
UKRAINIAN CATHOLIC UNIVERSITY

BACHELOR THESIS

Freight trs: freight transportation
management app (carrier flow)

Author:
Oleh TYZHAI

Supervisor:
Serj MISKIV

A thesis submitted in fulfillment of the requirements
for the degree of Bachelor of Science

in the

Department of Computer Sciences
Faculty of Applied Sciences

http://www.ucu.edu.ua
http://researchgroup.university.com
http://department.university.com

i

Declaration of Authorship
I, Oleh TYZHAI, declare that this thesis titled, “Freight trs: freight transportation
management app (carrier flow)” and the work presented in it are my own. I confirm
that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

ii

“When something is important enough, you do it even if the odds are not in your favor.”

Elon Musk

iii

UKRAINIAN CATHOLIC UNIVERSITY

Faculty of Applied Sciences

Bachelor of Science

Freight trs: freight transportation management app (carrier flow)

by Oleh TYZHAI

Abstract

Many people have no idea how freight affects their daily lives and how important
it is for these processes to be perfectly tuned and automated, thinking that it is too
global and does not apply. But in fact, due to transportation, people are provided
with the products of their daily use because the end consumer for any product is a
person. If the truck had not brought fuel to the gas station, the person would not
have been able to refuel. If the truck did not deliver food to the supermarket, the
person would not be able to buy it. If the truck hadn’t delivered the wood to the
furniture factory, people wouldn’t have furniture.

HTTP://WWW.UCU.EDU.UA
http://department.university.com

iv

Acknowledgements
First of all, I would like to thank my manager Serge Miskiv for contributing to the
project. I also want to thank everyone involved in the transport industry who in-
spired me to come up with the idea for this project. Thank you to all the teachers
of the university for giving me enough knowledge to implement the project. And
special thanks to parents and loved ones for their faith and daily support.

v

Contents

Declaration of Authorship i

Abstract iii

Acknowledgements iv

1 Introduction 1
1.1 Motivation . 1

2 Existing solutions 2
2.1 Uber Freight . 2

2.1.1 Overview . 2
2.2 Della . 3

2.2.1 Overview . 3

3 Proposed approach 4
3.1 Overview . 4
3.2 Architecture . 4

3.2.1 SwiftUI + Redux . 4
3.2.2 Model - View - ViewModel . 5
3.2.3 Model - View - Controller . 5
3.2.4 Summary . 6

3.3 UI/UX design . 7
3.4 Flows: Client, Carrier - Driver and Manager 10

3.4.1 Carrier . 10
Main features: . 11
Main features: . 11

3.4.2 Client . 11
3.5 Libraries and frameworks . 13

3.5.1 Google Maps . 13
3.5.2 Stripe . 13
3.5.3 Twilio . 13

3.6 Backend . 13
3.6.1 Overview . 13
3.6.2 Django . 14
3.6.3 Rest Framework . 14

All user types . 14
Managers only . 14
Drivers only . 14
Customers only . 15

3.6.4 Authentication . 15
3.6.5 Heroku . 15
3.6.6 PostgreSQL . 16

vi

4 Future plans 17
4.0.1 Documentation . 17
4.0.2 Contacts feature . 17
4.0.3 Carrier statistics . 17
4.0.4 Truck integration . 17

5 Summary 18

vii

List of Figures

3.1 Redux flow . 4
3.2 MVVM flow . 5
3.3 MVC flow . 6
3.4 Order lifecycle . 12
3.5 Postico app . 16

viii

List of Tables

2.1 Pros and Cons of Uber Freight . 2
2.2 Pros and Cons of Della . 3

3.1 Pros and Cons of Redux . 4
3.2 Pros and Cons of MVVM . 5
3.3 Pros and Cons of MVC . 6

ix

List of Abbreviations

LAH List Abbreviations Here
WSF What (it) Stands For
IT Information Technology
MVVM Model View View-Model
MVC Model View
UCU Ukrainian Catholic University

x

Dedicated to my lovely parents

1

Chapter 1

Introduction

1.1 Motivation

Working in the agriculture area with my parents, I communicated with hundreds of
truck drivers, carrier agents, drivers who have their own trucks, and I noticed that
Ukraine has a huge problem in the transportation area. Many truck owners were
forced to sell their business and trucks just because they could not find proper orders
and provide tasks for their employees, or trucks spent more time without cargo. For
example, it is easy to find any order from Lviv to the port of Odesa, but it is tough
to find any orders in the opposite direction. Even at school age, I began to analyze
this problem in more depth and realized no products on the market that completely
solve these problems. After talking to various companies in need of transportation
and companies involved in transportation, I came up with a system that could fully
automate the transportation process, minimize the percentage of distance traveled
without cargo, thereby reducing the number of harmful gases emitted by trucks into
the atmosphere and increase profits for carriers.

But at that time, my ideas were just a dream because I was just a schoolboy who
had no experience in IT. That’s why I decided to enter the computer science program
at UCU and at the end of my studies to get closer to my goal.

2

Chapter 2

Existing solutions

2.1 Uber Freight

2.1.1 Overview

In 2018, the American company Uber introduced its new system called Uber Freight.
The basic idea of this system is very similar to mine. I read several articles about uber
freight transport and read the comments of real users of this system and saw a lot
of hatred. Many people say that the application is terrible and has many problems
with order fulfillment and payment. A lot of bad feedback comes from drivers and
dispatchers. It can conclude that Uber has focused more on the customer side of the
program. It is not surprising because it is the customer who makes the profit, and if
there are a large number of orders in the system, the carriers join automatically. From
a business standpoint, this is probably the right decision, but in my app, I would like
to place a strong emphasis on the carrier app to encourage them to import orders
even out of the system.

Pros Cons

Modern

User-friendly

not available in Ukraine

focused on customers

TABLE 2.1: Pros and Cons of Uber Freight

Chapter 2. Existing solutions 3

2.2 Della

2.2.1 Overview

Della is the only platform available on the Ukrainian market, but in my opinion, it
is pretty simple and does not solve all the problems associated with transportation.
This is essentially a bulletin board where customers place orders, leave their phone
numbers, and wait for carriers to call them. On the one hand, this is a pretty good
solution because the development of such a system does not take much time, and
at the moment, it is actively working, and users are satisfied. But in my opinion,
this system is outdated, and developers need to focus on improvement every year
to make people’s lives easier.

Pros Cons

works in Ukraine

easy to use

not automated

no safe payments

no documentation

no tracking

TABLE 2.2: Pros and Cons of Della

4

Chapter 3

Proposed approach

3.1 Overview

The proposed approach is to implement a program that can fully automate the trans-
portation process from route planning, preparation of documents for execution, and
payment

3.2 Architecture

It was pretty tricky to find the perfect architecture for the project, and before settling
on the MVC, I went through many different architectures.

3.2.1 SwiftUI + Redux

It is an entirely new architecture and technology, which is practically not used in
commercial projects but is quite interesting to study. Redux is a state-based architec-
ture that requires only three elements: enum of states, enum of actions, and reducer
function that take on the input the current state of the app and the action and return
the new state.

Pros Cons

Modularity

Easy to integrate new features

Easy to set up

Easy to check

lack of sufficient documents

takes time to study

TABLE 3.1: Pros and Cons of Redux

FIGURE 3.1: Redux flow

Chapter 3. Proposed approach 5

FIGURE 3.2: MVVM flow

3.2.2 Model - View - ViewModel

MVVM (Model - View - ViewModel) is an architecture template used to separate
business logic from user interface logic. The main purpose of this template is to
unload the inspection controller and follow the principle of sole responsibility from
the SOLID template.

According to the mvvm template, the view controller must contain only the logic
associated with updating information on the interface and for receiving signals from
the user.

The model is used to interact with third-party services and the server database to
obtain data displayed in the interface. The view model is used as an adapter between
the view and the model in order to convert the data provided by the model to those
that can display the view and vice versa

Pros Cons

modularity

easy to test

easy to support

needs much time to integrate (there
are projects for which setting up the
mvvm architecture takes more time
than writing a complete application
using MVC)

TABLE 3.2: Pros and Cons of MVVM

3.2.3 Model - View - Controller

MVC is a fairly old and simple architecture used by thousands of applications and
is used by default in iOS applications. It is an architecture that divides people into
two categories. Some say that this is not the MVC that was in the ’70s and that
those people who consider it bad do not really know how to use it properly. Others
say that using MVC is not suitable for large projects, and this architecture violates
all possible programming principles. I belong to this category of people, and I can
confidently say that the more the project grows, the harder it becomes to support
it, add new features, or even attract new developers. Despite all this, it is ideal for
small projects, and it is pretty easy to rewrite when the project starts to grow.

Chapter 3. Proposed approach 6

FIGURE 3.3: MVC flow

Pros Cons

Fast in coding hard to support

unreadable

hard to debug

hard to test

TABLE 3.3: Pros and Cons of MVC

3.2.4 Summary

After weighing all the pros and cons, I still decided to use MVC in my project be-
cause for a start, I would like to make an MVP project, and since I did not have
enough time for the project, MVC would be perfect for it.

Chapter 3. Proposed approach 7

3.3 UI/UX design

In the application, we have authorization using SMS code confirmation. On the
first screen, we have a start page where the user must enter his phone number, and
after pressing the login button, SMS with code will be sent to this phone number,
and the user will go on the code confirmation screen. After the user submits the
valid confirmation code, the app will send the request to the server to log in with
the OTP code and get a response with access and refresh tokens. If the user type is
selected for the current user, the app will automatically navigate the related flow. If
not, then the app will guide the user to another flow to complete registration.

Chapter 3. Proposed approach 8

If the user is not yet registered in the system, the application will ask him to fill in
the basic information and select the user type

Chapter 3. Proposed approach 9

If the manager has not yet added any trucks, trailers or drivers at startup, the ap-
plication will ask the user to add this data or skip this step and add it later from the
settings page

On the main page, the dispatcher can see all his current jobs with their statuses
and locations, and also on another tab, he can discover new orders and assign it to

Chapter 3. Proposed approach 10

his drivers

On the screen of order details, the dispatcher can see all the information about
the work, read customer notes, see information about the origin and destination,
their rating, find out information about the parameters of the cargo, its weight, the
number of required trucks. If the dispatcher is suitable for this order, he can accept
it, and his next step will be to choose a driver or several drivers who will fulfill it.
When selecting a driver, the dispatcher can see what status the driver is and how far
he is from the current cargo.

3.4 Flows: Client, Carrier - Driver and Manager

Since the system is quite large and includes many features, I decided to divide it into
two parts: Carrier and Client

3.4.1 Carrier

• Dispatcher. The dispatcher acts as an intermediary between the customer and
his direct executor - the driver. The essence of the dispatcher’s application is to
manage vast fleets of trucks and provide work for all. The manager can see all
orders available in the database and not yet commissioned. Can sort or filter

Chapter 3. Proposed approach 11

them by various parameters (for example, by distance from the driver to the
place of loading, by type of cargo, by weight, or by distance)

Main features:

– search for orders that are in the database and have not yet been commis-
sioned

– sorting or filtering them by various parameters (for example, by distance
from the driver to the place of loading, by type of cargo, by weight or by
distance)

– review and accept work orders, assign tasks to the driver

– track the process of order fulfillment and track the placement of the truck
on the map in real time

– view mileage statistics with or without cargo, see the company’s profits
as a whole and for each truck

• Driver The driver application is installed directly in the truck on the driver’s
mobile phone or tablet.

Main features:

– see the list of tasks to be performed

– accept a job order or reject it

– get the route from the current place to the place of departure and from the
place of departure to the destination

– give an assessment and comments on the origin and destination

– communicate with customers and recipients via chat

– view the number of simplest kilometers in recent times

– complete the task

3.4.2 Client

This program flow is intended for individuals or companies who want to order de-
livery

• create an order and add it to our database

• it is safe to pay for the order

• track the location of the truck in real time

• give feedback for the driver and the carrier

• get the best price for transportation

Chapter 3. Proposed approach 12

FIGURE 3.4: Order lifecycle

Chapter 3. Proposed approach 13

3.5 Libraries and frameworks

3.5.1 Google Maps

With the Maps SDK for iOS, you can add maps based on Google maps data to your
application. The SDK automatically handles access to the Google Maps servers, map
display, and response to user gestures such as clicks and drags. You can also add
markers, polylines, ground overlays and info windows to your map. These objects
provide additional information for map locations, and allow user interaction with
the map.

Maps play a significant role in our application, and the functionality of Apple’s
built-in maps was not enough. First of all, we use the Google framework when
creating an order to select the items of loading and unloading accurately. There is an
autocomplete functionality when entering the address, which is very convenient for
the user. We also use maps on the detailed order overview page to show the entire
route and the current location of the cargo on the map. In the future, I would like to
implement my own navigation in the application, but at the moment, it is enough
to simply redirect the user to a third-party application with a calculated route. This
can also be done through the Google framework.

3.5.2 Stripe

The Stripe iOS SDK makes it quick and easy to build an excellent payment expe-
rience for the iOS app. They provide powerful and customizable UI screens and
elements that can be used out-of-the-box to collect users’ payment details. They also
expose the low-level APIs that power those UIs so that you can build fully custom
experiences.

3.5.3 Twilio

Twilio Messaging is an API to send and receive SMS, MMS, OTT messages glob-
ally. It uses intelligent sending features to ensure messages reliably reach end-users
wherever they are. Twilio has SMS-enabled phone numbers available in more than
180 countries.

We use it on our backend side to provide a verification code for the user for login
or registration.

3.6 Backend

3.6.1 Overview

At the project planning stage, the question arose as to which platform to choose
for the backend. The idea was to use Firebase, as it is one of the simplest options,
with enough functionality for authentication through various social networks and
the ability to store objects in a database. I learned that it is common practice for
startups to use Firebase to get started. However, as soon as the application begins to
grow, using Firebase will be very expensive. Sooner or later, I will have to abandon
it and develop my own server, so I decided not to do unnecessary work and create a
server on Dnango at once.

Chapter 3. Proposed approach 14

3.6.2 Django

Since I already had some experience with django while studying, I decided to use it.
Django is a high-level Python Web framework that encourages rapid development
and clean, pragmatic design. Built by experienced developers, it takes care of much
of the hassle of Web development, so you can focus on writing your app without
needing to reinvent the wheel. It’s free and open source.

3.6.3 Rest Framework

REST is a loosely defined protocol for listing, creating, changing, and deleting data
on your server over HTTP. The Django REST framework (DRF) is a toolkit built on
top of the Django web framework that reduces the amount of code you need to write
to create REST interfaces.

In my project, I use DRF to synchronize mobile applications with the server and
database to retrieve, save or update some information about the state of the applica-
tion. To do this, I implemented the following queries.

Since the application is divided into three different flows, I created a custom
user class that contains information about the user type. The type can be Customer,
Driver or Manager

For the basic functioning of the application, I have developed the following
queries.

All user types

• /order/action/list
This query returns a list of orders associated with that user.

• /order/action/update
Used to update any information about order. For example: assign carrier, as-
sign driver, change status.

Managers only

• /truck/action/add
It takes information about the truck, such as make, model number, and num-
ber. Assign this object to the current manager’s ID and save it to the database.

• /truck/action/list
Give a list of trucks related to current manager

• /driver/action/getInvitationCode
This request is used to connect the driver to its manager. It returns a unique
invitation code that the manager must provide to drivers to connect them to
his company

• /driver/action/list
Returns the list of user id of drivers connected to current manager.

Drivers only

• /driver/action/connect
Takes invitation code as input and returns success in case invitation code is
valid

Chapter 3. Proposed approach 15

Customers only

• /order/action/create
Takes all the necessary data from the user and creates an order and adds it to
the database.

3.6.4 Authentication

I decided to use the SMS confirmation method for authorization in the application.
Three requests were created in the application for authorization:

• /auth/action/generateOTP
Takes the user’s phone number as input randomly generates a verification
code, and sends it to the phone number.

• /auth/action/verifyOTP
This request takes the phone number and confirmation code as input, and if
the code is valid, the request will respond to tokens (access and updates) and
the user object. There is no separation between login and registration in the
application, so after receiving the response, we check whether the user type is
already assigned to this user.

• /auth/action/refreshToken
We use JWT for authorization. The JSON Web Token is an open standard (RFC
7519) that defines a compact and autonomous way to transfer information be-
tween parties as a JSON object securely. This information can be verified and
trusted because it has a digital signature. The JWT can be signed using a se-
cret (with the HMAC algorithm) or a public / private key pair using RSA or
ECDSA.

JWTs have an expiration date, so in such cases, we update the token to regain
access to it without logging in again. And this request accepts the update token
and returns an access token in response.

3.6.5 Heroku

Heroku is a container-based cloud platform used to deploy, manage, and scale mod-
ern applications. I needed a venue to host a Django server on the web, and in my
opinion, Heroku is the most affordable option for startups. There is an opportunity
to choose a free plan with only minor restrictions.

Chapter 3. Proposed approach 16

FIGURE 3.5: Postico app

3.6.6 PostgreSQL

PostgreSQL is a powerful, open source object-relational database system with over
30 years of active development that has earned it a strong reputation for reliability,
feature robustness, and performance.

In fact, I did not think long about which database to use and do not see much dif-
ference between them because Django has a wrapper that works with any database,
so I chose postgre only because it has a cool application to view the tables of database
- Postico.

17

Chapter 4

Future plans

4.0.1 Documentation

Each shipment entails a large number of documents. And to simplify the process for
everyone, I would like to implement electronic document management. If we collect
all the necessary information from customers and contractors, we could generate
this document in the application and at each stage of transportation to receive a
signature from a person or in the application or through a digital signature. Many
truckers are afraid or do not trust to pass their driver’s license and truck documents
to accountants to fill out papers, and because of this, stressful situations often arise
on both sides. I am sure that electronic document management would solve this
problem completely.

4.0.2 Contacts feature

Good communication plays a significant role not only in transportation but also in
any field. In order for the customer, carrier, and driver to be able to communicate
freely, I want to develop chat functionality in the app. In my opinion, it is better
to separate communication of the customer with the dispatcher and with the driver
as the customer can discuss with the driver features of a place of loading, which is
not interesting for the dispatcher and will only spam him. Also, for greater security,
chats appear only when the order has been picked by manager.

4.0.3 Carrier statistics

Any company needs to see and understand what profit they will receive. In the
appendix, I would like to develop a separate statistics page for the company with
general information and separately for each driver or truck, so that the employer
understands which of the drivers brought a large profit to the company and which
a small one.

4.0.4 Truck integration

To improve the statistics and better control over the drivers, I want to develop a de-
vice that connects to the truck’s CAN tire and receives information about the fuel
consumption of the car, speed, and probably other information. It will help deter-
mine as accurately as possible all the costs and net income of the company for a
particular order.

18

Chapter 5

Summary

At the initial stage of the thesis, I set myself the goal to develop a working prototype
of a transport process management system. This was quite difficult, as there can be
a huge number of functions, and the development of such systems can take years
with a large team. To finish the basic version of the application I decided to cut some
functionality which in my opinion is less important. I did not develop a mechanism
for tracking orders, did not make a mechanism for secure payment and many other
little things. However, I believe that I have already taken a significant step for the
releasing my application.

19

Bibliography

[1] What is Django
https://www.djangoproject.com/

[2] Django rest framework
https://realpython.com/lessons/building-drf-overview/

[3] Json Web Token
https://jwt.io/introduction

[4] PostgreSQL
https://www.postgresql.org/

[5] Heroku official website
https://www.heroku.com/about

[6] Uber Freight users feedback
https://www.truckingoffice.com/blog/what-do-you-think-about-uber-freight/

[7] Google Maps SDK overview
https://developers.google.com/maps/documentation/ios-sdk/overview

[8] Stripe
https://github.com/stripe/stripe-ios

[9] Twilio
https://www.twilio.com/the-current/what-is-twilio-how-does-it-work

[10] Freight Shiping
https://www.freightquote.com/define/what-is-freight-shipping/

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Motivation

	Existing solutions
	Uber Freight
	Overview

	Della
	Overview

	Proposed approach
	Overview
	Architecture
	SwiftUI + Redux
	Model - View - ViewModel
	Model - View - Controller
	Summary

	UI/UX design
	Flows: Client, Carrier - Driver and Manager
	Carrier
	Main features:
	Main features:

	Client

	Libraries and frameworks
	Google Maps
	Stripe
	Twilio

	Backend
	Overview
	Django
	Rest Framework
	All user types
	Managers only
	Drivers only
	Customers only

	Authentication
	Heroku
	PostgreSQL

	Future plans
	Documentation
	Contacts feature
	Carrier statistics
	Truck integration

	Summary

