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Abstract

Alzheimer’s Disease is an irreversible disease that causes a decline in cognitive
abilities and leads to dementia. Many efforts are applied to understand the behavior
of the disease progression and foresee its future state. The metrics that assess the
level of cognition are named as cognitive scores. The dynamics of cognitive scores
help understand the future disease progression. However, there is a lack of un-
derstanding on what is the best benchmark for the predicted value of the cognitive
score. Moreover, there could be cases when the future value of the cognitive score is
not statistically different comparing to the current value.

In this work we discover those patients that by design cannot have the dynamics
in their progression of cognitive scores. We justify that the dynamics of progression
for Cognitively Normal patients do not change over five years. We reveal that there
is no statistically significant change in progression after the 1-year follow-ups. We
unified the evaluation framework of different imputation, feature selection methods
and machine learning models on different time to prediction settings as well as on
different patient populations.
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Chapter 1

Introduction

1.1 Domain Overview

Alzheimer’s Disease (AD) is an irreversible neurodegenerative disease that causes
memory, language, orientation and other cognitive disorders. 60-80% of all dementia
cases belong to AD. The number of deaths from AD more than doubled for the last
decade, increasing 145.2% (Alzheimer’s Association - Facts and Figures).

AD evolves monotonously through a long period, often longer than observation
at an individual scale. The pathological processes occur gradually, they develop
before the first deterioration of cognitive disabilities and lead to dementia - the end
stage of the disease.

Data that captures the natural history of patient visits reveals patterns of disease
progression. It is a longitudinal medical data that comprises repeated measurements
at multiple time points per individual. The periods between each patient’s visits can
vary significantly. Real-world applications and the respective data often consist of
delayed observations because patients do not visit medical institutions over fixed
periods. The nature of visits frequency and the overall duration of visits is heteroge-
neous and leads to the occurrence of missing data.

The variety of measurements helps keep track of patients’ disease order. The
list of such measurements has a multi-modal origin and includes cognitive test re-
sults, chemical and imaging biomarker measurements, demographic data such as
age, years of education, etc.

Cognitive tests are the assessments that evaluate the severity of cognitive dys-
functions. Some tests measure several cognitive abilities, while others specialize in
particular cognition. Two main tests can be classified into the first category - Mini-
Mental State Exam (MMSE) and Alzheimer’s Disease Assessment Scale (ADAS).
While MMSE assesses orientation, attention, memory, language skills, the ADAS
test, along with cognitive abilities such as memory, language and praxis, measures
noncognitive behavioral dysfunctions, such as mood state and behavioral changes
(Rosen, Mohs, and Davis, 1984).

The next type of measurement that assesses the physiological state of patients
is biomarkers. These biomarkers are chemical and imaging indicators that reflect
the disease’s progression. Their values can be obtained from cerebrospinal fluid
puncture (CFS), amyloid positron emission tomography (PET), magnetic resonance
imaging (MRI), diffusion tensor image (DTI).

Dementia is the final observable stage that is caused by multiple pathological
brain disorders (Jack et al., 2010). The conventional clinical disease stages include
three phases:

1. CN - pre-symptomatic phase of cognitively normal patients with some AD
pathological changes.
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2. MCI - mild cognitive impairment where patients are observed with the onset
of cognitive symptoms or already have cognitive disabilities but do not have
dementia.

3. AD - dementia that is characterized by cognitive impairments of multiple ori-
gins.

It is essential to understand that AD is an irreversible neurodegenerative dis-
ease. The current treatment can only slow down the illness and can not cure it. Un-
derstanding the future trajectories of monotonously changing cognitions will help
apply therapeutic interventions effectively on patients depending on the severity
of their future progression. That is why it is crucial to know the tempo of disease
progression and predict its future state on the patient level.

As described, the cognitive scores are measured by clinical assessments such as
ADAS and MMSE. They are the quantitative measurements of the main types of
cognition. The prediction of cognitive scores gives an understanding of the future
progression of cognitions. According to the results of The Alzheimer’s Disease Pre-
diction Of Longitudinal Evolution (TADPOLE) Challenge, which summarized the
outputs of 90 algorithms of the cognitive scores predictions was not satisfying. The
best algorithms of 5-year predictions of ADAS-Cog13 cognitive score did not outper-
form the results of random guessing (constant predictions) (Marinescu et al., 2020).
To our best knowledge, the previous researches did not perform better; specifically,
they did not show statistically better results within the 5-year time frame.

1.2 Motivation

The current state of the research field is quite heterogeneous. Many researchers are
trying to tackle specific problems, such as missing values, delayed observations, etc.
Many of them apply sophisticated models/methods that make the most accurate
prediction, but on the other hand, they do not take into account the presence of
noise in the data. Hence, the models with the most accurate predictions predict
cognitive scores for patients, which by design can not have the progression in their
cognition. We call these cohorts of patients with or without progression as the sce-
nario of interest. With this research, we aim to investigate which scenarios of interest
give us room for prediction and which do not because patients do not progress over
time. We also investigate how the existing approaches that work well on the scenar-
ios without progression behave in the scenarios with more aggressive dynamics in
cognition.

1.3 Thesis Structure

Chapter 2 represents an overview of the related work for the problem of predicting
cognitive scores. It explains the current state of research problems in the field of
missing data, delayed observations. However, we will show that they do not tackle
problems with population selection, noise in the data and time to prediction.

Chapter 3 discusses the experimental pipeline that aims to investigate which sce-
narios of interest are subjects for prediction and which models and methods are most
accurate for the current task.

Chapter 4 shows the findings of the proposed approach. It reveals scenarios
of interest within which we cannot observe any progression in cognitive scores by
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design and those scenarios that are subject for predictions. Additionally, we show
which methods and models improve the prediction accuracy.

Chapter 5 summarizes the key results of the research and discusses the future di-
rection of work. Here we show that there are cohorts of cognitively normal patients
or patients with early symptoms of cognitive decline whose progression of cognition
does not change over time. We also reveal that there is no space for improvement
for short-term predictions.
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Chapter 2

Related Work

The current chapter reveals the related work done in the field of prediction of cog-
nitive scores. The task of prediction of cognitive scores is related to the regression
problem. The most recent researches in the domain of medical data and particularly
the studies of AD examine various methods and strategies to make accurate pre-
dictions of cognitive scores and other predictive cofactors. They tackle difficulties
with missing data and delayed observations (patient’s visits), incorporate historical
dependencies between observations. We provide an overview of the current state of
the considered research field as well as highlight the proposed goal and contribution
with formulation of the research direction.

2.1 Literature review

2.1.1 Different populations

The recent research papers utilize plenty of methods to predict the future dynamics
of biomarkers and the level of cognition measured by clinical assessments. It can be
statistical, machine learning, and deep learning models that aim to receive the most
accurate prediction. It is known that there are no cognitive symptoms at the pre-
clinical stage of the disease. Hence, the prediction precision of cognition for patients
without consideration of the specifics of disease stages could be inflated.

Some approaches relate to the discovery of early changes of biomarkers of CN
patients that precede the onset of cognitive symptoms (Jack et al., 2010). (Nguyen
et al., 2020) attempted to broke down the patients into cohorts based on the disease
stage, but the prediction was made without an analysis of dynamics within these
cohorts. There are researches that do not consider different population cohorts and
make predictions for the whole observed population (Ghazi et al., 2019).

2.1.2 Time to prediction

The other side of the prognosis setting is the time to prediction or, in other words, the
prediction horizon. It is a setting that each researcher specifies differently. (Nguyen
et al., 2020) shows results of prediction of ADAS-Cog13 and Ventricles volume 6
years ahead but does not consider those scenarios with populations that cannot have
progression by design. (Ghazi et al., 2019) apply modified LSTM to predict MRI
biomarkers maximum of the year ahead. (Zhang, Shen, and Initiative, 2012) consider
two scenarios. The first is the prediction of ADAS and MMSE values for 24 months
starting from the first month; hence the time to prediction is 2 years. In the second
scenario, the authors predict the 24-th month visit based on data for the 6, 12 and 18
months patients’ visits. In this case, the time to prediction is 6 months.
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2.1.3 Missing data

The methods that are solving a regression problem can use either the single past
observation or sequences of multiple observations. However, the difficulties come
not only from catching the historical dependencies among different factors but also
within the data that has to provide the long trail of records within measurements of
AD patients. To make "static" predictions one-time point ahead based on the single
past patient visit requires two data sequences of measurements. To introduce the
dynamics into both features and target sequences, the data for analysis has to contain
these observations for the required time period. To consider these observations as a
sequence, the patients have to constantly visit a hospital for a long time within the
same time range, for example, on a yearly basis. However, in the real world, that
does not happen often. The patient’s visits could be shifted in time, or even there
could be no visits for specific periods. Since most machine learning models require
feature-complete data, there is a need for those approaches that handle missing data.

The researchers that examine the problem of missing data apply different strate-
gies to overcome it. Some methods impute those missing values using various im-
putation techniques, such as forward filling, where the missing values are imputed
by the last available value; linear interpolation, where values linearly interpolated
between the last and next available values and model filling, where the Machine
Learning model is responsible for the value imputation (Nguyen et al., 2020). Other
methods incorporate missing values as model parameters. (Ghazi et al., 2019) utilize
LSTM that incorporate missing values into the neural network architecture. Authors
replace missing values with zeros and apply normalization on weights of neural net-
work that takes into account missing values in input and target. Afterward, they
backpropagate zero errors for the target with missing values.

2.1.4 Models

There are plenty of papers that apply different statistical, machine learning, or deep
learning models to predict the future outcome of cognitive scores or other measure-
ments of AD. Some models make "static" predictions one-time point ahead based
on a single past patient’s visit. In other papers, researchers take the sequence of
past visits and predict either a one-time point ahead or a sequence of future values.
(u)tilizes SVM to predict MMSE and ADAS. Some researchers utilize the RNN to
predict the future value of cognitive scores (Ghazi et al., 2019; Nguyen et al., 2020).

2.1.5 Evaluation

The important part of modeling is its evaluation. On the one hand, the model with
the best performance does not have to predict better than the amount of noise in the
data. On the other hand, the prediction has to be comparable to the state-of-the-art
results. The researchers compete within the second category of evaluation strategy
(Nguyen et al., 2020; Ghazi et al., 2019) and do not take into account the presence of
noise in the data.

By design (Koval et al., 2021; Clark et al., 1999) cognitive assessments and their
respective cognitive scores have measurement errors and variation in an annual
score change. The patient that performs the same task within the same week could
have different scores, but it will be not due to the disease progression but due to
the external noise. The imaging biomarkers also contain the noisy part in their es-
timations (Koval et al., 2021) due to variations in the acquisition protocol, such as
lightning, the patients’ movements at the moment of obtaining the MRI scans, etc.



6 Chapter 2. Related Work

2.2 Research objectives and contribution

Considering the existing limitations discussed in motivation and literature overview
the research goal of this paper is to find an ideal set-up of prediction such as the
constant prediction is statistically higher then the noise in the data. This will be an
indicator of changes in patient’s cognitive scores progression.

The contribution of the research is formulated in a question-list below.

1. What is an ideal scenario of prediction looks like?

1.1. Selection of patients of interest.

1.2. Selection of time to prediction.

2. Within the ideal scenario of prediction how much accurate prediction we can re-
ceive,

2.1. when applying different imputation techniques?

2.2. selecting different features?

2.3. applying different prediction methods?
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Chapter 3

Methodology

In the following section we explain the steps we followed to answer two questions:

1. Which populations is meaningful to use to predict the disease progression?

2. Which methods are most accurate to make these predictions?

First, we start with data exploration. Then we discuss the ways of segregation
between the populations and methods to chose the most appropriate ones. After
it, we examine the methods that will be applied to improve prediction for a chosen
population. In the end, we reveal an experimental protocol that explains the pipeline
we followed to test our hypothesis.

3.1 Study Data

Dataset was obtained from The Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database. The ADNI dataset contains the biomarkers of the following measurement
subgroups: MRI, PET, CSF, diffusion tensor imaging (DTI), cognitive tests, some ge-
netic and demographic information. Each row of the dataset represents data for one
particular patient visit, and each column is a feature or a measurement. It comprises
data for the 2268 patients over 13578 patient visits.

The cognitive scores of ADAS and MMSE give an understanding of the quantifi-
able dynamics of disease progression. They are measured by clinical experts. The
tests include questions on which patient answers and gain scores. Each test has its
own scale. MMSE assesses the level of cognitive dysfunction at a scale from 0 to 30
points, where 30 points is an indication that the patient doesn’t have cognitive dis-
abilities. The ADAS estimates patients at a scale from 0 to 70 points, where 0 points
is an indication that a person does not have cognitive dysfunctions. The distribution
of MMSE and ADAS (Figure 3.1) shows that distributions of cognitive scores on dif-
ferent disease stages overlap. Patients with MMSE values between 27 to 30 can be
classified as CN or MCI or even AD.

Cognitive score Disease Stage Mean STD

ADAS CN 6.417 3.199
MCI 10.329 5.080
AD 22.183 9.762

MMSE CN 29.042 1.216
MCI 27.499 2.250
AD 21.602 4.661

TABLE (3.1) Descriptive statistics for ADAS and MMSE.
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(A) ADAS.

(B) MMSE.

FIGURE (3.1) Distribution of ADAS and MMSE within disease
stages.

3.1.1 Data preprocessing

Since the absolute values of morphological features of the brain vary due to differ-
ent patients’ head sizes, it is a standard practice to normalize them by intracranial
volume (ICV) (Sargolzaei et al., 2015; Voevodskaya et al., 2014). Hence, the MRI and
DTI volumetric biomarkers were normalized by the corresponding patient’s ICV.
Then data were normalized within the min-max scaler algorithm.

Before running any machine learning model, some columns were removed from
the feature space as their inclusion could have led to data leakage: columns indicat-
ing the disease stage and age at the first patient visit.

3.2 Scenario of interest

The original distribution of patient visits is shown in Figure 3.3 within the first light
purple bars. The second darker bar shows the amount of resampled data. One way
to take data as an input is to use the first patient’s visit as a feature value and each
next visit as a target. However, in this case, we are tied to the patients’ first visit.
Suppose the patient has visited the hospital 5 consecutive years. In that case, there
will be one observation with a one-year follow-up starting from the first patient’s
visit, and we will not consider cases with 1-year follow-ups, starting the second
and subsequent patient’s visits. To avoid such scenarios, we resampled the patients’



3.2. Scenario of interest 9

visits. We took each patient’s visit and corresponding subsequent next patient’s visit
(1-year or n-years ahead) as a target no matter if the first observation coincides with
the first visit to the hospital or not (Figure 3.2). After the resampling process, we
increased the amount of input data that is shown as the second bar in Figure 3.3.

FIGURE (3.2) Generating one year follow-up observations where
x1, ..., x5 are the measurements of AD.

FIGURE (3.3) Distribution of patients’ visits during 9 years follow-
ups.

We introduce the upper and lower boundaries for the models’ error estimations
to select the right setting for prediction. The upper boundary represents the baseline
model error, the lower bound shows the distribution of noise. The baseline error
is the error of the model with constant prediction. This constant prediction is not
the trainable model; it is a simple adjustment for which the prediction for the target
variable is obtained by increasing its value by 1. The prediction setting is considered
meaningful if the distributions of noise and constant prediction error are statistically
different. If distributions are not statistically different, then the model catches the
noise. That means that we cannot predict better than the baseline model since it
is already the best possible prediction and this best prediction is noise itself. The
distribution of noise is the change in target value within the six months follow-up.
Such distribution is called test-retest error.

Time to prediction is a crucial setting that helps to understand which point in
a future is meaningful to predict and then how far we can predict accurately. As
we show, there are setting for "short time" predictions where the distributions of
test-retest and constant prediction do not not statistically differ.
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To chose the population of interest, we select a cohort of patients from the gen-
eral distribution of patients based on some filters. To filter population, we use the
disease stage or value of cognitive score used to differentiate between patients’ dis-
ease stages. Different populations of interest have different progression of cognitive
scores. We will show which of them do not have the signs of progression and those
which progression has to be tackled further.

3.3 Prediction methods

3.3.1 Feature Selection

We tried different approaches to select the features with the highest prediction power:

1. Based on TADPOLE challenge.

2. Correlation based.

3. Boruta feature selection.

The first cohort of features was taken from the recommendations from a TAD-
POLE challenge and consist of 14 measurements. The correlation-based method took
features that the most correlated within the targets.

The Boruta feature selection method is a wrapper for a Random Forest algorithm.
First, the original dataset was augmented with its shuffled copy, so each original
column received its shuffled copy. Then Random Forrest Classifier is trained on
the augmented dataset. Then, the original feature is considered as important if its
importance value is higher than the importance of the most important augmented
feature (Kursa and Rudnicki, 2011).

The list of features selected in each method could be found in Table 3.2.

Feature
Selection
Type

Cognitive
Scores

MRI PET CFS Other

TADPOLE
based

CDRSB,
ADAS,
MMSE,
RAVLT

Hippocampus,
WholeBrain, Entorhi-
nal and MidTemp
volumes

FDG,
AV45

tau and
amyloid-
beta levels

APOE4,
AGE

Correlation
based

CDRSB,
ADAS,
MMSE,
RAVLT,
LM

Hippocampus and
Entorhinal volumes

FDG,
AV1451

tau level APOE4,
AGE,
years of
education

Boruta
feature
selection

ADAS,
MMSE,
BNT

TEMPORALPOLE,
INSULA, INFTEM-
PORAL, PARAHIP

ANIM APOE4,
GDS,
NPIQ, NPI

TABLE (3.2) The list of selected features by corresponding method.

3.3.2 Imputation techniques

The following imputation methods was used to fill missing values:

1. Forward-filling

2. Linear interpolation
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3. MMSE_TOT based

The forward filling imputation technique imputes the missing value based on the
value of the last time point with available data. The linear interpolation technique
takes the values for the last and next time points with available data and linearly fill
the missing values 3.4.

The MMSE-based imputation method takes the MMSE value for the missing fea-
ture and imputes the average feature value of other patients with the same MMSE
score. If we look for patients within the same value for MMSE with a patient with
missing features, we can end up within a small number of such patients. Instead of
choosing the patients within the exact value of MMSE, we calculate the minimal dis-
tribution around MMSE and impute the average feature value among the patients
whose MMSE falls into that distribution. The minimal distribution was calculated
as the measure of noise for MMSE, specifically the distribution of test-retest error for
the six-month follow-up.

(A) Forward-filling imputation. (B) Linear interpolation.

FIGURE (3.4) Imputation techniques schema. Each schema impute
missing value x2.

3.3.3 Machine Learning models

The regression problem we were solving is a prediction of a future value for cogni-
tive score given one time point. The following classical Machine Learning models
were used to predict cognitive scores:

1. Linear Regression

2. Elastic Net

3. Random Fores Regression

4. Support Vector Regression

3.3.4 Validation techniques

To train and validate models, the dataset was divided into train and test to have
different patients.

The nonparametric statistical Mann-Whitney U Test was used to verify whether
the obtained error distribution is statistically different from the test-retest error. With
this test, we check the hypothesis that the two distributions come from the same
general distribution or have the same median (Milenović, 2011).
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3.4 Experimental protocol

To understand the impact of all listed methods on prediction accuracy for different
scenarios, we have to broke down the future work into pipelines.

We start experiments within the model selection step of the pipeline. We ap-
ply the forward filling technique on this step because the ML models accept feature
complete data and chose the features recommended by the TADPOLE. When the
most accurate model for a given scenario was chosen, we study other imputation
techniques and feature selection methods to choose the ones that increase prediction
accuracy.

The steps of the entire pipeline of experiments are described below:

1. TADPOLE features + forward filling imputation technique + ML model selec-
tion.

2. The best model from Pipeline 1 + imputation techniques.

3. The best output from Pipeline 2 + feature selection.

The schema of pipeline is described on the pipelines described in Figure 3.5.

FIGURE (3.5) Experimental pipeline
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Chapter 4

Results and evaluation

4.1 Scenario of interest

To understand which populations do not have the change in the dynamics of cogni-
tive scores, we have to investigate the differences in change of cognitive scores per
different cohorts of patients. We take a cohort of patients with specified criteria and
perform a statistical test that checks if this cohort’s distribution changes over the
years. The Algorithm 1 explains how we calculate the significance of distributions
change over time. Since we resampled the ADNI dataset (as described in Figure 3.3),
the baseline value in an Algorithm 1 represents the first visit from two consequent
patient’s visits with the difference of six months. The difference between baseline
values and six-month follow-up is named test-retest error. Hence, the statistical sig-
nificance between test-retest error and i-year (i = [1, ..., n]) follow-ups change in the
progression is calculated for three consequent patient visits. The difference between
first and second (six-month after the first visit) visits is a test-retest error. The dif-
ference between the first and third (i-years after the first visit) visits is the change in
progression after i-year from the patient’s first visit.

Algorithm 1 Progression change comparison

test_retest_distribution = 6_month_followup - baseline_values
historical_followups = [1, ..., n]
u-statistics = Mann-Whitney-test
for i in historical_followups do

followup_change_distribution = historical_followups[i] - baseline_values
u-statistics(test_retest_distribution, followup_change_distribution)

Suppose the difference between test-retest and change in progression for a longer
period is not statistically significant according to the Mann–Whitney U test. In that
case, this scenario is considered to be a scenario without progression. That means
that there is no statistically significant difference in the progression of cognitive
scores for these patients within years.

The summary of the progression of cognitive scores (Table 4.1) shows that the
MMSE progression for CN patients at baseline is not statistically significant up until
five years. On the other hand, MCI and AD patients have a significant change in
progression within only one year of follow-up.

The crucial part to remember when selecting the scenario of interest, including
the population and time to prediction, is to pick meaningful scenarios to predict
and those that help identify the first changes in cognition. When we answer this
question, we can move on to the methods that could improve the prediction accuracy
of the future value of the cognitive score. According to the results of Table 4.1 it is
reasonable to predict the MMSE value for CN at least six years ahead and ADAS at
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Disease
stage

1 year 2 years 3 years 4 years 5 years 6 years

MMSE
CN 1.036

(p=0.417)
0.993
(p=0.436)

1.053
(p=0.252)

1.118
(p=0.126)

1.181
(p=0.075)

1.291
(p=0.035)

MCI 1.769
(p=3.79E-
03)

2.309
(p=1.55E-
10)

2.830
(p=4.20E-
16)

3.321
(p=1.99E-
16)

3.803
(p=5.34E-
19)

3.821
(p=1.46E-
13)

AD 3.113
(p=3.45E-
06)

4.825
(p=2.08E-
14)

6.343
(p=8.66E-
05)

4.733
(p=5.16E-
03)

5.462
(p=1.79E-
03)

4.333
(p=6.94E-
03)

ADAS
CN 2.281

(p=0.045)
2.218
(p=0.237)

2.501
(p=0.137)

2.619
(p=0.0002)

2.951
(p=2.4E-
06)

3.627
(p=1.4E-
18)

MCI 3.237
(p=8.9E-
03)

4.149
(p=1.0E-
08)

5.262
(p=1.2E-
14)

6.443
(p=2.3E-
16)

7.701
(p=3.3E-
21)

7.870
(p=3.9E-
22)

AD 5.462
(p=2.2E-
04)

9.510
(p=1.0E-
16)

12.766
(p=4.1E-
06)

11.436
(p=7.4E-
03)

12.273
(p=9.9E-
03)

13.619
(p=1.1E-
03)

TABLE (4.1) The MAE value of MMSE and ADAS distributions of
change over time. The changes in a progression that are not statisti-

cally significant marked in gray.

least four years ahead. However, here we have to consider the volume of data we
are working with. Figure 3.3 shows that the amount of patients visits decrees within
time. Hence the relatively small amount of data can affect the model performance to
generalize well.

There is an important omission within an approach of patient segregation based
on the disease stage. The MCI cohort is a linking stage between CN and AD. It in-
cludes patients with early symptoms of cognitive disabilities and those with more
severe cognitive impairments. If the problem is about identifying patients with early
changes and preventing the future decline in cognition, it is reasonable to predict
those patients’ cognition with early symptoms. Hence, we have to break down the
MCI cohort into smaller sub-cohorts. Further, we divide patients and form new co-
horts based on disease stage and MMSE and ADAS values (Table 4.2). The statistical
significance of the difference was calculated for cohorts with more than 50 obser-
vations. Since patients at baseline with CN do not show the statistically significant
change in distribution during the first five years, we do not take this cohort into the
future analysis. Since current research aims to investigate the early progression of
decline in cognitive abilities, we do not study patients at the baseline with AD.

Comparing results on the deeper level of granularity of patients cohorts, we can
see no MMSE and ADAS dynamics progression for one-year follow-ups. The sub-
cohorts with less than 50 observations that were not taken into account considered as
the "tails" of cognitive scores distributions. These tails could be the reason why the
one-year follow-up observation in Table 4.1 shows statistically significant progress
comparing to the sub-cohorts from the Table 4.2. The interesting dynamic is shown
for ADAS sub-cohorts for CN patients at baseline. The CN patients at baseline with
ADAS less than 6 show a change in progression at the fourth year of medical exami-
nations. However, the CN patients with ADAS at baseline from 6 to 12 do not show
changes over six years of observations. The MCI patients with ADAS less than 6
points have a stagnation period at the fourth year follow-up. The MCI patients with
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Disease
stage

Cognitive
score
range

1 year 2 years 3 years 4 years 5 years 6 years

MMSE
MCI (27; 30] 1.408

(p=0.38)
1.817
(p=1.7E-
02)

2.093
(p=3.4E-
03)

2.523
(p=3.4E-
04)

2.963
(p=1.3E-
07)

2.464
(p=3.6E-
04)

(23; 27] 2.178
(p=0.300)

2.964
(p=2.9E-
04)

4.071
(p=2.7E-
08)

4.626
(p=2.0E-
11)

4.789
(p=1.3E-
07)

6.339
(p=6.7E-
07)

ADAS
CN (0:6] 1.905

(p=0.26)
1.812
(p=0.35)

1.902
(p=0.31)

2.642
(p=7.5E-
04)

3.191
(p=4.0E-
04)

4.042
(p=8.4E-
11)

(6:12] 2.533
(p=0.36)

2.662
(p=0.29)

2.972
(p=0.38)

2.541
(p=0.29)

2.503
(p=0.4)

2.872
(p=0.21)

MCI (0:6] 2.343
(p=0.35)

2.738
(p=0.062)

2.701
(p=0.044)

2.607
(p=0.14)

3.552
(p=0.005)

4.233
(p=0.001)

(6:12] 2.941
(p=0.24)

3.772
(p=6.5E-
04)

4.905
(p=9.0E-
08)

6.212
(p=1.5E-
08)

7.572
(p=2.8E-
10)

6.782
(4.1E-08)

(12:20] 4.041
(p=0.062)

5.712
(p=2.4E-
07)

7.707
(p=7.8E-
10)

10.369
(p=3.9E-
11)

11.831
(p=2.1E-
09)

14.026
(p=2.5E-
07)

TABLE (4.2) The MAE value of MMSE and ADAS distributions of
change over time. The changes in a progression that are not statisti-

cally significant marked in gray.

ADAS between 6 and 12 and between 12 and 20 show the change in cognition start-
ing the second year from the baseline observation.

4.1.1 Constant prediction

The meaningful prediction settings are the ones that allow predicting better than the
constant prediction and higher than the test-retest error. The results observed in Ta-
ble 4.2 can be compared to the distribution plots at Appendix A.1. Here we can see
how the MMSE and ADAS progression develops over time and in which scenarios
test-retest error is the same as the constant predictions. The visual representation
of the same error distributions is presented at Figure 4.1. It represents the model’s
performance, Constant Prediction and Test-Retest error of ADAS 6-month predic-
tion. The distributions of Constant Predictions (marked as CP+1, CP+2, CP+3) have
smaller variance than Test-Retest error distribution (marked as TR). Mann Whitney
U test also indicated that distributions of errors do not statistically differ from each
other. That means that there is no space for prediction improvement since the error
of the baseline model, such as Constant Prediction, is already the best predictor.

In all cases, with yearly predictions, the constant prediction is statistically the
same as the test-retest error. As time passed, we can see that the baseline model
becomes less accurate, and here we have a space to improve the accuracy of the
predictions. These settings are the predictions starting from 2 or 3 till 6 years ahead.
As a result, we will go with further analysis with the MCI sub-cohorts for MMSE
and ADAS cognitive scores 2-5 years prediction ahead.
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FIGURE (4.1) Distribution of error for 6 month ADAS prediction.
The TR stands for Test-Retest error, LR - Linear Regression model er-
ror, EN - Elastic Net, RF - Random Forest, SVR - Support Vector Re-
gression, CP+1 - error for Constant prediction with added 1 point to
the ADAS value, CP+2 and CP+3 with added 2 and 3 points respec-

tively

4.2 Methods comparison

This section aims to test the different methods to predict the cognitive scores with
selected scenarios. Each subsection follows the Experimental Protocol design and
represents the studied step of the entire pipeline.

4.2.1 ML model selection

We start with the model selection at the first iteration for improvement of prediction
accuracy. We freeze other setups such as imputation or feature selection techniques
and examine the performance of the specified models. We use the next set of models
to predict the values of cognitive scores: Linear Regression (LR), Elastic Net (EN),
Random Forest Regression (RF), and Support Vector Regression (SVR). Here we ap-
ply forward filling techniques to impute missing data and use the set of features rec-
ommended by the TADPOLE. The output of Table 4.3 shows the best MAE for the
current scenario among all tested models. The model parameters were optimized
using the GridSearch algorithm. The grid of parameters for each model is shown in
Appendix ??.

The error distribution for 2-years predictions for all scenarios shows good results
comparing to the test-retest error. The scenario for MCI patients with ADAS less
than 6 points starts to overfit the data on 2 and 3 years of predictions. The reason for
such performance for the 2-year prediction is clear - the initial setup of the scenario
shows that there is no progression with 2-years follow-ups (Table 4.2), hence the
model starts to overfit.

The 5 scenarios out of 7 for the 4-years predictions show that there is room for
improvement for prediction accuracy, as well as for the 6 scenarios for the 5 years
predictions and 5 scenarios for the 6 years prediction.



4.2. Methods comparison 17

Disease
stage

Cognitive
score
range

2 years 3 years 4 years 5 years 6 years

MMSE
MCI (27; 30] [RF] 1.42

(p=0.385)
[EN] 1.39
(p=0.108)

[FR] 1.71
(p=0.005)

[EN] 1.84
(p=0.010)

[FR] 1.55
(p=0.045)

(23; 27] [RF]+

1.92
(p=0.385)

[EN] 3.15
(p=0.005)

[FR] 3.30
(p=0.013)

[FR] 2.53
(p=0.183)

[FR] 3.99
(p=0.022)

all pa-
tients

[EN] 1.53
(p=0.230)

[RF] 1.81
(p=0.001)

[RF] 2.21
(p=0.000)

[RF] 2.43
(p=0.000)

[RF] 2.90
(p=0.000)

ADAS
MCI (0:6] [RF]+

1.90
(p=0.054)

[RF]+

2.06
(p=0.151)

[RF] 2.45
(p=0.436)

[RF] 2.01
(p=0.106)

[RF] 3.33
(p=0.018)

(6:12] [RF] 2.85
(p=0.093)

[EN]∗

4.35
(p=0.000)

[RF] 4.37
(p=0.000)

[RF] 4.13
(p=0.001)

[RF] 5.32
(p=0.000)

(12:20] [RF] 4.00
(p=0.074)

[RF] 4.89
(p=0.033)

[RF] 7.85
(p=0.000)

[SVR]
6.72
(p=0.001)

[RF]∗

12.30
(p=0.005)

all pa-
tients

[FR] 2.82
(p=0.366)

[RF] 3.17
(p=0.235)

[RF] 3.95
(p=0.010)

[RF] 4.48
(p=0.000)

[RF] 5.72
(p=0.000)

TABLE (4.3) The MAE value of best models for MMSE and ADAS
prediction errors and p-value for statistical significance test between
predicted error and test-retest error. The distribution of prediction
error that is statistically different from the distribution of test-retest
error is marked in gray. Those MAE that are higher than Constant
Predictions have a star sign and MAE that are lower than test-retest

error have a plus sign.

Random Forest showed the best results for most scenarios; hence, this model
will be used in further analysis. Those scenarios that started to overfit will not be
considered in the subsequent iterations.

4.2.2 Imputation technique selection

With this iteration, we test different imputation techniques such as Forward-Filling
(FF), Linear Interpolation (LN), and imputation based on MMSE value (CB).

As it is shown in Table 4.5 in most cases, the Forward Filling method deliv-
ered the best results. There were only a few scenarios when Linear Interpolation
or MMSE-based Imputation outperformed the first technique. There are two sce-
narios where the error distribution becomes closer to the noise distribution: the 4-
year MMSE prediction scenario for the cohort of MCI patients with MMSE values
between 27 and 30 and the 3-year prediction for MCI patients with MMSE value be-
tween 23 and 27. The MMSE-based imputation technique improved the prediction
performance only in 3 scenarios out of 33. For Linear interpolation, the amount of
improved scenarios is 7. As a result, there is a slight improvement in patients’ sub-
cohorts accuracy and smaller improvement for the cohorts of higher granularity,
such as whole MCI patients groups for MMSE and ADAS. Since the Forward-Filling
imputation technique gave the best results, it will be used in the next step of the
pipeline.
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Disease
stage

Cognitive
score
range

2 years 3 years 4 years 5 years 6 years

MMSE
MCI (27; 30] [CB] 1.41

(p=0.122)
[FF] 1.57
(p=0.104)

[LN] 1.62
(p=0.062)

[FF] 1.97
(p=0.003)

[LN] 1.76
(p=0.048)

(23; 27] [LN] 1.95
(p=0.433)

[LN] 2.24
(p=0.149)

[FF] 2.56
(p=0.037)

[FF] 2.53
(p=0.183)

[FF] 3.22
(p=0.004)

all pa-
tients

[FF] 1.79
(p=0.002)

[FF] 2.01
(p=0.000)

[LN] 1.96
(p=0.011)

[CB] 2.29
(p=0.001)

[LN] 2.04
(p=0.004)

ADAS
MCI (0:6] - - [FF] 2.45

(p=0.436)
[FF] 2.01
(p=0.106)

[FF] 3.33
(p=0.018)

(6:12] [FF] 2.85
(p=0.093)

[FF] 4.16
(p=0.000)

[FF] 4.37
(p=0.000)

[FF] 4.13
(p=0.001)

[FF] 5.32
(p=0.000)

(12:20] [FF] 4.00
(p=0.074)

[FF] 4.89
(p=0.033)

[FF] 7.85
(p=0.000)

[CB] 6.68
(p=0.000)

[LN] 7.26
(p=0.004)

all pa-
tients

[FF] 2.82
(p=0.336)

[FF] 3.17
(p=0.235)

[FF] 3.95
(p=0.010)

[LN] 3.91
(p=0.001)

[CB] 4.44
(p=0.003)

TABLE (4.4) The MAE value of model with best imputation tech-
nique for MMSE and ADAS prediction errors and p-value for statisti-
cal significance test between predicted error and test-retest error. The
distribution of prediction error that is statistically different from the

distribution of test-retest error is marked in gray.

4.2.3 Feature selection

This section represents the different feature selection techniques. The first group of
features was taken from the TADPOLE challenge’s recommendation. The second
group of features is the result of the correlation analysis, and the last group of fea-
tures was obtained using Boruta algorithm. The list of features chosen in each fea-
ture selection type is represented in Table 3.2. Since the set of features recommended
by TADPOLE and features selected using correlation analysis almost overlap, we
merged these features into a single feature group "Core" (CR), and used instead of
feature set obtained based on correlation analysis.

There are a few scenarios where features based on Boruta algorithm outper-
formed TADPOLE features, but overall the best-performed feature set was the TAD-
POLE one.
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Disease
stage

Cognitive
score
range

2 years 3 years 4 years 5 years 6 years

MMSE
MCI (27; 30] [TP] 1.33

(p=0.030)
[TP] 1.57
(p=0.104)

[TP] 1.78
(p=0.062)

[TP] 1.97
(p=0.003)

[TP] 1.76
(p=0.048)

(23; 27] [BR] 2.06
(p=0.123)

[TP] 2.24
(p=0.149)

[TP] 2.56
(p=0.037)

[TP] 2.53
(p=0.183)

[FF] 3.22
(p=0.004)

all pa-
tients

[TP] 1.79
(p=0.002)

[TP] 1.81
(p=0.001)

[TP] 2.21
(p=0.000)

[TP] 2.43
(p=0.000)

[BR] 2.82
(p=0.000)

ADAS
MCI (0:6] - - [TP] 2.45

(p=0.436)
[TP] 2.01
(p=0.106)

[BR] 3.64
(p=0.068)

(6:12] [TP] 2.85
(p=0.093)

[BR] 3.50
(p=0.086)

[TP] 4.37
(p=0.000)

[TP] 4.13
(p=0.001)

[TP] 5.32
(p=0.000)

(12:20] [TP] 4.00
(p=0.074)

[TP] 4.89
(p=0.033)

[TP] 7.85
(p=0.000)

[TP] 6.24
(p=0.000)

[BR] 8.21
(p=0.000)

all pa-
tients

[TP] 2.82
(p=0.336)

[TP] 3.17
(p=0.235)

[TP] 3.95
(p=0.010)

[TP] 4.48
(p=0.000)

[TP] 5.72
(p=0.000)

TABLE (4.5) The MAE value of model with best feature selection
technique for MMSE and ADAS prediction errors and p-value for sta-
tistical significance test between prediction error and test-retest error.
The distribution of prediction error that is statistically different from

the distribution of test-retest error is marked in gray.
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Chapter 5

Conclusions and Future work

In our work, we examined the different scenarios for the prediction of cognitive
scores. We showed that there are scenarios that, by design, could not progress with
time. These scenarios include cognitively normal patients at baseline, 1-year pre-
dictions, and a scenario with MSI patients with the first demonstration of cognitive
dysfunctions. By predicting the values of cognitive scores for these cohorts, we do
not learn the progression of the cognitive scores. On the other hand, the long-time
predictions are harder to follow. The models that show good results on short-term
prediction in terms of accuracy cannot perform well on long-term predictions.

We introduced an evaluation framework that helps to identify those scenarios
without progression. By comparing the distribution of progression change of each
cognitive score, we describe the dynamics of whether cognitive decline can be ob-
served with a given cohort of patients or not. The constant prediction, which is a
simple adjustment and is calculated by adding 1 point to the target, can be consid-
ered the best model for those scenarios without progression. This constant predic-
tion does not statistically differ from noise.

Finally, we test a list of techniques and models to produce a future value of cog-
nitive scores in the scope of the proposed evaluation framework. We apply different
machine learning models, imputation techniques and techniques for feature selec-
tion. As a result, we received a group of scenarios (MSI with ADAS < 6, 4-6 years
predictions) where the distribution of prediction error is statistically the same as the
distribution of test-retest error (noise), but the absolute value of MAE still not so
close to the MAE value of test-retest. For other MSI settings, the results are worse.

5.1 Future work

To understand the long-term dynamics better the more sophisticated methods have
to be used. As for imputation techniques, the Machine Learning models or Deep
Learning models could potentially help as well as the incorporation of missing val-
ues into DL networks architecture.

The potential to grasp the long-term dependencies has the Recurrent Neural Net-
works. However, the analysis has to be done carefully considering that there is a
limited amount of data that is needed to train DL models well. The further the pre-
diction has to be made, the less data is left to make these predictions (Figure 3.3).
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Appendix A

Methods

A.1 ML models parameters

Here is the list of parameters for models that were fitted to Grid Search algorithm.
Elastic Net:

• alpha: [0.5, 1, 2]

• l1_ratio: [0.3, 0.5, 0.7]

Random Forest Regressor:

• n_estimators: [20, 60, 100]

• max_depth: [40, 70, 100]

• min_samples_split: [2, 5, 10]

• min_samples_leaf: [2]

Support Vector Regression:

• kernel: [’linear’, ’rbf’, ’sigmoid’]

• C: [1, 10]

• coef0: [0.01, 10]

• max_iter: [500]

A.2 Figures
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(A) ADAS between 0 and 6, CN. (B) ADAS between 6 and 12, CN.

(C) ADAS between 6 and 12, MSI. (D) ADAS between 6 and 12, MSI.

(E) ADAS between 12 and 20, MSI. (F) MMSE between 27 and 30, MSI.

(G) MMSE between 23 and 27, MSI.

FIGURE (A.1) Distribution of Test-Retest and Constant prediction
error for ADAS and MMSE.
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