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Abstract

Using wind turbines as a means to create electric energy and other sources of re-
newable energy has been gaining popularity over the last few years. To keep them
working safely and stably, maintenance should be done regularly.

With that, the need for affordable good quality inspections is rising, now more
than ever. The supply of such services is catching up with the demand. However,
unfortunately, due to a lack of experience and data, it is hard to decide, so the in-
spections are delayed, leading to severe consequences and money losses.

In this work, I will analyze the data available to me on this topic to create a rec-
ommendation system that will advise owners of wind turbines on how to maintain
them best.
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Chapter 1

Introduction

1.1 Motivation

Wind energy is one of the most rapidly growing renewable sources of energy today.
This is mainly since it has a minor negative impact on the environment. It is a unique
source as it can be produced in any quantities, and it is not dependant on fossils.
Wind turbines are now found in increasingly remote areas worldwide, face a wide
range of environmental pressures, and will have to operate for more than 120,000
hours over their lifetime. By the end of 2017, their total power had surpassed 540
GW. According to the Global Wind Energy Council, total global wind power could
provide 17–19 percent of the world’s electricity needs by 2020 [12].

To meet the growing demand, wind turbines are being installed all over the
globe. Offshore wind is seen as a vital component of the sustainable energy sup-
ply. However, maintaining turbines is complicated because they are always subject
to hourly or seasonal fluctuations in wind speed and direction. Unlike most in-
dustrial machines that operate under more or less static conditions, Turbines are
subjected to random charge [1]. The maintenance of offshore wind turbine systems
(OWTs) equipment is complicated by limited accessibility and severe failure effects,
influenced by weather conditions [7]. The sizes of the blades are getting bigger and
bigger, the power ratings are growing as well. New advanced technologies require
higher standards of maintenance that have to be performed regularly.

Developing cost-effective inspection and maintenance programs for wind energy
farms is a difficult task filled with risk due to the diversity of equipment and their
corresponding damage mechanisms and failure modes, weather-dependent trans-
portation conditions, unpredictable spare parts demand, insufficient space or lim-
ited access for maintenance and repair, and limited availability of resources. Many
researchers and practitioners from different sectors of the wind energy industry, in-
cluding manufacturers, component suppliers, maintenance contractors, and others,
have been interested in maintenance optimization in recent times [10].

There are different methods of performing the inspections currently available on
the market, such as manual inspections when a trained professional has to climb
the blade and inspections performed by the drones. The photos from such inspec-
tions are later analyzed by qualified personnel and are given recommendations on
necessary repairments. Ideally, regular checks should be performed once a year to
prevent severe defects from going undetected and causing severe damage to the tur-
bine or even the whole farm or surrounding objects. In reality, such inspections can
be costly, and turbine owners might neglect to perform them in time. They can be
pursued to do so by giving them the optimal way to complete the inspection, which
does not lead to unnecessary costs.
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1.2 Goal

As the size of the blades increases, the structural loads of the turbine become more
dominant, causing increased stress on the turbine components, which can lead to
early failure. Because of this, an important area of focus in wind energy is lowering
production costs to give it a competitive edge over other alternative power sources.

In this work, I analyze historical data from multiple suppliers of maintenance
services for a wind turbine to determine the correlation between different types of
blades, sites, quality of inspections, and the time it takes to complete them. Once
this data is presented, it is easy to calculate the costs for each new inspection.

The cost of energy produced by offshore wind is heavily influenced by mainte-
nance costs. The cost of maintenance is primarily determined by the strategy used
to conduct it [9]. In this work, I will propose a formula for calculating these costs to
make the process of planning inspections easier.
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Chapter 2

Background information and
theory

In this chapter, I will present the information needed to understand the topic of this
work better. Mainly I will talk about basic knowledge of WT energy, such as the
structure of turbines and how the inspections are analyzed. I will also go into detail
about the methods used for analyzing data and building models.

2.1 Blade Finding Categorization

Firstly, to understand the importance of the specific type of maintenance inspections
described and analyzed in this work, one has to learn about the structure of wind
turbines and the possible defects that can happen.

If we classified the damages to wind turbines by the cause of failure, there would
be two of them: mechanical damages and non-mechanical damages. Ultimate and
cyclic loadings are the leading causes of mechanical injury. Ultimate strength load-
ings (which cause gradual deterioration or sudden failure) commonly cause over-
stress and buckling, while cyclic loadings cause fatigue cracks. Non-mechanical
damages are described as material degradation caused by non-mechanical or in-
direct mechanical actions such as erosion, flaking, lightning [14]. Depending on the
types of defects, they can lead to effects of various severity. That is important as,
depending on the severity, different actions need to be taken. So to better classify
the defects, a five-level damage categorization scheme is applied and is based on a
similar scheme used by WT designers, operators, and owners.

By severity ranking, each finding is ranked in accordance with general princi-
ples. Severity ranking can often be combined with an action plan, which shall be
determined by blade type, maintenance strategy. Explanation of ranking and results
of Findings is shown in Figure 2.1

2.2 Data Analysis and Exploration

When the goal and importance of the task are understood, the central part of this
work is interpreting historical data that is available to make recommendations for
future inspection. Before working on creating machine learning models, data anal-
ysis should be done - initial and one of the most human-centric parts of the data
science process. The critical steps in a data science process are shown in Figure 2.2.

Data analysis is a process of inspecting, cleansing, transforming, and modeling
data with the goal of discovering useful information, informing conclusions, and
supporting decision-making [13]. And the initial step of data analysis is data explo-
ration.
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FIGURE 2.1: Explanation of ranking and results of Findings
Source: Siemens Gamesa. Blade Finding Categorization – External [2]

FIGURE 2.2: Key steps in a data science process
Source: https://www.researchgate.net
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Data exploration is the first step of data analysis. Data analysts use data visu-
alization and statistical techniques to depict dataset characterizations such as size,
quantity, and accuracy to better understand the data’s nature [4]. The purpose of
data exploration is efficiently extracting knowledge from data even if we do not
know exactly what we are looking for [6].

Data exploration may include manual and automated approaches, such as data
visualizations, charts, and preliminary reports. This method facilitates more pro-
found research by assisting in targeting prospective searches and initiating the pro-
cess of eliminating unnecessary data points and search paths that might yield no
results. More importantly, it aids in developing familiarity with existing data, which
makes seeking better answers much more accessible. Visualization is often used in
data discovery because it provides a more concise view of data sets than looking at
thousands of unique numbers or names.

The manual and automated aspects of any data exploration look at opposite sides
of the same coin. Manual research allows users to become more acquainted with
knowledge and can reveal large patterns. These approaches are often unstructured
by design, allowing users to analyze the entire collection without bias. On the other
hand, automated tools excel at weeding out irrelevant data points, reorganizing data
into easier-to-understand collections, and scrubbing data sets to make their results
more critical.

You will start discovering similarities, trends and determining whether a par-
ticular directive is worth exploring or if the knowledge is less available by taking
the time to do an honest exploration of the data using visualization software. Data
exploration can also aid in the reduction of work time and the discovery of more
valuable and actionable ideas from the outset, and the presentation of simple paths
to better analysis.

2.2.1 Data exploration in Machine Learning

The following are data discovery steps to take before constructing a machine learn-
ing model:

• Identification of variables: describe each variable and its role in the dataset.

• Univariate analysis: create box plots or histograms for each variable separately
for continuous variables; build bar charts to display the frequencies for cate-
gorical variables.

• Bi-variable analysis: Determine the relationship between variables using visu-
alization methods

• Detect and treat missing values

• Detect and treat outliers

This allows making unexpected data findings. Also, promoting a comprehen-
sive understanding of data as a foundation for effective and efficient data science
projects.

2.3 Regression in Machine Learning

Regression analysis [8] is a set of machine learning methods for predicting a contin-
uous outcome variable (y) based on the values of one or more predictor variables
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FIGURE 2.3: Linear regression function in matrix notation
Source: https://www.stat.psu.edu

(x). A regression model aims to create a mathematical equation that defines y as
a function of x variables in a nutshell. Then, using new values for the predictor
variables, this equation can be used to predict the outcome (y) (x). The most basic
and widely used technique for predicting a continuous variable is linear regression.
It implies that the outcome and predictor variables have a linear relationship. The
linear regression equation can be written as

y = b0 + b ∗ x + e

where:

• b0 is the intercept,

• b is the regression weight or coefficient associated with the predictor variable
x,

• e is the residual error

Linear regression can also be presented in the matrix format. For more complex
cases it makes it clearer. The formula is shown in Figure 2.3.

2.4 Linear ML algorithms

2.4.1 Linear Regression

It is a standard algorithm that can be found in the Linear Regression class. One or
more output variables are predicted using a single input variable (the significant
one), assuming that the input variables are uncorrelated. There can be a loss in
output unless there is an exact line connecting the dependent and independent vari-
ables, generally calculated as the square of the difference between the expected and
actual output, i.e., the loss function.

Multiple linear regression is when you use more than one independent variable
to get the results. The drawback of this type of model is that it assumes a linear
relationship between the given function and the output. Linear Regression model is
shown in Figure 2.4.
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FIGURE 2.4: Linear Regression model illustration
Source: https://www.researchgate.net

2.5 Non-Linear ML algorithms

2.5.1 Decision Tree Regression

By dividing a data set into smaller and smaller subsets, it creates a tree with decision
nodes and leaf nodes. The goal here is to plot a value for each new data point that
connects the two sides of the problem. The parameters and algorithm decide how
the split is carried out, and the split is completed when the minimum amount of
data to be added has been reached. Decision trees often produce good results, but
any slight change in data causes the entire structure to change, making the models
unstable. Basic structure of a decision tree is shown in Figure 2.5.

A decision tree’s basic structure. Recursion is used to build all decision trees.
Different assumptions, such as normal distribution, are not used in decision trees,
and collinearity or association between explanatory variables can also be ignored.

2.5.2 Random Forest

Random forests [3] are a collection of tree predictors in which the values of a ran-
dom vector sampled independently and with the same distribution for all trees in
the forest are used to predict the behavior of each tree. If the number of trees in a
forest grows larger, the generalization error converges a.s. to a limit. The intensity of
individual trees in the forest and their association determine the generalization error
of a forest of tree classifiers.When a random set of features is used to separate each
node, the error rates are comparable to Adaboost [5], but they are more resilient to
noise. Internal calculations are used to display the answer to increasing the number
of features used in the splitting by monitoring error, strength, and correlation. In-
ternal calculations are also used to determine the value of variables. These concepts
can also be applied to regression. Schematic of random forest algorithm is shown in
Figure 2.6.
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FIGURE 2.5: Basic structure of a decision tree
Source: https://www.researchgate.net

FIGURE 2.6: Schematic of random forest algorithm
Source: https://www.researchgate.net
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FIGURE 2.7: Example of KNN for Regression
Source: https://www.researchgate.net

2.5.3 K Nearest Neighbors(KNN model)

KNN regression is a non-parametric method that approximates the relationship be-
tween independent variables and continuous outcomes by averaging observations
in the same neighborhood intuitively.

It can be imported from the KNearestNeighbors class. These are straightforward
and quick to implement. The K Nearest Neighbors help find the k most similar
instances in training set for an input inserted in the data set. The value for that input
is either the average or the median of the neighbors. Example of KNN for Regression
is shown in Figure 2.7.
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Chapter 3

Related Works

In this chapter, I talk about some approaches on this topic that set requirements for
the project and some that propose different ways of solving the task of performing
inspections for the wind turbines.

3.1 Wind Turbine Reliability: Understanding and Minimiz-
ing Wind Turbine Operation and Maintenance Costs

When faced with the task of optimization the costs of the wind turbine farm mainte-
nance, it is essential how you calculate them and which actions seem more important
for achieving this goal [11]. Different farm owners may choose different strategies,
but there is some research available on this topic.

The wind energy research community is tightly intertwined with the commercial
side of the energy business. So to make their research more applicable, the cost of
energy (COE) is a crucial project evaluation metric. This metric accounts for both
predictable and unpredictable events. In the first category, we can put initial capital
investment and scheduled maintenance and operating expenses—the second, costs
associated with component failures. Unanticipated failures (mainly serial failures)
can have a significant impact on the economics of a project. To get a clear picture,
here is the calculation method for a wind turbine system that has been adopted by
the Department of Energy in the Low-Speed Wind Turbine (LWST) program.

The formula for calculating COE is shown in Figure 3.1.
.

FIGURE 3.1: COE Formula Explained
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Here are the ways how COE is affected by the unscheduled maintenance:

• AEP is affected by equipment reliability through turbine downtime associated
with both scheduled and unscheduled maintenance.

• O+M consists of both scheduled (preventive) and unscheduled (repair) main-
tenance costs, including expenditures for replacement parts, consumables, man-
power and equipment. OM costs can account for 10 – 20 percent of the total
COE for a wind project.

• LRC costs are associated with major overhauls and component replacements
over the life of a wind turbine.

And here are presented the recommendations for cost reduction:
1. Improving System Reliability

• Identify Critical Components

• Characterize Failure Modes

• Determine the Root Cause

2. Reducing Maintenance Costs

• Develop Logistics Plan

• Identify Opportunities for Redundancy

• Improve Training

• Improve Maintainability

• Implement Condition Monitoring

3.2 An Approach for Condition-Based Maintenance Optimiza-
tion Applied to Wind Turbine Blades

Unexpected failure incidents and low availability are significant problems for wind-
power operators to overcome. Uncertainties about the economic returns on wind
projects may limit the rate of growth required to meet goals set by the European
Wind Energy Association (180 GW in 2020) and the U.S. Department of Energy
(more than 300 GW by 2030). Although optimizing maintenance techniques and
making maintenance decisions has the potential to cut operational costs drastically,
this topic has received little attention.

This study aims to offer a method for optimizing the maintenance of components
whose deterioration can be categorized based on the severity of the damage. Differ-
ent condition-based maintenance procedures, such as visual inspection, inspection
with condition monitoring, or an online condition-monitoring system that can con-
tinually monitor the status of the component, can be used to maintain these com-
ponents. The approach for estimating maintenance costs suggested in this paper is
based on Monte Carlo simulation. The method is being used to optimize the main-
tenance of wind turbine blades.

.

.

.
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FIGURE 3.2: Proposed deterioration and maintenance model for the
example. Xi: deterioration states; F: failure state; Di: decision
state. Fullarrow: deterioration transition; dottedarrow: inspection
transition; dashedarrows: maintenance transition. Maintenance deci-
sions occur at inspection or at deterioration state transition for online

condition-monitoring system if the deterioration state is observed.

Parameters in the Example:
λs Failure rate for sudden failures.
λinit Crack initiation rate.
Tcrack Average time from crack initiation to failure.
λdet Deterioration rates in the case study
.
Deterioration Model
It is expected that the condition of the blade is classified after each inspection

based on the findings of the condition-monitoring analysis. The proposed classifi-
cation is Good, Minor degradation, Advanced degradation, Major degradation, or
Failure.

A continuous time Markov chain is used to represent the deteriorating process.
The proposed deterioration classification for blades has five states, with X1 indicat-
ing a Good state, X2 - minor degradation state, and so on, with F and representing
the failure state.

X = {X1, X2, X3, Xn − 1, F}

denotes the deterioration state space and is used to index the states. To model pos-
sible unexpected failures, a direct transition to the failure state is used. The model is
shown in Figure 3.2.

Maintenance Model
The horizon of the maintenance model assumed in this paper is finite. The model

is enhanced to allow for maintenance evaluations based on online condition mon-
itoring. If the online condition-monitoring system detects deterioration, an inspec-
tion is performed, according to this maintenance method. The inspection is required
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to identify the deterioration state and to determine whether or not maintenance is
required.

Inspection maintenance strategies involve making maintenance decisions at pre-
determined intervals based on the degree of deterioration at the time of inspection.
Between two inspections or until failure, the deterioration follows the Markov chain.
Furthermore, the state and the next inspection date are updated based on the current
state’s maintenance decision. If maintenance is performed, the system is in an "as
good as new" condition after maintenance. In the event of a failure, the component
will be replaced.

Evaluation Method
For a fixed set of decision variables, the Monte Carlo simulation is used to gener-

ate scenarios and estimate maintenance costs. Maintenance decisions based on dete-
rioration state for each maintenance approach and inspection interval for inspection-
based maintenance are among the decision variables.

Implementation and results
For inspection-based maintenance strategies and maintenance based on online

condition monitoring, a simulation method was proposed to evaluate expected life
cycle maintenance costs.

Matlab was used to implement the model. For each set of input parameters for
one maintenance approach, 100 000 simulations were run to evaluate the expected
life cycle maintenance cost. The number of simulations was determined experimen-
tally for the coefficient of variation of the results to be lower than 1 percent. The
method has the disadvantage of being time-consuming because it requires a large
number of simulations to produce reliable findings.

The results suggest that the best inspection interval for a condition-monitoring
methodology was 6 months and 3 months for visual examination in the most basic
scenario. Compared to a yearly visual examination, examinations with a condition-
monitoring system or an online condition-monitoring system would be beneficial.
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Chapter 4

Data

To perform the analysis in this work, I have been given access to data of one of the
companies performing the reviews of inspections of WT. The data consist of several
parts, which were analyzed separately:

• Pictures of the blades taken during the inspections (with metadata)

• Validation data for the pictures (validation scores that represent the quality of
the photos)

• Logs of server time needed to process the photos

• Logs of annotator time (manual work of detecting Findings)

For the most part, I have worked with the images of blades. To perform fun-
damental analysis, I had to create a module to extract EXIF data which contained
crucial data, such as timestamps of the pictures, which allowed me to calculate the
time needed to perform the inspection by certain suppliers.

For the actual analysis, I have transformed the data into a data frame that still
had to be processed for the analysis to be possible. The initial data had 1190335
unique pictures.
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Chapter 5

Experiments

5.1 Data Exploration

To better understand the data that I had, the first step was to present it in a form that
could be analyzed.

I have tried several libraries to extract EXIF data, such as Pillow, PyExifTool, and
ExifRead. After some comparison, Pillow proved to work best for the task at hand.

I have created a python module that extracted EXIF data and, using the unique
ID, combined it with other information available for each image, such as validation
scores. The scores are from 1 to 5 and are given based on the quality of the picture.
The data frame that I have created using all of the data is 1190335 rows x 24 columns.
Some of the columns are used for internal identification, but some are useful data for
later. The data is explained in Figure 5.1.

As a part of the data exploration step, I have created multiple visualizations (Fig-
ures 5.2, 5.3, 5.4, 5.5, 5.6 and 5.7), which I will present here. These can be used with
different parameters to filter by site location, inspection type, site type, supplier, or
time of the inspection. The visualizations that use duration can be chosen to use
sequence, turbine, or inspection duration.

After closely inspecting the data, I have made some assumptions. It seems that
while some suppliers have higher scores and/or shorter inspection duration, both
of which facts lead to lower costs, there is not the correlation between scores and
duration by themselves.

5.2 Formula for price calculation

To make predictions about optimal ways to perform an inspection, a formula for
price calculation needs to be proposed. This formula is based on my knowledge of
the whole cycle that goes into performing them.

.
Price =
Price per turbine * number of turbines +
Turbine duration * Idle time cost +
Time between turbines * Idle time cost +
Distance to site * Mobility costs +
Vesselprice
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FIGURE 5.1: Data frame columns explained

FIGURE 5.2: Heatmap showing the amount of sequences with certain
duration by supplier
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FIGURE 5.3: Heatmap showing the amount of sequences with certain
scores by supplier

FIGURE 5.4: Heatmap showing the amount of sequences with certain
scores and duration
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FIGURE 5.5: Violin plot showing the amount of sequences for certain
scores

FIGURE 5.6: Scatter plot showing the average results for each supplier
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FIGURE 5.7: Scatter plot showing all results for each supplier sorted
in chronological order

5.3 Data Preparation

Before building the models, the data first needs to be cleaned. Although the size of
the dataset was initially pretty impressive, after a close look, it is easy to see that
there are a lot of outliers and other problems.

I had to drop all of the inspections for suppliers that only had performed one or
two. Also, if suppliers typically perform only onshore inspections, the data for the
offshore ones could not be used. I have also applied some of the assumptions I had
about the importance of the available features and dropped unnecessary columns.

After performing all of these, the final size of the data frame was 40568 rows x
7 columns, which is significantly less than at the beginning. The amount of data
affected the models’ precision, which will be evident in the next part.

5.4 Predicting Inspection Duration

I have used several methods to make the predictions needed for the calculations of
the price using the formula that was proposed earlier. The following have produced
the best results:

• Linear Regression

• Random Forest Regressor

• Decision Tree Regressor

• KNeighbors Regressor



Chapter 5. Experiments 20

FIGURE 5.8: Scores of all models

Initially, before cleaning the data sufficiently, I have gotten scores as low as 0.04.
This led me to think that data quality was not good enough, or maybe there was no
correlation for the prediction to be possible. But after additional cleaning and then
tuning the models, I have gotten the final scores that were way higher. The results
are shown in Figure 5.8.

As you can see, Random Forest Regressor works best here, with Decision Tree
Regressor following it closely.

Unfortunately, these results are still not good enough for this work.
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Chapter 6

Conclusions

The field of alternative energy is growing at a rapid pace. There are numerous works
on ways to optimize the production of energy. In this work, I have analyzed the
historical data on WT inspections to find if such inspections’ duration could be pre-
dicted. Having that information would allow using the formula for price calculation
so that the owners of WT parks can make more informed decisions about upcom-
ing inspections, which would hopefully motivate them more and lower the risks of
running the sites unchecked.

While working on this project, I have come to a conclusion that, at this time, such
predictions cannot be made. Hopefully, it is an issue that can be fixed with more data
which will be available at some point.

The exploration of the data is useful, but it can show the differences between sup-
pliers available on the market. It also shows a correlation between different features
or lack thereof. The data can be analyzed further if needed for other purposes.
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