP://WWW.UCU.EDU.UA
http://department.university.com

iii

Acknowledgements
I want to thank my supervisor Halyna Butovych for guidance through the work

on this thesis and for sharing the experience. And I am grateful to Oleg Farenyuk
for helping to choose the area of this thesis and meeting me with my supervisor.

Also, I want to thank my family for constant support throughout my life and
my friends Anastasiia and Elena for making these four years in Ukrainian Catholic
University brighter.

iv

Contents

Declaration of Authorship i

Abstract ii

Acknowledgements iii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem . 1

2 Related works 3
2.1 Similar tools for monitoring . 3

2.1.1 Command-line tools . 3
2.1.2 Advanced tools . 4

2.2 DDoS attacks detection . 4
2.2.1 Signature Based Approach . 4
2.2.2 High traffic load . 5
2.2.3 Malicious packet content . 5

3 eBPF 6
3.1 eBPF general overview . 6
3.2 XDP program type . 7
3.3 eBPF maps . 7

4 Background information 9
4.1 HyperLogLog . 9
4.2 Knuth Multiplicative method . 10

5 Implementation 11
5.1 General monitoring . 11

5.1.1 eBPF part . 12
5.1.2 User-space part . 13

5.2 Estimating the number of unique visitors 13
5.2.1 eBPF part . 14
5.2.2 User-space part . 15

5.3 Testing . 15

6 Results and Summary 16
6.1 Results . 16
6.2 Possible improvements . 16
6.3 Summary . 17

Bibliography 18

v

List of Figures

1.1 Data: Cisco Annual Report (2018-2023)[9] 1

3.1 Location of eBPF maps [6] . 8

5.1 TCP packet structure . 13
5.2 General monitoring: eBPF part block scheme 14
5.3 Estimating the number of unique visitors: eBPF part block sheme . . . 15

vi

List of Tables

5.1 General monitoring: defined eBPF maps 12
5.2 Estimating the number of unique visitors: defined eBPF maps 14

6.1 Estimation results for m = 128, b = 7 . 16

vii

List of Abbreviations

BPF Berkeley Packet Filter
eBPF extended Berkeley Packet Filter
DDoS Distributed Denial of Service
SSH Secure SHell
Rx Receiver
Tx Transmitter
CPU Central Processing Unit
SBA Signature Based Approach
ABA Anomaly Based Approach
EBA Entropy Based Approach
SYN SYNchronize
GCC GNU Compiler Collection
LLVM Low Level Virtual Machine
XDP eXpress Data Path
IP Internet Protocol
LPM Longest Prefix Match
DAU Daily Active Users
MAU Monthly Active Users
HTTP Hyper Text Transfer Protocol

viii

Dedicated to people, who haven’t heard about eBPF before. . .

1

Chapter 1

Introduction

1.1 Motivation

During the exploration of eBPF, I was pleasantly surprised by its possibilities.
eBPF can help solve daily tasks that require more information and influence pro-
cesses run on servers and our personal computers. The range of possibilities goes
from packet filtering to catching the event of opening a specific file in a filesystem.

In comparison to other ways to change the kernel behavior, eBPF doesn’t re-
quire recompiling the kernel or compiling kernel modules and will be safe to run
thanks to safety checks by loading verifiers of the code.

1.2 Problem

Today attacks have become a serious problem for everyone who launches a
server with public access, which automatically makes a service a potential victim.
Over the last years, strategies and tools for creating an attack have been improved
drastically. Not only the quality of attacks improves, but the scalability and fre-
quency increase as well.

DoS or DDoS ((Distributed) Denial of Service) is one of the most popular ones
type of attack. Their goal is to bombard the target with a lots of requests in one
moment, what makes the server unavailable for others. The average size of bot-
nets army 2006, who cause DDoS attacks, is between 103 − 106 [1]). Together they
produce average load 1 Gbps, which is enough to take most services offline.

According to Cisco Annual Internet Report in the figure 1.1, 9.5 million DDoS
attacks happened in 2019 and the number will increase in the next few years [3].

FIGURE 1.1: Data: Cisco Annual Report (2018-2023)[9]

Chapter 1. Introduction 2

Lots of Ukrainian services were attacked at some point as well. For example,
in 2017 the services of "Boryspil" aeroport, Ukrainian postal service, Ukrzaliznytsia
and others went offline because malvare that spreaded via service for accounting
[11].

To successfully deal with attacks, when every millisecond plays its role, we
need to detect and react to them very fast. Therefore access to the incoming network
packet should be provided at an early stage of its processing.

Even though it would be more convenient to write a program that is being ex-
ecuted completely in user space, by the time we catch a network packet, it will have
already gone through the checks done by the kernel. This leads to the conclusion
that we can start extracting useful information and in some cases drop the packet at
the first steps of kernel processing and won’t use unnecessary CPU resources and
memory space.

Applying changes to the kernel behavior is not an easy task and sometimes
requires recompiling and replacement of kernel modules or the whole kernel. And
where an update of the program has so many steps, postponing updates of it is
inevitable and could fail to detect freshly introduced vulnerabilities.

eBPF provides an easier solution to change kernel behaviour on response to
specific events. eBPF programs can be loaded to kernel at any time and don’t re-
quire kernel recompilation, which is a great advantage comparing to alternative ap-
proaches.

3

Chapter 2

Related works

2.1 Similar tools for monitoring

The change in behavior in the general state of traffic directed to service can
already provide hints about an existing attack. Just by a drastic increase of network
bandwidth in 5 seconds, we could guess that something abnormal is happening. To
find which information is useful for users, I investigated the functionality of similar
tools.

I focused primarily on console tools for network monitoring, as most servers
are located remotely and accessed via SSH in the console. The variety of tools for
Linux is enormous, so I will list the most popular ones [8] or those that propose
more unique features. Some of them are using eBPF as well.

2.1.1 Command-line tools

• tcpdump [7]

– Is probably the most popular tool for network analysis

– Monitors incoming packets with defined ip address / interface / port

– Can show payload of the package

– Supports different modes of shown information

– Uses libcap that itself uses eBPF

• Nload

– Monitors incoming and outgoing traffic separately (by network interface)

– Shows general stats like:

* Current network load (MBits/s)

* Average network load

* Min network load

* Max network load

* Total network load

• Ifload / Iptraf

– Measures data flowing through individual socket connections

– General stats

• Nethogs

– Shows network bandwidth by an individual process

Chapter 2. Related works 4

– Sorts processes by intensivity

• Others: interesting points

– Packet level details (tool bmon)

* General number of received bytes

* Number of errors

* Number of Compressions

* Number of dropped packets

* Number of multicast packets

– Top Rx/Tx speed (tool slurm)

– Showing total size of the transferred data for whole time after launching
recording daemon (tool vnstat)

– Active socket connections (tool Pktstat)

* Displaying the type of the current connection

2.1.2 Advanced tools

Advanced tools for network monitoring are oriented on a group of the servers
and quite often appear to be commercial. Those tools commonly have a GUI that
shows lots of details.

Interesting information shown in tools that I investigated [12]:

• State of network devices

• Topology of internal network

• CPU load

• Memory usage

• Activity of nodes

• Number of connections on each virtual server

• Monitoring firewall rules

• General statistics

2.2 DDoS attacks detection

2.2.1 Signature Based Approach

The main idea of the SBA approach is in knowing beforehand "bad" values of
specific attributes and comparing to patterns that may point to malicious actions.

Chapter 2. Related works 5

2.2.2 High traffic load

This type of attack is usually performed by an army of bots, sometimes in-
stalled on devices of peaceful citizens. Once the "main" host sends the command to
start an attack, the whole army of bots, connected to the network starts bombarding
the desired service.

Usually, services end up going offline and losing their reputation of being
reliable, but sometimes these high traffic load attacks are a distracting maneuver for
getting sensitive data using a found vulnerability.

The approaches Anomaly Based Approach (ABA) and Entropy Based Ap-
proach (EBA) are used for detecting hight traffic load attacks. Their main idea lays
in comparison of the "normal" traffic to the observed one. In case observed traffic is
much more heavy than the "normal" one, it points to an ongoing attack.

Either anomaly can be detected by comparison of traffic load over different
segments of time or by comparing different channels at the same moment (for ex-
ample load in separate socket connections).

To identify the abnormal traffic load over time. We need to collect the average
/ mean values of traffic load for the long continues time. Once current load is much
greater than average traffic load the service should take proper actions.

The method called Fast Entropy Approach on Flow-Based Network Traffic is
used to detect an attack by comparison of traffic load in active socket connections.
It calculates the entropy of flow count during two adjusted segments of time for
each socket that as well depends on flow count on other sockets. The calculated
entropy value will drastically decrease for large flow counts [5]. This method doesn’t
require any additional information from the past and therefore requires relatively
small resources and time for detection.

The SYN (synchronize) flood attack is one of the types of DDoS attacks. This
attack is breaking the rule of TCP handshake by simply to responding to the server
with ACK (Acknowledge) for SYN-ACK request. While server is waiting for the
response from all bombarding bots, the memory space that keeps the information
about each started connections may run out. This causes service unresponsiveness
for valid users [4].

2.2.3 Malicious packet content

Revealing this type of attack is much harder than checking a source IP address
in blacklist or finding anomalies in the number of load/connections. For this case,
packets should go through a full examination of payload, which requires additional
time and resources. Usually, such attacks are becoming noticeable much later after
they have happened.

6

Chapter 3

eBPF

3.1 eBPF general overview

BPF is a tool available in Linux that allows executing custom programs in
response to kernel events. BPF programs can be loaded from user-space with safety
checks and be executed in kernel space, which provides a convenient updating of
existing programs and access to more raw data.

The journey of BPF started in 1992 when it was introduced as a convenient
way to catch packets for observation from user-level. It had a list of advantages and
was declared to work 20 times faster than other ways of packet processing from
user-space in those days [2].

The main points that made BPF an efficient way to make changes to the kernel
behavior are:

• BPF is designed to run as a separate Virtual Machine, optimized to work with
register-based CPUs.

• BPF programs use per-application buffers, which allows to avoid copying packet
information, needed for processing.

• Before loading the BPF program to the kernel space, the verifier performs var-
ious checks to identify that the program is safe to execute and won’t get into a
never-ending loop.

Over the years Linux enthusiasts expanded BPF functionality to the extended
version (also known as eBPF). Now eBPF works with 64-bit registers, instead of 32-
bits. eBPF programs can be attached to other kernel events that are not only related
to package receiving (for example, the start of executing a program or connecting
a new device by USB). And eBPF functionality is more exposed to user-space for
inserting custom actions.

A typical eBPF usage:

1. Writing a script that operates with data, available in the scope of the attached
event.

2. Compiling this script (it can be done with standard compilers like GCC or
LLVM).

3. Loading a compiled program to the kernel space, in case of successful checks
by the verifier.

4. Attaching the loaded BPF program to the specific network interface/file/etc.
On which it should be triggered.

Chapter 3. eBPF 7

Currently, the size of loaded BPF program is limited to 4Kb. In case user
wants to expand a program, it can be done by creating an ordered chain of loaded
BPF programs with the same type, where every program can continue execution in
the scope of the next program.

Logs in the BPF program can be created with bpf_trace_printk and found in
debugfs.

3.2 XDP program type

XDP is one of the few BPF program types. It is executed on the early stage of
network package arrival when we can extract needed information. To mark the BPF
program as XDP one, on loading the program to the kernel space user should add a
flag BPF_PROG_TYPE_XDP.

The XDP program type also supports performing specific actions to the pack-
age itself. The most common ones, which I have used as well, are:

• XDP_PASS – pass the network package for further procession

• XDP_DROP – drop the package and terminate its execution at this moment

In more unique situations, the following ones can be used:

• XDP_ABORTED – terminate package procession with tracepoint exception

• XDP_TX – send back by the same network interface, from which it came

• XDP_REDIRECT – redirect package to another network interface

Also, the XDP type of BPF programs provides helpful structures for unwrap-
ping network packets, such as ethhdr (for Ethernet packet) and iphdr (for IP packet).

After loading a XDP program to the kernel space, it can be attached to the
network interface which we want to observe, or even to several ones. Detachment
of the program from the network interface can be done at any time with a helper tool
bpftool. In case users would like to try to attach several XDP programs to the same
network interface, they would fail to do so since only one program is allowed to be
attached to the same network device.

XDP programs are probably the most common ones. But it is worth men-
tioning the existence of such types as “Socket Filter Programs” and “Socket Option
Programs” that allow observation of flowed packets and modifying options of the
specific socket connection as well as give an even more detailed overview of a net-
work.

3.3 eBPF maps

Once a packet is successfully processed and we have received all the needed
information in kernel space, the question about passing the collected information to
the user space comes up. And that is the moment when eBPF maps are used.

Chapter 3. eBPF 8

FIGURE 3.1: Location of eBPF maps [6]

eBPF maps are data structures that are accessible from user space and from
BPF programs in kernel space 3.1. They behave as key-value storage for different
purposes. For example, as hash-table, array, queue, stack, or even for more spe-
cific purposes as LPM tries (Longest Prefix Match) etc. But the size of eBPF maps
should be predefined on the load of the BPF program and it sums up to the general
limitation of 4KB of the loaded BPF program.

Most variations of eBPF maps support 3 actions, such as:

• Lookup for the value by provided key

• Updating the value by provided key

• Deleting the whole element by provided key

From userspace, one more action is available – getting the next key of the map.
Overall, the current possibilities of eBPF maps are enough to fulfill general needs.

9

Chapter 4

Background information

4.1 HyperLogLog

HyperLogLog, the descendant of the LogLog algorithm, is a great way for
estimating the distinct values over a data stream with repeated values. Compared
to other count distinct algorithms over a data stream, HyperLogLog promises to
reach a high accuracy < 2% for cardinality values N = 109, while using relatively
small memory space [10]. The count distinct problem is often used for estimation of
unique IP addresses or other attributes from constant flow.

Let’s introduce a hashing function h(v), that converts a value from the ob-
served data stream to a binary sequence, and a function r(x), called rank, that finds
the position of rightmost 1-bit out of provided binary sequence.

The main idea of the HyperLogLog algorithm and its relatives is in finding
the estimate of the number of unique value in data-stream by known probability for
appearance of each value of the rank.

For example, from uniformly distributed hashes, the probability to get r(x) =
1 is 50%, for r(x) = 2 is 25%, for r(x) = 3 is 6.52%, and so on. If we remember
only the highest value of the rank function, we can already extract an estimation
E = 2max(r). Of course, with such approximate estimation, some outliers will make
the difference between estimation and actual number way too big.

The HyperLogLog includes a lot of improvements that make the estimation
more accurate. First of all, we need to keep in memory more than 1 rank value.
Secondly, the calculation of estimation contains more steps to make it closer to the
actual number.

To split the hashed values into separate groups, within which their ranks will
be compared, we will introduce the function that converts first b bits into value,
called index j(x). For this, we need to keep in memory m = 2b values for compar-
isons. Let’s introduce an array M[1], M[2] ... M[m], called registers in which we will
keep comparing values identified by their index.

From this point, once an element arrives from observed data stream, the next
process starts:

1. Calculating the hash of the arrived element x = h(v), t – total number of bits
in x

2. Finding index value out of first b bits of the hashed element i = j(x[0 : b − 1])

Chapter 4. Background information 10

3. Finding the rank of last (t − b) bits – r(x[b : t − 1])

4. Assign to M[i] the higher value between M[i] and rank

In the end, to find the estimation, we can simply calculate the harmonic mean
of values in the registers array and multiply it by correcting coefficients (am ∗ m2

below).
The final result:

E =
am · m2

∑m
i=1 2−M[i]

Where:

am =

(
m
∫ ∞

0

(
log2

(
2 + u
1 + u

))m

du
)−1

4.2 Knuth Multiplicative method

Knuth multiplicative method is a simple hashing function for integers. By
multiplying the value to the golden ratio of 232 (= 2654435761). To keep the result
limited to 32 bits, we can take the last 32-bits of the hashed value.

f (x) = (x · 2654435761) mod 232

This hashing method gives uniformly distributed results. And its simplic-
ity saves time.

11

Chapter 5

Implementation

The created program, named monitorBX, consists of two parts – the user space
and kernel space (in the context of eBPF) parts. eBPF part extracts the needed infor-
mation from packets and passes it to the user-space part, while the user-space part
of the program collects data, processes it, and outputs results to the user.

The program is written in C, to simplify the preparation process for its execu-
tion. For C eBPF features are available after installation libbpf library, while other
languages require installing additional libraries.

Since eBPF is a subject of constant improvement and its API is changing with
kernel versions, the BPF part of the code is compatible with Linux kernel version
5.10.3.

Currently, monitorBX has two modes of execution:

• General monitoring

• Estimating the number of unique IP addresses

Before the start of the execution, user can define:

• The mode in which monitorBX should be launched

• Index of network interface, over which the traffic will be monitored

• Path to files, where information will be stored

To find index of network device that will be observed, you can simply find a first
number appeared next to network device description with command ip addr.

5.1 General monitoring

General statistics in output includes:

• Number of received packets

• Number of dropped packets

• Speed of received traffic

• Number of unique source IP addresses

• Number of unique destinations ports

Chapter 5. Implementation 12

• Overview of source IP addresses and destination ports – how many times each
IP address / port was met (the collected overview won’t be shown in the con-
sole, but will be saved to the file)

• Number of packet with TCP/UDP/Other protocol

The information points above should be enough to detect some anoma-
lies in the traffic. Special mode for saving each package will allow custom detailed
exploration of the attack’s existence by the user.

5.1.1 eBPF part

The eBPF part of the program is responsible for extracting useful information
from the caught packets. At this stage we look for this information in the packet:

• Source IP address

• Destination port

• Protocol

To share the information with user-space part, eBPF maps are defined as in table
5.1, where maps include:

• conf_map

– to drop packages

• values_map

– Total size of flow

– Number of passed packets

– Number of dropped packets

– Number of packets with TCP protocol

– Number of packets with UDP protocol

– Number of packets with Other protocol

Name Type Size
conf_map BPF_MAP_TYPE_ARRAY 1

values_map BPF_MAP_TYPE_ARRAY 6
ip_map BPF_MAP_TYPE_HASH 100

port_map BPF_MAP_TYPE_HASH 20

TABLE 5.1: General monitoring: defined eBPF maps

In XDP program type, the packet comes as Ethernet packet along with Ethernet
interfaces. The structure of the Ethernet packet with TCP protocol is shown in 5.3.
To extract the source IP address and destination port, as mentioned earlier the next
helping structures are used: ethhdr, iphdr, tcphdr, udphdr.

The steps of extracting the needed information are shown in 5.2.

Chapter 5. Implementation 13

FIGURE 5.1: TCP packet structure

5.1.2 User-space part

User space part is the maintainer of the process. It loads the eBPF part to the
kernel space, attaches it the chosen by user network device and accessed the maps
shared with the loaded eBPF program. After this, it periodically checks the state of
the maps, aggregated data and outputs it either to console or provided data file.

5.2 Estimating the number of unique visitors

An important metric for server maintainers to know is the number of users of
the service over time. Usually, such metrics as DAU (Daily Active Users) and MAU
(Monthly Active Users) are tracked by the service itself. For web servers, the unique-
ness of the user is determined by the event of the authentication / information in the
header of the HTTP request or by cookie. In case you don’t want to introduce any
major changes with tracking features to the service, but still want to collect metrics,
the use of eBPF and estimation algorithms can help with estimating the number of
unique users that will be identified by their IP address or a combination of other
flow parameters as IP + port, session ids etc.

The straightforward solution, for counting unique users, would be saving every
new ip address to the data storage, and periodically count the number of elements
in used data storage. This method will provide accurate results, but as long as the
service works, the memory used for data storage will increase as well. This might
become a big deal if the server is running for a long time or for the one which serves
a lot of users.

As mentioned in the earlier section, there exists HyperLogLog algorithms for
estimation of distinct values in a large data stream, by using relatively small data
storage. I added this estimation as well, since it can be a good way to save memory
space to get the needed metrics.

Chapter 5. Implementation 14

FIGURE 5.2: General monitoring: eBPF part block scheme

5.2.1 eBPF part

At first, we need to have an array of size that is power of 2 defined as m. A BPF
map of type array is used as this required data storage, so later we will have access
to it from user-space. The defined map is shown in the picture 5.2

Name Type Size
registers BPF_MAP_TYPE_ARRAY 100

TABLE 5.2: Estimating the number of unique visitors: defined eBPF
maps

The next step was to choose a hash function that would convert a received IP
address to a hash that is uniformly distributed over 32-bit integers. For this purpose,
the Knuth’s Multiplicative Method is used.

The block scheme of is shown in figure 5.2.
The part with extracting source IP address from the packet can be found in 5.1.

Chapter 5. Implementation 15

FIGURE 5.3: Estimating the number of unique visitors: eBPF part
block sheme

5.2.2 User-space part

The beginning of user-space part in count distinct mode includes loading BPF
part, finding maps and attaching eBPF part to the network interface as well as it is
done in general monitoring mode. After that It iterates over registers map periodi-
cally and counts the Harmonic mean of ranks. Estimation is calculated by multipli-
cation of Harmonic mean of the ranks to correcting coefficient.

5.3 Testing

To test both modes of monitorBX, I needed to emulate an active network flow.
To do this, I wrote a python script that uses scapy library for packet generation and
sending.

The script sent generated Ethernet packets to the defined destination IP address
with configured frequency. Generated packets are with spoofed source IP addresses.

16

Chapter 6

Results and Summary

6.1 Results

Currently the tool for network monitoring is ready to use to get a general overview
of the current network state. The user have an access to the current and collected be-
fore stats. This allows user custom investigation of possible past anomalies.

The exprolation of HyperLoglog algorithm did not give that great results for
smaller cardinality (N = 103 − 106 (for an average size of botnets), as it was promised
for cardinality N = 109. The estimation is compared to the actual number in table
6.1, for size of registers array m = 128, an b = 7. Nevertheless, this method might be
used for much major attacks, but they are less likely to happen. For sure the accu-
racy the HyperLogLog method is not enough for getting metrics about active users
with a balanced every-day flow.

Actual number A Estimate E Relative error εA = E−A
A

1000 3989 2.99
10000 23622 1.36

100000 46154 0.538

TABLE 6.1: Estimation results for m = 128, b = 7

Estimation of unique IP addresses requires further investigation and mixing with
other known approaches for counting distinct values. For example, the program can
start estimating with methods for smaller cardinality, like Linear Counting, but once
the greater cardinality is detected, the other approach can be enabled. Or by using
the Sliding HyperLogLog [13] which adjust to detected cardinality.

6.2 Possible improvements

The field of improvement in aspect of estimating features and attacks detection
is wide and can be improved into two directions:

• Metrics estimation

• Attacks detection

Attacks detection highly depends on metrics and that is the reason why they
observed alongside.

Detailed points for improvement:

• Finding more accurate method for estimation specific parameters

• Automatization of attack identification and notification system for administra-
tion with alarms about possible attack

Chapter 6. Results and Summary 17

• Analysis of collected data for servers which are very rarely turned off

• Change the configuration of executed program during runtime (for this, user
won’t need to stop the execution and launching with other parameters)

• More user-friendly interface

Also, as eBPF allows operating with socket connections as well, there is a possi-
bility to add analysis of the traffic flow in socket connections as well.

6.3 Summary

In this thesis I investigated the possibilities of eBPF and approaches for attacks
detection in context of creating a tool for network monitoring. It gives a general
overview of the current state and access to collected data that can be used for further
attack analysis.

The source code is available here https://github.com/sofiia-tesliuk/monitorBX

https://github.com/sofiia-tesliuk/monitorBX

18

Bibliography

[1] Botnet @ Radware. 2021. URL: https://www.radware.com/security/ddos-
knowledge-center/ddospedia/botnet.

[2] David Calavera and Lorenzo Fontana. Linux Observability with BPF. 1005 Graven-
stein Highway North, Sebastor, CA 96472: O’Relly Media, Inc., 2020.

[3] Cisco Annual Internet Report (2018-2023). URL: https://www.cisco.com/c/en/
us/solutions/collateral/executive- perspectives/annual- internet-
report/white-paper-c11-741490.html.

[4] imperva. TCP SYN Flood. URL: https://www.imperva.com/learn/ddos/syn-
flood/.

[5] Ciza Thomas Jisa David. DDoS Attack Detection using Fast Entropy Approach on
Flow-Based Network Traffic. 2015. URL: https://core.ac.uk/download/pdf/
82617302.pdf.

[6] Al Cho @ SUSE Labs. eBPF maps 101 (Presentation). 2018. URL: https://www.
slideshare.net/suselab/ebpf-maps-101.

[7] Man page of TCPDUMP. URL: https://www.tcpdump.org/manpages/tcpdump.
1.html.

[8] Silver Moon. 18 Commands to Monitor Network Bandwidth on Linux server. 2020.
URL: https://www.binarytides.com/linux-commands-monitor-network/.

[9] Paul Nicholson. Five most Famous DDoS Attacks and Then Some. 2020. URL:
https://www.a10networks.com/blog/5-most-famous-ddos-attacks/.

[10] Olivier Gandouet Philippe Flajolet Eric Fusy and Frederic Meunier. Hyper-
LogLog: the analysis of near-optimal cardinality estimation algorithm. 2007. URL:
http://algo.inria.fr/flajolet/Publications/FlFuGaMe07.pdf.

[11] RBC.UA. Networks attacks: how dangerous is new cyberthreat is for Ukraine. 2020.
URL: https://daily.rbc.ua/ukr/show/ataki- set- naskolko- opasna-
novaya-ugroza-ukrainy-1595856741.html.

[12] Marc Wilson. 11 Best Network Monitoring Tools Software of 2021. 2021. URL:
https://www.pcwdld.com/best-network-monitoring-tools-and-software.

[13] Georges Hébrail Yousra Chabchoub. Sliding HyperLogLog: Estimating cardinal-
ity in a data stream. 2010. URL: https://hal.archives-ouvertes.fr/hal-
00465313/file/sliding_HyperLogLog.pdf.

https://www.radware.com/security/ddos-knowledge-center/ddospedia/botnet
https://www.radware.com/security/ddos-knowledge-center/ddospedia/botnet
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.imperva.com/learn/ddos/syn-flood/
https://www.imperva.com/learn/ddos/syn-flood/
https://core.ac.uk/download/pdf/82617302.pdf
https://core.ac.uk/download/pdf/82617302.pdf
https://www.slideshare.net/suselab/ebpf-maps-101
https://www.slideshare.net/suselab/ebpf-maps-101
https://www.tcpdump.org/manpages/tcpdump.1.html
https://www.tcpdump.org/manpages/tcpdump.1.html
https://www.binarytides.com/linux-commands-monitor-network/
https://www.a10networks.com/blog/5-most-famous-ddos-attacks/
http://algo.inria.fr/flajolet/Publications/FlFuGaMe07.pdf
https://daily.rbc.ua/ukr/show/ataki-set-naskolko-opasna-novaya-ugroza-ukrainy-1595856741.html
https://daily.rbc.ua/ukr/show/ataki-set-naskolko-opasna-novaya-ugroza-ukrainy-1595856741.html
https://www.pcwdld.com/best-network-monitoring-tools-and-software
https://hal.archives-ouvertes.fr/hal-00465313/file/sliding_HyperLogLog.pdf
https://hal.archives-ouvertes.fr/hal-00465313/file/sliding_HyperLogLog.pdf

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Motivation
	Problem

	Related works
	Similar tools for monitoring
	Command-line tools
	Advanced tools

	DDoS attacks detection
	Signature Based Approach
	High traffic load
	Malicious packet content

	eBPF
	eBPF general overview
	XDP program type
	eBPF maps

	Background information
	HyperLogLog
	Knuth Multiplicative method

	Implementation
	General monitoring
	eBPF part
	User-space part

	Estimating the number of unique visitors
	eBPF part
	User-space part

	Testing

	Results and Summary
	Results
	Possible improvements
	Summary

	Bibliography

