
UKRAINIAN CATHOLIC UNIVERSITY

BACHELOR THESIS

Comic Art Editor Development

Author:
Nina BONDAR

Supervisor:
Mykhailo IVANKIV

A thesis submitted in fulfillment of the requirements
for the degree of Bachelor of Science

in the

Department of Computer Sciences
Faculty of Applied Sciences

Lviv 2021

http://www.ucu.edu.ua

i

Declaration of Authorship
I, Nina BONDAR, declare that this thesis titled, “Comic Art Editor Development”
and the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

ii

UKRAINIAN CATHOLIC UNIVERSITY

Faculty of Applied Sciences
Faculty of Applied Sciences

Bachelor of Science

Comic Art Editor Development

by Nina BONDAR

Abstract

This work is about researching how very specific storytellers convey their messages
through a very specific medium - the sequential art of comics. This aims to present a
web-based PoC of how organizing the pipeline of comics creation in one place could
help professional artists automate their work to larger extent. It targets the features
of comics software that have the potential to become really useful and important to
the creators - based on research of existing comic series and author interviews. The
demo in progress can be found in this github repository.

HTTP://WWW.UCU.EDU.UA
https://github.com/ninabondar/comics-assistant

iii

Acknowledgements
I would like to express my biggest gratitude to my supervisor Mykhailo Ivankiv,
without advice and guidance of whom I would surely get lost among the approaches
and priorities - thank you for understanding my passions and turning them into a
potential project of a lifetime.

I am deeply grateful to the authors of comics who eagerly responded to our
requests and broke down their approaches to us.

I am grateful to the Faculty of Applied Sciences at Ukrainian Catholic University,
for gathering the best teachers and making it possible to be proud of the faculty one
studies at.

Without any doubt, I am the most grateful to my friends and family, who never
doubted my ideas.

Finally, I would like to thank myself for not giving up, no matter how
unpredictable life was.

iv

Contents

Declaration of Authorship i

Abstract ii

Acknowledgements iii

1 Problem statement and domain background 1
1.1 Motivation . 1

1.1.1 Comics as a medium . 1
1.1.2 The role of comics nowadays . 2

2 Research and assumptions 3
2.1 Problems to address based on observations 3

2.1.1 Inking: what good brush is . 3
2.1.2 Character design mutations overtime 4

Case "JoJo’s Bizarre Adventure: Stone Ocean" by Hirohiko Araki 4
2.1.3 Setting modeling: building and city plans 5

Case ’Attack on Titan’ by Hajime Isayama 5
Case ’Bane’ by Andriy Dankovych 6

2.1.4 Angles generation . 6
2.1.5 Frames shape: redefining the panel’s shape 6
2.1.6 Lenses . 6

2.2 Interviews . 7
2.2.1 Odunze Oguguo: the creator of "Apple Black" 7
2.2.2 Andriy Diakiv: the creator of "Kurhan" 8
2.2.3 Andriy Dankovych: the creator of "Bane" 8

3 Implementation 13
3.1 Research outcomes, combined . 13
3.2 Technological stack consideration . 14
3.3 WebGL and Three.js . 14
3.4 Camera and stage . 15

3.4.1 WebGLRenderer . 15
3.4.2 Scene . 15
3.4.3 Camera . 15
3.4.4 @react-three/fiber . 16
3.4.5 Setting simplification . 17
3.4.6 Multiple-camera setup . 17

3.5 Two-dimensional drawing . 19
3.5.1 Layers . 19

Experiments . 19
react-konva . 19
Native HTML5 canvas API . 19

v

3.5.2 Pen tool . 19
3.5.3 Brush tool . 20

Intuitive solution . 20
The problem of brush "bald patches" 20
Analysis of the article "Exploring canvas drawing techniques"

by kangax . 20
Pressure and pointer events . 21

3.5.4 Our approach . 22
Applying the idea of joining points 22
Tangents of stamps with different radius 22

3.6 Panel layout . 24
3.6.1 Experiments . 25

SVG Masks . 25
Canvas frames with PIXI.js . 26

4 Conclusion 27
4.1 Outcomes . 27
4.2 Further steps . 27

5 Bibliography 28

vi

List of Figures

2.1 Frames from manga "JoJo’s Bizarre Adventure: Stone Ocean" by Hiro-
hiko Araki. The difference of character’s appearance demonstration.
To the left: the first character appearance. To the right: The further
look of the same character . 5

2.2 A page from manga "Attack on Titan" volume 1 by Hajime Isayama.
The wall Maria and a city panorama. 6

2.3 Pages from manga "Attack on Titan" volume 1 by Hajime Isayama.
The city is being invaded by titans. A demonstration of different an-
gles for the same scene of action. 10

2.4 Pages from comics "Bane" by Andriy Dankovych. Repetitive illustra-
tions of the same setting from different angles. 11

2.5 Frames from a side story "Dr STONE:Reboot Byakuya" illustrated by
Boichi. The boundaries of panels are not strictly rectangular. 12

2.6 Art with character from manga "Naruto" by Kishimoto Masashi. An
example of spherical warp. 12

3.1 The main parts of the PoC project . 14
3.2 Three.js rendering space. The illustration of near and far frustum.

Anything outside of near and far is not going to be rendered. 16
3.3 Multiple-camera setup effect with the help of OrbitControls model

rotation. 17
3.4 Our PoC approach to multiple-camera setup implementation. A trans-

parent 2d layer with a scene of titan invading the city over the rotated
setting simplification of a high wall and a city behind it from "Attack
on Titan" by Hajime Isayama . 18

3.5 The "brush" tool core idea: stamp-like drawing on every mousemove
event fired. 20

3.6 The mono-width continuous brush with baldness problem solved. . . 21
3.7 Joined stamps. The yellow lines are lines we would like to have be-

tween each stamp to create the continuity effect and fight the bald spots. 22
3.8 Joined stamps. The yellow lines are lines we would like to have be-

tween each stamp to create the continuity effect. 23
3.9 The unit circle. 23
3.10 By joining the tangents, we achieved a new joined stamp of a beautiful

shape. 24
3.11 The final brush strokes after all trigonometric manipulations. 24
3.12 The order of layers in svg mask approach: the mask goes on top of the

image. 25
3.13 The implementation of svg masks as the frames for the image. Notice

they have the possibility to be placed over one another 26

vii

To those who don’t give up on their dreams

1

Chapter 1

Problem statement and domain
background

1.1 Motivation

As a newcomer in the industry of comics and drawing in general, I had no idea
which software would be the most friendly and powerful simultaneously. Solving a
problem like this nowadays is the matter of looking it up in Google search, but the
approaches and needs of every artist are different - it makes way more sense to test
it yourself. I clearly knew the path of mastering a certain tool is meant to be a bit
windy, because the professional tool should be advanced enough to fulfil the variety
of artistic needs of artists around the world. Still, once I got to draw digitally, I
quickly realised all of the tools are complex and frankly similar. The complexity
didn’t come out of nowhere, but I truly had zero idea where to apply all of that - and
when I wanted to warp, blur or mask the image in an unusual manner, it all was
so complex I had to watch several video tutorials before actually using a feature. I
realised how not user friendly many editors were. Later, talking to digital artists /
comic artists, I heard them confirming that many features are either hidden or so
unpopular that no one really has the answers except for figuring it out with manual
investigation. Although there’s beauty to this freedom and diversity of graphical
receptions, as stressful as the work of comic artist is, there’s enough complexity on
the way to final results. This is why this research is to determine and rank the real
pains of comic artist’s work and propose an MVP solution of how, based on the
principle of Occam’s razor, some parts of comic production can be automatised at a
cost of an open-source product.

1.1.1 Comics as a medium

There are many types of comics out there. From European visual novels to Korean
webtoons and Japanese manga, comics of any type aim to tell a story and convey
some message. However, in contrast to how it can be done with writing or cin-
ematography, comics as a medium uses several forms of communication at once,
which might bring a deeply satisfying effect to the reader in different ways at once.
Little do outsiders of the industry know, however, this industry requires a lot of
artist’s patience that might be not paid back for at all. Artists and their assistants
tend to overtime very often, but there is no certainty in their work to become phe-
nomenally popular, because the competition is very tense as well. The deadlines
in the industry, knowing there are weekly zines with comics, are very strict. Thus,
the time and comfort become the main factors and pain points for comic artists job.
This is why we want to make it easier for them to accomplish their goals in the most
effective way.

https://en.wikipedia.org/wiki/Occam%27s_razor

Chapter 1. Problem statement and domain background 2

1.1.2 The role of comics nowadays

No matter how comics get treated in society, the industry of entertainment under-
stood comics are perfect source material for movies and animation long ago. Not
only do they already have character designs and panel layouts with angles ready-
to-use, they are also fully scripted. Even companies like Warner Bros. take it seri-
ous and produce films based on comics - like "Edge of tomorrow"(2014) was based
on original 2004 manga "All You Need Is Kill" by Hiroshi Sakurazaka and Takeshi
Obata. There are TV series like "Deadly Class" based on American comics as well.
There are many other examples: action films, games, comic cons, even theme parks -
anything entertainment industry can propose. But not only that. There are examples
of comic-based educational books. Linear algebra, physics, calculus, philosophy -
anything can be taught in the form of comics, which proves it to be just another
medium, just a bit more powerful - it redefines reading and storytelling. Accord-
ing to Forbes, even after a year of COVID-19 pandemics, the industry of comics is
healthy, but also faced significant growth of interest towards Asian light novels and
manga. One of the named reasons for this growth is the fact editors and authors had
to face the breaches ans weaknesses of their work process and fix it quickly to keep
up with the market. Nevertheless, growth of interest and publishing optimizations
only state that this industry is only getting started.

https://en.wikipedia.org/wiki/Edge_of_Tomorrow
https://en.wikipedia.org/wiki/Edge_of_Tomorrow
https://en.wikipedia.org/wiki/Deadly_Class_(TV_series)
https://nerdist.com/article/attack-on-titan-universal-studios-japan/
https://www.amazon.com/Manga-Guide-Linear-Algebra/dp/1593274130
https://www.amazon.com/Cartoon-Introduction-Philosophy-Michael-Patton/dp/0809033623
https://www.forbes.com/sites/robsalkowitz/2021/02/05/comic-art-market-still-healthy-after-a-year-of-covid/?sh=86011a366171
https://www.forbes.com/sites/robsalkowitz/2021/02/05/comic-art-market-still-healthy-after-a-year-of-covid/?sh=86011a366171
https://www.forbes.com/sites/robsalkowitz/2020/10/30/new-sales-data-reveals-how-covid-19-impacted-the-comics-industry/?sh=76009dac9c9e
https://www.forbes.com/sites/robsalkowitz/2020/10/30/new-sales-data-reveals-how-covid-19-impacted-the-comics-industry/?sh=76009dac9c9e

3

Chapter 2

Research and assumptions

There are good desktop solutions on the market for drawing in general. People use
tools like Adobe Photoshop, Illustrator and Clip Studio Paint. Only the last one
has a well-defined pipeline for comics creation and even downloadable 3d models.
According to comic artists that we managed to interview in person, tools are only
a matter of habit. However, every single one of them told the process of comic art
creation requires huge amounts of time. To create something effectively, many artists
seek for comfort of perspective guidelines, layout templates, shading tips etc to save
time they spend on one work. Not every tool has this, especially on the surface. After
talking to the creator of manga "Apple Black", who himself uses Clip Studio Paint,
we realized there might or might not be tools for anything one wants to accomplish
inside the software they use, however if it comes to advanced and useful features like
applying fisheye efect to his perspective drawing, he as an artist eyeballs it instead
of using some helpful feature that could exist in the application.

There is more to that. Artists from Ukraine whom we interwied, who are being
actively published and take part in international comic cons, have never tried using
Clip Studio Paint, but use Photoshop instead. However, after the demonstration of
how it would be possible to apply 3d models to repetitive panels drawing in our
PoC, the author of "Bane" and other Ukrainian works, confessed that he has a physi-
cal reference - mannequin, and uses it’s pictures to save time when drawing complex
angles. So, not only does he take pictures on a separate device, he also has to up-
load them to his computer and add to the software he uses for drawing(Photoshop).
This is a sequence of actions that could be prevented by having an abiility to model
and scale the 3d models like mannequins inside the drawing software. He seemed
genuinely sure this 3d feature has a potential because of how much time it saves.

To conclude this part, there is a field of infinite interface simplifications and fea-
ture usage analysis in this industry, especially in Ukraine.

2.1 Problems to address based on observations

2.1.1 Inking: what good brush is

No doubt, this is the most required instrument in comics inking. It is a common
knowledge comics are traditionally either black-and-white or pay attention to inking
and line definition a lot, even if colored. A lot of attention is devoted to stroke width
in comics. Stroke width is a vital element for panel drawings, as well as its decor.
Intuitively, one can understand the thickness of strokes is controlled by the pressure
applied to the instrument. To make the brush really useful, we have to make it react
fast to artist’s gestures and make sure it is sensitive to the pressure applied to it.

https://www.adobe.com/ua/products/photoshop.html
https://helpx.adobe.com/security/products/illustrator.html
https://www.clipstudio.net/en/

Chapter 2. Research and assumptions 4

2.1.2 Character design mutations overtime

As a storyline develops, the complexity of character relations and events grows re-
spectively. To start with, it is hard to keep track of all the diverse characters and
their designs to full extent. No matter how skilled and experienced the artist is, it
might happen to the best of those from the industry because of strict deadlines and
possible lack of comfort in the creative work authors are involved in - lots of authors
tend to look back through the story to recheck the designs of introduced characters
when they use those characters in the story again. Sometimes, even the fact of exis-
tence of a character might be forgotten due to complex relations and large numbers
of characters that not all authors follow along on a daily basis.

For example, this happened to a character from the story that became popular
on a global scale - Attack on Titan’s secondary character Rico Brzenska. The author
introduced the character with quite an important status and just never came back to
using them. It might have been just a secondary character the author didn’t want
to spend panel space on, however, the majority of other personas in the story got at
least a partial character development and recognition, whereas this specific character
played an important role in several episodes of the story, then vanished into the thin
air.

However, this is not the even the brightest example of what can possibly occur if
the author keeps up with the weekly or monthly deadlines and is not able to follow
along the story as a whole.

Case "JoJo’s Bizarre Adventure: Stone Ocean" by Hirohiko Araki

In order to give one an idea of how immense this work is and how powerful and
respected the infamous author is, it is important to mention that the works of Hiro-
hiko Araki appeared in Louvre, on prints of Moschino, Balenciaga, Gucci etc, and
the manga by him is being released for more than 30 years. The publishing of Jojo’s
part 1 started back in 1987. By 2021, the 8th part of it is still in progress. Will all
due respect to the author, there were several episodes during the series, when the
events, character’s gimmicks or characters features got mixed up and confused the
audience. An author this big, especially knowing the specifics of this series, can def-
initely manipulate the characters and plot and stay respected and sold consistently.
However, to less famous authors, or to more realistic stories, this might be a very
undesirable topping.

In terms of rapid character design changes, special attention should be payed to the
sixth part of the series - “JoJo’s Bizarre Adventure: Stone Ocean”, where the
character with fuchsia hair is first introduced as a woman with the clothes of
certain color combination - see figure 2.1. After a certain period of time, they are
reintroduced as a male character with no gimmick of changing their appearance or
sex to that extent. Neither was this fact ever explained afterwards in the story. Thus,
fandom first assumed the author just didn’t manage to keep up with the diversity
of Jojo’s universe and simply forgot that this character used to look very different.

However, during one comics conference in Italy, the author explained it by the fact
he wanted someone with an androgen appearance in his story. Moreover, the char-
acter would be possibly more popular with a masculine design. Still, the change was
drastic.

Less dramatic changes of either the clothes designs or character features are seen
in many manga and comics series due to authors being really worked out and ded-
icated to meet the release dates - see one of thousands of examples of a real-life

https://en.wikipedia.org/wiki/Attack_on_Titan
https://www.luccacomicsandgames.com/en/2019/comics/news/hirohiko-araki-guest-of-honor/
https://www.youtube.com/watch?v=t3rKrTehORY
https://www.youtube.com/watch?v=t3rKrTehORY

Chapter 2. Research and assumptions 5

FIGURE 2.1: Frames from manga "JoJo’s Bizarre Adventure: Stone
Ocean" by Hirohiko Araki. The difference of character’s appearance
demonstration. To the left: the first character appearance. To the

right: The further look of the same character

manga creator schedule. The other possible reason is a messy approach to script
writing and organizing the character design layouts.

2.1.3 Setting modeling: building and city plans

Case ’Attack on Titan’ by Hajime Isayama

The infamous story-turned-franchise "Attack on Titan" is a manga series that was
first published in 2009. The universe is first introduced as an onion-designed system
of cities surrounded by the walls(figure 2.2) of nearly 50m height with humans as an
almost extinct species living inside them. Behind the walls, on the other side from
human cities, there are other species rambling - huge human-eating monsters called
titans. They can be relatively short, around 4 meters, or extremely tall - 20 meters
and way more.

Now that we know the context of the story and the approximate parameters of
the objects, let us closer inspect the frames from volume 1.

As one of the first important events of the story happens - a titan approaches and
breaks the wall, the story panels keep repeatedly demonstrating the same city views
from various angles to describe the scene in a more interactive way, juggling both
scale and perspective (figure 2.3). This case demonstrates a very common approach
to how the scene is described and depicted in comics medium. In order to make
it more persuading, a lot of the times artists render the setting of the story events
carefully, paying attention to at least the proportions of the objects on stage. This
ensures a deeper dive-in into the atmosphere of the universe of the story.

In case of this story, the setting of a city behind the walls can be relevantly easy
simplified into a 3d model based on cubes - we will get to it later. For now, see figure
3.3.

https://www.youtube.com/watch?v=t3rKrTehORY
https://www.youtube.com/watch?v=t3rKrTehORY

Chapter 2. Research and assumptions 6

FIGURE 2.2: A page from manga "Attack on Titan" volume 1 by Ha-
jime Isayama. The wall Maria and a city panorama.

Case ’Bane’ by Andriy Dankovych

The dark fiction by a Ukrainian artist Andriy Dankovych serves as proof of how
events of the story might take place in, out or near the same spot repeatedly through-
out the series (figure 2.4). Thus, rendering the details not only requires good mem-
ory, but also the abstract thinking and patience.

2.1.4 Angles generation

Often, the objects in comics panels are drawn from a not straight-on perspective un-
der a certain angle to add dynamics and keep attention. Thus, it might be potentially
useful for an artist to have a tool for angles generation.

2.1.5 Frames shape: redefining the panel’s shape

There still exists an outdated belief (dictated by the style of 1960-70th years’ comics)
that frames of comics are normally square or at least rectangular. Although it is re-
ally convenient to work with a rectangular shape of drawing’s canvas, there is no
requirement of how parallel the sides of a frame should be. Many modern comic
artists neglect the square boundaries of panels - and sometimes even frame bound-
aries themselves - to add more dynamics and style to their works. See figure 2.3 for
rectangular frames and figure 2.5 for differently shaped panels.

2.1.6 Lenses

A less obvious yet extremely spectacular effect artists tend to use for more dramatic
effect and/or to fit more details of setting in one panel is a spherical warp - see
figure 2.6. According to many artists on the internet, it is tricky and requires good

Chapter 2. Research and assumptions 7

perspective knowledge. We, for one, can trust the fact it is widely used and creates
a n unusual warp effect that catches one’s eye.

2.2 Interviews

In this section, let us go through the interviews with professional artists and the
insights we got from talking to them. There were three goals we chased during the
interviews:

1. Get author’s opinion on how useful the list of assumed features is, one by one.
2. Understand their work pipeline.
3. Ask about their current work-related pains.

2.2.1 Odunze Oguguo: the creator of "Apple Black"

Odunze Oguguo is a Nigerian manga artist who is known for creating several pub-
lished visual novels and a bi-weekly digital English-language magazine that features
diverse artists - "Saturday AM".

Software preference: Clip Studio Paint

Has assistants: Yes

Simplified pipeline:

Script writing. At this stage the author mostly uses handwriting. A fair reason to
go for this tool set at this stage is that once the script just disappeared because of
software glitch. Another reason is that it is faster to open a notebook and/or cross
out parts of the script by hand and requires no devices nearby.

Storyboard. This stage is tied to script writing, the author has to go back and forth
between the storyboard and script. This is where the final frames sketches and text
bulbs are being settled.

Inking. This part is outsourced to his team of assistants and is pretty time-consuming.
An insight about it is that although it is convenient to send the sketch via Internet,
it requires time to fix the style after the assistants, because everyone has their own
inking style. It requires a lot of time to review and fix the style of detailed panels,
however it is important for the author to average the style.

Opinion on problems/features:

Character design mutations: The artist isn’t prone to forgetting the characters, since
he writes the script and analyses it a lot. On the other hand, he frequently checks the
previous pages of the chapter to make sure all of tiny details of character’s clothes
aren’t missing. From his words, it can possibly be useful to have a character’s design
board in the app, but in his case, it is a part of the final review process, so everything
will be anyway checked.

Setting modeling: The author sees how it can be useful and helpful, however he
himself doesn’t use 3d for rendering his drawings and prefers to rely on his skill or
reference folders on his computer. This is very person-specific.

Angles generation: From the author’s words, he ’doesn’t hate the idea’, however
author sees little sense in this feature, because as a creator he knows how he wants
it to look and trusts his vision over computer-generated angles. This is one of the
main places where he channels creativity within the pipeline, so it wouldn’t be more
useful than a folder with references on his computer.

Chapter 2. Research and assumptions 8

Lenses: The author uses this effect and would be interested to see the implementa-
tion of spherical warp. Currently he eyeballs such effects.

New insights:

AI-powered inking. According to the author, it would be extremely interesting to see
a well-trained assistant that could work with sketches of different style and clarity’.
It would save a lot of time and would be also very financially beneficial for the
creator.

Simultaneous editing. Another possible time saver is a feature of simultaneous edit-
ing to ensure the communication with the assistants team.

2.2.2 Andriy Diakiv: the creator of "Kurhan"

Andriy is a Ukrainian comic artist that is published by UAComix.

Software preference: Adobe products

Has assistants: No

Simplified pipeline:

Script writing.

Storyboard.By the time of storyboard designing, the author usually knows the script
almost by heart.

Inking. This is a long process, because the author works autonomously.

Opinion on problems/features:

Character design mutations: The artist isn’t prone to forgetting the characters, doesn’t
see much use in character board.

Setting modeling: During the demo session, the author confirmed it would be use-
ful to have 3d models and space for editing them, because it would save time to
many people. On the other hand, his point is that professional artists who work for
years have it all in their head and require no assistance. It might still be useful for
professionals to get back in the flow of drawing after a long break. To sum up, the
author thinks it is more useful for beginners.

Angles generation: When the author gets to drawing, he already visualises the an-
gles. He doesn’t believe in AI-powered assistance too much.

Lenses: The author uses this effect and would be interested to see the implementa-
tion of spherical warp. Currently he eyeballs such effects.

New insights:

There has been a visible development of Ukrainian comics since around 2015. A lot
of new publishing houses like UAComix, Vovkulaka, FireClaw and others emerged.
It is a positive trend and a drastic change since author’s school days.

2.2.3 Andriy Dankovych: the creator of "Bane"

Andriy is a Ukrainian comic artist that is published by UAComix and specialises at
science fiction and dark fantasy.

Software preference: Adobe products

Has assistants: No

Simplified pipeline:

Chapter 2. Research and assumptions 9

No script writing.

Storyboard. The author gets the panels straight out of his head, based on the general
idea that the story tells about. For science fiction, the author uses hand drawing.

Inking/Coloring. If there is the need to ink, the author does it within Adobe Photo-
shop/Adobe Illustrator.

Opinion on problems/features:

Character design mutations: The artist isn’t prone to forgetting the characters, doesn’t
see much use in character board.

Setting modeling: During the demo session,from the start, the author confirmed it
would be useful to have 3d models and space for editing them, because it would
save time to many people. When he needs a certain position of character that is
hard to recreate in head, he takes a minified wooden mannequin and models out
the position. Then he takes a picture by his phone camera and then uses it to draw
over or redraw from the picture like from the reference. This sequence of actions
is redundant if the author has a 3d modeling feature. Same works with complex
perspectives that have repetitive architectural objects.

Angles generation: When the author gets to drawing, he already visualises the an-
gles. He doesn’t believe in AI-powered assistance too much.

Lenses: The author uses this effect and would be interested to see the implementa-
tion of spherical warp. Currently he eyeballs such effects.

New insights:

According to the author, same as Andriy Diakov, he believes there has been a visi-
ble development of Ukrainian comics since around 2015. It is a positive trend and
a drastic change since author’s school days (from his words, he started drawing
comics at the age of 8). He used to pave his own way through to drawing comics
among the first artists of this genre in Ukraine, and he sees fast development of this
industry locally - he can no longer follow along the new releases.

Chapter 2. Research and assumptions 10

FIGURE 2.3: Pages from manga "Attack on Titan" volume 1 by Hajime
Isayama. The city is being invaded by titans. A demonstration of

different angles for the same scene of action.

Chapter 2. Research and assumptions 11

FIGURE 2.4: Pages from comics "Bane" by Andriy Dankovych. Repet-
itive illustrations of the same setting from different angles.

Chapter 2. Research and assumptions 12

FIGURE 2.5: Frames from a side story "Dr STONE:Reboot Byakuya"
illustrated by Boichi. The boundaries of panels are not strictly rectan-

gular.

FIGURE 2.6: Art with character from manga "Naruto" by Kishimoto
Masashi. An example of spherical warp.

13

Chapter 3

Implementation

3.1 Research outcomes, combined

Summing up the research chapter of this work, basing on it, we decided to hit the
most needed basic features(like brush drawing or multiple perspectives) first and
then gradually add the features our authors gave positive feedback about, moving
with an agile way - delivering a ready-to-use MVP on each stage of work.

Thus, in this PoC we mainly focused on:

• Setting model simplification

• Multiple-camera setup: different points of view

• Pen and brush free drawing over the 3d models

• Layout of the panels

It would be then nice to have:

• Advanced in-app modeling

• Mannequins

• Lenses and warp effects

• Different brushes

• Custom lighting

We divided the project into three main parts - see figure 3.1. Currently, we think of
the future comics panels as of a stack of 3d layer and multiple 2d layers. Later the
layers are going to be saved and layed out on the page to author’s liking. The first
one is a very important part of the app - the 3d layer, a modeling space, where the
either ready-to-use model is imported, or the model is constructed out of Three.js
primitive shapes like cube and sphere.
The second part is where the drawing happens: using a pen or a brush, we draw
over the 3d model that was previously made. It is tightly tied to the 3d layer with
modeling space. At this point, the layer is fixed at the selected coordinates of 3d
model and we draw the 2d frame to our liking. Simply saying, we first rotate and
zoom the model on a 3d layer, then create a new transparent 2d layer right above
these coordinates and draw over. The last part is where the layout is created. For
the sake of simplicity and speed of PoC testing, we decided to go for four-paneled
page. After the 2d layers of our drawing are ready, we insert them into the
predefined panels and mutate the edges the way we decide.

Chapter 3. Implementation 14

FIGURE 3.1: The main parts of the PoC project

3.2 Technological stack consideration

For the sake of simplicity and fast prototyping, as well as the simplicity of scaling
the solution, web implementation with Typescript was chosen. It can be either de-
veloped further as a web solution, just like Escalidraw , or turned into a desktop
solution, like the famous Clip Studio Paint.

If it wasn’t for testing the hypothesis of how artists interact with comics creation
pipeline, I would devote more time to speed optimisation of 2d and 3d canvas
effects as the user interacts with them. For the sake of flexibility of prototype
testing, we decided to develop the application using libraries that simplify the
interface of vertex and fragment shaders with a relatively little sacrifice of processor
time if started on a local machine.

3.3 WebGL and Three.js

One of the key concepts we’d like to test is working with 3d models bundled with
2d drawing - the simplification of drawing complex angles using customisable 3d
models that we can possibly scale, rotate and turn into a reduced setting for the
story told. The existing solution for three-dimensional manipulations in web is the
WebGL and OpenGL Shading Language(GLSL). It is a high-level web graphics shad-
ing language with syntax based on the C programming language, which potentially
makes it less comfortable to work with in web paradigm. It is used for creating any-
thing from web games to impressive 3d wow-effects for web pages one can create
using shaders. However, for basic multidimensional shapes and operations as well
as for the sake of being more flexible with the time of prototype development, it is
way more effective to choose one of existing libraries built over GLSL. After a decent
amount of libraries research, it became obvious that the optimal solution is Three.js
- one of the most popular and powerful libraries that uses a set of abstractions over
GLSL. This is how it can be done with Three.js:

const geometry = new THREE. BoxGeometry (1 , 1 , 1) ;
const m a t e r i a l = new THREE. MeshBasicMaterial ({ c o l o r : 0 x 0 0 f f 0 0 }) ;
const cube = new THREE. Mesh (geometry , m a t e r i a l) ;

In the example above, we first create a geometric box - BufferGeometry instance
that represents a carcass for the future mesh and texture applied to it. Then, we need
some material to cover the carcass: in our case, we’re using the simplest material that
represents a polygon mesh. After creating a mesh, we finally combine the geometry
and the material into the desired shape - a cube.

One more important reason to go for Three.js is the way it simplifies work with
3d space - just the way the creator needs it when thinking of angles: using cameras
and stages.

https://en.wikipedia.org/wiki/Polygon_mesh

Chapter 3. Implementation 15

3.4 Camera and stage

Just like in cinema production industry, camera and stage are the terms used to
describe respectively the point of view at a given moment and “mise en scene” -
everything placed on stage - screen, in our case. Professional modelling software,
like Blender or Cinema 4d, has already adopted these concepts to manage scenes in
three dimensions. Developed as a solution for gaming and 3d, Three.js borrowed
these concepts too.

However, to see anything as an output on the screen and see our shapes and
cameras take effect, we need three building blocks of a stage setup.

3.4.1 WebGLRenderer

The first thing is a Three.js WebGLRenderer - a raster workspace with a 3d context
that takes in the canvas element from DOM and a context of rendering. Under the
hood of it, there is a context one can get from a plain html canvas element by using
.getContext(’webgl’) method in any browser supporting this API. It basically tells
the canvas there are OpenGL calculations going to happen.

3.4.2 Scene

Then, we need at least one scene - an object of Three.js representing a visual part of
the stage. For now, we might think of scenes as of layers or frames with drawn 3d
content.

3.4.3 Camera

Finally, we need a camera to set up a point of view - like an image transmitter to the
screen for us to see what’s happening on our canvas. There are different types of
cameras in Three.js, however we use the PerspectiveCamera for our scene. Accord-
ing to documentation, this projection mode is designed to mimic the way the human
eye sees. It is the most common projection mode used for rendering a 3D scene. It
takes in several arguments: the first one is FOV. FOV is the extent of the scene that
is seen on the display at any given moment - see figure 3.2. Its value is in degrees.

The second argument is the aspect ratio of the stage. It speaks for itself - a ratio of
screen width and height, which is a number. The third and fourth ones are near and
far. Near and far planes are the numbers representing the position of how near to
the camera and how far to the camera the objects rendered on stage can be.
Anything positioned outside of the near and far frustums, is not going to be
rendered, so will not be visible - see figure 3.2. It is used for rendering optimization
and reducing the rendering of redundant, out of sight objects.

In code, it would look like this:

// Create a renderer
const renderer = new THREE. WebGLRenderer () ;
renderer . s e t S i z e (window . innerWidth , window . innerHeight) ;
. . .

// Append a canvas to DOM
document . querySe lec tor (" # root ") . appendChild (renderer . domElement) ;

https://threejs.org/docs/#api/en/renderers/WebGLRenderer
https://developer.mozilla.org/en-US/docs/Web/API/WebGLRenderingContext
https://www.opengl.org//
https://threejs.org/docs/#api/en/cameras/PerspectiveCamera

Chapter 3. Implementation 16

FIGURE 3.2: Three.js rendering space. The illustration of near and far
frustum. Anything outside of near and far is not going to be rendered.

. . .
// Create a future scene
const scene = new THREE. Scene () ;

// Create a p e r s p e c t i v e camera
const camera = new THREE. PerspectiveCamera (
75 ,
window . innerWidth / window . innerHeight ,
0 . 1 ,
1000
) ;

3.4.4 @react-three/fiber

However, the real-life application is built with React in order to simplify the UI de-
velopment process, as well as to look more elegant. React is well-known for its
reusable components approach. Unfortunately, it is not that elegant to write the im-
plicit Three.js-based code(like in the example above) and apply it to the renderer in
the component manner - we’d spend too much time even on creating shapes. This
is why we decided to go with a powerful package called react-three/fiber. Not only
does it allow us to work with complex abstractions like WebGLRenderer of Three.js
in the component manner, it also allows the same with the shapes. Now the code
of setting up the workspace for 3d is reduced to importing the Canvas component
from the package and adding several props to it:

Chapter 3. Implementation 17

import { Canvas } from " @react −three/ f i b e r " ;
. . .
re turn <Canvas
dpr ={window . d e v i c e P i x e l R a t i o }

3.4.5 Setting simplification

Lots of art studying resources, like an internet-famous Proko, teach to simplify the
composition to a set of plain shapes like cubes before getting into rendering the
sophisticated details of it. It would be extremely boring to live in a Minecraft-like
world of cubes only, however, a trained artist can normally eyeball fitting an object
of a desired shape into a cube. Another reason for plain shapes is that they won’t
distract the artist from rendering the details over them, because models here only
serve a helper purpose. They are not the main entities from artist’s perspective. Let
us explore how the setting from 2.1.3 can be turned into a simplified model we can
work with.

Another example of how it can be useful is the simplification of a castle from
2.1.3.

3.4.6 Multiple-camera setup

As it was described in section 2.1.3, especially when it comes to dynamic moments,
artists often use a similar to multiple-camera setup trick, when some essential story
moment is shown from several angles simultaneously - see figure 3.3.

FIGURE 3.3: Multiple-camera setup effect with the help of OrbitCon-
trols model rotation.

https://www.proko.com/simplifying-joints-in-perspective/

Chapter 3. Implementation 18

FIGURE 3.4: Our PoC approach to multiple-camera setup implemen-
tation. A transparent 2d layer with a scene of titan invading the city
over the rotated setting simplification of a high wall and a city behind

it from "Attack on Titan" by Hajime Isayama

Chapter 3. Implementation 19

3.5 Two-dimensional drawing

3.5.1 Layers

Although there exists a possibility to add several cameras on stage, for the sake of
both speed optimisation and simplicity, our solution for different angles lies within
saving the coordinates of the camera at a given moment and permanently tying it
to the new 2d layer that is created over these coordinates. See figure 3.4 for a visual
part.

Experiments

Two approaches were tested for this functionality.

react-konva

For layers of 2d drawings, we first decided to find some lightweight library that
would possibly have the layers functionality, so that it would be less time for us to
integrate this feature. Of all the solutions, we selected the Konva package. Just like
react-three/fiber does for Three.js, react-konva aims to provide a convenient
interface for working with canvas API in React.
Looking back now, I clearly understand there were several markers of this solution
to be totally not what we want from the drawing application. As easy as it is to use
the package in components style, firstly, the documentation about free drawing is
very short and covers only stateful path drawing. Secondly, according to this
documentation, the canvas interactions will get slower if one has too many lines in
the state, claiming hundreds of lines already be a lot. For our purposes, though,
drawing hundreds and thousands of lines is an inevitable step in final comics page
creation. Let us move further to a more performant implementation.

Native HTML5 canvas API

From the perspective of relatively complex drawings, knowing we already have a
webgl-contexed canvas in the application, nothing can outbeat the plain canvas and
its rich interface. Firstly, it has no middleware to slow the operations down. What
is more, rather than giving one a framework, it gives full freedom of actions and a
set of good practices and docs that can be found on MDN. Let’s briefly go through
the implementation of a pen tool.

3.5.2 Pen tool

The concept of free drawing on html canvas element is very simple: it provides an
interface in scope of ’2d’ context for drawing lines and paths on the raster canvas.
In order for drawing to feel natural, canvas has to process the emitted browser
event like ’mousemove’.

document . onmousemove = (event) => {
c t x . beginPath () ;
c t x . l ineTo (event . c l i en tX , event . c l i e n t Y) ;
c t x . s t roke () ;
}

https://konvajs.org/docs/react/Free_Drawing.html
https://konvajs.org/docs/react/Free_Drawing.html
https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API

Chapter 3. Implementation 20

In order to start and finish the gesture where we set and release the pen, a boolean
isDrawing flag is introduced. We start drawing - set isDrawing to true - once the
mousedown event is emitted, we release the pen once mouseup event is emitted.
This task is a trivial one, no matter the tech stack.

3.5.3 Brush tool

However, never before have we found a robust solution for brush.
There are solutions on the Internet for creating a brush for HTML5 canvas. How-

ever, none of those we have found fulfilled the needs of our potential users. There
were several reasons for that. As a result, we implemented our own brush instru-
ment that we might have never encountered on the Internet before. Let us dive in
the mechanics behind the brush implementation.

Intuitive solution

What’s normally done when an engineer wants to implement a brush-stroke effect
is repetitive stamp-like drawing of a certain pattern - usually, a circle - on every
mousemove event. Browser events’ handling is an inevitable part of any brush im-
plementation, because as it was already mentioned in subsection 3.5.2, this is how
the movement of a gesture is tracked. However, this is completely not enough to
state one has implemented a brush that works like a brush - see figure 3.5.

FIGURE 3.5: The "brush" tool core idea: stamp-like drawing on every
mousemove event fired.

The problem of brush "bald patches"

The figure 3.5 introduces us to the problem of canvas not being able to keep track of
all of our movements - there are not enough round stamps rendered during large,
sweeping gestures. Unless we want to irritate the potential users, it will do no good
as a tool and will not handle the long strokes that we are looking for.

Analysis of the article "Exploring canvas drawing techniques" by kangax

In the article "Exploring canvas drawing techniques", the author leads us through
very different approaches and does the job of summarizing the majority of approaches
one might come up with. From stamping to "furry" brushes and shadowed lines, we

http://perfectionkills.com/exploring-canvas-drawing-techniques/

Chapter 3. Implementation 21

were looking through all of the solutions gathered there, but none of those could
do the sophisticated job of creating what’s expected from a brush tool: monotonous
strokes of arbitrary length, and, as it was mentioned in section 2.1.1, - handling pres-
sure.

But let us first see the most robust solution for our case of all those proposed.
The stateful brush implementation was the closest to what we wanted. It solved the
baldness problem, as well as didn’t look like a try to hide the poor implementation
of stroke continuity - see figure 3.6.

FIGURE 3.6: The mono-width continuous brush with baldness prob-
lem solved.

In order to achieve this effect, the author saved each point coordinates to points
array that were hit by the tool on mousemove. Then, with the help of .lineTo()
method of 2d HTML5 canvas, they fixed the bald patches on each move. The code
is pretty simple.

Pressure and pointer events

The article by kangax was written back in 2013, so there used to be no mainstream
way of tracking the input device or the pressure applied to it, to my belief - only
the working draft of pointer events was introduced in 2012. No matter the reason,
nowadays there is a common API for detecting pressure - event.pressure of pointer-
move event. According to this specification, many input devices were neglected in
favor of mouse as a standard input device. Since Mouse events were introduced, the
second step in history was the implementation of Touch events. However, to ensure
a stable unified solution for tracking touch, click and move events, Pointer events
were introduced. Luckily for us, because the majority of comic artists nowadays
use specialized tablets with stylus for drawing. Such physical tools generate various
pressure coefficients, depending on the physical pressure detected. Now the core
idea would look like this: we set a predefined radius of a single stamp we render on
pointermove event, but multiply it by a coefficient of pressure applied.

const radius = 5
const s tar tAngle = 0
const endAngle = 2*Math . PI

canvasElement . onpointermove = (event) => {
c t x . beginPath () ;

https://codepen.io/kangax/pen/pxfCn
https://www.w3.org/TR/2012/WD-pointerevents-20121211/

Chapter 3. Implementation 22

c t x . arc (event . c l i en tX , event . c l i en tY , radius * event . pressure ,
s tar tAngle , endAngle)
. . .
}

Important: to see the effects of pressure applied, one needs to test the event.pressure
property on other than laptop touchpad/touch screen digitizer.

3.5.4 Our approach

Applying the idea of joining points

Coming back to the approach demonstrated at figure 3.6, let us apply the idea of
joining the previous stamp’s coordinates to the pointer events we decided to handle
and see what happens.

FIGURE 3.7: Joined stamps. The yellow lines are lines we would like
to have between each stamp to create the continuity effect and fight

the bald spots.

To start with, we use stamp-based approach to control the radius affected by
pressure. Simply joining the centers of stamps would be not enough. The idea of
joining the dots then has to connect our stamps themselves - see figure 3.7. From
the previous subsection, we already know the radius of our stamps varies. This is
an important notice before we finally get to the variant of a consistent brush stamp
with beautiful brush-like strokes we want to achieve.

Tangents of stamps with different radius

We cannot be sure the radius of our stamps is similar. It is not natural for brush
strokes to be consistently wide or thin. In case with similar-sized stamps, where the
radius is equal, here we cannot simply use the parallel lines as a connection. The
real situation rather looks like the ones in figure 3.8.

From what we know from trigonometry and unit circle, the point of where the
tangent touches the circle stamp can be found with an angle and the coordinates that
are equal to (cos , sin) - see figure 3.9.

For drawing the point on the arch of our stamp within the canvas 2d context, let
us see how applying the cos and sin formulas actually works:

func t ion drawPoint (angle , dis tance , l a b e l) {
var x = center_x + radius * Math . cos (− angle *Math . PI /180) * d i s t a n c e ;
var y = center_y + radius * Math . s i n (− angle *Math . PI /180) * d i s t a n c e ;
c t x . beginPath () ;
c t x . arc (x , y , po int_s ize , 0 , 2 * Math . PI) ;

https://www.khanacademy.org/math/algebra2/x2ec2f6f830c9fb89:trig/x2ec2f6f830c9fb89:unit-circle/a/trig-unit-circle-review
https://codepen.io/ninabondar/pen/zYNmJRq

Chapter 3. Implementation 23

FIGURE 3.8: Joined stamps. The yellow lines are lines we would like
to have between each stamp to create the continuity effect.

FIGURE 3.9: The unit circle.

Chapter 3. Implementation 24

}

Now, the way we find the length of a desirable tangent is how we normally
calculate the distance between the dots:

const f indLineLength = (point1 , point2) => {
const x = point2 . x − point1 . x
const y = point2 . y − point1 . y
re turn Math . s q r t (Math . pow(x , 2) + Math . pow(y , 2))

}

const tangentLength = Math . round (findLineLength ({ x1 , y1 } , { x2 , y2 }))

The demo of this part can be found on my codepen. For the desirable stamp that
we achieved, see figure 3.10.

FIGURE 3.10: By joining the tangents, we achieved a new joined
stamp of a beautiful shape.

The complete demo of how the final form of the brush works can be found on
this github account. There is also a figure 3.11 of the desired brush strokes.

FIGURE 3.11: The final brush strokes after all trigonometric manipu-
lations.

3.6 Panel layout

The final part of our PoC is a very important part we’ve touched in section 2.1.5.

https://codepen.io/ninabondar/pen/MWJqYKw
https://github.com/ninabondar/brush

Chapter 3. Implementation 25

3.6.1 Experiments

Two approaches were tried out during this part of implementation.

SVG Masks

When we were thinking about how to mutate the shape of already drawn rectan-
gular canvas art, svg was the first obvious area where masking of images existed.
Modern browsers support svg graphics, so there is absolutely no need in side pack-
ages to work with svg.

The concept behind it is very simple: we have a future comics page that has
mutable rectangular slots. For PoC, we went for four square-shaped frames that
could be further mutated into some arbitrary rectangulars.

This approach consists of two key components: svg <image/> tag and <mask/>
element put over the image - see figure 3.12.

FIGURE 3.12: The order of layers in svg mask approach: the mask
goes on top of the image.

To define a mask in svg, we need to create a path of the desired shape inside the
mask. As the shape is square, path generation is relatively simple: we need four
points in order to achieve this shape; top left(tl), top right(tr), bottom right(br) and
bottom left(bl). Thus, the React component of a Mask looks the following way:

const Mask = ({ t l , t r , bl , br , maskId }) => {
const path = ‘M${ t l [0] } $ { t l [1] } L$ { t r [0] } $ { t r [1] }
L$ { br [0] } $ { br [1] } L$ { b l [0] } $ { b l [1] } Z ‘ ;

re turn (
<mask id ={ maskId} >

< r e c t x ="0" y ="0" width ="300" height ="300" f i l l =" black " />
<path d={ path } f i l l =" white " />

</mask>
) ;

} ;

To create an image out of a snapshot of the art on canvas, there exists a method
.toDataURL() in 2d context that is useful to save the 2d art to further put it inside a
panel in our case.

Chapter 3. Implementation 26

Then, to ensure the intuitive interface of changing the frame of the panel, I’ve
created draggable vertices for each of the masks using another svg tag - <circle/>.

The demo of this approach can be seen in this figure 3.13.

FIGURE 3.13: The implementation of svg masks as the frames for the
image. Notice they have the possibility to be placed over one another

Canvas frames with PIXI.js

The reason this approach appeared is that it might be not enough for an artist to
have just frames on the page, no matter how advanced they are. There might be a
case when they need to break the fourth wall. There might also be a case when they
want to draw some additional details over the page (sound effects, dialogue bulbs,
decorative elements etc). PIXI.js is a wonderful library for working with textures,
simple shaders and 2d wow-effects as well as 2d games. The logics would be almost
the same: we place a mask on top of an image. With the help of @inlet/react-pixi
package, we can do it the following way:

const Frame = ({ coordinates }) => {
. . .
re turn (
<>

<Graphics draw={ path } r e f ={ maskRef } preventRedraw ={ f a l s e } />
< S p r i t e

image ={ imageLink }
height ={400}
width ={400}
anchor = { 0 . 3 }
mask={ maskRef . current }
r e f ={ s p r i t e R e f }

/>
</>

) ;

https://www.pixijs.com/
https://en.wikipedia.org/wiki/Shader

27

Chapter 4

Conclusion

4.1 Outcomes

As it was discussed with the artists during the demo sessions, the functionality
we’ve already came up with is useful and can definitely ease the pain of abstract
thinking and drawing the complex angles, which is a huge win and luck. Of course,
not everyone will find it useful on a daily basis to have 3d models for scenes, es-
pecially if their art style is flat and doesn’t require visual perspective. However, as
long as professional artists see even potential ways to apply the functionality, our
PoC proves itself to have sense. What is more, we’ve inspected the pipeline of the
professional comics creation and used the Occam’s razor in order to implement a
reduced yet truly useful tool for repetitive setting’s drawing. We’ve also managed
to come up with a workaround for a web-based brush that relies on trigonometric
calculations and seems to be not that known on the web.

The work is not done yet. However, with what I managed to show the authors
and discover about the industry, the goal of understanding and optimizing a tool for
comics creation pipeline has been at least partially achieved.

4.2 Further steps

As it was described in 3.1, there are many features we would like to add to this
project, if it turns into a product. After interviewing several Ukrainian artists, I feel
like there is sense to introduce them to how useful and fun the tool can be.

28

Chapter 5

Bibliography

Comics definition. https://en.wikipedia.org/wiki/Comics
McCloud,Scott. Making Comics: Storytelling Secrets of Comics, Manga, and Graphic

Novels. William Morrow Paperbacks, 2006. pp. 1-272.
Cohn, Neil (2013). The Visual Language of Comics: Introduction to the Structure and

Cognition of Sequential Images. London: Bloomsbury. ISBN 978-1-4411-8145-9
Article "Comic Art Market Still Healthy After A Year Of Covid"https://www.forbes.com/sites/robsalkowitz/2021/02/05/comic-

art-market-still-healthy-after-a-year-of-covid/?sh=86011a366171
Attack on Titan. https://en.wikipedia.org/wiki/AttackonTitan
Hirohiko Araki. https://en.wikipedia.org/wiki/HirohikoAraki
A day in the life of a Japanese manga creator https://www.youtube.com/watch?v=t3rKrTehORY
Araki, Hirohiko.JoJo’s Bizarre Adventure: Stone Ocean. Shueisha, 2000. ISBN in Japan

- 978-4-08-873027-1
Isayama, Hajime. Attack on Titan. Kodansha, 2009. Comixology https://www.comixology.com/Attack-

on-Titan-Vol-1/digital-comic/269338
Article "Exploring canvas drawing techniques" by kangax. http://perfectionkills.com/exploring-

canvas-drawing-techniques/
Working draft of Pointer events.https://www.w3.org/TR/2012/WD-pointerevents-

20121211/
Pointer events documentation. https://developer.mozilla.org/en-US/docs/Web/API/Pointerevents

THREE.JS https://threejs.org/
Konva.js documentation. https://konvajs.org/
PIXI.js documentation. https://www.pixijs.com/

https://en.wikipedia.org/wiki/Comics
https://en.wikipedia.org/wiki/Attack_on_Titan
https://en.wikipedia.org/wiki/Hirohiko_Araki
https://www.youtube.com/watch?v=t3rKrTehORY
Comixology https://www.comixology.com/Attack-on-Titan-Vol-1/digital-comic/269338
Comixology https://www.comixology.com/Attack-on-Titan-Vol-1/digital-comic/269338
http://perfectionkills.com/exploring-canvas-drawing-techniques/
http://perfectionkills.com/exploring-canvas-drawing-techniques/
https://www.w3.org/TR/2012/WD-pointerevents-20121211/
https://www.w3.org/TR/2012/WD-pointerevents-20121211/
https://developer.mozilla.org/en-US/docs/Web/API/Pointer_events
https://threejs.org/
https://konvajs.org/
https://www.pixijs.com/

	Declaration of Authorship
	Abstract
	Acknowledgements
	Problem statement and domain background
	Motivation
	Comics as a medium
	The role of comics nowadays

	Research and assumptions
	Problems to address based on observations
	Inking: what good brush is
	Character design mutations overtime
	Case "JoJo's Bizarre Adventure: Stone Ocean" by Hirohiko Araki

	Setting modeling: building and city plans
	Case 'Attack on Titan' by Hajime Isayama
	Case 'Bane' by Andriy Dankovych

	Angles generation
	Frames shape: redefining the panel's shape
	Lenses

	Interviews
	Odunze Oguguo: the creator of "Apple Black"
	Andriy Diakiv: the creator of "Kurhan"
	Andriy Dankovych: the creator of "Bane"

	Implementation
	Research outcomes, combined
	Technological stack consideration
	WebGL and Three.js
	Camera and stage
	WebGLRenderer
	Scene
	Camera
	@react-three/fiber
	Setting simplification
	Multiple-camera setup

	Two-dimensional drawing
	Layers
	Experiments
	react-konva
	Native HTML5 canvas API

	Pen tool
	Brush tool
	Intuitive solution
	The problem of brush "bald patches"
	Analysis of the article "Exploring canvas drawing techniques" by kangax
	Pressure and pointer events

	Our approach
	Applying the idea of joining points
	Tangents of stamps with different radius

	Panel layout
	Experiments
	SVG Masks
	Canvas frames with PIXI.js

	Conclusion
	Outcomes
	Further steps

	Bibliography

