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Abstract

This work applies machine learning to solving inverse dynamics and inverse kine-
matics tasks from the motion capture data. This approach may simplify the cal-
culation process and help do scientific simulations as part of a physics engine that
describes the neural control of human motion and decodes movement intent in in-
dividuals with neural damage. The existing algorithm has to be modified for every
experiment and takes a significant amount of time to execute. It is also sensitive to
noise and missing data, and it is not a real-time calculation. We propose a solution
of inverse kinematics tasks with neural networks. Here we report accuracy results
both on clean data and noisy data. We also apply a similar approach for the inverse
dynamics task. The approach shows high accuracy on clean data, but this accuracy
decreases if applied to the noisy data.
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Chapter 1

Introduction

The introduction of Computer Science into the world of sensorimotor systems un-
covers many opportunities for human motion analysis. Not only can it have many
applications in different fields, but it can also give insights into how the brain and
muscles interact ’in-depth.’ It is possible because mathematical modeling of the most
complicated questions can create research insights.

The task of solving inverse dynamics and inverse kinematics is not new, but it
still has many things to improve. There are different approaches to the problem’s
solution: geometric, algebraic, and iterative models. Furthermore, the task of effi-
ciently solving the model inverse kinematics requires different strategies.

When applied to human modeling, more challenges arise as human kinematics is
redundant and has many degrees of freedom (DoF) Rapetti et al., 2019, and multiple
muscles move each joint Stanev and Moustakas, 2019.

The numerical solution is needed because the calculations or algorithms for in-
verse kinematics are used in different physics engines and robotics control tasks
Rapetti et al., 2019. While used in simulations and robotics tasks, the solution of
inverse kinematics requires real-time processing, unlike traditional non-linear op-
timizations. Some solutions like OpenSim Seth et al., 2010 generate discontinuity
because they treat the movement as an array of separated movement snapshots and
each of them has no information about the previous or the following snapshot. I
should avoid these problems in our solution.

1.1 Domain overview

First, I would like to introduce the terminology and explain what domain I am doing
this work in. Motion capture is the process of recording the movement of the physics
body. The mocap approach involves putting markers on the person’s body parts
in the Neural Engineering and Rehabilitation Laboratory. Usually, there are three
markers on each body segment, although this might vary. Then, cameras record the
marker signals and send the position data for the computations and analysis. There
is much existing technology available for scientists. For example, Microsoft Kinect
incorporates several advanced sensing hardware: a depth sensor, a color camera,
and a four-microphone array that provide full-body 3D motion capture Zhang, 2012.

There next thing to explain is inverse kinematics. It is a process of calculating the
angles when I know the position of the end of the arm or robotic manipulator. The
most common and accurate technique representing a body part - a kinematic chain:
an assembly of joined segments that can perform the movement. When we know
the parameters of joints, we can predict the location of the end of a kinematic chain.
This process is called forward kinematics. What I am trying to solve in this project
is the inverse problem. Speaking of the inverse kinematics task formulation, it is:
the mapping between the Cartesian space and the joint space Tolani, Goswami, and
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Badler, 2000. In the field of robotics, a common inverse kinematics problem consists
of finding the mapping between the end-effector of a manipulator (task space) and
the corresponding joint angles (configuration space) Rapetti et al., 2020.

The illustration of the process and the kinematic chain is in Fig 1.1. It is the rep-
resentation of the inverse kinematics task and its relation to the forward kinematics.
The black segmented object is the kinematics chain - a set of segments with joints in
between. Each joint has to be bent at some angle so the end effector can reach the
target. The end effector is usually a part of the kinematic chain that should reach the
target. It has properties like location in space (usually 3-D) and orientation (angle) -
these two parameters determine the pose of the end effector. When we know only
the desired location of the end effector, we can calculate how to change every angle
in the kinematic chain to reach the target. This process is called inverse kinematics.
If we know the angles, we can calculate the resulting position of the end effector -
solve the forward kinematics task.

FIGURE 1.1: Inverse kinematics and forward kinematics

Source: MathWork article: Inverse Kinematics.

The inverse dynamics is calculating joint torques from the joint kinematics - ac-
celeration, angles, velocity.

Both inverse kinematics and inverse dynamics allow us to model a 3D represen-
tation of the rigid body in the software. In the task, I have coordinates of the markers
and some kinematics parameters (angular acceleration and velocity), and I need to
solve the inverse kinematics and inverse dynamics.

An example of the usage of motion capture in medicine is in motion assessment
clinics. Surgeons, neurologists, and physical therapists perform motion analysis
tests to quantify movement deficits in different pathologies. Mocap is used for in-
verse kinematics to measure whether joint angles fall within the normal range dur-
ing walking or other activities. 1 Therapists use mocap, usually from videos, to
measure the range of motion. Also, it allows to calculate forces and determine pos-
sible weakness in the movement (like after the surgery or trauma).

1Here is an example from the OpenSim community https://simtk-confluence.stanford.edu/
display/OpenSim/Tutorial+2+-+Simulation+and+Analysis+of+a+Tendon+Transfer+Surgery

https://www.mathworks.com/discovery/inverse-kinematics.html
 https://simtk-confluence.stanford.edu/display/OpenSim/Tutorial+2+-+Simulation+and+Analysis+of+a+Tendon+Transfer+Surgery
 https://simtk-confluence.stanford.edu/display/OpenSim/Tutorial+2+-+Simulation+and+Analysis+of+a+Tendon+Transfer+Surgery
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1.2 Problem Setting and Approach to Solution

1.2.1 The problem outline

I am working with the Neural Engineering and Rehabilitation Laboratory, where
scientists use mocap to study human movement. They use Matlab to run simula-
tions. There is a solution to this task that can be done without machine learning, but
it is slow, complicated, and requires manual work. In addition, there is a problem
in the mocap experiments, where the markers can disappear from recording (like
being obstructed by something). Extrapolation is used for the missing data, and the
current calculations are not very good in working with missing data. The current IK
solution is not accessible for people without a degree or much training. So it is not
accessible for a vast community of users, and this should be changed. I also have
some computations restrictions. As this solution will run in Matlab or even be exe-
cuted on the end device, it should be fast. The goal of the simulation is to solve the
task in less than 2ms. However, the hardware part and performance assessment of
this is out of the scope of this task. I need to develop a solution that works as fast as
possible, so it will be easier to optimize it later, but I will not test the speed on the
end device.

1.2.2 Research questions and the specification of the problem

I need a solution that will solve all or at least most of the problems that occur in the
NERL’s discoveries. The main focus is to find out if the artificial neural networks can
cope with the task and find the best one. We have some restrictions on computation
speed. That is the forward path (the prediction) that should be fast. I do not include
the training time in the measurements because I have no restriction on that. The
training can be done offline, while the predictions should be real-time or close to it.
I will have data from the NERL. It will be generated because it is easier to set up the
Matlab experiments and gather data from those experiments. Moreover, the solution
must be generic and not specific for an experiment setup; it should work well for all
shoulder positions when measuring the IK and ID of the wrist movements.

So for this project, I have the following tasks:

1. Develop an ANN solution for the IK and measure its performance. One of the
measurements will be MSE on train and test set, and another - I will visually
plot the predicted angles and see where the model makes mistakes.

2. Test the solution on the noisy data. It is essential to do because real-world data
is often noisy. I should know how the model performs on the noisy data. I also
should test the solution on the unseen data as part of the methodology. In this
work, I focus a lot on the inverse kinematics solution.

3. Test if the same architecture of the ANN can be successfully applied to the ID
solution.

4. Test how predicted angles influences inverse dynamics error.
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1.3 Structure of this work

The second chapter is an overview of the related work from the domain. The third
chapter explains the data gathering process and describes the data. Chapter 4 in-
cludes the description of the pipeline, the methodology, and the results of the ex-
periments. Chapter 5 gives an analysis of the results and conclusions. Chapter 6 is
dedicated to the questions that remain open and future work.
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Chapter 2

Related works

The following is a review of the most relevant articles that approach the problem
from different angles and provide different solutions.

I want to start the review with a state-of-the-art musculoskeletal modeling frame-
work - OpenSim (Pizzolato et al., 2017). This is the c++ library with API for many
tasks, including inverse kinematics and inverse dynamics (Seth et al., 2010).

The Inverse Kinematics Tool from OpenSim separates the movement into timesteps
and analyses the frames. For each frame, the Tool positions the model in a pose that
"best matches" the experimental marker and coordinates data for that time step us-
ing a sum of weighted squared errors of markers and coordinates (Getting Started
with Inverse Kinematics).

OpenSim uses a model that solves inverse kinematics and dynamics without us-
ing approximations or generic models (Pizzolato et al., 2017). To do so, the OpenSim
team connected to the Vicon motion capture system and computed it in real-time.
They also compared real-time and offline calculations and showed that the result is
similar in joint angles and moments.

The authors of (Pizzolato et al., 2017) used different thread pools for computa-
tions and took advantage of multiprocessing in general.

OpenSim uses filtering that improves the results but adds to the delay. They used
constraints in movement with many bodies to decrease degrees of freedom, leading
to a closed-loop mechanism. Constraints increase the model’s complexity, thus in-
creasing the delay in solving inverse kinematics task and making it impossible to
use in real-time. The hardware used allows 12 threads, but multi-threading did not
show an increase in throughput.

Delays appeared in different stages of calculations: marker reconstruction and la-
beling, filtering, calculation of inverse kinematics, and data transmission. The delay
that can be improved by tweaking the algorithm - is the delay in inverse kinemat-
ics and dynamics processing. The delay is affected by the chosen accuracy. Also,
a crucial thing to consider in optimization is the time delay introduced by the filter.
This one depends only on the selected cut-off frequency. This optimization approach
only works for cyclical movements (walking) and cannot be used in other cases.

Considering all this, OpenSim created a generic solution that can be used to an-
alyze any task. The application relies on streaming data in real-time.

There is another method of solving the task (Kim et al., 2009), where the team
used a tri-axis accelerometer and gyroscope sensors (inertial sensors) and used 3d
digital forearm for feedback tracking. The extended Kalman Filter was used to es-
timate three joint angles: pitch, roll, and yaw angle, and to denoise the signal and
improve the estimation. Two different Kalman Filters were developed - one for the
gyroscope signals and the other for the accelerometer signals. The created filter re-
sulted in x, y, z-axis, pitch, and roll angles (angular velocities). The obtained data
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was then used to control the digital version of the forearm. The control angles are
expressed as a rotation matrix.

Another method used is the integration of differential kinematics using distance
measurement on SO(3). SO(3) stands for the 3D rotation group - all rotations around
the origin of three-dimensional Euclidean space. Paper (Rapetti et al., 2020) de-
scribes the development process of motion tracking algorithms that validate the in-
verse kinematics method performance on human and humanoid models in static
and dynamic conditions. It is tested on a human-humanoid scenario that verifies
the computed solution’s usability for real-time robotics applications. The approach
is evaluated according to the accuracy and computation load and compared to op-
timization algorithms simultaneously. The main focus was on time-critical applica-
tions of algorithms (Rapetti et al., 2020).

The (Rapetti et al., 2020) presents an approach for highly accurate humanoid
models (including humans). Authors use a dynamic inverse kinematics optimiza-
tion approach. The strategy is to use a rotation matrix parametrization for the an-
gles of joints of the human model where none of the sub-bodies (called links) are
constant. The convergence was proved by the method using Lyapunov theory. The
tests were performed both on models and robots. The experiment’s models were
composed of 23 physical links connected by rotational joints with multiple DoFs.
Additional components were performed on the iCub humanoid robot.

Two metrics described the accuracy of calculations: one for velocity targets (root
mean squared error (RMSE)) and another for orientation targets (mean normalized
trace error (MNTE).

The accurate results were achieved using optimizations, like the instantaneous
optimization methods, to solve the inverse kinematics at each timestep. The idea
of this approach is to assign a weight to each of the targets. This approach’s per-
formance decreased as the task becomes dynamical. Another optimization was dy-
namical optimization. Its orientation error is mostly comparable with instantaneous
optimization. On the other hand, dynamical optimization keeps the computation
time constant and has fast convergence. These approaches used here can be helpful
in optimizing inverse kinematics models to achieve real-time computations.

The previous articles’ review showed that modeling physics-based systems are
hard or even impossible with traditional linear algebra methods. However, there
is a potential workaround that involves machine learning, especially deep learning.
The algorithm, presented in (Polydoros, Nalpantidis, and Kruger, 2015), uses the
methods of self-organized learning, reservoir computing, and Bayesian inference.
The result shows that the method can adapt to changes that happen in real-time sig-
nificantly better than the other state-of-the-art algorithms. (Polydoros, Nalpantidis,
and Kruger, 2015) To enable the adaptation of the model, it should use streams of
data. The algorithm introduced is dubbed Principal-Components Echo State Net-
work (PC-ESN). The approach used was similar to reinforcement learning that re-
quires feedback from the action and the correction of the trajectory based on this
feedback.

The model works as follows: the desired joints’ location and velocities and ac-
celerations are given to the algorithm, which estimates the required torques. Those
torques are examined and corrected by the feedback controller. The feedback torques
are a linear combination of the manipulator’s actual position and velocity, weighted
by error constants. And after these torques are applied, the resulting sensor mea-
surements are used to train the algorithm further.

As a result, the proposed deep neural network uses only the sensory data to do
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the action and train the algorithm simultaneously. The generalization ability of PC-
ESN is similar to state-of-the-art. Its accuracy increases with the increase in update
frequency. Moreover, the PC-ESN converges well in both noisy and noise-free envi-
ronments.

The following article (Duka, 2014) describes the approach to the IK solution for
a three-link robotic manipulator using neural networks. The manipulator has rota-
tional joints. They have the desired position and need to calculate the joint angles.
Those angles will position the robot’s links in configuration, where it will reach the
target. The authors of the article Duka, 2014 propose a feed-forward neural net-
work. They use forward kinematics to compute the angles as a ground truth. So
they record the position of the robot and then calculate the angles. After this, angles
can be used during the training. The proposed feed-forward neural network takes
data of shape 3 for input. Its hidden layer has 100 neurons. Finally, the output is
a three-by-one vector of desired joint angles. The activation function on the hidden
layer is hyperbolic tangent sigmoid. The dataset consisted of 1000 samples, and 15%
of them were used for validation, and the same amount was used for testing. The
training algorithm was the Levenberg-Marquardt algorithm (damped least-squares
method). Mean squared error between target and output measured the performance
of the network. The results showed that the neural network made it possible for the
robot to track the desired trajectory almost perfectly.

Another article (Tompson et al., 2014) focuses on predicting human arm motion
as well as elbow and wrist. There are three different parts for the task: RNN for
wrist prediction, IK for full-arm motion, and it depends on the RNN predictions,
modified Kalman filter (MKF) to adapt the model online.

For RNN, the approach is the Long Short-term Memory (LSTM) cell to control
the memory either to remember or to forget. RNN takes in the N-step history and
outputs the next step prediction

IK was solved using the Jacobian and matrix transpose to replace matrix inverse.
Kalman filter was modified by adding a forgetting factor lambda to prevent the es-
timation from saturation.

The results outperformed state-of-the-art models by 14%; The solution general-
izes well (checked on unseen humans), and the partial blocking of the wrist has no
impact on prediction.

2.1 Conclusion from the literature review

The difference in our research is that I do not consider the target position of the
effector. I have coordinates of markers, and I need to predict the angles of joints.
Those joint angle predictions will later be used in inverse dynamics calculation.

As a starting guide, I will take this article (Duka, 2014). After trying simple
architecture, I will increase the complexity of the model until it satisfies the desired
accuracy. However, I will try to keep the model as simple as possible to explain
where the results come from and satisfy other requirements.
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Chapter 3

Data

3.1 Inverse kinematics data

The data I received is simulated data from Matlab using Simscape Multibody and
Simulink. The data is gathered from the simulated movement of the forearm and
palm. The palm is simplified and presented as one segment; the forearm model is
also simplified (cylinder-like). We use this simplified process of gathering data to
prove that the problem can be solved using machine learning.

On Fig. 3.1 you can see the model that was used for it. It is the simplified model
of the arm, where each segment is represented by a cylinder (a rigid body). Then
there are markers located on those rigid bodies. The joint we are studying here is the
wrist joint. It is a joint that has three DoFs. Our task will be to predict the value of
angles this joint can move in.

FIGURE 3.1: Simulink model used to generate the data
Source: Valeriya Gritsenko, NERL

Table 3.1 shows some abbreviations of the DoFs that I will use in the project.
In the Matlab experiment, I have three markers on the forearm, also called radius-

ulnar, and another three markers on the palm (metacarpals). We run a simulation
(using the NERL resources) and write down data about each degree of freedom
angle. The movements we simulated (DoFs) are wrist supination-pronation, wrist
flexion-extension, wrist abduction-adduction. If there is no movement in one of the
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Abbreviation Meaning

ra_wr_s_p supination pronation degree of freedom
ra_wr_e_f wrist flexion extension degree of freedom
ra_wr_ad_ab wrist abduction adduction degree of freedom

TABLE 3.1: Abbreviations for degree of freedoms

degrees of freedom, the data is still written; only the values are constant. It is es-
sential to have the data of the constant position of coordinates (and thus segments)
as we also need our predictions to be continuous, and we need to be able to predict
even the "no movement scenario.", meaning that there might be the length of time in
an experiment, where the subject is not moving their hand, and we need to predict
it as well as movement.

So, in the dataset, I have two segments joined by one joint. This joint can move in
3 degrees of freedom. I have three markers on each segment. The segments perform
different movements, and Matlab records the position of the marker in 3-D space. It
also measures the angle in each degree of freedom continuously (forward kinematics
task). These measured angles are our ground truth.

In Matlab, we record the marker’s coordinates in a global coordinate system. We
call the global coordinate system the experiment set up. We have a single origin
for all segments, and all marker coordinates are calculated according to this origin.
When I receive the data, I have those marker coordinates in this coordinate system.

Before I receive the data for the training, it undergoes some preparation. We
decided to convert markers’ position into the local coordinates to have their posi-
tion relative to the segment. The hypothesis is to check how this approach for data
preparation will impact the results.

So, the coordinates are converted to the local coordinate system. This data will be
called preprocessed. It was done for me, and I am only describing the process. I have
the transformations of markers data into the local coordinate systems of segments. I
have 1st, 2nd, and 3rd unit vectors of each basis in each segment in the dataset. I also
have the origin vector for both segments. Now I can explain the dimensionality of
data. Each marker has 3 unit vectors (1st, 2nd, and third); each segment has a basis
vector that in the features is split into x, y, z value. As we have three markers on one
segment, we have nine features for them; then, we have three additional features
to describe the origin of this segment. It results in 12 features for one segment. We
have two segments in the dataset. Thus the amount of features in the data is 24. It
is the dimensionality of one type of data preparation, which requires the conversion
to the local coordinate system.

I have another type of dataset that has raw marker coordinates. It contains only
the x, y, and z positions of each marker. So again, we have three makers on each
segment, and we have two segments. As a result, we have 18 features in this dataset.

There is a reason to prepare data by converting it to different coordinate sys-
tems. The marker position is highly dependant on the length of the segment. In the
real world, people have different arm lengths. But conversion to the local system
mitigates this problem. On the other hand, the conversion process is lengthy, and I
should try both methods and see which one shows better results.

The unit of measurement for coordinates is a meter. In another file, I have data
about the angle in each DoF. The unit of measurement for angles - radians. Every
movement is a row in the dataset, and it also has a corresponding timestep measured
in ms.
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I had two stages of data for the experiment. The first one consisted of 4500 ms
of experiments and contained different movements with a length of 500ms and 250
ms. I used this data for initial proof of concept and to ease the pipeline creation.
This dataset has six movements that lasted 500 ms and six movements that lasted
250 ms. In this dataset, each movement belongs to a single DoF. In this experiment,
I can see that each movement started from its own time, so there are no continuous
simulation movements. It will not affect the model as I will not include the timestep
in the training or testing data. However, such a representation allows us to easily
count the number of completed movements in the received dataset. We can also see
the range of movements for each movement in Fig.2 3.2. Here I plot the change in
angle for each DoF of the wrist during the whole experiment. Here I can see that
the simulated movement looks like a sigmoid, and there are four episodes of change
in angle for every movement. I also notice that the abduction-adduction angle is
smaller than the other two in this dataset. The drop to the baseline is where the
movement was stopped and returned to the original base state. It is also possible to
detect the length of the movement on this plot.

FIGURE 3.2: Angle change for each DoF in the initial dataset

As for the markers data, I can investigate both movements and the data itself.
I have origins of local coordinate systems in the dataset, and I can plot those to
investigate how they change during movements. In Fig.3 3.3, there is a plot of
origin separately on the palm and the forearm. There also encodings of those origins:
MRU or MMC respectively origin- on the forearm or the wrist(palm). Indexes 1, 2,
3 denote three coordinates x, y, z. From the plot, I can see that the origin on the
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forearm does not move while the hand is moving. It does not mean that the forearm
is stationary. Because if I take a look at the wrist origin - something moves it. Because
the forearm and hand are connected, the movement in the forearm affects the change
in origin.

I also have raw marker data. This is data without any preprocessing, and it
represents the coordinates of markers in a global coordinate system.

FIGURE 3.3: Position of origins on each segments in time in the initial
dataset

In addition to the previous data, I received the same movements but added noise
from a uniform distribution. I have 1 % of noise and 5% of noise. We will use this
data for further testing of the model.

The data I received in the second iteration was more data with even more diverse
movements, and I also got data about torques. The data for IK here consisted of three
parts. The main difference is that the shoulder position is changed. Now I have data
at 0 shoulder angle (arm by the side of the body); I also have 45 and -20 shoulder
flexion angles. This change will change the orientation of local coordinate systems
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of the forearm and hand. Also, the experiment in Matlab was done so that every
next movement continues the previous. Each dataset consists of 42 movements.

Here we also can see how origins change in time (during movements). There
are two origins, one on each segment, and I can plot those against time. It will
show how the segments moved. The plot in Fig 3.4 shows concatenated data with
different shoulder positions. The dips in plots are where the new dataset (in terms of
different shoulder positions) begins. Both segments move, and there is no scenario
that the one segment does not move.

I also ran some tests on the data to see if there any problems that can impact
the performance. I checked the skewness of the coordinates data and angles data. I
have some skewness in the data coordinates. To measure it, I use the unbiased skew
function. In the results, I noticed that some unit vectors have high skewness. The
most left skewness exists for the first marker on the hand. There is no skewness in
the target (angles) data.

The range of coordinates for each dataset is between -1 and 1.

FIGURE 3.4: Position of origins on each segments in time in full
dataset
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3.2 Inverse dynamics data

This portion of data includes velocity, acceleration, and torque data for all move-
ments with and without noise. Although I have three datasets generated for each
shoulder position, the ID data is the same there. It is because I had the same move-
ments in those experiments. For the inverse dynamics task, I have less data for the
training than I had for inverse kinematics.

Velocity, acceleration, and torque data are present for every DoF I had in the IK
task.

I looked into the ranges of values for each parameter. The results are in the Table
3.2

Parameter DoF min max

Acceleration
ra_wr_s_p -150.16800 213.41900
ra_wr_e_f -140.72300 200.08900
ra_wr_ad_ab -46.77230 66.45000

Torques
ra_wr_s_p -1.82339 1.22100
ra_wr_e_f -1.20882 1.09586
ra_wr_ad_ab -1.84183 1.81413

Velocity
ra_wr_s_p -13.21230 6.60615
ra_wr_e_f -12.38620 6.19311
ra_wr_ad_ab -4.11612 2.05806

TABLE 3.2: Range of values for inverse dynamics data

It is essential to know the range of the feature values because the bigger the
feature’s values, the more it will affect the result, which means that the big values
will be "noticed" by the model more than the small ones.

The nature of this is in the MSE calculations. As I will use the MSE as the loss
measure, our values should have the same scale. The bigger the feature value, the
more it will contribute to the error. When the features have the same scale, there will
not be a situation where one feature contributes more to the training just because it
is bigger in scale.
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Chapter 4

Experiments

4.1 Early work

In our early experiments, I focused on the IK task. Because only if I can solve the IK
task, I could move to the ID task.

The goal of these experiments was to determine the vector of further experi-
ments. The data used for the experiment is the data obtained in the first iteration. In
this dataset, I have 4500 timesteps of movement. I have 500 ms movements and 250
ms movements, six of each duration. I use this small dataset to quickly iterate the
experiments, see how the solution will work, and develop further hypotheses.

In all our tests, I measure MSE on the train and test set. I also measured MSE on
it and compared it with train MSE.

To see how the model predicts, I also plotted the predictions against the reals
angles. This approach allowed us to visually see how model estimation differs from
actual angles and potentially see anomalies.

I started with a simple solution. I used a multilayer perceptron with three layers
and two ReLU in between. I used stochastic gradient descent as an optimizer, and
the learning rate was set to 0.01. I also tried using different learning rates in these
experiments, but the 0.01 showed the best results. Finally, I trained the model for
15000 epochs. I shuffled data using a simple train test split with 80% training and
20% test data. I used data where the basis and unit vectors were present. Those unit
vectors and origins calculations are coming from Matlab. The input was one row of
coordinates: output - three angles in each DoF. I did not include time into training
or testing features because this parameter is not consistent and should not affect the
training. I will always have different timestep values in unknown experiments, and
I do not want time to influence the prediction.

As for the number of neurons, I chose this approach: I had the first hidden size
to have 15 neurons and the second to have 9 neurons. Thus, output was 3 neurons
and input - 24 (amount of features).

In this set up I also tried using 100 neurons in the hidden size, and it showed
smaller MSE and better predictions when I compared those with the actual data.

I compared those visually, and the results are on the plot. Fig 4.1 Although it
looks good on clean data, the results worsen dramatically when I tested in noise.
The MSE on 1% noise data is 0.240, and on 5% noise, it is 0.256.

In our second experiment, I wanted to split the data according to the moves. For
this, I separated the movement data into 12 segments, where each segment contain
one movement. I have six long movements and six short. I created the training
dataset that consisted of 5 long and four short movements selected randomly. The
last two short and two long go to test.
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FIGURE 4.1: Comparison between two models

The model I use was the same as before. I also used the same parameters as in
the previous experiment. At first, I had 15 neurons in the hidden layer, and on the
second run, I had 100.

This experiment showed not the best result, although when I tested it on noise, I
noticed an increase in MSE. I also see the overfit in both experiments.

When I used 15 neurons, I received a training MSE of 0.0127, and on the test, it
was 0.1988. These results show that the model overfitted. The model predicts 1%
noise data with MSE of 0.0558 and 5% results in 0.0572 of error.

When I used 100 neurons in the hidden layer, I received a training MSE of 0.0069
and a test MSE of 0.1189. The model is still overfitted. For this model, the result on
1% noise data is MSE of 0.2293 and 5% results in 0.2307 of error.

Both of our experiments did not show good results. Models were strongly af-
fected by the noise. So I needed to use a different approach. I wanted to make the
model history-dependent. For this, I do the following process: I feed into the model
every five rows concatenated in one. This one will be included in our main pipeline,
and I will use this in the following experiments.
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4.2 General pipeline

Here I will describe the pipeline and approaches for the data preparation I use in the
experiments.

4.2.1 Data Preparation

I have separate files for different shoulder positions. Also, the target and features
are in different files. So I have three files of features (either markers coordinates
or preprocessed basis data) and corresponding three targets. The first thing I do is
reading the data in the data files.

The next step is introduced in one of the experiments. I take every five rows
and merge them into one. I do this for every row, so it is like a sliding window in
the data. For example, after this process, the first row has data from the first to the
fifth row of the initial dataset. Then the second one - from the second to sixth, and I
continue in this way. As for the target, I do not flatten it, but I cut the first 4, which
means that the five merged rows in the result should correspond to the fifth angle
in the target data frame. I do this process to each pair of target files - feature file
separately.

There is also another approach for data preparation. For example, I have 1 exper-
iment that uses convolutional neural networks, and I need different data represen-
tations. The approach I go for is cutting the dataset into segments and feeding those
into the network. In this way, I receive the training data of shape Batch × Length of
segment × Number of features.

After this, I do a Train/Test/Validation set splitting. First, I want to remove the
last 10% movement from each file to create a test set. I do it this way because I do not
want to shuffle it, but I want to keep the movement structure intact. This approach
will allow us to see how the model predicts the angle and where it fails. After this, I
remove the test set from the dataset and split the data into validation and train sets,
where the validation takes ten percent of the dataset without the test. The rest goes
into the train set. I do the split for each file. I do this in this way, so I ensure that all
variants of data are present in all splits. After I split the data, I merge corresponding
sets. In the result, in the IK data, I have 5670 entries for validation, 6297 entries for
the test, 51021 for the train.

I had a change in the data split for the architecture search. I split data for 10% for
the test and 10% for validation and left 80% for the training. I shuffled all sets.

As I have less data for the inverse dynamics, I do not use the validation set. I do
this to increase the number of samples in the train set.

For the inverse dynamics task, I also scale the input data after I split the data.
Again, I use MinMaxScaler that scales every feature to the range. The formula for
scaling is:

Xstd =
X − X.min

X.max − X.min
Xscaled = Xstd ∗ (Range.max − Range.min) + Range.min

I fit it only on the train set, but I need to transform the test set and the unknown
data.

For some experiments, I use batches in training if I notice that the training re-
quires many epochs. This approach allows us to apply optimization more frequently,
thus allowing us to reach the minimum in fewer epochs.
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4.2.2 Early stopper

I implemented the early stopping functionality to overcome the overfit in some
cases. This approach aims to stop the training if the validation loss worsens (in-
creases) or does not change for a long time (many epochs).

I did a custom class with the following logic:
The class has a min_delta parameter that records the difference between the best

loss on the validation set and the current. In addition, the class has a second param-
eter - patience, which allows the validation loss to not improve for some epochs.

The model runs the train set; after this, I apply it to the validation set and mea-
sure the loss. If the received loss is better than the best loss for more than min_delta,
I record it as a new best loss and reset the counter. If there is no improvement, I start
the counter. When the counter reaches the limit (patience), I stop the training.

4.2.3 Measure computations speed

I need to know how fast the model can predict one row of the new data. I should
mention that measures are done in Google Colab, and numbers cannot tell us how
long the computation will take on the end device or Matlab. I do this measure to
compare several models that will be making predictions in similar environments. I
also want to have a general idea about the time required for one forward pass.

To test the speed of the prediction, I will generate 100000 random variables of
shape that the model requires. Then, I will make predictions for all those numbers.
Once I get the time for the entire run, I will divide the resulting time by the number
of records. The achieved result is an approximate time for one entry.

I measure the computation speed on the CPU.

4.2.4 Training Pipeline and Hyperparameter tuning

I created the training pipeline with the idea that I will need to tune the parameters. I
started with saving the train test splint into the files. I do this to have the same data
in every tuning run. Therefore our first method in the pipeline is to read the data
from files into according variables.

I implemented custom hyperparameter tuning functionality in such a manner
that I can control the experiments easily. Also, I did not need the out-of-the-box
functionality; it was too much for our experiments. I used the Grid Search approach.
It takes the grid of parameters, combines them in all possible ways, and returns the
array of the experiment set up parameter. For tuning, I used a number of neurons
in each layer; I also implemented it to try a different number of layers and learning
rate for the optimizer.

I implemented a function that performed the model training and returned the
results according to the training parameters. Also, it was essential to check how the
model reacts to unseen noisy data. Then after I received the trained model, I tested
it on noise and recorded the MSE on noisy data, both on 1% noise and 5% noise.

In all experiments the output is 3 angles - each is the separate wrist DoF angles.
In the ID task the output has 3 torques - each represent the torque in wrists DoF.
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4.3 Experiments on inverse kinematics

4.3.1 Experiment 1. History dependence

The initial experiments showed that the model had trouble predicting angles in the
movements correctly. So I used the same model I had in the initial experiments.
However, first, I performed the architecture search. I did this in a series of experi-
ments to select the model that performs well enough. Our initial goal was to select
the model that has a reasonable prediction rate on the clean data. So in the first
experiments, I focused primarily on minimizing the test error on the clean data.

For our first experiment, I selected the new architecture. The model has four
layers: input, first hidden and second hidden, and output. There is a ReLU activa-
tion function after the input and the same activation function after the hidden layer.
There is no ReLU after the output of the range of activation functions - for example,
I might need to predict the negative angles.

I use ReLU or rectified linear unit function as our activation function for sev-
eral reasons. It has a range of values (0, x) and returns 0 if x is not positive and x
otherwise. It overcomes the vanishing gradient problem (something sigmoid and
hyperbolic tangent activation functions do not do). Both sigmoid and hyperbolic
tangent tend to put large values to 1 or small to -1 (in case of hyperbolic tangent) or
0.5 (for sigmoid) Goodfellow, Bengio, and Courville, 2016

ReLU, on the other hand, has no such problem because it avoids easy saturation
and is more straightforward for the calculation.

Taking those points into consideration, I decided to go with ReLU in our experi-
ments. I prepared data according to our pipeline. The reason I merge every five rows
into one is the idea of making the model history dependant, which means that the
previous position will influence the calculations of the current angle. This method
may solve the problem of discontinuity, which appears in some solutions, and it also
might improve the predictions. Here I used the following number of neurons: the
input size is 120 (this value comes from the data flattening - I have 24 features in one
row, and I turn five rows into one, thus resulting in 120 features on the input); first
hidden layer has 60 neurons and second is 24 neurons, the output is 3.

In this experiment, I used stochastic gradient descent for the optimization with a
learning rate of 0.01.

I trained the model for 20000 epochs.
The training loss was 0.0035, and the test loss was 0.0036 as well. The validation

loss was 0.0034
I also used the Cuda acceleration for this training, and the training time was

significantly shorter. I also noticed that the validation loss was smaller than the
training loss. Therefore, I concluded that the model could train for more epochs.

I also noticed that the results from this experiment are better than those I had in
our early work. This means that I am going to keep this method of data preparation
in the following experiments.

So our next iteration was to increase the number of epochs up to 40000. I left
everything the same but changed only the number of epochs. The results were: train
loss was 0.0033, validation loss was 0.0032, and test loss was 0.0034. Because I am
talking about the radians as a unit of measurement, the error is deficient by itself.
Although on the 40000 epoch, the model did not improve accuracy significantly,
the training time increased twice. It was around 8 minutes for the first experiment
and almost 17 minutes for the second. I also plotted the Loss VS Epochs plots for
both experiments to compare the performance visually as well. 4.2 To make general
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FIGURE 4.2: Comparison between two experiments on 20000 epochs
and 40000 epochs

conclusions about these experiments, I need to see how the angles are predicted.
For this, I fitted the model on all data. I had to check how the model treats the
different angles. I had all the data shuffled in this experiment setup that disabled
the possibility of consistent plots of the predicted vs. actual angles. I plotted the
results of the model that trained for more epochs.

This plot represents three angles in 3 DoFs. I plot each DoF angle on its plot, so it
is easier to see the performance of each of the targets 4.3. The blue line represents a
prediction for each row, and the orange dotted line is the "trajectory" that the model
is supposed to predict.

As I can see from the plot, there are significant errors in the abduction adduction
movement. However, this movement is small, and it might be more challenging for
this model to capture the values well enough. I also see that the model here tends to
move even when there is no movement required. There is a particular bias towards
movement in the model that I will need to fix in the following experiments. So far,
those peaks in the DoFs on the segments will result in some twitching during the
simulation.

4.3.2 Experiment 2. A more complex model

Model with more hidden layers

I hypothesized that a more complex model could find the solution faster than 20K
epochs, and I wanted to test it. I added another hidden layer to the network, and
I used the Leaky ReLU function after introducing more non-linearity. The Leaky
ReLU is slightly different from the ReLU. If the value is below 0, Leaky ReLU mul-
tiplies it with a very little value (0.02 in our experiment). The function can output
the negative values and help with the so-called "dying ReLU," which leads to the
situation where some neurons always output 0.

For this experiment, I had the following number of neurons: input as before has
120, first hidden - 90, second hidden 60, third hidden is 24 and the outpus is 3 as in
all experiments. The optimizer and the learning rate are the same as in the previous
setup. The number of epochs was set to 20000 in the first iteration and increased to
40000 in the second iteration.

I did not receive an increase in accuracy in the first iteration: 0.0037 on the train
set and 0.0038 on the test set. However, if I compare it to the previous results in
Experiment 1, I can see a tiny increase in loss.
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FIGURE 4.3: Visual representation of model results from Experiment1

When I increased the number of iterations up to 40000, I noticed similar behavior
to Experiment 1. There was no significant decrease in the MSE. It was 0.0035 for test
and train, although the training time increased.

Model with 4 hidden layers

As I did not see the increase in the performance in the previous experiment, I went
one step further and added another hidden layer and another Leaky ReLU after it.

The number of neurons is these: 100 for the first hidden, 90 for the second, 60 for
the third, and the 24 for the last and output is 3.

I decided not to iterate on 40000 epochs and left the training on 20000 only.
Everything else stays the same.
I received the following results:

1. There is no noticeable difference between losses in this experiment and the one
with two hidden layers. It stays at 0.0038 on the test loss.

2. Learning time is significantly longer.
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I can conclude that there is very little reason to increase the complexity of the
model in the current setup.

4.3.3 Experiment 3. Experimentally determine the best optimizer

As I did not see any improvement in the previous experiments, I turned to the other
thing that can influence training results.

Optimizers are methods whose goal is to change the weights of the neural net-
work to minimize the losses.

As the previous experiment showed that increased complexity does not lead to
a better model, I returned to the model I had in Experiment 1.

I also use an early stopping mechanism in this experiment.
In this experiment, I check the model performance while using different optimiz-

ers. There are many of them present currently. I will focus on these five:

1. SGD

2. ASGD

3. Adam

4. Adamax

5. Adagrad

SGD

It is a Gradient Descent that computes the gradient frequently - parameters update
for each training example. The major disadvantage of this optimizer is that it may be
stuck at local minima, and it is pretty slow (compared to others). The use of momen-
tum speeds up the convergence. As I performed the experiment in the Experiment
1 section, I will not repeat the results here. I will compare all the following results to
this one so that the SGD model will act as a baseline.

ASGD

ASGD stands for the Averaged Stochastic Gradient Descent. It is the case where the
averaging was used for the acceleration of computations. When I ran the experiment
with ASGD, I received 0.00366 for the test loss and almost no increase in execution
time.

Adam

Adam stands for Adaptive Moment Estimation. This optimizer has two momen-
tums: the exponentially decaying average of past squared gradients and an expo-
nentially decaying average of past gradients. This approach allows Adam not to
skip the minima during the search - it adapts the velocity according to the input.
This allows Adam to be faster than SGD and avoid being stuck in local minima.

In this experiment, I needed to decrease the learning rate to 0.001 because a lower
learning rate showed many fluctuations in the loss and did not allow the model to
learn. The training stopped when the training loss was 0.00026, and the validation
loss was almost the same (0.000266). The test error showed an MSE of 0.000268.
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So this optimizer fits the task way better than the SGD and allows the model to
learn better. I believe it is because the SGD tends to be stuck in local minima, while
Adam is better at avoiding local minima.

I also plotted the plot to see how this model predicts all angles. I noticed that
the abduction-adduction error decreased significantly, and the model predicted all
angles very close to the real data. There was the same problem of bias towards
movement, and most of it was in abduction-adduction predictions, while other DoFs
showed almost perfect trajectory.

Adamax

While I achieved very good results using Adam optimizers, I still wanted to check
how other optimizers change the model’s performance. The next optimizer to test
was Adamax. It is a variant of Adam where calculations are made using the infinity
norm. In this experiment, I also needed a learning rate of 0.001 for the same reasons
as it was done for Adam. I also disabled the early stopper for this experiment to see
how far the optimizer can move the model. Although, when I run the same number
of epochs as the Adam Experiment, Adam performed better.

When I plotted the angle predictions, I noticed that the number of errors in no-
move areas decreased.

Adagrad

AdaGrad adapts the learning rate for each weight. The value of the update depends
on the frequency of the feature. The more infrequent it is, the larger updates it re-
ceives.

Our experiment with AdaGrad showed the result of 0.0030 on training and val-
idation and almost the same value for the test set. The difference was in the fifth
digit. Moreover, this model showed significantly worse results in predicting angles;
those were more similar to the SGD model predictions than Adam.

After looking at all the results of the experiments, I decided to continue our ex-
periments with the Adam optimizer.

Before continuing to the next experiments I would like to sumarize the previous
experiments in the one table. Table. 4.1

4.3.4 Experiment 4. Increased number of neurons in hidden layer

In all previous experiments, I have done a decreasing number of neurons in the
hidden layers. Here I want to explore the influence of the number of neurons on the
training results.

Here I set up the same model architecture as it was in Experiment 1. I use the
best optimizer from Experiment 3 and 40000 epochs. There are first hidden layer
with amount of neurons of 240 and the second with 120 neurons.

I received the MSE with a value in the fifth digits. Train loss was: 3.12e-05, Val-
idation Loss was 3.21e-05, and the test loss was 4.15e-05. When I plotted the pre-
dictions of angles, I saw an almost perfect prediction of the movements and a slight
twitchiness in the flat sections. Fig.4.5

Because I see quite a good result on the model, I decided to check its performance
on the noisy data. To do so, I read the data with noise (1% and 5% noise accordingly)
and prepare it (flatten by every five rows), and feed it into the neural network. I also
measure the MSE on the noisy data and plot predicted VS real plot.
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train MSE val MSE test MSE

Experiment 1

hidden 120

0.0035 0.0034 0.0036

hidden2 60
hidden3 24
hidden4 -
hidden5 -
learning rate 0.01
dataset type basis
optimizer SGD
epochs 20000

Experiment 2

hidden 120

0.0033 0.0032 0.0034

hidden2 60
hidden3 24
hidden4 -
hidden5 -
learning rate 0.01
dataset type basis
optimizer SGD
epochs 40000

Experiment 2 with leaky ReLU

hidden 90

0.0037 0.0036 0.0038

hidden2 60
hidden3 24
hidden4
hidden5 -
learning rate 0.01
dataset type basis
optimizer SGD
epochs 40000

Experiment 3

hidden 100

0.0037 0.0036 0.0038

hidden2 90
hidden3 60
hidden4 24
hidden5 -
learning rate 0.01
dataset type basis
optimizer SGD
epochs 20000

TABLE 4.1: Results of first experiments
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FIGURE 4.4: Visual representation of model results from Experiment
4

The MSE on the 60k of data with 1% of the noise is 0.0008, almost ten times
bigger than on the clean training data, but still, it is quite low. The plotting of the
predictions will tell us more. The MSE on the 60k of data with 5% noise is 0.0066.

When I take a look at the plot Fig.4.5, I can see that abduction adduction move-
ment contributes to the error the most, while two other movements are traced almost
correctly.

Computation time measurement

For this experiment, I also measured the time required to predict the output. We did
this according to our methodology, described in section 4.2.3. The result was that
the model requires 0.012 ms on CPU to compute one prediction. It is less than a 2
ms delay that I set for the task. It is also important to notice that this metric was
measured in the lab environment and not a Matlab or end device. Therefore, this
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FIGURE 4.5: Prediction of the model trained on coordinates on noise
of 1% and 5% in the sequence from 7000 ms to 10000ms

parameter can only be used to compare the speed of models, but not to say that this
speed will be in the end device.

4.3.5 Use Markers Data for predictions

Because the task seems to be very simple for the model, I make it more complicated;
I will take the marker data. The marker data is the data I would be recording directly,
so it is the closest data to the real human motion capture recording. So wee took the
markers data and tried the architecture in the previous experiment.

This approach might have some potential problems. One of those is subjects of
different sizes. The basis data would not change between people of different sizes,
but the marker data will change. Therefore, the model trained on marker data might
not generalize to the real motion capture recordings with people whose arm size
does not match the model size. But it is something to determine in the later experi-
ments.

In this experiment, I prepared data in the same manner as I did in the previous
iterations. There were two differences: I used raw marker coordinates as input, and
I cut the test set from the dataset and did not shuffle it. I avoid using shuffle in this
experiment to plot the model predictions and see where the errors occur. The target
data stayed the same as before - 3 DoFs angles.

I utilized the model I determined was best for the task in Experiment 4.
I also cut the number of epochs to 15000 because it has the very little benefit of

having more. Thus, the loss does not get significantly smaller, but the time required
for the training increases.

I run hyperparameter tuning for this experiment. I tuned the number of neurons
in the hidden layer and the learning rate for the optimizer. Because I focus a lot on
the performance of the noise, I also included MSE measurement on noise (both 1%
and 5%) for each model variant. When I received the result of the tuning, I could
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select the best model by smallest validation loss or smallest MSE on the noisy data.
In our selection, I prioritized the model that performed best on the 5% noise data.

I selected the model that has MSE of 0.0007 on 1% noise and MSE: 0.0037 on
5% noise. This model has 300 neurons in both hidden layers and a learning rate of
0.0002.

I also plot the result on both noise variants and select the range from 7000 to
10000. This range allows us to see the details for a small number of movements. Fig.
4.6

While the 1% data is predicted quite well, the 5% shows big errors on the extension-
flexion movement, and the abduction-adduction predictions are highly inaccurate.
I also see some peaks in the DoFs that should be stationary. Those peaks coincide
with the movement in other DoFs, meaning that the data from one DoF somehow
influence the prediction of others.

FIGURE 4.6: Prediction of the model trained on markers on noise of
1% and 5% in the sequence from 7000 ms to 10000ms

I also run the tests to check how the number of layers impacts the performance
on noise, especially 5%, because I noticed that it worsens the model performance
too much. I also did some hyperparameter tuning in those experiments (I tuned a
number of neurons in the layers and the learning rate) and measured MSE on noisy
data.

I did not receive the increase in accuracy on noise, or it was very small and did
not differ too much from the one I had on the simpler model.

So I conclude that increasing the number of layers cannot improve the model
stability (performance on noisy inputs).
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train MSE val MSE Noise 1% Noise 5% Speed

Experiment 4

hidden 240

3.12E-05 3.21E-05 0.0008 0.0066 0.012 ms

hidden2 240
learning rate 0.001
dataset type basis
optimizer Adam
epochs 40000

Experiment 5

hidden 300

2.91E-05 2.60E-05 0.0007 0.0037 0.015 ms

hidden2 300
learning rate 0.0002
dataset type markers
optimizer Adam
epochs 15000

TABLE 4.2: Results for model train on preprocessed data VS model
trained on marker data

We measured the computation speed for this experiment as well. It is 0.015 ms
for one prediction.

Table 4.2 shows the difference in results for 4.3.4 and 4.3.5 experiments.
We can conclude that the model trained on markers shows better results, both on

noise and during the training, but it is slightly slower.

4.3.6 CNN architecture on markers data

Because I face a decrease in performance when the model has to predict the noisy
data, I tried another architecture. This approach required the use of convolution lay-
ers in the model. I perform a 1-D convolution before passing data to the subsequent
layers. I have two 1-D convolution layers, first with a kernel size of 5 and the second
with a kernel size of 3. After convolution, I do ReLU and pass the data to the output
layer. The model outputs three torques, one in each degree of freedom.

I try different layer sizes and different learning rates, eventually selecting those
that yield the best loss.

I use batches for this training with size 64.
In this experiment, I focus the most on the stability of the model. I check it with

a series of plots with different resolutions.
Fig. 4.7 shows bad performance on the noisy data. Then I select the first 2000

timesteps from the data and plot it. The plot shows that the range of predictions
exceeds the range of errors.Fig. 4.8 I cannot say that convolution somehow improved
the solutions’ stability to the noise.

I ran many experiments to determine the best possible solution for the inverse
kinematics and gathered enough information to select the most suited model.

4.4 Experiments on ID

Our next task was to see if I can apply the architecture I had in the IK solution to the
inverse dynamics solution.

I selected the simple model that showed good results in experiment 4 and the
experiment with markers.

It is a model with one hidden layer.
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I prepared the inverse dynamics data in the same way - I merged the data into
the sequences of 5 and performed the train/test split. I did not have the validation
split because the amount of data was too low. I also needed to scale that data to fit
into the range (-1, 1).

When I run the experiment on the selected model, I received poor performance.
The model could not achieve good results with this setup. To fix this, I applied
a more complex model that consists of 3 hidden layers. I did the hyperparameter
tuning in the same manner as in the previous experiments and determined the fol-
lowing number of neurons: the first hidden layer had 330 neurons, second - 60, third
- 165. the learning rate is 0.0001.

The test loss was 0.000137.
I also plotted the prediction on the full dataset to see how the model predicts

torques in general. Fig. 4.9

4.5 Inverse kinematics to inverse dynamics

I need to know how the error in inverse kinematics impacts the error on inverse
dynamics. To check it, I selected the best model to predict angles. Next, I run the
prediction on clean data and form the dataset of angles. Then I incorporate this
dataset into a prediction of inverse dynamics. After this, I compare the MSE on ID
prediction on clean data and ID prediction on our data.

The MSE on angles prediction was 0.00054.
MSE on ID prediction was 0.1727.
The results are not accurate and require additional investigations. I plot the data

in a way that I can see where it goes wrong. Fig. 4.10 It seems that the model esti-
mates the torques slightly higher than they should be. The trajectory seems similar,
but its position is off.

It is a common thing that error in inverse kinematics disrupts the inverse dynam-
ics calculations a lot. I will address this issue in our future work.
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FIGURE 4.7: Predictions for noisy data using convolution layers in
the model



30 Chapter 4. Experiments

FIGURE 4.8: Predictions for first 2000 timesteps of noisy data using
convolution layers in the model
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FIGURE 4.9: Prediction of torques
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FIGURE 4.10: Prediction of torques, based on angles predictions
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Results and conclusion

We had four goals for this project: create the model that can solve the inverse kine-
matics problem, test how this model reacts to near-real-world data, find the model
that can solve the inverse dynamics task, check how the error in inverse kinematics
estimation impacts the error in inverse dynamics estimation.

We completed our project goals. Our experiments allowed us to make several
conclusions.

The first conclusion is that on the data we have available, we can train an effective
model both on raw data and preprocessed data. Both approaches have advantages
and disadvantages. In defense of the usage of marker data, we can mention that
this method requires no preparation of the data and might potentially open the way
to a faster pipeline on the end device. The disadvantages of using marker data are
that people have the length of the different segments, and we might face issues with
that. In our data, the segment had a constant length. This issue is not present when
using preprocessed data (data with basis and unit vectors projections). However,
preprocessed data requires additional work.

We measured the speed of prediction of a single entry. It is less than 2 ms, and the
model trained on markers is slightly slower than the model trained on preprocessed
data.

The second conclusion was that we could achieve model stability in the noise. As
we are going to use this solution with real people, we will face the issue of marker
coordinates changing a lot. People are not machines and cannot move the hand in
a perfectly straight manner. We run many tests on noisy data that was available for
us. We can conclude that model that has been trained on markers shows an error
on noise twice as smaller as the same model trained on preprocessed data. Another
conclusion on this is that the increased complexity of the model (additional hidden
layers or convolution layers) could not improve the stability of the solution.

The third conclusion applies to the inverse dynamics solution. The task of in-
verse dynamics requires a more complex model than the inverse kinematics task.

The fourth conclusion is that the error in inverse kinematics, although small by
itself, dramatically influences the error in the inverse dynamics solution.

Overall, this work presents the solution to the inverse kinematics and inverse
dynamics problem. We can use those solutions in future works. The future works
will be focused mainly on the minimization of error and increasing the stability of
the model.
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Future work

This solution can be used in the scientific researches of the NERL. The next logical
step is to apply the IK model and ID model to the real motion capture experiment.
One of the unofficial goals of this work was to check if it is possible to develop a
model that will work in this domain with the given data. This work was a prepara-
tion for the more complex experiments. We propose to use the motion capture data
for further training of the model. We can retrain the model on the real-world coordi-
nates and see how it works with them. There is a possibility for several experiments:

1. test the existing model in the mocap experiment;

2. include the mocap data into the training process;

3. apply the solution not only to the wrist joint but to some other rotational joints,
and see how it generalizes on the new body part.

The solution has the issue of noise sensitivity. One of the techniques to solve
this is some kind of denoising filter, like the Kalman filter. We could include the
denoise step into the estimation process. This will ensure that the model receives
nearly clean data.

We tried to keep the solution very simple in case we have to implement it on the
end device. However, there is still a possibility to increase the model complexity and
try different architectures. A good candidate for it is recurrent neural networks. We
had some version of history in the model, but recurrent neural networks deal with
timesteps better.

To conclude, there are several ways to improve the solution: we can diversify the
training data, so the model sees unique movement during the training; we can also
include some filters in the model to increase its stability, and finally, we can increase
the complexity of the model itself.
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