
UKRAINIAN CATHOLIC UNIVERSITY

BACHELOR THESIS

A perception-aware NMPC for collision
avoidance and control of a multi-rotor

UAV with visual localization constraints

Author:
Andriy DMYTRUK

Supervisor:
Dr. Giuseppe SILANO

A thesis submitted in fulfillment of the requirements
for the degree of Bachelor of Science

in the

Department of Computer Sciences
Faculty of Applied Sciences

Prague, Lviv 2021

http://www.ucu.edu.ua
http://mrs.felk.cvut.cz/people/silano
http://researchgroup.university.com
http://department.university.com

i

Declaration of Authorship
I, Andriy DMYTRUK, declare that this thesis titled, “A perception-aware NMPC for
collision avoidance and control of a multi-rotor UAV with visual localization con-
straints” and the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

ii

UKRAINIAN CATHOLIC UNIVERSITY

Faculty of Applied Sciences

Bachelor of Science

A perception-aware NMPC for collision avoidance and control of a multi-rotor
UAV with visual localization constraints

by Andriy DMYTRUK

Abstract

Multirotor Unmanned Aerial Vehicles (UAVs) are an extremely versatile and
practical platform that can be used for automatization of many real-world tasks.
Special interest at present time is shown to solutions requiring collaboration of mul-
tiple agents, which require precise relative localization and reactive control to avoid
collisions, while performing high-level mission tasks (e.g., autonomous inspection,
human-robot interaction) when UAVs are moving in close proximity with each other.

In this work, a perception-aware NMPC (Nonlinear Model Predictive Control)
scheme for controlling a multi-rotor UAV while avoiding dynamic obstacles and
maintaining visibility coverage of a target is set up. The proposed approach is meant
to directly produce the rotor-level (torque) inputs of the platform motors, hence it
does not require an intermediate unconstrained controller to work. It is also meant
to be generic, by covering standard coplanar quad-rotors as well as tilted-propeller
multi-rotors. A generic onboard sensor is taken into account to retrieve the 3-D pose
of the target. The model can be applied to various types of sensors equipped on
aerial vehicles, such as monocular cameras or laser scanners. Further, real actuator
limitations are modelled to simulate platforms physical constraints.

Numerical simulations in MATLAB extensively test the proposed framework
showing its validity and effectiveness.

HTTP://WWW.UCU.EDU.UA
http://department.university.com

iii

Acknowledgements
I would like to express my deep and sincere gratitude to my research supervisor, Dr.
Giuseppe Silano for providing invaluable guidance, help and advice. I am extremely
thankful to him for showing me to this field and proposing to work on this challeng-
ing both theoretically and technically task. I am very grateful for motivation he gave
and for the time he spent on explanations, discussions, reviews during my work.

Special thanks to the Multi Robotic Systems (MRS) laboratory at the Czech Tech-
nical University in Prague, all my colleagues there in particular, the head Prof. Dr.
Martin Saska for introducing me to aerial robotics, and allowing to work on tasks
and challenges related to this field.

I am also expressing my gratitude to the AERIAL-CORE EU project where the
proposed framework finds an application for showing the importance and practi-
cality of Unmanned Aerial Vehicles (UAVs).

iv

Contents

Declaration of Authorship i

Abstract ii

Acknowledgements iii

1 Introduction 1
1.1 Autonomous UAVs . 1
1.2 Power Line Inspection . 1
1.3 Objectives . 2

2 Related Works 3
2.1 Perception . 3

2.1.1 Self-Localization and Static Objects 3
2.1.2 Dynamical Objects . 3

2.2 Motion Planning . 4
2.2.1 Graph-Based Methods . 4
2.2.2 Optimization-Based Methods . 5

2.3 Motion Control . 5
2.3.1 Perception-aware Control . 6

3 Preliminaries 7
3.1 Rotation Representation . 7

3.1.1 Euler Angles . 7
3.1.2 Rotation Matrices . 7
3.1.3 Unit Quaternions . 8
3.1.4 Rotation Vector . 9

3.2 NMPC . 10
3.3 Real Time Iteration Scheme . 12

4 Control Architecture 14
4.1 System Model . 14

4.1.1 Notations and Definitions . 14
4.1.2 Model Dynamics . 15
4.1.3 Dynamics Constraints . 17

4.2 Collision Avoidance . 17
4.2.1 Constraint Linearization . 18
4.2.2 Soft Constraints . 19

4.3 Perception . 20
4.3.1 Camera Definition . 20
4.3.2 Perception-Based Constraints . 21
4.3.3 Linearization of Perception-based Constraints 22
4.3.4 Camera Centering Objective . 23

v

4.3.5 Target-Following Objective . 24
4.4 NMPC Formulation . 24

5 Simulation Results 26
5.1 Setup . 26
5.2 Follower Scenario . 28

5.2.1 Perception Constraints Comparison 28
5.2.2 Following with Obstacle Avoidance 31

5.3 Trajectory-Tracking Scenario . 31

6 Conclusion 35

Bibliography 36

vi

List of Abbreviations

CoM Center of Mass
FoV Field of View
GNSS Global Navigation Satelate System
GPS Global Positioning System
LiDAR Light Detection And Ranging
MAV Micro Aerial Vehicle
MPC Model Predictive Control
NMPC Nonlinear Model Predictive Control
NLP Nonlinear Programming
OCP Optimal Control Problem
PID Proportional Integrative and Derivative (Control)
QP Quadratic Programming
Radar Radio detection and ranging
RTI Real Time Iteration (scheme)
SLAM Simultaneous Localization And Mapping
Sonar Sound navigation and ranging
SQP Sequential Quadratic Programming
UAV Unmanned Aerial Vehicle
UV Ultra Violet light
UVDAR Ultra Violet Detection And Ranging

1

Chapter 1

Introduction

1.1 Autonomous UAVs

Autonomous Unmanned Aerial Vehicles (or UAVs) have gotten an extremely large
focus in the academics and commercially over the last decades. In the recent years,
development in sensor technologies and progress in data processing techniques have
led to a large amount of research that aims to achieve accurate and safe completion
of various tasks with aerial platforms.

Small size, high maneuverability and versatility make UAVs, expecially multiro-
tor copters, a perfect tool for a large variety of tasks, ranging from passive missions,
like monitoring, surveillance and photographing (Gonçalves and Henriques, 2015)
to interactive objectives like grasping (Spica et al., 2012), transportation, and au-
tonomous exploration (Qin et al., 2019), mapping and search and rescue missions
(Rouček et al., 2019), with the hardest tasks requiring cooperation between multiple
UAVs.

These tasks encourage the development of more complex multirotor platforms
(Rajappa et al., 2015, Franchi et al., 2018 and Brescianini and D’Andrea, 2016), control
techniques with faster responses to changes in environment (Carlos et al., 2020) and
more accurate perception techniques.

1.2 Power Line Inspection

AERIAL-CORE1 is a collaborative research project between multiple EU universities
funded by Horizon 2020 European Program. The project is developing a congnitive
robotic system for inspection and maintenance of various infrastructures, with a fo-
cus on extended operational range and safety in the interaction with people. One
particular task that received a lot of research interest within the project is power
lines inspection.

As noted by Uzakov, Nascimento, and Saska, 2020 nowadays, teams of special-
ists have to climb on power towers for inspection, which often requires shutdown
of the facility and comes at an extremely high cost. Using UAVs to autonomously
collect high-resolution images which can be analysed to assess maintanance needs
can be both more accurate and eliminate the dangers present in humans manually
performing this work. Before reaching fully autonomous inspections, a human-
supervised inspection can be performed.

In this case a number of UAVs could be performing tasks simultaneously to col-
lect more data per a time period, which requires task and motion planning tech-
niques for both efficient task distribution and specific safety requirements, for in-
stance, using Signal Temporal Logic by Silano et al., 2021.

1http://aerial-core.eu/

http://aerial-core.eu/

Chapter 1. Introduction 2

Due to the danger of damaging high-voltage power lines and the possibility of
harming nearby human workers, maintaining the safety requirements is extremely
important. This is especially the case when multiple UAVs operate at the same time
and in cluttered environments. High precision and ability to immediately react to
potential changes is essential in this case to prevent crashes between the aerial plat-
forms.

1.3 Objectives

It is evident that control of the multirotor UAV with collision avoidance and abil-
ity for fast reactions to disturbances and changes in the system and environment
is a task of great importance nowadays (Jacquet et al., 2020, Carlos et al., 2020 and
Falanga et al., 2018). Another limitations on the system can appear from objectives
related to perception, and need to be appropriately handled by the aerial platform.

While most tasks, feature static obstacles, which need to be avoided, dynamic
obstacles pose a greater challenge to not only be avoided, but also detected in time.
In the tasks of target-tracking or cooperation of multiple aerial agents, maintaining
visual contact may be required to avoid collisions and successfully track the loca-
tion of nearby aerial vehicles. This can prove to be especially useful in real-world
scenarios where Global Navigation Satelate System (GNSS) service is not present or
limited.

The objective of this work is exactly to solve the problem of collision-free con-
trol of a multirotor with task or safety related visual constraints, in particular for
perception of other UAVs in multi-agent tasks. All this needs to be done with cer-
tain guarantees about reaction time and ability to instantly react to changes in the
environment. Furthermore, the solution presented here is not limited to a single
configuration of the platform, but can work for any configuration in our knowledge,
including fully-actuated multirotors with tilted propellers (Jacquet et al., 2020).

Nonlinear Model Predictive Control (NMPC) is gaining a lot of interest these
years (Falanga et al., 2018, Jacquet et al., 2020, Lindqvist et al., 2020). Advances in
optimization algorithms allow to get near-optimal solutions to constrained control
problems with the ability to predict the state of the system for a relatively long time-
period ahead (Carlos et al., 2020, Diehl, Bock, and Schlöder, 2005). All this computed
online on an aerial platform. Due to its advantageous performance compared to
non-predictive methods, the solution presented here will be based on NMPC.

3

Chapter 2

Related Works

2.1 Perception

Perception is a fundamental ability for autonomous vehicles. It allows to retrieve
information from data generated by various types of sensors present on the plat-
form. Perception is crucial for self-localization and also situational awareness. Both
these objectives are often tackled at the same time in Simultaneous Localization and
Mapping (SLAM) techniques.

Muitiple sensors can be processed to ’perceive’ own state and surroundings, in-
cluding Radio & Laser detection and ranging sensors (Radars & LiDARs), monoc-
ular and stereo cameras, GPSs, inertial measurement units (like gyroscopes, ac-
celerometers, etc.) and sound navigation and ranging sensors (Sonars).

2.1.1 Self-Localization and Static Objects

The data from sensors is used to generate a map of the environment, that is saved in a
occupancy grid (Moravec, 1989) or grid-like structures (e.g. octo-trees in Hornung et
al., 2013). Furthermore, data from multiple sensors can be fused together to generate
a more accurate map, while reducing the disadvantages of each of the sensors (Kocić,
Jovičić, and Drndarević, 2018).

Further processing of maps or camera images leads to perception of individ-
ual objects present in the environment by detecting, classifying and tracking them.
These tasks are often handled with computer vision methods, like convolutional
neural networks (Gu et al., 2018) processing image data or even fused data from
different sensors. For self-driving cars the objects could be people, other cars, signs
present on the road (Kim et al., 2016, Gao et al., 2018c). In case of UAVs, the detec-
tion targets are extremely task-dependant and ranges from daily objects to people
and sources of danger in search and rescue missions (Rouček et al., 2019).

2.1.2 Dynamical Objects

Dynamical objects often pose a different challenge from building static obstacle maps,
because their fast movement complicates tracking between frames, which is espe-
cially the case for small objects. Thus more advanced algorithms for detection and
tracking are required.

The task often requires estimating trajectory and prediction expected position.
Approaches for tracking dynamical objects include Kalman filters (Watanabe, Calise,
and Johnson, 2007), Particle filters (Catalin and Nedevschi, 2008) or combination of
different methods (Miller and Campbell, 2007).

Chapter 2. Related Works 4

The detection of other aerial platforms, while cooperating with them for a suc-
cessful completion of a task is even more challenging. A large number of experi-
ments for multi-UAV scenarios is performed in laboratory conditions, which feature
high-tech equipment for localizing self and other UAVs. As an example, in Riviere et
al., 2020 all the UAVs fly inside motion capture space where each robot is equipped
with a single marker and Crazyswarm (Preiss et al., 2017) is used for tracking them.
Crazyswarm is a system that depends on a large number of static cameras that detect
light emitted on board of the UAVs. Another example is presented in Mellinger and
Kumar, 2011 who use Vicon1 motion capture system to estimate position, orientation
and velocity of the vehicle.

In practice, this equipment is not available in real-world scenarios. GNSS ser-
vices, like Global Positioning System (GPS), may not be precise enough in many
cases, and can be further limited or absent due to noise, communication interference
and physical barriers (Langley, Teunissen, and Montenbruck, 2017, Karaim et al.,
2018, Tang et al., 2015). Instead, computer vision techniques most commonly are ex-
ecuted on board to detect any neighbouring UAV. This can be achieved using neural
networks (Gu et al., 2018), attaching labels with printed patterns to UAVs that can
be detected (Krajník et al., 2014), or approaches for communicating ones presence
visually, like UVDAR (Walter et al., 2019).

UVDAR (or Ultraviolet Detection and Ranging) is a technology, that relies on
placing Ultraviolet (UV) light emitting diodes (LED) on UAVs blinking at a certain
frequency. The blinking lights are then detected on other UAVs to achieve accurate
localization up to 15 meters. Walter et al., 2019 have shown that placing 6 LEDs in
a hexagon shape around the UAV is sufficient to estimate both its relative position
and orientation. The main advantage is that this system is independent from light-
ing conditions of the surrounding environment and because of the lack of natural
sources of UV light in the world, is not demanding in terms of computational re-
sources. Even though this system is limited to usage in cooperative missions, where
all the UAVs have UV blinking configured, and cannot be used for tracking a target
without LEDs, it is highly practical in many real-world scenarios.

2.2 Motion Planning

Motion planning is a module with the main objective of computing the plan of fu-
ture movement of the vehicle while respecting its dynamic constraints, avoiding
collisions and optionally maintaining additional properties, like making the motion
smooth.

Motion planning results in generation of a path or trajectory. A path is a sequence
of points that the vehicle will move through, that can be defined as

(
p1, p2, . . . , pN

)
,

where pi is a vector that can include any combination of position, orientation, their
derivatives and other variables. A trajectory is also a sequence of points, but para-
metrized over time. It can be created from path by assigning each point an exact
timestamp, corresponding to the time when vehicle will be at that point.

2.2.1 Graph-Based Methods

Graph-based planning methods build the plan in a discretized to a graph version of
the environment, where vertices correspond to possible configurations in the space

1http://www.vicon.com/

http://www.vicon.com/

Chapter 2. Related Works 5

of the vahicle and edges between them correspond to a possibility of direct move-
ment from one state to the other.

The easiest approaches use grid-like occupancy maps and build a path, ignoring
the dynamic constraints and after that make sure the task is feasible in terms of
dynamics. The most famous algorithm for building path is likely by Dijkstra et al.,
1959. A faster algorithm that is based on the same idea is A? (Hart, Nilsson, and
Raphael, 1968), which relies on a heuristic to initially choose paths, that are more
likely to be optimal, but in the worst case has the same complexity as dijekstra’s
algorithm. There are also further optimized algorithms, like jump point search by
Harabor and Grastien, 2011.

While being optimal in terms of the graph, that the planning is based on, the
final solutions is not optimal due to the discretization of the space. To tackle this is-
sue other sampling techniques were developed, like rapidly-exploring random trees
(RRT by LaValle et al., 1998) and probabilistic roadmaps (Kavraki et al., 1996).

2.2.2 Optimization-Based Methods

Unlike graph based-methods, optimization-based methods do not discretize the en-
vironment. They allow the UAV to be in an infinite number of configurations in
space and instead create bounds on it to avoid collisions. They also enforce the dy-
namical constraints of the vehicle directly into the problem, which results in a much
better solution.

The desired trajectory is piece-wise function of N segments, each of which are
polynomials si(t). Then to guarantee dynamic feasibility, one has to ensure Lip-
schitz continuity in the points between two segments, thus the position, velocity,
acceleration and further derivatives if required at the end of i-th polynomial need to
match the values at the beginning of (i + 1)-th polynomial:

si(ti) = si+1(ti), i ∈ {1, . . . , N − 1},
ṡi(ti) = ṡi+1(ti), i ∈ {1, . . . , N − 1},

.

where ti is the time when vehicle is expected to be at the end of i-th trajectory.
The objective function can minimize the distance, minimize time or even more

specific expressions, like the integral of squared snap (snap is the fourth derivative
of position) which was pioneered by Mellinger and Kumar, 2011 and was shown
to generate safer trajectories with less rapid changes in movement. The collision
constraints are generated by sampling points along the trajectory and enforcing in
each of them. This has been modified by Gao et al., 2018a, who proposes to use
Bezier curves instead of splines, that have the convex hull property and allow to
reduce the number of contraints for each component of the trajectory.

In these works the trajectory is generated from desired path points that need to
be visited, and Gao et al., 2018b address the issue of time distribution between each
of the segment of the trajectory. Gao et al., 2018a create a velocity field and use Fast
Marching Method to create a path and distribute time between the segments.

2.3 Motion Control

The task of a controller is to guide the vehicle by sending commands to hardware or
low-level modules to control actuators on the platform. While some of the motion

Chapter 2. Related Works 6

planning techniques mentioned above already can generate a trajectory that is feasi-
ble by vehicle dynamics, the control module has to handle various disturbances that
affect the vehicle and correct its state back to desired trajectory. On aerial platforms
the disturbances can significantly effect the system, because of the high spinning
rates of its propellers and possible environmental disturbances like wind gust.

A number of control strategies for multi-rotor UAVs are designed specifically for
trajectory tracking. The most common of these are PID (or Proportional, Integrative
and Derivative) controllers which can be created by linearizing the system around
hovering conditions as done by Michael et al., 2010 or by linearizing feedback as by
Lee, Leok, and McClamroch, 2010. Other methods include back-stepping (Bouabdal-
lah and Siegwart, 2005) and adaptive control (Dai, Lee, and Bernstein, 2014). Even
more control strategies can be found in the review by Hua et al., 2013.

However, planning and optimization-based trajectory generation algorithms tend
to be computationally demanding and take a relatively large amount of time for an
aerial platform. The disadvantage of strictly following the trajectory generated by
these algorithms is that the planner might not be able to react in time to external
distrubances, like a detection of an obstacle, that wasn’t previously seen.

The usage of NMPC (Bicego et al., 2020, Alexis, Nikolakopoulos, and Tzes, 2014)
makes large advances to tackle this problem. The main advantage of NMPC is that
it is predictive. It uses system’s model to predict the behaviour of this system up to a
certain time horizon, and allows to add additional constraints directly on the control
solution.

In many works NMPC was used in the outer loop while the inner-loop attitude
control task was solved by unconstrained controllers Bangura and Mahony, 2014
and Alexis et al., 2016). However, in works like Kamel et al., 2015 and Ligthart et
al., 2017 it is emloyed directly in the inner loop, which makes the technique very
powerful.

While works like by Alexis, Nikolakopoulos, and Tzes, 2012 use NMPC to im-
prove the trajectory tracking, others utilize the advantages of its formulation to add
constraints. Static obstacles were added to the NMPC contraints as described by
Lin, Chen, and Liu, 2016, but the solution is generated offline and is only used as
a reference trajectory. Carlos et al., 2020 uses NMPC to avoid dynamic obstacles
online. This was possible due to the development of the RTI scheme (Diehl, Bock,
and Schlöder, 2005) which trades speed for accuracy, but allows to solve complex
optimization problems (Gros et al., 2020).

2.3.1 Perception-aware Control

While other approaches are used for control with perception requirements (Thomas
et al., 2017), NMPC is the most common solution.

Perception-aware NMPC approach is proposed by Falanga et al., 2018, where a
term is added to objective to maximize the visibility of a desired point in pinhole-
model camera, together with minimizing its movement inside the image plane for
further accurate detection.

Perception-induced constraints that are added directly into optimization task are
proposed by Jacquet et al., 2020 and Jacquet and Franchi, 2020 to track a moving tar-
get. Penin, Giordano, and Chaumette, 2018 additionally adds the ability to prevent
occlusions while performing the perception objective, but only generates a trajectory,
that is later tracked by a different controller.

7

Chapter 3

Preliminaries

3.1 Rotation Representation

The most commonly used methods for the description of rotation (and orientation)
in 3 dimensional space are euler angles, rotation matrices and quaternions.

The angular velocity is the most commonly used measure of rotation rate and is
defined as a vector ω = (α, β, γ)>, where its components represent the rotation rate
around each of the 3 axis of the euclidean space.

3.1.1 Euler Angles

The euler angles, often denoted and represent three rotations around axis applied
one by one. The composed rotations are most commonly in order "ZYX", "XYZ" or
"ZYZ", with a total of 12 combinations of the axis choice. "Z", "Y" and "X" mean-
ing rotations around a z-, y- and x-axis in the Cartesian coordinates. In a group of
euler angles, the rotations around different axis are defined as yaw, pitch and roll
representing the rotations around z-, y- and x-axis, respectively (where the x-axis is
pointing in the direction of the heading of the aircraft).

Although 3 independent variables define the rotation in euler angles, they have
a major disadvantage due to the singularities that are said to arrise from the gimbal
lock as described by Diebel, 2006. The lock can occur e.g. in the case of "ZYZ" proper
euler angle with values (0, 0, 0), the changes to first and third variables represent the
same motion, which causes the singularity. In the case of "ZYX", the singularity
appears at the values (0, π

2 , 0). As suggested by Diebel, 2006 a common approach
to solve the problem is to change the representation whenever the system is near a
singularity.

3.1.2 Rotation Matrices

Rotation matrices are a group of transformation matrices that are defined as the fol-
lowing set:

R = {R ∈ R3×3|R>R = I, |R| = 1}, (3.1)

where I is the identity matrix, and |R| is the determinant of matrix R. A vector can be
transformed with the use of rotation matrix from one coordinate system to another
with v′ = R · v.

Because 3 degrees of freedom are associated with rotation, 6 constraints are re-
quired during differentiation and integration of the matrix, which can be deduced
from its definition. During the computation of differentiation and integration, these
constraints may not be met exactly, resulting in singularities, as suggested by Zhao
and Van Wachem, 2013.

Chapter 3. Preliminaries 8

3.1.3 Unit Quaternions

Unit quaternions are becoming increasingly popular to represent rotation, in partic-
ular in robotic tasks.

A quaternion is is defined by:

Q = qw + qxi + qy j + qzk ∈H, (3.2)

where {qw, qx, qy, qz} ∈ R and {i, j, k} are imaginary units defined by equations i2 =
j2 = k2 = ijk = −1 as described by Graf, 2008.

An alternative representation is in vector form:

q =


qw
qx
qy
qz

 =

(
qw
qv

)
. (3.3)

The norm of a quaternion is defined as ‖q‖ =
√

q2
w + q2

x + q2
y + q2

z and its conju-

gate is defined as q̄ =
(
qw,−qv

)>.
A unit quaternion is a quaternion, for which |q| = 1. As noted by Zhao and Van

Wachem, 2013 to represent rotation, quaternions are required to unitary.
A unitary quaternion can be decomposed as:

q = (qw, qv)
> =

(
cos

γ

2
, sin

γ

2
·~n
)>

, ‖~n‖ = 1, (3.4)

where γ is the angle of rotation in radians, and~n is the vector that is a base of rotation
axis, axis that is perpendicular to rotation plane and is defined as one-dimensional
subspace, all the points of which are left unaffected by the rotation.

Given this, the inverse of a quaternion - another quaternion representing rotation
in the opposite direction, is its conjugate: q−1 = q̄.

Composition of two quaternions (also called Hamilton product), that results into
another quaternion that represents rotation with q1 and then consecutive rotation
with q2 is defined as:

q3 = q2 ◦ q1 =

(
q2wq1w − q>2vq1v

q2wq1v + q1wq2v + q2v × q1v

)
, (3.5)

where q2v × q1v is the cross product of 2 vectors.
A rotation, that is represented by quaternion q can be applied on a vector v =

(vx, vy, vz)>, by creating a quaternion with 0 scalar part: w = (0, vx, vy, vz)> and
using the formula

w′ = q ◦ w ◦ q−1. (3.6)

The resulting vector v′ can be then be retrieved as the vector part from the resulting
quaternion as v′ = w′v. For simplicity I will further denote the rotation of a 3d vector
with quaternion as v′ = q ◦ v ◦ q−1.

A quaternion rotation can be converted to identical representation of rotation
with rotation matrix as:

R(q) =

q2
w + q2

x − q2
y − q2

z 2(qxqy − qwqz) 2(qxqz + qwqy)

2(qxqy + qwqz) q2
w − q2

x + q2
y − q2

z 2(qyqz − qwqx)

2(qxqz − qwqy) 2(qyqz + qwqx) q2
w − q2

x − q2
y + q2

z .

 (3.7)

Chapter 3. Preliminaries 9

More details about quaternion algebra are presented by Graf, 2008 and Sola,
2017.

As given by Zhao and Van Wachem, 2013 quaternion derivative can be deter-
mined by:

q̇ =
1
2

(
0
ω

)
◦ q, (3.8)

where ω is the angular velocity vector and q is the quaternion itself.
There are many methods for quaternion integration, that vary depending on

computational complexity and accuracy they achieve. A comparison of a large num-
ber of them is provided by Zhao and Van Wachem, 2013. The easiest is Newton
method, that approximates a quaternion at a new time step n + 1 with linearization
up to first derivative and then normalizing to be a unit quaternion:

q̂n+1 = qn +
1
2

(
0

ωn

)
qnδt, (3.9)

qn+1 =
q̂n+1

‖q̂n+1‖
. (3.10)

Because this method is not very accurate and has large numeric errors, more ad-
vanced methods, like direct multiplication and predictor-corector direct multiplica-
tion methods were created, with more details provided by Zhao and Van Wachem,
2013.

Compared to euler angles and rotation matrices, quaternions do not suffer from
lack of stability, non-uniqueness and occurance of singularities, and seem to be the
most attractive representation for the orientation of a body in space. With 3 degrees
of freedom given by rotation, quaternions have one constraint of keeping them uni-
tary. As non-unitary quaternions will perform scaling additionally to rotation, con-
servation of their unit length is required for an accurate description of orientation.
Although numerical errors arise in different algorithms during the renormalization,
some methods, like the predictor-corrector direct multiplication method presented
in Zhao and Van Wachem, 2013 achieves much lower angle prediction errors, which
makes it favourable for the representation of bodies orientation.

3.1.4 Rotation Vector

An alternative approach to integration is presented by Diebel, 2006, which relies on
another orientation representation - rotation vector, that is defined as v = nγ, where
γ is the rotation angle and n is the normalized vector spanning the axis of rotation.

They prove that as that as the norm of the vector v approaches to zero, its deriva-
tive

lim
‖v‖→0

v̇ = ω. (3.11)

Given this they define

v(ti, ti+1) =
∫ ti+1

ti

ωdt (3.12)

where ω is in the body frame and dependent on t. v(ti, ti+1) is a rotation vector
that describes the change of attide over an interval of time. Then authors propose
to calculate the orientation in quaternions over time with qi+1 = qv(v(ti, ti+1)) ◦ qi,
where qv(v) is a function converting from rotation vectors to quaternions. Note, that
qi is defined in the world frame in this case.

Chapter 3. Preliminaries 10

Authors claim that this method is much more accurate than integrating the euler
angles. This method also has the advantage of being very simple, as angular velocity
can be integrated accurately with Newton or similar methods.

3.2 NMPC

Model Predictive Control (MPC) is an advanced technique for control of a system
that is based on solving an Optimal Control Problem (OCP) using optimization
methods. MPC controllers rely on dynamic models that simulate the systems that
are being controlled.

The advantage of MPC is that it takes into account the behaviour of the system
multiple time steps ahead when optimizing the controls for just the next time step.
It also allows for introduction of various constraints on the system.

It has been used in various fields for controlling processes, and in recent years
became popular in robotics community.

Nonlinear Model Predictive Control (NMPC) is MPC that can have a nonlinear
system-description and nonlinear constraint formulations, and requires solving a
nonlinear (and often non-convex) OCP.

General NMPC tracking problem can be formulated in the following way:

min
x0,...,xN ,

u0,...,uN−1

1
2

N−1

∑
i=0
‖η(xi, ui)− η̃‖2

W +
1
2
‖ηN(xN)− η̃N‖2

WN
(3.13)

subject to

x0 = x̄0, (3.14)
xi+1 = F(xi, ui), i ∈ {0, . . . , N − 1}, (3.15)

g(xi, ui) ≤ 0, i ∈ {0, . . . , N − 1}, (3.16)
gN(xN) ≤ 0. (3.17)

The symbols are defined as follows:

Notation Description

xi ∈ Rnx

The state of the system at time steps i - all the variables that
are required to represent the system at a given time. nx is
the size of state vector.

x̄0 ∈ Rnx

The state of the real system at time step i = 0. The system
is at this state at the beginning of optimization, thus this
variable x0 cannot be varied, while all future states can be
optimized for.

ui ∈ Rnu

The controls of the system - the variables that are inputs
to the system for changing its state. nu is the number of
controls in the system.

Chapter 3. Preliminaries 11

F : Rnx ×Rnu → Rnx

The function describing the dynamics of the system. The
state-space system representation relies on the equation
xi+1 = F(xi, ui). Note that this system is discretized, as it
calculates the time at each time step i. Real-world processes
are continues and thus are likely better described by contin-
ues systems of from ẋ(t) = F(x(t), u(t)). However discrete
approximations are simulated more easily on modern com-
puters, and are very accurate provided that the sampling
interval is small enough to react to be able to reproduce dy-
namical changes of the system

η : Rnx ×Rnu → Rnη
The output of the system. The function returns a vector of
important for optimization variables.

η̃ ∈ Rnη

The reference for the output of the system. These are pa-
rameters that can change over time and are used in the
objective function of the optimization problem. The cor-
responding term in optimization problem is a least-squares
between the output and this reference. It will be weighted
by a symmetric positive-definite matrix W as:
‖η − η̃‖2

W = (η − η̃)>W(η − η̃)

ηN : Rnx → RnηN

The function returning output of the system at time step N.
The function depends only on the state of the system xN
and not uN . The reasoning behind this is most likely be-
cause xN = F(xN−1, uN), and there is no effect of input uN
on the states before N + 1, so the objective function includes
xN and not uN .

η̃N ∈ RnηN

The reference for system output at time step N. The re-
spective objective-function least-squares term is like-wise
weighted by matrix WN .

N is the horizon length - the number of time steps ahead that we want to opti-
mize for. The optimization tries to find the best controls ui, i ∈ {0, . . . , N − 1}, while
all xi, i ∈ {0, . . . , N} can be fully deduced from the values of ui and x̄0.

The optimization is solved once per time step (which is often the same as the time
interval between i-th and (i + 1)-th states in the optimization task). Let me denote
xk

i , i ∈ {0, . . . , N} and uk
i , i ∈ {0, . . . , N − 1} the states and controls produced when

solution of the k-th optimization problem. Once the optimization task at time step k
is solved, only the controls that are for current time uk

0 are applied, while all others
are ignored. After an interval of time passes, a new (k + 1)-th optimization problem
is solved and new controls will be applied. Note, that even though controls uk

i , i ∈
{1, . . . , N − 1} are not used, they are very important for the optimization problem,
as they provide it with the ability to ’predict’ the future state of the system and start
reacting to possible changes that will happen in the future time steps. Additionally,
even though uk

i , i ∈ {1, . . . , N − 1} already provide optimal feedback for the next
N − 1 time steps, performing additional optimizations are required in case the real
system does not behave as predicted by the model and to respond to disturbances
that effect the system.

Lots of methods can be used for solving the given problem, including nonlinear
solvers and Sequential Quadratic Programming (SQP) methods. One of the main
requirements for optimization of real-world tasks, especially in robotics, is its speed.

Chapter 3. Preliminaries 12

Because optimization result takes time to be computed and the system evolves in
time in the meantime, the supplied command needs to be still relevant after opti-
mization is performed. Also, the commands need to be provided at a high enough
rate to the system, or otherwise delayed reactions to changes can appear.

3.3 Real Time Iteration Scheme

One of the methods created to tackle the speed requirements on NMPC for mod-
ern applications is Real Time Iteration Scheme (RTI) proposed by Diehl, Bock, and
Schlöder, 2005. I will present an explanation of the main ideas of RTI here.

Let us define L(xi, ui) =
1
2 ‖η(xi, ui)− η̃‖2

W and E(xN) =
1
2 ‖ηN(xN)− η̃N‖. With-

out the additional constraints, the optimization problem of a system is formulated
as:

min
x0,...,xN ,

u0,...,uN−1

N−1

∑
i=0

L(xi, ui) + E(xN) (3.18)

subject to

x0 = x̄0,
xi+1 = F(xi, ui), i ∈ {0, . . . , N − 1}.

(3.19)

Inequality constraints of form g(xi, ui) ≤ 0 can be additionally introduced into
the problem as in the Karush-Kuhn-Tucker conditions, which are a generalization of
the Lagrange multipliers. Diehl, Bock, and Schlöder, 2005 however focus on prov-
ing the general convergence and note that inequality constraints do not pose any
difficulty for algorithm’s performance in practice.

RTI is a Newton-Type optimization method. To solve the problem, first Lagrange
multipliers λi, ..., λN are introduced to create the Lagrangian function:

L(λi, xi, ui, . . . ,λN , xN , uN−1) =

=
N

∑
i=0

L(xi, ui) + E(xN)+

+λ>0 (x0 − x̄0) +
N−1

∑
i=0

λ>i+1(xi+1 − F(xi, ui)).

(3.20)

Define y = (λi, xi, ui, . . . , λN , xN , uN−1) as vector of all the variables. The opti-
mality conditions of first order (or Karush-Kuhn-Tucker conditions) are then defined
as: ∇yLk(y) = 0.

To reach to such a solution, the exact Newton-Raphson method would start at an
initial guess y0 and compute a sequence of y1, y2, ... as:

yj+l = yl + ∆yl , (3.21)

where δyi is a solution of the linearization of the initial problem:

∇yL(yl) +∇2
yL(yl)∆yl = 0. (3.22)

The authors of RTI scheme propose to perform only 1 iteration at each time step.
Together with additional optimizations their algorithm can be summarized as:

Chapter 3. Preliminaries 13

1. Prepare the response as much as possible without the knowledge of xk
0. Only

the first component of the vector ∇yL(yk) depends on xk
0, while ∇2

yL(yk) is
completely independent.

2. Perform the feedback response. Calculate ∆yk = −∇2
yL(yk)−1 · ∇yL(yk). For

the calculation take the most recent xk
0, as we need the control to be as up-

to-date for the system as possible. Calculate the optimal control as uk
0 + ∆uk

0.
Diehl, Bock, and Schlöder, 2005 proposes to approximate the Hessian matrix
∇2

yLk(y) d by a symmetric matrix to simplify calculations.

3. Project the solution yk on the space of yk+1 = Pk+1(yk + ∆yk). Because at the
time of k + 1, the system would have evolved, the commands uk

0 are no longer
relevant. But the value of uk

1 can be used in the next step of optimization for
uk+1

0 . In the case the optimization intervals are the same as time between sys-
tem updates inside the optimization problem, the transform from yk to yk+1
needs to just shift the variables by one back. As described in Diehl, Bock, and
Schlöder, 2005, the next optimization is then performed on a smaller number
of variables, but additional controls, corresponding to uk+1

N can be filled with
some initialization value, like zeros, and the size of vector y will be the same
for all time steps. Finally, finish the step - set k = k + 1 and continue from step
1.

Additional optimizations that are given by Diehl, Bock, and Schlöder, 2005 are
leaving parts of the Hessian∇2

yLk(y) pre-calculated from the previous step, and due
to its block-diagonal structure, solving ∇yL(yl) +∇2

yL(yl)∆yl = 0 using a Ricatti
recursion proposed independently by De O. Pantoja, 1988 and Dunn and Bertsekas,
1989.

Carlos et al., 2020 propose an implementation with modern technologies, in par-
ticularly to linearize the problem, generate the RTI scheme definition using the tools
of ACADOS library created by Verschueren et al., 2019 and solve it using modern QP
solvers, like the the high performance interior point methods as described in Frison
and Diehl, 2020. For the linearization, an approximation of Gauss-Newton Hessian
approximation is calculated as described by Frison et al., 2018 and an exact gradi-
ents are calculated. Additionally, condensing and partial condensing can be used
to convert the original OCP QP to a dense QP or an OCP QP with shorter horizon
respectively.

The advantage of RTI compared to optimal feedback control, is that it is faster
than computing exact solutions. Also, given a large shooting interval N, it is able
to perform a large number of optimization steps likely giving a good estimate of
optimal solution. The convergence of RTI as the number of iterations goes to infinity
is proved in Diehl, Bock, and Schlöder, 2005.

14

Chapter 4

Control Architecture

4.1 System Model

4.1.1 Notations and Definitions

The system requires the definition of the following notation and variables:

Notation Description

W The inertial (or world) frame.

B

The body frame. The origin of the Cartesian
Coordinates is located at the center of mass
(CoM) of the body (UAV), and the axis of the
coordinates rotate along with the UAV. (All the
frames are depicted in Figure 4.2.)

p ≡ pW ∈ R3 The position of the CoM of the UAV in the
world frame.

q ≡ qW ∈H
The orientation of the UAV represented as a
quaternion.

v ≡ vW ∈ R3 The velocity of the UAV in the inertial frame.

ω ≡ ωB ∈ R3 The angular velocity of the UAV, that is in the
UAV body frame to simplify system equations.

K The number of actuators (or propellers) that are
present on the UAV and will be controlled.

Ω =

Ω1
...

ΩK

 ∈ RK

The rotor spinning rate of each of the rotors
{1, . . . , K} that are on the UAV collected into
a column vector. The rotor spinning rate rep-
resents the magnitude of angular velocity of
the propeller, and is positive when the rota-
tion is counter-clockwise and negative when it
is clockwise.

We will be considering a generic aerial multirotor platform consisting of a phys-
ical body and K ≥ 4 propellers.

The platform can be under-actuated or fully-actuated depending on the number
of propellers and their orientation in space relative to the UAV body (Franchi et al.,
2018).

A control system is defined to be fully-actuated if by changing the controls, it is

Chapter 4. Control Architecture 15

x

y z

1

23

4

(A) Quadrotor in cross config-
uration. The rotors include
numbering and their type σk -

CW or CCW.

x

y z

1

2

3

4

(B) Qudarotor in plus configu-
ration

x

y z

(C) Example of quadrotor with
tilted propellers. The pro-
pellers are tilted in order to
produce forces whose vectors
are not aligned to give more

freedom of movement.

FIGURE 4.1: Configurations of quadrotor

able to instantaneously change the direction of its acceleration (and rotational accel-
eration).

An under-actuated system cannot do that. An UAV has 6 degrees of freedom,
where 3 define the position and 3 define the orientation of the system. A quadrotor
is always underactuated, as the number of controls corresponding to 4 propellers is
less than the number of degrees of freedom. Additionally, other standard multiro-
tors (like hexarotors) are also underactuated, as they have collinear propellers, that
generate forces aligned to one direction in body frame. In order to apply a force in
a desired direction, such a multirotor would first need to change its orientation in
space. Such an underactuation may negatively effect the interaction of the system
with environment, since it is unable to exert force in an arbitrary direction.

To overcome this, fully-actuated multirotor systems have been developed, in
which the rotors are slightly tilted (as the tilted rotors in Figure 4.1c), so that their
thrust is not aligned in the same direction (Franchi et al., 2018).

I will use a general system model, that can simulate an under-actuated or fully-
actuated UAV depending on parameter values.

4.1.2 Model Dynamics

The derivative of position over time is the linear velocity: ṗ = v. The derivative of
quaternion is defined in equation 3.8 depending on angular velocity.

The derivative of velocity is acceleration v̇ = a ∈ R3. The acceleration of the
UAV is dependent on the gravitational force and the rotation of propellers.

Each propeller rotates with spinning rate Ωk. The position of propeller relative
to the UAV body position is pBk ∈ R3. zBpk

∈ R3 is a unit vector parallel to the
rotor spinning axis. Then according to the most commonly acknowledges model, the
following equations hold (Michieletto et al., 2020 or Michieletto, Ryll, and Franchi,
2018):

fk = σkc fk |Ωk|ΩkzBpk
, (4.1)

τk = −cτk |Ωk|ΩkzBpk
, (4.2)

Chapter 4. Control Architecture 16

x

y z

3

4
x

y

z

OW

OB
qWB

xy

z

qBC

world

body

camera
OC

FIGURE 4.2: The three frames of worldW , body B and camera C and
transitions between them.

where fk ∈ R3 is the thrust force generated by the rotor, and τk ∈ R3 is the drag
moment. c fk and cτk and σk, k ∈ {1, . . . , K} are constants that depend on various
factors, like rotor shape. The value of σk is:

σ =


1 if the propeller is of counter-clockwise (CCW) type

(meaning it will generate upward force by turning CCW)
−1 if the propeller is of clockwise (CW) type

(4.3)

The sum of all the propeller forces creates the control force, which can also be
rewritten in matrix form as:

f Bc =
K

∑
k=1

fk =
K

∑
k=1

σc fk zBpk
|Ωk|Ωk = Fc

 |Ω1|Ω1
...

|ΩK|ΩK

 = Fc · γ, (4.4)

where γ is a vector of angular rates squared multiplied by their sign.
The control torque can be written as:

τBc =
K

∑
k=1

(τk + pBk × fk) =
K

∑
k=1

(−cτk zpk + c fk pBk × zBpk
)|Ωk|Ω = Mc · γ, (4.5)

where the pk × fk is the torque generated by thrust, and τk is torque generated by
drag moment.

As a result we get two matrices Fc, Mc ∈ R3×K, that are control force input matrix
and control torque input matrix respectively. Note, that because pk and zpk that are
used in the creation of these matrices are in body frame B, the matrices will create
the control force and body force in body frame, too. To convert the control force into
world frame, one can use fWc = q ◦ (Fc · γ) ◦ q−1.

Finally, as described by Michieletto et al., 2020, ignoring second order-effects we
end up with the system dynamics that is described by the following equations:

Chapter 4. Control Architecture 17

ṗ = v,

q̇ =
1
2

q ◦
(

0
ω

)
,

v̇ = −ge3 + m−1q ◦ (Fc · γ) ◦ q−1,

ω̇ = J−1(−ω× Jω + Mc · γ),

(4.6)

where m is the mass of the body, g is the gravitational constant, e3 is the third
column of the identity matrix I3. The positive definite constant matrix J ∈ R3×3 is
the vehicle inertial matrix in the body frame B.

Note that all rotation-related calculations are performed with quaternions to
avoid any possible computational errors while converting it to an alternative frame-
work for representing rotation.

To ensure the continuity of control action (and thus Ω), the derivative of angular
rate Ω̇ of the propellers is added to the system. Its relation to γ is γ̇ = 2|Ω|Ω̇.

The state of the system is defined as x = (p, q, v, ω, γ)> ∈ R9+K ×H. The control
inputs are u = γ̇ ∈ RK.

The whole system is described by ẋ = F(x, u), where F is deduced from equation
4.6 and

γ̇ = u. (4.7)

Together with an appropriate objective function and possibly additional con-
straints, the whole system can be used to create an NMPC formulation as in equa-
tions 3.13 and 3.14-3.17.

4.1.3 Dynamics Constraints

Bicego et al., 2020 propose to add constraints on the angular rate of rotors Ω, in
particular a lower bound Ω

¯
and an upper bound Ω̄. The upper bound is based on

the maximal current limitation of the motors used, while the lower bound is also
based on the capabilities of the motors and the capability to estimate the angular
velocity with a required precision.

Additionally they the lower bound of angular acceleration Ω̇
¯

and a correspond-
ing upper bound ¯̇Ω are introduced. They are based on practically measuring the
physical limits of the rotors to accelerate and depend on the value of angular veloc-
ity.

Because it does not make sense to change the direction of angular rotation mid-
flight (especially based on the fact, that stopping and starting motors takes a reason-
able amount of time in practice), the constraints also assume that Ω > 0.

In order to get realistic physical values and maintain certain safety limits, I will
also introduce into the problem formulation upper bounds on the velocity v̄ and
angular velocity ω̄ of the UAV.

4.2 Collision Avoidance

The collision avoidance task is to avoid from coming to close to L obstacles. The
position of each of the obstacles is pobsl , l ∈ {1, . . . , L} and is parametrized over
time: pobsl

i , where i is the number of time increments in NMPC scheme that we want
to look ahead. For dynamic obstacles, the future position needs to be predicted

Chapter 4. Control Architecture 18

position
obstacle position
original constraint sphere
linearized least conservative formulation plane
linearized squared formulation plane

FIGURE 4.3: An example of obstacle constraints. The sphere repre-
sents how the original formulation splits the space. The planes rep-
resent how the constraints appear after linearization. As can be seen,

the squared constraint appears to be further from obstacle.

over time. Falling obstacles would require estimating their position and velocity to
predict future trajectory, while a Kalman filter can be used to predict the position of
other UAVs, but researching these methods will not be the focus of this work.

The obstacles are modelled as points in 3D the space, with which a minimal dis-
tance dmin needs to be maintained in order to be safe. This distance should consider
the size of the robot, the size of obstacle and a safety margin due to possible inaccu-
racies in position estimation or tracking.

collision avoidance is added to the system as a constraint:∥∥∥pi − pobsl
i

∥∥∥ > dmin, l ∈ {1, . . . , L}, i ∈ {1, . . . , N}. (4.8)

The constraint needs to be added separately for each of the obstacles and each of
the time-steps.

4.2.1 Constraint Linearization

As described in Section 3.3, the RTI optimization scheme performs a linearization of
the constraints in order to convert the optimization problem to QP problem.

Reformulating the constraint from inequality 3.16 as

g(p) ≤ 0, (4.9)

where p = (x, u) are all the parameters of constraint. I will formulate the linearized
version of the constraint as:

glin(p) = g(p0) +∇pg(p0) · (p− p0), (4.10)

where p0 is the point of linearization.

Chapter 4. Control Architecture 19

The constraint in inequality 4.8 is a nonlinear function, thus performs differently
than its linearized version. It has been shown by Carlos et al., 2020 that the for-
mulation as in inequality 4.8 is the least conservative linearized formulation. This
formulation will restrict the solution space the least when linearized compared to
others.

An alternative formulation of the constraint can be achieved by squaring both
terms of the inequality 4.8:∥∥∥pi − pobsl

i

∥∥∥2
> d2

min, l ∈ {1, . . . , L}, i ∈ {1, . . . , N}. (4.11)

It can be proven that formulation 4.8 constraint splits the space into 2 subspaces
(feasible and unfeasible) by a plane, whose normal vector is collinear to the vector
(p0 − pobs) and which at the distance dmin from the obstacle. This means that the
plane of constraint touches the sphere of

∥∥p− pobs
∥∥ = dmin. Note that a plane is

created for each of the obstacles and each of the time steps i ∈ {1, . . . , N} but this is
omitted here.

On the other hand, the formulation as in inequality 4.11 creates a plane that has
the same normal vector, but is at a distance

dmin +
∥∥p0 − pobs

∥∥
2

.

In the case that
∥∥p0 − pobs

∥∥ > dmin the plane is at a greater distance than the plane
in formulation 4.8 and thus removing a larger subset from the feasible solutions. A
visualization of the difference between formulations is presented in Figure 4.3. For
more details, refer to Carlos et al., 2020.

Despite being undifferentiated at one point due to the modulus operation, the
constraint formulation as in inequality 4.8 will thus be preferred due to the better
resemblance of its linearized version.

4.2.2 Soft Constraints

A hard constraint is of form g(xi, ui) ≤ 0 like the inequality 3.16 and 3.17. There is
no possibility to violate such constraint, as it is restricting the feasible region.

On the other hand, the idea behind a soft constraint is to add an option of con-
straint violation. However, the violation of the constraint is highly penalized inside
the objective function, instead. A soft constraint is created by first adding a slack
variable to the control variables and then reformulating the hard constraint:

g(xi, ui)− si ≤ 0, i ∈ {1, . . . , N − 1}, (4.12)
si > 0, i ∈ {1, . . . , N − 1}. (4.13)

The si are added on each time step i ∈ {1, . . . , N} and will require to be a non-zero
value in case the original constraint 3.16 is violated.

Additional terms will be added to the objective function 3.13 for each of the slack
variables:

N−1

∑
i=1

wobs · s2
i , (4.14)

where wobs is a constant that defines the amount of penalization on the slack vari-
able. Note that this additional term can be incorporated to the ‖η(xi, ui)− η̃i‖2

W

Chapter 4. Control Architecture 20

expression. If ui contains the si, and because term 4.14 is a squared norm, the term
can be added by changing η(xi, ui), η̃ and W accordingly.

The hard constraint could be also formulated for final state as in inequality 3.17,
but soft constraint is only available for intermediate states i ∈ {1, . . . , N− 1} because
it requires a slack variable which is a control variable and is not available for final
states of NMPC. However, this is a minor disadvantage and its effect is neglected in
case the shooting interval N is sufficiently high.

While one ideally wants to respect all the constraints, it is not essentially possible
in real-world scenarios. For example, in case a UAV is travelling at a high speed and
an obstacle is detected in front of it, there might be no feasible maneuver to avoid
violating minimal distance constraint. In this case, a reasonable behaviour would be
to try to minimize the depth of the overstep into the unfeasible set and the time of
this violation. This is exactly what a soft constraint is achieving. On the other hand,
a hard constraint would not be able to find any solution which results in not being
able to control the UAV at all.

While hitting an obstacle is very dangerous for a UAV, but minimizing the im-
pact may result in the UAV recovering from it and successfully continuing on its
trajectory. Thus I will add the obstacle violation constraint as a soft constraint:∥∥∥pi − pobsl

i

∥∥∥
2
+ sobsl

i > dmin, l ∈ {1, . . . , L}; i ∈ {1, . . . , N},

sobsl
i > 0, l ∈ {1, . . . , L}; i ∈ {1, . . . , N}.

(4.15)

The weight for the penalization of slack variables that correspond to obstacles
is inside the W and needs to have a high value comparing to all the other weights,
because respecting the constraint is more important than tracking other references.

Note, that not for all constraints, performance is improved by making them soft.
Unfeasibility can happen to constraints, that are task-related and whose current sta-
tus may depend on a number of time steps before. On the other hand, constraints
on the controls and states that can be immediately changed that are based on system
dynamics can always be respected. Thus I will not reformulate the constraints on Ω
and Ω̇ which are described in section 4.1.3 as soft constraints.

4.3 Perception

4.3.1 Camera Definition

We will define notations, parameters and variables that are related to camera:

Notation Description

C

The camera frame C. The camera is considered
to be of pinhole model. The last vector of ba-
sis (or z-axis) is pointing in the direction of the
center of camera view. The x-axis corresponds
to horizontal pixels in the image and y-axis cor-
responds to vertical pixels from top to bottom.
The camera frame can be seen in Figure 4.2.

OBC
The camera frame origin, that is also the posi-
tion of the camera.

Chapter 4. Control Architecture 21

θh

zC

xC

target

OC
α

FIGURE 4.4: Visulalization of the FoV horizontal constraint. The cam-
era frame C has origin at OC and axes present in the picture. Tangent
of horizontal angle the target α is relative to camera axis is equal to
tan(α) = xC

zC . The angle α needs to be less than half of horizontal FoV
θh
2 and thus |tan(α)| < tan

(
θh
2

)
.

qBC

The quaternion that represents rotation from
camera frame C to the body frame B. The
rotation matrix R(qBC) (equation 3.7) will per-
form transformation from the camera to body
frames.

θh, θv

The horizontal and vertical field of view of the
camera respectively; in radians. This value
should be < π, which is the case for most cam-
eras.

ptgt = (xtgt, ytgt, ztgt)>

The position of the target as a vector and its x,
y, z components, respectively. To get the target
in camera view, the equation 3.6 is used: pBtgt =

qBC ◦ pCtgt ◦ (qBC)−1 + OBC .

4.3.2 Perception-Based Constraints

The main perception-based task that I want to solve is keeping the target UAV in the
field of view (FoV) of camera.

The constraints propsed by Jacquet and Franchi, 2020 to achieve this are of this
form: ∣∣∣∣∣ xCtgt

zCtgt

∣∣∣∣∣ ≤ tan
(

θh

2

)
, (4.16)∣∣∣∣∣yCtgt

zCtgt

∣∣∣∣∣ ≤ tan
(

θv

2

)
. (4.17)

They are based on the fact, that tangent of angle is also a quotient of opposite side
to adjacent side in a right triangle, which is valid in this case because the basis of the
camera space is orthogonal. The first inequality is to keep the target in the horizontal
FoV, while the second is for vertical FoV.

Chapter 4. Control Architecture 22

We will now focus in more detail on constraint in inequality 4.16. It can reformu-
lated as

− tan
(

θh

2

)
≤

xCtgt

zCtgt
≤ tan

(
θh

2

)
. (4.18)

The value of zCtgt is positive in the case that the object is in front of the camera (or
the plane whose basis are x- and y-axis), and is negative if it is behind it. Then, the
value of zCtgt should be always positive, which is not considered by inequlity 4.18.
However, in practice if θh is not close to the value of π, the constraint will keep the
angle from becoming greater than π

2 or lower than −π
2 and thus zCtgt from becoming

negative.
The fact, that the object will be in front of the camera, allows to rewrite the in-

equality 4.18 as a system − tan
(

θh
2

)
zCtgt − xCtgt ≤ 0

− tan
(

θh
2

)
zCtgt + xCtgt ≤ 0

. (4.19)

This reformulation has the advantage, that in case of negative zCtgt < 0, the first
term of both equations becomes positive and there is no value of xCtgt that can be a
solution of the system. This means that the constraint really has the correct feasible
set for FoV θh compared to formulation 4.16.

Similarly to as described in section 4.2.2, the camera objective might be violated
in certain cases and thus it will be reformulated as a soft constraint. Even though
target-tracking is our main objective, we do not want to stop controlling the UAV
after losing it, as this will likely result in a fall or collision. Additionally, we might
recover back to tracking the target, if our prediction of its position is reliable enough.

The soft constraint from inequality 4.19 is:
− tan

(
θh
2

)
zCtgt − xCtgt − stgth ≤ 0

− tan
(

θh
2

)
zCtgt + xCtgt − stgth ≤ 0

stgth > 0

. (4.20)

Only one slack variable is needed because there is no possibility for both inequalities
in 4.19 to be unfulfilled.

The additional term that will be added to objective, like in formulation 4.14 is the
weighted square of the slack variable

wtgth
· (stgth)2. (4.21)

Note that all the above formulations, including constraints 4.20 and objective
term 4.21, need to applied to each of the time steps i ∈ {1, . . . , N} in the NMPC
optimization task formulation.

All the same reasoning can be applied to the vertical FoV constraint 4.17 to refor-
mulate it with slack variable stgtv and weight parameter wtgtv

.

4.3.3 Linearization of Perception-based Constraints

The left inequality parts in system 4.20 are linear w.r.t. the variable p. This means
that the linearization w.r.t. position will result in the same exact constraint formula-
tion.

Chapter 4. Control Architecture 23

The linearity is verified after transforming the equation to world frameW , as that
is where the optimized variable of UAV position is, and where variable ptgt is inde-
pendent from all the optimized variables (state of the multirotor). Note that rotation
using quaternion does not affect the linearity of position, neither does addition of a
constant, e.g., camera position.

The two planes that divides the three-dimensional space of positions into 1 fea-
sible and 3 unfeasible sets both pass through the target and are at the angle tan(θh)
w.r.t. the vector between multirotor and its target. This is the case for constraints
4.16, 4.19 and the linearization of 4.19. On the other hand, linearization of constraint
4.16 produces planes that are at different angle and not always contain the target
position.

The gradient of the constraint w.r.t. the orientation and its effect on the is not
studied in detail, but because the constraint does not include division, the lineariza-
tion is likely to be more accurate.

An additional problem that arises in formulation 4.16 is that when it is linearized,
the modulus operation is replaced as a non-linear operation and in case the inner

term
xCtgt

zCtgt
is of different sign than at the point of linearization, it can reach values that

are larger than tan(θh
2) in magnitude, as the value is not bounded from both sides

like in inequality 4.18. This might be especially a problem when the target is nearby
and values of zCtgt and xCtgt are small.

4.3.4 Camera Centering Objective

Perception based-constraints are supposed to keep the target UAV in the view of
camera. However, the NMPC formulation is predicting only until N time steps into
the future, and there is still a possibility of the target moving from the FoV further
in the future. This is especially relevant because the change of orientation in prac-
tice takes more time and requires more variations in rotors speed than a change of
position.

Moreover, this is possible because the constraint does not limit where the target
needs to be in the image plane. The target can move to the edge of the camera image,
and make an unpredicted motion out of the view which results in losing track of the
target. To tackle this problem, I will additionally add a term to the objective to try
keeping the target in the center of the camera.

Similar to Penin, Giordano, and Chaumette, 2018 we will define βtgt as the angle
between the vector aligned with camera’s z-axis and the vector of pCtgt.

Because cosine is equal to the quotient of adjacent side and the hypotenuse of a
right triangle, this equation holds:

cos(βtgt) =
zCtgt∥∥∥pCtgt

∥∥∥ . (4.22)

In order to achieve robust tracking, the angle βtgt should preferrably be close to
zero, and cos βtgt should be close to 1.

Thus the term, that will be added to objective will be of form

wtgt
∥∥cos(βtgt)− 1

∥∥2 , (4.23)

that should be summed for all the i ∈ {1, . . . , N}. The wtgt is the corresponding
weight parameter that is a component of the W matrix. This can be introduced into

Chapter 4. Control Architecture 24

NMPC
Perform one RTI itearation and
give control inputs for the next
time step

System
The system evolves over time,
either in real world or
simulated updating UAV and
world state

State-estimation
The state of the system is estimated using
sensor data, including self-localization and
predicting the position of obstacles, target
and other required variables.

Parameters, including minimal
obstacle distance and least-
squares term objective
function weights.

u

x

FIGURE 4.5: The schematics of system with NMPC control, that pro-
duces control vector u based on the current state of the sytem, that

can be estimated or directly produced by simulation.

objective function 3.13 by setting the appropriate component of η̃i to the value of 1
and setting the correponding component of ηi to the expression cos(βtgt).

Additionally, the derivative of cosine can be added to the objective in order to
minimize the movement of target in the image plane thus likely reducing the noise
in the view and resulting in a better prediction of position. The term is formulated
in the following way:

wtgt-dot
∥∥ ˙cos(βtgt)

∥∥2 . (4.24)

4.3.5 Target-Following Objective

In case of a required following that is not enforced by a planning module with a
trajectory, an additional objective to the NMPC formulation is added.

The distance to the target will be defined as:

dtgt =
∥∥∥pBtgt

∥∥∥ . (4.25)

The additional term to the objective will be of form

wtgt-dist
∥∥dtgt − d̃tgt

∥∥2
, (4.26)

and it encourages the optimization to minimize the difference between distance and
desired distance.

To avoid collisions, target is also added to the obstacles that need to be avoided.
I will not describe the formulation, as it is the same as in inequality 4.15.

The desired distance to target d̃tgt can be zero, which would result in trying to
keep as close as possible, while avoiding collisions. However, for safety reasons I
will set it to positive value (larger than minimal obstacle distance dmin).

4.4 NMPC Formulation

We will add tracking of position p, velocity v and acceleration a = v̇ (from equa-
tion 4.6) to the objective function. This may be used in a case a separate planner is

Chapter 4. Control Architecture 25

present, that orders UAV to perform other tasks while tracking a neighbouring aerial
vehicle.

The weights that will be added to the least squares term in the objective function
are wp, wv and wa for position, velocity and acceleration, respectively.

As a result the system output η and its reference η̃ will be of form

ηi =



p
v
a

dtgt
cos(βtgt)

˙cos(βtgt)
stgth

stgtv

sobs1

...
sobsL



, η̃i =



p̃
ṽ
ã

d̃tgt
cos β̃tgt
˙cos(β̃tgt)
s̃tgth

s̃tgtv

s̃obs1

...
s̃obsL



=



p̃i
ṽi
ãi

d̃tgt
1
0
0
0
0
...
0



. (4.27)

The final state the system output (which is independent of controls) will be

ηi =



p
v
a

dtgt
cos(βtgt)

˙cos(βtgt)

 , η̃i =



p̃
ṽ
ã

d̃tgt
cos β̃tgt
˙cos(β̃tgt)

 =



p̃i
ṽi
ãi

d̃tgt
1
0

 . (4.28)

The weights of the least squares terms will be accordingly:

W = diag



wp
wv
wa

wtgt-dist
wtgt

wtgt-dot
wtgth

wtgtv

wobs
...

wobs



, WN = diag



wp
wv
wa

wtgt-dist
wtgt

wtgt-dot

 . (4.29)

The whole NMPC formulation is deduced from formulas 3.13-3.17, where the
system is substituted from 4.6, 4.7, the perception-based constraints are formulated
as 4.20, collision-avoidance constraints are formulated in 4.15 and output, its refer-
ence and least-square term weights are formulated in this section.

A schematics of how NMPC control feedback loop can be seen in Figure 4.5

26

Chapter 5

Simulation Results

5.1 Setup

For numerical simulations I used a quadrotor in a cross configuration (cross con-
figutation can be seen in Figure 4.1a). All the parameters are summarised in the
table below and are the same as used in simulations by Bicego et al., 2020.

Notation Value

m 1.042kg

g 9.81 m
s2

K (num propellers) 4

c f 5.95e− 4 N
Hz2

cτ 1e− 5 N
Hz2

σ
(
1 −1 1 −1

)>
d (arm length) 0.23m(

pB1 pB2 pB3 pB4
) 1 1 −1 −1

1 −1 −1 1
0 0 0 0

 · d√
2

(
zBp1

zBp2
zBp3

zBp4

) 0 0 0 0
0 0 0 0
1 1 1 1


J diag

(
0.015 0.015 0.070

)> kgm2

The simulation is based on the formulations in 4.1 section and is run at 200Hz.
The integration is performed with ERK4 (Explicit Runge-Kutta 4) method. The
quaternion is integrated as described in 3.1.4 section. It is implemented with the
MATLAB Simulink programming environment.

The NMPC problem is formulated with CASADI (Andersson et al., 2019) opti-
mization tool which is supplied to the MATMPC (Chen et al., 2019) framework. The
RTI solution is computed using a QP solver from the QPOASES (Ferreau et al., 2014)
library with full condensing. The integrator is ERK4.

The NMPC is running with N = 50 and 0.015s time step which results in a time
horizon of 0.75 seconds.

Chapter 5. Simulation Results 27

Camera z axis

0

1

2

3

4

5

6

7

8

Po
si

tio
n

in
 ti

m
e

(s
)

0

1

2

3

4

5

6

7

8

Ta
rg

et
 p

os
iti

on
 in

 ti
m

e
(s

)

(A) Linear FoV constraint

Camera z axis

0

1

2

Po
si

tio
n

in
 ti

m
e

(s
)

0

1

2

Ta
rg

et
 p

os
iti

on
 in

 ti
m

e
(s

)

(B) Fraction FoV constraint

FIGURE 5.1: 3D trajectory of UAV (pink) and of its target (green) var-
ied in time in the follower scenario. The camera direction is denoted
as grey lines along the trajectory. The target is moving from (4, 0, 1)>

to (0,−4, 1)>, while the UAV starts its movement from (0, 0, 1)> fac-
ing its target.

0 1 2 3 4
−4

−3

−2

−1

0

1

Camera z axis

0

1

2

3

4

5

6

7

8

Po
si

tio
n

in
 ti

m
e

(s
)

Ta
rg

et
 p

os
iti

on
 in

 ti
m

e
(s

)

x (m)

y
(m

)

(A) Linear FoV constraint

0 1 2 3 4
−4

−3

−2

−1

0

1

Camera z axis

0

1

2

Po
si

tio
n

in
 ti

m
e

(s
)

Ta
rg

et
 p

os
iti

on
 in

 ti
m

e
(s

)

x (m)

y
(m

)

(B) Fraction FoV constraint

FIGURE 5.2: 2D trajectory of UAV and target in the follower scenario.
The camera direction is denoted as grey lines along the trajectory (It

is a vector aligned with camera z-axis).

0 1 2 3 4 5 6 7 8

0

0.02

0.04

0.06

0.08

0.1

0.12

slack var fov hozirontal
slack var fov vertical
slack var obstacle

time (s)

(A) Linear FoV constraint

0 1 2 3 4 5 6 7 8

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02 slack var fov hozirontal
slack var fov vertical
slack var obstacle

time (s)

(B) Fraction FoV constraint

FIGURE 5.3: The value of the slack variables in the follower scenario

Chapter 5. Simulation Results 28

5.2 Follower Scenario

The follower scenario requires following another UAV.
For simulation, I will use the camera position OBC = (0.1, 0, 0)>. The rotation from

camera to the body frame will be the same as a rotation by euler angles of form "XYZ"
by (0, π

2 ,−π
2)
>. This is a camera that is facing in the direction of x-axis of the body

frame. The rotation represented by quaternion will be qBC = (0.5,−0.5, 0.5,−0.5)>.
The parameters are summarized in the following table:

θh θv dmin v̄ ω̄ Ω
¯

Ω̄ Ω̇
¯

¯̇Ω
π
2

π
2 0.5 10 1 16 110 −180 180

Additionally, the distance dtgt = 1.
The weight matrix parameters used are:

wp wv wa wtgt-dist wtgt wtgt-dot wtgth
wtgtv

wobs
0 0.1 0.1 2 10 10 103 103 104

Because no trajectory is supplied, the ṽ = 0 and ã = 0 to reduce the amount of
motion of the UAV. The UAV also starts in a hovering state, so that there is no need
to take-off or counteract the gravity to stop its fall.

I compared the formulation of constraint 4.18 with an addition of a slack variable
to the formulation of constraint 4.20. I will call the first constraint as fraction FoV
constraint and the second as linear FoV constraint corresponding to the nature of
their formulation with respect to UAV position.

5.2.1 Perception Constraints Comparison

The experiment is visualized in Figures 5.1 and 5.2, where the target is performing
a rapid movement and the UAV is supposed to track while also moving towards
it. The NMPC with Linear FoV constraint formulation of the constraint performed a
fast maneuver, first moving to the initial position of the target and then turning right
to continue following it. At 2 seconds the constraints were broken as can be seen in
Figure 5.3. This happened due to the requirement to continue following and make
a rapid turn to keep the UAV in FoV at the same time. Nevertheless, the target was
restored in FoV and followed successfully.

The NMPC with Fraction FoV constraint formulation failed during the RTI scheme
iteration. This was likely caused by a division by zero (or close to zero values),
which happens when the camera is close to the target. As NMPC predicts a few
steps ahead, the camera could be very close to target in any of them - in this case
up to 0.75s. Far ahead states would be further improved by the RTI scheme before
reaching them, and the collision could be avoided, but optimization terminated.

As can be seen in Figure 5.3, the slack variable values also grew very fast in the
case of fraction FoV constraint. This might be another disadvantage as the tangent
grows unlinearly and is infinite at π

2 , which results in uneven treatment of violation
depending on the angle.

Due to this and other advantages presented in section 4.3.3, we will use linear
FoV constraint in further simulations.

Chapter 5. Simulation Results 29

Camera z axis

0

1

2

3

4

5

6

7

8

9

10

11

12

Po
si

tio
n

in
 ti

m
e

(s
)

Ta
rg

et
 p

os
iti

on
 in

 ti
m

e
(s

)

O
bs

ta
cl

es
 p

os
iti

on
 in

 ti
m

e
(s

)
O

bs
ta

cl
es

 p
os

iti
on

 in
 ti

m
e

(s
)

FIGURE 5.4: Following a target while avoiding obstacles. The target
starts at (2, 2, 0)> and UAV starts at (0, 0, 0)>. 2 Obstacles appear on
the way, which are successfully avoided. Simulation takes 12 seconds.

Target goes into hovering state at 10 seconds.

Chapter 5. Simulation Results 30

0 2 4 6 8 10 12
1

3

5

7

9

11

13
Obstacle 1 distance
Obstacle 2 distance
Target distance

time (s)

di
st

an
ce

 (m
)

FIGURE 5.5: The distances to obstacles and target in the following
with obstacles scenario

0 2 4 6 8 10 12
40

50

60

70

80

time (s)

H
z

(A) The values of Ωk, with k ∈ {1, 2, 3, 4}

0 2 4 6 8 10 12

−100

−50

0

50

100

150

200

time (s)

(B) The values of Ω̇k, with k ∈ {1, 2, 3, 4}

FIGURE 5.6: The values of rotors angular velocity Ω and its derivative
Ω̇ when following a target while avoiding obstacles

Chapter 5. Simulation Results 31

5.2.2 Following with Obstacle Avoidance

The experiment has the same parameters as the previous one, except for the minimal
distance to obstacle dmin = 1. The number of obstacles L = 2.

The simulation can be seen in Figure 5.4. Target was successfully followed while
keeping it in the field of view and avoiding obstacles. The distances to obstacles and
target during the whole simulation are presented in Figure 5.5. The target stopped at
the end point and UAV started hovering around it which is the expected behaviour.

The values of Ω and Ω̇ are presented in Figure 5.6. They remain in reasonably
low values. Also, rotors that are located diagonally to each other seem to have simi-
lar values. This is likely because they contribute to changing the yaw of the UAV in
the same way, and changing roll and pitch is physically easier than changing yaw.

5.3 Trajectory-Tracking Scenario

The second scenario that can often appear in practice is trajectory-tracking. The
trajectory can be provided by higher-level module, like planner, which is aware of
task specifics to a greater extent. The trajectory may be be related to the target, or
completely independent.

To adjust for this scenario, the objective term that is encouraging movement to
target is neglected. Also, position, velocity and acceleration weights are changed
accordingly to their importance in this task. The parameters of the whole weight
matrix are:

wp wv wa wtgt-dist wtgt wtgt-dot wtgth
wtgtv

wobs
1 0.1 0.005 0 10 1 103 103 104

All other system parameters are not changed.
In this case we will simulate the scenario, where 2 UAVs are performing different

tasks when their trajectories overlap. The desired minimal distance to obstacles is
dmin = 1. The other UAV will be represented as perception target. The target needs
to stay in the FoV of camera for relative localization. This requirement may ap-
pear due to low accuracy of location given by other sensors or communication. The
objective in this case is to continue following given trajectory, while also avoiding
collisions and maintaining accurate relative localization.

An example of this scenario is presented in Figure 5.7. The controlled UAV
moves from (0, 0, 0)> to (4, 2, 0)>. However the minimal distance constraint is vi-
olated near the point (2, 2, 0)> of the proposed trajectory. Because of this, NMPC
orders the UAV to perform a maneuver in direction of positive y-axis, which pre-
vents the collision. The trajectory-following is later restored and the UAV finishes at
(4, 2, 0)>.

During the whole simulation, the target was kept in the FoV, which can be seen in
the figure. The trajectory is not followed exactly in the beginning, as the UAV is also
turning to center the target in the camera image, and this affects trajectory-following,
as the UAV is not fully-actuated.

The states of the system relative to reference is presented in Figure 5.8. The main
deviations are due to the collision avoidance and are even more evident for velocity
and acceleration. The plot also presents the predictions of the state, that NMPC
made. The prediction of N time steps ahead has very high variation with the real
state.

Chapter 5. Simulation Results 32

Note, that the variation between NMPC prediction and real values does not
mean that the problem formulation predictions the dynamics of the system badly.
The variation is because the controls differ for different iterations of RTI scheme.

This can occur because the predicted state is not close to the optimal - in RTI
scheme a larger amount of iterations may be needed to reach near-optimum states.
Due to this also a large variation of the predicted last state can be seen between
iterations (There are regions on the plot where the prediction jumps up to the value
of 0.5 between iterations). Another reason, which is related to this one is that NMPC
only predicts N time steps ahead, and thus cannot know about changes that will
happen further in the future. After N iterations, the optimal solution may be far
from the predicted one. This can be seen on the plots in areas where the variation
between NMPC prediction and real state are the largest.

On the other hand, the predictions of N
2 time steps ahead are much closer to the

real state of the system. More iterations have occurred and its is easier to predict
the state in smaller time periods ahead. The prediction of 1 time step ahead is not
shown there, but the difference would be barely noticeable, as it highly resembles
the current state of the system.

Chapter 5. Simulation Results 33

0 2 4

0

1

2

3

4

Trajectory to follow
Camera z axis

0

1

2

3

4

5

6

7

8

9

10

Po
si

tio
n

in
 ti

m
e

(s
)

Ta
rg

et
 p

os
iti

on
 in

 ti
m

e
(s

)

x (m)

y
(m

)

FIGURE 5.7: The position of UAV and target in time. The orientation
of the UAV is given by the grey lines, which represent vectors aligned
with the z-axis of UAV’s camera. Blue points represent the given tra-

jectory that UAV should follow.

Chapter 5. Simulation Results 34

0 5 10
0

1

0 5 10

0

1

0 5 10

−1

0

1

0 5 10
0

1

0 5 10
−1

0

1

0 5 10

−1

0

1

0 5 10
−1

0

1

0 5 10
−1

0

1

0 5 10
−1

0

1

reference value
NMPC prediction N/2 time steps ahead
NMPC prediction N time steps ahead
real value

time (s) time (s) time (s)

time (s) time (s) time (s)

time (s) time (s) time (s)

position x velocity x acceleration x

position y velocity y acceleration y

position z velocity z acceleration z

FIGURE 5.8: The desired trajectory and state of the system in time.
The NMPC prediction is the predicted states of the system N/2 or N
time steps ahead. In the cases when NMPC prediction curves are not
visible - they are aligned with the real state of the system. Accelera-
tion plots don’t include NMPC predictions due to a larger amount of

noise.

35

Chapter 6

Conclusion

A control solution for a multirotor with collision-avoidance and visual localization
constraints is proposed in this work. The solution is based on NMPC control tech-
nique with RTI scheme used for optimization. This results in the ability to predict
future states of the system directly inside the control loop while also allowing to
achieve online optimization on-board of a multirotor.

The performance of different formulations of constraints has been analyzed in
this work, including the impact of linearization performed by the RTI scheme. The
least conservative formulation of obstacle avoidance constraint was used, which
under linearization has minimal restrictions on the feasible set of the optimization
problem while preventing the violations of the original constraint.

A linear version of FoV constraints is compared to the fractional one, both the-
oretically and practically, in order to achieve the best performance for keeping a
target in the center of camera image. The linear version is used due to its better re-
semblance of original version under linearization and the absence of close-to-zero
division which can occur for the fractional constraint in some real-world cases.

Additional terms are added to the objective in order to improve tracking of the
target and optionally following it. Together with changes in constraint formulations,
the solution accomplished to successfuly retain the target in camera’s field of view,
while safely moving in space.

The solution is tested in different scenarios that can arise in practical tasks. It is
shown, that NMPC control standalone can be used in order to achieve target tracking
and following together with collision avoidance. It is also shown that proposed
solution can perform rapid movements for target-tracking and collision avoidance,
while following a given trajectory. Good performance and variety of applications
makes the proposed NMPC problem formulation highly practical.

The solution is generic and can be applied to both standard coplanar multirotos
and multirotors with tilted propellers. It also produces rotor-level (torque) control
inputs, hence it doesn’t require an intermediate unconstrained controller to work.
The UAV dynamics are modelled with high accuracy inside the control scheme, in-
cluding actuator dynamical limitations.

36

Bibliography

Alexis, Kostas, George Nikolakopoulos, and Anthony Tzes (2012). “Model predic-
tive quadrotor control: attitude, altitude and position experimental studies”. In:
IET Control Theory & Applications 6.12, pp. 1812–1827.

— (2014). “On trajectory tracking model predictive control of an unmanned quadro-
tor helicopter subject to aerodynamic disturbances”. In: Asian Journal of Control
16.1, pp. 209–224.

Alexis, Kostas et al. (2016). “Robust model predictive flight control of unmanned
rotorcrafts”. In: Journal of Intelligent & Robotic Systems 81.3-4, pp. 443–469.

Andersson, Joel AE et al. (2019). “CasADi: a software framework for nonlinear op-
timization and optimal control”. In: Mathematical Programming Computation 11.1,
pp. 1–36.

Bangura, Moses and Robert Mahony (2014). “Real-time model predictive control for
quadrotors”. In: IFAC Proceedings Volumes 47.3, pp. 11773–11780.

Bicego, Davide et al. (2020). “Nonlinear model predictive control with enhanced ac-
tuator model for multi-rotor aerial vehicles with generic designs”. In: Journal of
Intelligent & Robotic Systems 100.3, pp. 1213–1247.

Bouabdallah, Samir and Roland Siegwart (2005). “Backstepping and sliding-mode
techniques applied to an indoor micro quadrotor”. In: Proceedings of the 2005 IEEE
international conference on robotics and automation. IEEE, pp. 2247–2252.

Brescianini, Dario and Raffaello D’Andrea (2016). “Design, modeling and control
of an omni-directional aerial vehicle”. In: 2016 IEEE international conference on
robotics and automation (ICRA). IEEE, pp. 3261–3266.

Carlos, Bárbara Barros et al. (2020). “Least conservative linearized constraint formu-
lation for real-time motion generation”. In: IFAC-PapersOnLine 53.2, pp. 9384–
9390.

Catalin, Golban and Sergiu Nedevschi (2008). “Object tracking from stereo sequences
using particle filter”. In: 2008 4th International Conference on Intelligent Computer
Communication and Processing. IEEE, pp. 279–282.

Chen, Yutao et al. (2019). “Matmpc-a matlab based toolbox for real-time nonlinear
model predictive control”. In: 2019 18th European Control Conference (ECC). IEEE,
pp. 3365–3370.

Dai, Shicong, Taeyoung Lee, and Dennis S Bernstein (2014). “Adaptive control of a
quadrotor UAV transporting a cable-suspended load with unknown mass”. In:
53rd IEEE Conference on Decision and Control. IEEE, pp. 6149–6154.

De O. Pantoja, JFA (1988). “Differential dynamic programming and Newton’s method”.
In: International Journal of Control 47.5, pp. 1539–1553.

Diebel, J (2006). Representing Attitude: Euler Angles, Unit Quaternions, and Rotation
Vectors.

Diehl, Moritz, Hans Georg Bock, and Johannes P Schlöder (2005). “A real-time iter-
ation scheme for nonlinear optimization in optimal feedback control”. In: SIAM
Journal on control and optimization 43.5, pp. 1714–1736.

Dijkstra, Edsger W et al. (1959). “A note on two problems in connexion with graphs”.
In: Numerische mathematik 1.1, pp. 269–271.

Bibliography 37

Dunn, Joseph C and Dimitri P Bertsekas (1989). “Efficient dynamic programming
implementations of Newton’s method for unconstrained optimal control prob-
lems”. In: Journal of Optimization Theory and Applications 63.1, pp. 23–38.

Falanga, Davide et al. (2018). “Pampc: Perception-aware model predictive control
for quadrotors”. In: 2018 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). IEEE, pp. 1–8.

Ferreau, Hans Joachim et al. (2014). “qpOASES: A parametric active-set algorithm
for quadratic programming”. In: Mathematical Programming Computation 6.4, pp. 327–
363.

Franchi, Antonio et al. (2018). “Full-pose tracking control for aerial robotic systems
with laterally bounded input force”. In: IEEE Transactions on Robotics 34.2, pp. 534–
541.

Frison, Gianluca and Moritz Diehl (2020). “HPIPM: a high-performance quadratic
programming framework for model predictive control”. In: arXiv preprint arXiv:2003.02547.

Frison, Gianluca et al. (2018). “BLASFEO: Basic linear algebra subroutines for em-
bedded optimization”. In: ACM Transactions on Mathematical Software (TOMS)
44.4, pp. 1–30.

Gao, Fei et al. (2018a). “Online safe trajectory generation for quadrotors using fast
marching method and bernstein basis polynomial”. In: 2018 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, pp. 344–351.

Gao, Fei et al. (2018b). “Optimal time allocation for quadrotor trajectory generation”.
In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
IEEE, pp. 4715–4722.

Gao, Hongbo et al. (2018c). “Object classification using CNN-based fusion of vision
and LIDAR in autonomous vehicle environment”. In: IEEE Transactions on Indus-
trial Informatics 14.9, pp. 4224–4231.

Gonçalves, JA and Renato Henriques (2015). “UAV photogrammetry for topographic
monitoring of coastal areas”. In: ISPRS Journal of Photogrammetry and Remote Sens-
ing 104, pp. 101–111.

Graf, Basile (2008). “Quaternions and dynamics”. In: arXiv preprint arXiv:0811.2889.
Gros, Sébastien et al. (2020). “From linear to nonlinear MPC: bridging the gap via

the real-time iteration”. In: International Journal of Control 93.1, pp. 62–80.
Gu, Jingjing et al. (2018). “Multiple moving targets surveillance based on a cooper-

ative network for multi-UAV”. In: IEEE Communications Magazine 56.4, pp. 82–
89.

Harabor, Daniel and Alban Grastien (2011). “Online graph pruning for pathfind-
ing on grid maps”. In: Proceedings of the AAAI Conference on Artificial Intelligence.
Vol. 25. 1.

Hart, Peter E, Nils J Nilsson, and Bertram Raphael (1968). “A formal basis for the
heuristic determination of minimum cost paths”. In: IEEE transactions on Systems
Science and Cybernetics 4.2, pp. 100–107.

Hornung, Armin et al. (2013). “OctoMap: An efficient probabilistic 3D mapping
framework based on octrees”. In: Autonomous robots 34.3, pp. 189–206.

Hua, Minh-Duc et al. (2013). “Introduction to feedback control of underactuated
VTOLvehicles: A review of basic control design ideas and principles”. In: IEEE
Control systems magazine 33.1, pp. 61–75.

Jacquet, Martin and Antonio Franchi (2020). “Motor and Perception Constrained
NMPC for Torque-controlled Generic Aerial Vehicles”. In: IEEE Robotics and Au-
tomation Letters.

Bibliography 38

Jacquet, Martin et al. (2020). “Perception-constrained and Motor-level Nonlinear
MPC for both Underactuated and Tilted-propeller UAVS”. In: 2020 IEEE Inter-
national Conference on Robotics and Automation (ICRA). IEEE, pp. 4301–4306.

Kamel, Mina et al. (2015). “Fast nonlinear model predictive control for multicopter
attitude tracking on so (3)”. In: 2015 IEEE Conference on Control Applications (CCA).
IEEE, pp. 1160–1166.

Karaim, Malek et al. (2018). “GNSS error sources”. In: Multifunctional Operation and
Application of GPS, pp. 69–85.

Kavraki, Lydia E et al. (1996). “Probabilistic roadmaps for path planning in high-
dimensional configuration spaces”. In: IEEE transactions on Robotics and Automa-
tion 12.4, pp. 566–580.

Kim, Huieun et al. (2016). “On-road object detection using deep neural network”. In:
2016 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia). IEEE,
pp. 1–4.

Kocić, Jelena, Nenad Jovičić, and Vujo Drndarević (2018). “Sensors and sensor fu-
sion in autonomous vehicles”. In: 2018 26th Telecommunications Forum (TELFOR).
IEEE, pp. 420–425.

Krajník, Tomáš et al. (2014). “A practical multirobot localization system”. In: Journal
of Intelligent & Robotic Systems 76.3, pp. 539–562.

Langley, Richard B, Peter JG Teunissen, and Oliver Montenbruck (2017). “Introduc-
tion to GNSS”. In: Springer handbook of global navigation satellite systems. Springer,
pp. 3–23.

LaValle, Steven M et al. (1998). “Rapidly-exploring random trees: A new tool for
path planning”. In:

Lee, Taeyoung, Melvin Leok, and N Harris McClamroch (2010). “Geometric tracking
control of a quadrotor UAV on SE (3)”. In: 49th IEEE conference on decision and
control (CDC). IEEE, pp. 5420–5425.

Ligthart, Jeroen AJ et al. (2017). “Experimentally validated model predictive con-
troller for a hexacopter”. In: IFAC-PapersOnLine 50.1, pp. 4076–4081.

Lin, Penghong, Songlin Chen, and Chang Liu (2016). “Model predictive control-
based trajectory planning for quadrotors with state and input constraints”. In:
2016 16th International Conference on Control, Automation and Systems (ICCAS).
IEEE, pp. 1618–1623.

Lindqvist, Björn et al. (2020). “Nonlinear MPC for collision avoidance and control
of UAVs with dynamic obstacles”. In: IEEE Robotics and Automation Letters 5.4,
pp. 6001–6008.

Mellinger, Daniel and Vijay Kumar (2011). “Minimum snap trajectory generation
and control for quadrotors”. In: 2011 IEEE international conference on robotics and
automation. IEEE, pp. 2520–2525.

Michael, Nathan et al. (2010). “The grasp multiple micro-uav testbed”. In: IEEE
Robotics & Automation Magazine 17.3, pp. 56–65.

Michieletto, Giulia, Markus Ryll, and Antonio Franchi (2018). “Fundamental actu-
ation properties of multirotors: Force–moment decoupling and fail–safe robust-
ness”. In: IEEE Transactions on Robotics 34.3, pp. 702–715.

Michieletto, Giulia et al. (2020). “Hierarchical nonlinear control for multi-rotor asymp-
totic stabilization based on zero-moment direction”. In: Automatica 117, p. 108991.

Miller, Isaac and Mark Campbell (2007). “Rao-blackwellized particle filtering for
mapping dynamic environments”. In: Proceedings 2007 IEEE International Con-
ference on Robotics and Automation. IEEE, pp. 3862–3869.

Moravec, Hans P. (1989). “Sensor fusion in certainty grids for mobile robots”. In:
Sensor devices and systems for robotics. Springer, pp. 253–276.

Bibliography 39

Penin, Bryan, Paolo Robuffo Giordano, and François Chaumette (2018). “Vision-
based reactive planning for aggressive target tracking while avoiding collisions
and occlusions”. In: IEEE Robotics and Automation Letters 3.4, pp. 3725–3732.

Preiss, James A et al. (2017). “Crazyswarm: A large nano-quadcopter swarm”. In:
2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE, pp. 3299–
3304.

Qin, Hailong et al. (2019). “Autonomous exploration and mapping system using het-
erogeneous UAVs and UGVs in GPS-denied environments”. In: IEEE Transactions
on Vehicular Technology 68.2, pp. 1339–1350.

Rajappa, Sujit et al. (2015). “Modeling, control and design optimization for a fully-
actuated hexarotor aerial vehicle with tilted propellers”. In: 2015 IEEE interna-
tional conference on robotics and automation (ICRA). IEEE, pp. 4006–4013.

Riviere, Benjamin et al. (2020). “Glas: Global-to-local safe autonomy synthesis for
multi-robot motion planning with end-to-end learning”. In: IEEE Robotics and
Automation Letters 5.3, pp. 4249–4256.

Rouček, Tomáš et al. (2019). “Darpa subterranean challenge: Multi-robotic explo-
ration of underground environments”. In: International Conference on Modelling
and Simulation for Autonomous Systesm. Springer, pp. 274–290.

Silano, Giuseppe et al. (2021). “Power Line Inspection Tasks with Multi-Aerial Robot
Systems via Signal Temporal Logic Specifications”. In: IEEE Robotics and Automa-
tion Letters 6.2, pp. 4169–4176.

Sola, Joan (2017). “Quaternion kinematics for the error-state Kalman filter”. In: arXiv
preprint arXiv:1711.02508.

Spica, Riccardo et al. (2012). “Aerial grasping of a moving target with a quadrotor
UAV”. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE, pp. 4985–4992.

Tang, Jian et al. (2015). “LiDAR scan matching aided inertial navigation system in
GNSS-denied environments”. In: Sensors 15.7, pp. 16710–16728.

Thomas, Justin et al. (2017). “Autonomous flight for detection, localization, and track-
ing of moving targets with a small quadrotor”. In: IEEE Robotics and Automation
Letters 2.3, pp. 1762–1769.

Uzakov, Timur, Tiago P Nascimento, and Martin Saska (2020). “Uav vision-based
nonlinear formation control applied to inspection of electrical power lines”. In:
2020 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE, pp. 1301–
1308.

Verschueren, Robin et al. (2019). “Acados: A modular open-source framework for
fast embedded optimal control”. In: arXiv preprint arXiv:1910.13753.

Walter, Viktor et al. (2019). “Uvdar system for visual relative localization with ap-
plication to leader–follower formations of multirotor uavs”. In: IEEE Robotics and
Automation Letters 4.3, pp. 2637–2644.

Watanabe, Yoko, Anthony Calise, and Eric Johnson (2007). “Vision-based obstacle
avoidance for UAVs”. In: AIAA guidance, navigation and control conference and ex-
hibit, p. 6829.

Zhao, F and BGM Van Wachem (2013). “A novel Quaternion integration approach
for describing the behaviour of non-spherical particles”. In: Acta Mechanica 224.12,
pp. 3091–3109.

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Autonomous UAVs
	Power Line Inspection
	Objectives

	Related Works
	Perception
	Self-Localization and Static Objects
	Dynamical Objects

	Motion Planning
	Graph-Based Methods
	Optimization-Based Methods

	Motion Control
	Perception-aware Control

	Preliminaries
	Rotation Representation
	Euler Angles
	Rotation Matrices
	Unit Quaternions
	Rotation Vector

	NMPC
	Real Time Iteration Scheme

	Control Architecture
	System Model
	Notations and Definitions
	Model Dynamics
	Dynamics Constraints

	Collision Avoidance
	Constraint Linearization
	Soft Constraints

	Perception
	Camera Definition
	Perception-Based Constraints
	Linearization of Perception-based Constraints
	Camera Centering Objective
	Target-Following Objective

	NMPC Formulation

	Simulation Results
	Setup
	Follower Scenario
	Perception Constraints Comparison
	Following with Obstacle Avoidance

	Trajectory-Tracking Scenario

	Conclusion
	Bibliography

