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Abstract

The meta-information accompanying data from image acquisition devices has lim-
ited use in microscopy image processing techniques involving Deep Learning. This
project aims to incorporate the supplementary metadata for semantic segmenta-
tion by employing a channel selection mechanism in convolutional networks out-
lining its potential benefits and practical applications where metadata can be used
for switching tasks within a master model. The results of conducted experiments
show that meta-information is helpful, and the phenomenon is more expressed with
incompatible segmentation tasks, where a multi-head model or separate models are
required otherwise. Overall, we have achieved a slight increase in scores for simi-
lar tasks as well and demonstrated the applicability of the CNN model for separate
tasks, forcing it to work as an ensemble, leveraging the beneficial effect of multi-task
learning.
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Chapter 1

Introduction

This chapter provides a brief historical background for the semantic segmentation
task and highlights the typical challenges the scientists and users face in the biomed-
ical field of research and industry. We will also disclose our motivation and general
objectives for using meta-information more actively to facilitate achieving better re-
sults in the processing of microscopy cell images.

1.1 Background

The machine-aided image processing and analysis of biomedical data have existed
since the invention of digitalization and image acquisition techniques in medicine
and microscopy. Early software methods of image processing focused primarily on
image enhancement. Gradually with the development of Machine Learning (ML),
the scope of tasks and applicable methods became more sophisticated, aiming for a
partial or full replacement of stages handled by human experts in the image analysis
workflow. The typical tasks in biomedical image processing are semantic segmen-
tation (classifying each pixel belonging to two or more classes), object detection (le-
sions, tumors, abnormal formations, cell parts, etc.) and counting, or more advanced
categorization resulting in medical diagnosis based on all visual data.

The essential skill for microbiologists was to segment microscopy images, man-
ually painting regions of different cell types and their content. Durable and tedious
work required a profound experience and strained all the attention of the expert to
the limits. ML helped to automate a large part of it. The oldest techniques applied
were “rule-based” routines like thresholding (Otsu, 1979 ) and watershed (Beucher,
1979) that separated regions using fixed or adaptive threshold. Despite labeled as
outdated, these methods remain nonetheless applicable in modern image process-
ing workflows as main or auxiliary steps, praised for high computational speed and
simplicity. Then classic ML methods came to the industry: regression and clusteri-
zation techniques based on pixel neighboring analysis (Pham, Xu, and Prince, 2000;
Bezdek, Hall, and Clarke, 1993). However, these techniques, despite being fast and
tractable, are neither universal nor accurate enough. They also require manual ad-
justments, feature engineering, and rarely are transferable beyond the specific area.
The transfer requires significant reprogramming of the software kit.

With the advent of Deep Learning (DL), Neural Nets (NN) gained recognition
and a large share of medical and microscopy imaging applications. The Convo-
lutional Neural Nets (CNN) and U-Net (Ronneberger, Fischer, and Brox, 2015) in
particular became de facto a standard and a backbone for a plethora of working and
experimental NN topologies and processing solutions. Such networks offer more
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flexibility and robustness, eliminate the manual feature engineering stage and in-
crease the accuracy for segmentation tasks comparing to preceding ML models (Lit-
jens et al., 2017; Fishman et al., 2019). However, NNs still rely on human-annotated
data during the training phase to achieve superior performance.

1.2 Project conception

One of the challenges typical for supervised learning is the high dependency on the
training data, overfitting, and domain specificity. When the NN model trains on one
type of data, it performs well on such type later but deteriorates when the new input
data type differs from the trained one, the situation obtained the term domain shift.
For the biomedical images, a different domain may be represented by images pro-
duced by various methods, other devices, or the same device with different settings.
Major domain shift should be prevented by including a significant share of samples
from the target domain into training data.

Needless to say, it is not always possible. The underrepresented or absent do-
main in training data makes predictions on this data for the model difficult. Nev-
ertheless, a broad set of solutions addressing the domain shift exists, commonly
termed domain adaptation. Domain adaptation encompasses various methods; one
of the most studied nowadays is transfer learning (Pan and Yang, 2010). The model
initially trained on one set of samples is trained afterward with the inclusion of the
samples from the required domain - the process is referred to as fine-tuning. The
common usage of transfer learning is the reduction of time needed for training: re-
searchers take models already pretrained on the public dataset like ImageNet and
then continue fine-tuning on field-specific data. Transfer learning for the task of se-
mantic segmentation in biomedical imaging has its own specifics and complications
(Ghafoorian et al., 2017; Raghu et al., 2019).

However, transfer learning is not among the objects of our research. Since we
use similar data distributions during the training and inference time, we do not ad-
dress domain shift in current research but rather the domain specificity. Thus, the
usage of terms domain and task in the current thesis might also be a source of con-
fusion as many authors tie these terms to transfer learning and provide definitions
exclusively in such context (Pan and Yang, 2010). However, this terminology usage
is broader and often less specific; a domain in our work is a synonym of a subset
of data with feature distributions specific only to such subset. The same applies to
the usage of the term task - in the current document, it refers to the segmentation
of different objects from the same or similar source images, but in the experiment
with heterogeneous domains, it refers to separate workflows as well. It’s enough to
claim that we will have multiple domains in our experiments, but the domains of
the training set are not going to change during the inference time. There will also
be no task transitions since we will not make the model learn a new task after initial
training in the experiments.

Following these considerations, two corner strategies for designing an effective
system working in a cross-domain environment are: training a single master model
on a large diverse dataset and introducing multiple models: an individual ("expert")
model for each domain separately. Our objective should reside somewhere in be-
tween these cases, incorporating master model properties and domain separation
within a single system. Domain-specific models or subsystems should preserve the
highest accuracy domain-wise and often serve as a ground-truth configuration when
assessing the performance of competing systems. The decision of which model to
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use is up to the user(operator), though uniting them in an ensemble is preferable for
convinience and for the additional advantages offered by ensembles over the indi-
vidual classifiers (Dietterich, 2000). In the literature, such ensembles of individual
experts dividing the problem space is referred to as a Mixture of Experts (Masoudnia
and Ebrahimpour, 2014). There were reports of successful implementation of meta-
learning with ensembles in biomedical images segmentation (Zheng et al., 2019).
Intuitively we expect that individual models perform better on respective subsets
than a master model, especially when the distance between domains is significant.
We find confirmations in earlier studies when generalization comes with decreased
accuracy comparing to the domain-specific system (Misko, 2020). However, there is
little evidence to prove this should be a rule of thumb, and we must state that it is
just an assumption that will not always hold true in our experiments.

Microscopy bitmap images come with abundant meta-information depending on
data acquisition devices or the methodology of samples preparation, in the industry
this information is rarely used directly in NN training. The examples of metadata
are given below with short comments:

• exposure: discrete integer values corresponding to the sensor activation time,
affecting image brightness, contrast, color rendering and many other image
properties directly and indirectly;

• plane: binary in biplane microscopy (upper/lower), affecting the quality (fo-
cus/blur);

• magnification: ordinal values (1.25x, 5x, 10x, 20x, 40x, 64x) which can be treated
as numerical, affecting the bitmap features size;

• imaging modality: nominal values (Fluorescent, Brightfield, DPC-reconstruction),
greatly affecting the image representation;

• imaging condition(medium): binary(Air/Water), slightly affecting general prop-
erties, quality, and focus/blur;

• imaging condition(focal): binary(focal/non-focal), affecting the image represen-
tation and quality (focus/blur).

In the context of our project, meta-information marks the subset of data in a dis-
crete fashion. Corollary, the more specific is meta-information, the narrower subset
it represents. Oftentimes we will use only a cell line name as meta-label to denote the
origin of the subset of samples. Continuous variables from meta-information were
not included in the current research, but obviously, in the light of the above defini-
tions, they should be discretised to represent some subset within a range of values.
In the concluding set of experiments, meta-information will serve as an attribute of
a specific task.

We are looking for a semantic segmentation system still embedding the CNN as
a primary engine, operating on bitmap microscopy images and incorporating sparse
metadata to aid segmentation in diverse domain conditions. Every improvement in
domain specialisation comparing to the generalized metadata-free model would be
welcome.

Thus we can outline the main objectives of our research as follows:

1. Can meta-information as a domain marker help increase the NN performance
in the task of semantic segmentation?
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2. How can we incorporate meta-information in existing CNN models?

3. What might be the practical applications and benefits of such a system beyond
the context of domain specialization?

The rest of the current thesis structure is organized as follows. In Chapter 2,
we overview the ways to incorporate metadata based on the achievements in multi-
modal learning. Then in Chapter 3 we will describe the data, models, metrics, and
other experiment settings. Later in Chapter 4 we will describe experiments in respec-
tive sections in chronological order. We will summarize our work with conclusions
in the last chapter.
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Chapter 2

Related Work

We started referring to the related works in the previous chapter when we provided
the historical background and conceptualized our project. In this chapter, we pro-
ceed to explain the context and describe achievements in Deep Learning research
areas related to or adjacent to our goals of combining sparse meta-information with
high-dimensional bitmap data. We will elaborate a bit more about Deep Learning
applications in biomedical community, cover multi-modal systems capable of re-
ceiving different types of input and describe data fusion strategies. We will mention
the Manifold Learning approach that transforms high-dimensional input into an en-
coded representation of lower dimensionality, and we will also mention the meta-
learning principle, which arguably overlaps with our field of research. Then we will
dwell on the Dynamic Neural Net concept, which we favored before the beginning
of the project but later dismissed considering compound issues with implementa-
tion. In the section dedicated to Squeeze and Excitation Blocks, we will provide
more technical details since these units form a ground for our models and deduc-
tions. The decision to include the last section with multi-task learning appeared af-
ter conducting experiments with different segmentation outputs and observing the
phenomenon of drastic improvement for one of the tasks controlled by metadata in
the joint training.

2.1 Biomedical applications

At the end of the 1990s, the shift from a rule-based approach to supervised ma-
chine learning techniques happened in biomedical image processing. Computer al-
gorithms became adopted and commercialized for analysis and segmenting X-Ray
images, ultrasound snapshots, and histopathology data. However, the broad use
of handcrafted features persisted until the development of efficient training tech-
niques for Neural Network which happened in the mid of 2010s. From that time,
the burst of scientific publications on using CNN for biomedical image processing
signified the fact that Deep Learning techniques gathered momentum and perme-
ated the field of medical image analysis. An overview of Deep Learning algorithms,
contributions, and notable milestones are provided in the publication of Litjens et al
(Litjens et al., 2017).

In histopathology images, the observations of internal cell organelles and nuclei
are crucial for phenotyping individual cells and for the analysis of drug propagation
and cell response to them. The accurate visualization of nuclei and mitochondria
is possible with sophisticated methods of sample preparation involving the use of
staining substances that penetrate the target organelles adhering to DNA and high-
light organelles under the microscope induced by a specific wavelength. This type
of image modality is called fluorescent; it’s effective but has drawbacks resulting in
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higher cost of processing, time consumption, and quite low ability to observe dy-
namics of cell internals due to limited timeframe for sample readiness. The staining
substance may quickly dissolve beyond the required structure and is usually toxic to
the cell. Brightfield microscopy images that record natural light transmission prop-
erties do not contain particular information about the internal cell structure and are
considered complementary to the fluorescent data in the analysis. However, Deep
Learning enabled the utilization of brightfield modality as an independent source
of information. It is possible to train NN with target images produced from fluo-
rescent data and obtain powerful instrumentation to process cheap brightfield data
(Fishman et al., 2019).

2.2 Multi-modal systems

Digital images often are supplied with metadata in the textual and tabular format
provided by acquisition devices. In the field of DL a combination of inputs of dif-
ferent formats is referred to as Multimodal Deep Learning (Ngiam et al., 2011). The
models taking into account diverse sources usually perform better than separate
processing units.

The process of combining data from different modalities has been termed as data
fusion. SC. Huang, A. Pareek et al. in the comprehensive review (Huang et al., 2020)
explain the concept of data fusion and provide examples of applications in medical
imaging. Also, they describe the varieties of this technique. Data fusion strategies
fall into three types: early, late, and joint fusion, although the boundaries between
them may appear fuzzy.

Early fusion implies data stacking before entering the model and using this com-
bined data in a single input. The late fusion suggests using separate data flows,
for example, the image-only model and the text-only model producing indepen-
dent predictions to be ranked by a final aggregation module at the decision stage.
We can’t consider late fusion in our experiments because metadata is not supposed
to produce independent predictions. In the joint fusion, semi-processed dataflows
from separate inputs interlace inside the main model in a fully connected layer. We
would like to note in advance that the way we incorporate metadata in our mod-
els falls into the joint fusion category. We will elaborate later in this chapter on the
reasons for considering so.

From the reports dealing with supplementary tabular data resembling metadata,
we can note the work of Kawahara et al. (Kawahara et al., 2019), in which supple-
mentary data consisted of patient’s physiogical and health parameters. The team
constructed a multi-task deep convolutional neural network for skin lesion classifi-
cation using "multi-modal multi-task loss function that considers multiple combina-
tions of the input modalities". Under close inspection this approach can be classified
as joint fusion strategy.

We should also pay tribute to the efforts of N. Gessert et al. (Gessert et al., 2020)
who incorporated patient meta-data into other cancer-detecting NN. The model
combines the ensemble and meta-learning strategy, it can be classified as joint fusion
as well. The pre-trained sublearners keep fixed weights during the meta-module
learning phase.
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2.3 Manifold Learning

Among early fusion implementations, common are systems where image features
undergo extraction on the preliminary phase, usually by CNN. They turn into the
same format as supplementary data. After concatenation, the combined data goes
into the primary model, which is not necessarily a NN. There are many implemen-
tations with a similar pattern called Manifold Learning, circulating in the field of
medical imaging (Belkin and Niyogi, 2003; Tenenbaum, Silva, and Langford, 2000).

This format found applications in processing 3D MRT medical images (Zhu et al.,
2018; Brosch and Tam, 2013; Park, 2012). The output produced by MRT devices has
a high spatial resolution. The resulting 3D images are represented by high dimen-
sional vectors when ingested directly by NN models (but with significantly lower
dimensions than initial images). Manifold Learning allows compressing 3D data
producing tabular-like data in a descriptive format instead of large arrays of pixels
and voxels (Gerber et al., 2010; Gray et al., 2011; Tao and Matuszewski, 2013).

The manifold format becomes suitable for incorporating metadata. Few reports
found this approach feasible (Wolz et al., 2011; Wolz et al., 2012; Aljabar et al., 2010).
The systems using this format differ in architecture from image-specific CNN. How-
ever, Manifold Learning is not always necessary when working with 2D data. So far,
the planar image format has a broad use in microscopy, and state of the art CNN’s
perform well with images. We will explore the way of using tabular metadata and
pixel input data simultaneously without significant disruption of CNN architecture,
using the merits in the related field of applications.

2.4 Meta-learning

Meta-learning has a general meaning of learning on a higher level, sometimes the
ability to learn how to learn. Concerning ML, meta-learning implies a combination
of independent learning techniques, algorithms, and effective selection of the most
appropriate one based on meta-knowledge in order to improve the overall system
performance.

A meta-learning system consists of a learning subsystem adapting with expe-
rience. The learning subsystem is often referred to as the base-learner. The system
gains this experience from meta-classifier based on previous episodes and high-level
information extracted from training data (Lemke, Budka, and Gabrys, 2015; Chan
and Stolfo, 1993). In our case, we supply such meta-information externally.

The ensembles mentioned earlier may serve as examples of a meta-learning sys-
tem when the selection of results from the collection of base learners is automated
through the entire process of learning.

2.5 Dynamic Neural Nets

Conventional NNs have a fixed set of parameters after completion of the learning
process. The same applies to ensembles having a set of predefined submodels. In
contrast, Feihu Zhang and Benjamin W. Wah in their publication (Zhang and Wah,
2017) assert that meta-learning NN (MLNN) should dynamically approximate in se-
lection to the most suitable submodel. One of the central powers of a meta-learning
system is the ability to operate in new and unseen scenarios. They implemented
such a system with utilization of dynamic weights. The concept of dynamic NN is
not new, and there have been applications of them. Every model with parameters



8 Chapter 2. Related Work

changing in the inference time can be considered dynamic. So the range of concepts
and implementation may be broad, but under a closer inspection, we were not able
to find further development of this tempting idea in the literature and a possible
implementation casts some doubts regarding complexity and feasibility.

Arguments in favor of dynamic parameters: greater flexibility, possibility to alter
convolution layer parameters, lower dependence on training set balance, expected
capability to interpolate between modalities and extrapolate beyond them.

Arguments against dynamic parameters: complexity in implementation (inflat-
ing with the number of layers applied), difficulties in tractability, susceptibility to
methodological pitfalls. Since the parameters are altered during the training and in-
ference time, there are engineering challenges, because existing frameworks allow
processing the input data in batches, and NN parameters cannot be altered within
a batch. So either we have to adhere to batches of size 1 or populate batches with
similar images having same meta-parameters. Both approaches decrease effective-
ness and increase computational cost. The proposed system would wildly digress
from conventional CNN topologies, impairing direct comparison, debugging and
application of proven strategies.

2.6 Squeeze and Excitation Blocks

In general, the data fusion technique is another aspect of model generalization oc-
curring at the expense of feature space expansion. The interpolation or extrapola-
tion between domains is unlikely. This holds true for traditional CNN models but
may be different for Transformer models that are genuinely multi-modal from the
inception and capable of combining data on various levels of abstraction (Vaswani
et al., 2017). Transformers may possess dynamic properties (yet the vulnerability to
a training set imbalance still may persist). Transformers are the nascent star in the
NN constellation, but their study should be a topic for different research.

Considering data fusion, we already spoke against the late fusion strategy as un-
suitable. For early fusion, two inputs must have the same modality. Earlier, we men-
tioned that bitmap data could be preprocessed by CNN for semantic feature extrac-
tion or transformed into another representation by Manifold Learning. But such im-
age preprocessing is not practical for pixel-level semantic segmentation tasks, where
CNNs remain the proven inventory. Therefore in the data fusion paradigm, only
joint fusion remains a suitable strategy. The weak point of such strategy concerning
CNN - it requires the presence of fully connected layers - the only place where the
data fusion is possible. Classic CNN’s for semantic segmentation are Fully Convo-
lution Networks having no fully connected layers.

However, the modifications of CNN architecture are possible, and we found a
suitable approach that we can term as Channel Attention Mechanism. Many re-
searchers focus on spatial dependencies proposing beneficial alterations to a net-
work topology with region attention mechanisms to improve CNN performance.
Meanwhile, interchannel dependencies also may play an essential role in CNN clock-
works while being less discussed and overshadowed by papers dedicated to spatial
attention. Forcing the network to pay closer attention to interchannel dependencies
at the right stage of processing is similar to the spatial attention effect. It is also
capable of providing a noticeable boost to performance.

That was the idea behind the Squeeze-and-Excitation (SE) blocks proposed by
J. Hu et al. (Hu, Shen, and Sun, 2017). SE units are compatible with virtually any
CNN architecture, giving the improvement for the range of tasks with a relatively
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small computational burden. The novel approach allowed authors to win ILSVRC
2017 classification task with top-5 error of 2.251%, exceeding the previous winning
2016 record by a relative improvement of ≈25%.

SE blocks provide access to a full range of channel activations on the layer, rein-
forcing the useful ones and suppressing the irrelevant ones at the right time and on
the appropriate image processing stage. At the beginning of the block, each channel
is squeezed to one pixel by an average pooling layer, thus serving as an activation
descriptor for the given channel. From feature maps U ∈ RH×W×C we obtain a set
z ∈ RC through "squeezing" Fsq(uc). These descriptors are fed into a small network
consisting of three layers of neurons: input layer, hidden layer, and output layer - a
sort of a multi-layer perceptron with a ReLU function δ and gated at the output by
a sigmoid activation σ. The hidden layer is reduced by half or more, as configured
by reduction ratio r, so the weights have dimensions W1 ∈ R

C
r ×C and W2 ∈ RC× C

r

respectively.
s = Fex(z, W) = σ(W2δ(W1z)) (2.1)

After passing this block, the channel descriptors gain new values based on block
parameters that are learnable through backpropagation. Then modified descrip-
tors are applied back to the multi-channel features by multiplication, eventually re-
calibrating them - the whole process termed by authors as excitation.

x̃ = Fscale(uc, sc) = ucsc (2.2)

where X̃ = [x̃1, x̃2, ...x̃C] and Fscale(uc, sc) is a channel-wise multiplication between
the scalar sc and the feature map u ∈ RH×W .

FIGURE 2.1: A Squeeze-and-Excitation block (Hu, Shen, and Sun,
2017).

The idea of SE blocks is further developed by Abhijit Guha Roy et al. (Roy,
Navab, and Wachinger, 2018), who combined them with a spatial attention mech-
anism in a similar manner. However, the channel attention mechanism still con-
tributed the most to the task scores improvement in their experiments. SE blocks
become amenable for accepting encoded meta-information either by completely re-
placing channel descriptors or by concatenation with them. In case of replacement,
we would witness the metadata-driven control of channel attention mechanism, so
the system can suppress or bring forward the required channels depending on meta-
labels. We will often refer to such blocks as Channel Attention units since they do
not have squeezing operations any longer. In the case of concatenation, we would
have a combination of this effect and channel recalibration. We will use both ways
of incorporating metadata to compare the efficiency.
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2.7 Multi-task learning

In the experiments on the dataset with different segmentation masks, we used meta-
information to switch between tasks that otherwise would be incompatible in a sin-
gle output. We observed an interesting effect of significant score improvement for
one subset in the joint training compared to the individual expert model’s perfor-
mance in the condition of scarce training data for this particular subset. We realized
that we dealt with multi-task learning finding the most likely explanation for the
achieved results in publications dedicated to this type of DL. These findings also
urged us to extend experiments and compare the performance of our model with
classic multi-task and multi-head models.

Multi-task learning is a well-known technique having a multitude of implemen-
tations and applications in different areas. It naturally and almost simultaneously
emerged from single task solutions offering several outputs designed for specific
needs. In all such relevant literature, the effect of improving individual tasks from
joint learning is noted, and sometimes it is specifically exploited. Rich Caruana, in
his seminal paper (Caruana, 1997), provided an explanation of how such improve-
ment occurs.

Sebastian Ruder, in his overview (Ruder, 2017), affirms that multi-task learning
can appear and come in different guises. When the researcher optimizes more than
one loss function, he certainly deals with multi-task learning. But that can be a dis-
putable point when we try to apply it to our case because in metadata-driven model
we have a single loss function; however, we can claim that it is optimized differently
during the task change. So we are inclined to use a more general definition cited
from the publication of Yu Zhang and Qiang Yang in a National Science Review
(Zhang and Yang, 2017).

"Given m learning tasks {Ti}m
i=1 where all the tasks or a subset of them are related

but not identical, multi-task learning aims to help improve the learning of a model
for Ti by using the knowledge contained in the m tasks".

Such definition is even applicable to our metadata-driven model with a single
output head. This comprehensive publication also covers the current state, the tax-
onomy of solutions, the progress, and possible ways in the development of multi-
task learning approaches. Based on the classification from the paper, we can refer to
our case as multi-task supervised learning.
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Chapter 3

Experiment Settings

The conditions and environment for conducting experiments are indispensable and
essential parts of the project. Therefore, this chapter describes the source data and
ways of processing it along with the training of NN. The methods of metadata en-
coding are given in the respective section. The software framework for DL, backbone
models overviews with peculiar hyperparameter settings follow next. Finally, we
introduce the metrics for evaluating all results in our experiments, which appeared
universal and straightforward for all cases.

3.1 Datasets

The data for the project was provided by PerkinElmer, Inc. The Primary dataset ("7
lines" dataset) consists of high-resolution microscopy images of cells from various
human tissues and organs and respective ground truth masks of size 1080×1080 px.
The total size of this dataset is 3024 samples split into training, validation, and test
parts as 2016:504:504. The main objective in processing cell images with the aid
of Deep Learning is segmenting nuclei for further analysis: count, size, shape, de-
tection of dead cells, movement tracking, and many other observations that help
investigate the cell internals and the response to various treatments. For some tasks,
we also included a small dataset with anomalies occurring on the images that may
help in refining the existing datasets, increasing the quality by removing the spoiled
samples, or teaching the NN to ignore visual contaminations. The Primary dataset
has seven subsets representing cells from various sources, having somewhat differ-
ent appearances and morphology. The distribution of images across cell lines are
given in Table A.1. We also used an additional dataset (Table A.2) from AstraZeneca
(AstraZeneca, 2021) in some experiments, which we preprocessed for compatibility
with "7 lines". Sometimes, the Primary dataset parts (specific cell lines) were used
for intermediate experiments to form a smaller volume of data or to combine it with
external data.

The methods for the preparation of biological samples may vary in complexity
and ways how they impact cells, resulting in different appearances of digitized im-
ages. One requires the application of dye that penetrates cell nuclei and highlights
them with high contrast. These spectacular fluorescent images often serve as a basis
for constructing ground truth masks with the help of software and human super-
vision. However, this method is expensive, time-consuming, and invasive, literally
killing the cells, making the observation of processes and movements developing
over time in live cells impossible.

The more convenient way of studying cells is the brightfield method, where the
samples are not exposed to invasive substances and are observed as is, highlighted
by a light source. These images have low contrast and are harder for downstream
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processing. But harnessed by the power of Deep Learning, microbiologists can au-
tomate the workflow and obtain the segmented images of good quality, provided
the neural models were trained and tuned properly. The examples of brightfield
and fluorescent modality images from Primary dataset, acquired by Opera Phenix
microscope, are given on Figure 3.1 along with ground truth masks.

FIGURE 3.1: Examples of microscopy data taken from three cell lines
(Source: PerkinElmer Primary dataset).

For our experiments we used only brighfield modality as more practical and
challenging. The fluorescent sources we considered too easy for semantic segmenta-
tion task. The ground truth masks consist only from two classes: white foreground
with segmented nuclei and black background.

Another dataset is named an Exhaustive dataset with more diverse meta-information,
from where most notable is magnification. This dataset consists of 3888 images, split
into the train/validation/test parts as 2577 : 642 : 669. More details will be provided
in the respective section with the experiment involving this dataset.

We resorted to external and synthetic datasets in a few experiments to emphasize
the researched phenomena. These datasets will be better described in dedicated
sections.

The original size 1080×1080 is inconvenient for NN models leading to GPU mem-
ory outage, so the training images undergo random cropping of size 512×512 px syn-
chronously with masks. Validation images were cropped only in the central part to
preserve consistency across the experiments. During the inference, we applied tiling
512×512 px to the test data images of original size with overlapping tiles. These
patches pass through the model, and output masks were stitched back in their origi-
nal order discarding the overlapping margins. Disassembling and reassembling the
test data is a good strategy for utilizing GPU resources without impacting the per-
formance since the cellular patterns on the images are homogeneous, allowing the
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described patchwork. Also, this strategy serves as a good augmentation tool, pro-
viding random patches during the training time. Apart from such augmentation,
we didn’t use any other. Cell images are relatively isotropic, so flipping and rotating
augmentations would not bring positional diversity but rather expand the dataset
size. However, random cropping was already considered sufficient for the diversi-
fication of images. Regarding the brightness and contrast changes, the dataset also
contains a sufficient range of intensities. Color augmentation are not applicable to
single-channel input images. Nevertheless, the most significant reason for not us-
ing other augmentation types was that they were not used for methods achieving
SOTA results. In our work, we focused exclusively on NN topological search. Intro-
ducing new image augmentations into the pipeline could unnecessarily expand the
possibilities in the common search space of solutions.

3.2 Metadata encoding

We encoded metadata with a vector of length n, where n amounts to the number
of domains (subsets), which constitute the dataset. The components of this vector
are populated with floating-point numbers having either of two values: 0.0 or 1.0.
This vector is supplied to NN in a separate input. Further, we will refer to it as a
meta-input. Meta-input data undergoes the same preprocessing as main input data.
First, the formation of batches occurs where each vector in the meta-input batch
corresponds to the source image in the main input batch. Then the casting to NN di-
gestible format is scheduled (tensors in PyThorch framework). Finally, the metadata
is delivered to GPU for synchronous feed with main data. The number of discrete
values in metadata defines the number of components. For example, in the Primary
dataset with seven lines, the metadata comprises 7-”bit” vectors. Each component is
responsible for the single domain, taking the value 1 when the source image belongs
to the particular cell line and 0 when it belongs to other cell lines. Thus, only one
component is “active” (taking 1) in the supplementary metadata vector for the Pri-
mary dataset. Values are converted to to floating-point format in the pipeline. The
example of dictionary with metadata vectors for each meta-label of the seven lines
is below:

HeLa [1, 0, 0, 0, 0, 0, 0]
MDCK [0, 1, 0, 0, 0, 0, 0]
A549 [0, 0, 1, 0, 0, 0, 0]
HT1080 [0, 0, 0, 1, 0, 0, 0]
HepG2 [0, 0, 0, 0, 1, 0, 0]
MCF7 [0, 0, 0, 0, 0, 1, 0]
NIH3T3 [0, 0, 0, 0, 0, 0, 1]

Such encoding resembles a binary code or one-hot format, but it is not so because
it allows the redundancy of data. For example, for experiments with two subsets,
we used a two-component vector, where the value [1, 0] denoted one source, and
[0, 1] another source, while the total number or combination is four:
[0,0], [0,1], [1,0], [1,1].
One-hot encoding is not mandatory because this vector is an input (or a part of
the input) for Channel Attention block with a small neural network, having no re-
quirements for avoiding multicollinearity. The other reason for not using one-hot
encoding is better interpretability. It was convenient, for debugging especially, to
hold a specific position in the metadata vector responsible for a particular domain.
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This encoding acted as expected, as our experiments showed. For the testing, we of-
ten applied different modes of meta-label supply. Apart from “normal” mode with
native meta-labels we used “shuffled” mode, inferring the test images with foreign
meta-labels, “zeros” and “ones” modes when the meta-information vector consisted
of all zeros or ones. Such cases were included for curiosity, and they confirmed the
full (in case of "shuffled" mode) and partial (in case of "ones" mode) engagement
of the channels and pathways from other domains; for "zeros" mode the biases of
SE/CA blocks are exposed. In contrast, we observed the full engagement of correct
pathways with a label native to the subset. This behaviour has been permanent for
all experiments throughout the research.

Such encoding also allows the inclusion of continuous variables since we cre-
ated the metadata-driven pipeline with floating-point format, reserving the possible
development in future. However, in our experiments, we didn’t use continuous
meta-parameters.

3.3 Models and Hardware

Two Convolutional Neural Net models were the main tool for semantic segmenta-
tion in the current project: Unet3 and PPunet. Both are the derivatives from the
classic U-Net (Ronneberger, Fischer, and Brox, 2015). These models have five stages
of downsampling and upsampling, triple convolution layers instead of double ones
in the classic implementation, and a constant number of filters in each layer (64) re-
gardless of the level. For the Unet3 this results in fewer parameters than the original
U-Net without deterioration in segmentation performance. PPUnet contains Pyra-
mid Pooling Layers (PPL) with five interpolation units operating on various scales.
PPL gained recognition in the Computer Vision community by enhancing the ac-
curacy and making the model more robust to inconsistent object sizes (He et al.,
2015). PPUnet also features skip connections between encoder levels. This model
(in "naked" form without SE blocks) is currently accepted as a state-of-the-art model
in the Tartu research group, giving the highest scores on the Primary dataset.

Besides the declared benefits of Pyramid Pooling blocks, we pursued two other
goals with PPUnet:

1. using the different software framework (PyTorch in our project, while the sig-
nificant part of the code in Tartu group exercise Keras) and custom pipeline we
could compare our results with SOTA records, which eventually appeared to
be a fortunate decision, that allowed us to debug and increase the performance
of new pipeline;

2. exceed, if possible, the highest results and set new records in semantic segmen-
tation of Primary dataset.

By augmenting models with Squeeze and Excitation (SE) blocks, we obtained
enhanced models which generally performed better than models without SE blocks
(“naked” models), and also we obtained models capable of accepting encoded meta-
information. Extra SE modules are lightweight and added only 3-7% to the initial
number of parameters, e.g. “naked” Unet3 has 1.37 million parameters, and Unet3
equipped with SE blocks has 1.42 million (3% increase), source PPUnet has 2.10 mil-
lion parameters, and PPUnet+SE has 2.25 million (7% increase). The schemes of both
models and the positioning of SE blocks are illustrated on Figures 3.2 and 3.3.

In our experiments, we used several baseline models for comparison with meta-
driven ones. For the master models trained on the whole dataset we took naked
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FIGURE 3.2: Unet3 schema with SE blocks.
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FIGURE 3.3: PPUnet schema with SE and Pyramid Pooling blocks.

configuration(without SE blocks) and configuration with SE blocks without meta-
input. Models for investigating the effect of meta-informaion were equipped with
legacy SE blocks taking exclusive meta-input (so technically, using “squeeze” in the
naming of these blocks is no longer correct as no input channels accepted, so fur-
ther we will refer to such units as Channel Attention (CA) blocks). Also, we used
models with SE blocks and concatenated meta-input. We used SE blocks with con-
catenated dummy input (usually zeros) of the same size as meta-label vector in later
experiments as an additional reference model. We trained individual models on a
restricted subset for many experiments to obtain an “expert” model only in a specific
domain. Such individual models featured conventional SE blocks.

At the beginning of the study, we used SGD optimizer with a starting learn-
ing rate of 0.01 and learning rate optimizer ReduceLROnPlateau, which reduced
the learning rate by half when validation loss fails to improve for five consecutive
epochs. The typical plot for learning rate with this optimizer is shown on Figure 3.4

After pilot experiments, the optimizer was replaced by Adam with a base learn-
ing rate of 0.0002 and an upper rate of 0.0008. The rate scheduler was CyclicLR
which changes the rate in jigsaw manner with decaying amplitude, approaching to
the basic learning rate (Figure 3.5 ). Adam optimizer itself decreases learning rate
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FIGURE 3.4: Learning rate with ReduceLROnPlateau scheduler.

adaptively to various parameter groups and uses it as an upper bound. So learning
rate scheduler only limits the upper bound for Adam. There is no common opinion
whether Adam requires a scheduler, but similar practice with a sinusoidal rate pat-
tern is employed as SOTA method in the research group. We didn’t conduct studies
for the determining the benefit of the scheduler, but at least we assumed it to be
harmless. The typical plot of the learning rate for Adam is given below in Figure
3.5. The frequency of changing the learning rate direction is set by a fixed number
of cycles, it was adjusted for the entire training session, and the scheduler pattern
scales on the number of epochs (accounting for training set size and batch size).
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FIGURE 3.5: Learning rate with CyclicLR scheduler.

The usual number of epochs for all experiments is 100. In some experiments, we
extended it to 200, and for quickly converging experiments with synthetic data in
concluding ablation studies, we restricted it to 50. We saved the best model on the
training range to use for downstream analyses. Usually, the majority of the models
converged approximately after the 70th epochs, even with large datasets. If a fur-
ther decrease in validation loss occurred, it was so minuscule that we considered
it not worth investing more time than 200 epochs. That was why we used a fixed
number of epochs instead of letting the model train with an early stopping setting.
We performed a few runs on the Primary dataset with patience setting 20 (implying
that training should quit when the loss does not decrease during twenty consecutive
epochs). The model continued training more than 400 epochs but with negligible im-
provements, which were irrelevant compared to the best status of training session
interrupted after 100 epochs.

The loss function used as criteria for minimization in the backpropagation algo-
rithm is CrossEntropyLoss, having the general form as:



3.4. Metrics 17

J = − 1
N
(

N

∑
i=1

yi · log(ŷi)) (3.1)

where yi and ŷi are target class and prediction probability respectively for each
pixel. However, in DL framework the implementation for calculating this kind of
loss might differ.

The DL framework for our project was PyTorch of version 1.6.0+cu92, CUDNN
version: 7603. Computations were performed on GPU Tesla v100 16GB and 32 GB
installed on High Performance Centre (HPC) servers in the Institute of Computer
Science at University of Tartu. The amount of RAM in HPC allowed us to use in-
memory datasets up to 20 GB.

3.4 Metrics

The pixel-wise and object-wise evaluation of accuracy and other metrics in seman-
tic segmentation rely on a comparison with ground truth. Intersection-over-Union
(IoU), also known as Jaccard Index, measures the overlap between the ground truth
mask and model prediction.

IoU =
target ∩ prediction
target ∪ prediction

(3.2)

Equally common is F1 score, also known as Sørensen–Dice Coefficient, which is a
harmonic mean between precision and recall.

F1 = 2 · precision · recall
precision + recall

=
2TP

2TP + FP + FN
(3.3)

where TP denote true positives - predicted foreground pixels which coincide with
ground truth (GT) mask pixels, FP - false positives, predicted foreground pixels lo-
cated on the wrong place relative to the GT, FN - "underpredicted" foreground pixels
when predicted background pixels reside in place of GT foreground pixels.

Further we will use F1 score as a sole metrics for presenting results of our exper-
iments because IoU and object-wise metrics were strongly correlated and consistent
with each other. Since oftentimes F1 is relatively high and the difference between
scores is minimal, we will use the F1 error metric to improve visual perception for
plotting. F1 error is calculated as a value complementing F1 to 1:

F1 err = 1− F1 (3.4)
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Chapter 4

Experiments and Interpretations

The most voluminous chapter in this thesis is dedicated to experiments and their
results. We described our activities in chronological order spreading over three
months. We started from the first pilot experiments to test preliminary assumptions
and to adjust the software kit. Then we proceeded to more extensive experiments
with various datasets, each having a unique name for the convenience of referring
and identification.

4.1 Pilot experiments

The first experiments aimed to investigate the parameter fusion effect described
in the Related Work chapter as Dynamic Neural Nets 2.5. The 2-line dataset was
formed, consisting of two cell lines (HeLa and MDCK). Each cell line was supplied
with a random specific noise tensor of size 64×3×3 to be added to Unet3 middle layer
parameters during the training and the inference time. This experiment showed that
such an approach had no effect on the model’s selective performance towards each
cell line, serving as a sort of regularisation but regardless of the cell line. That is
to say, the model adapted to such perturbation and inverting the labels (catering
foreign label with images of particular cell line) didn’t affect the inference results.
Neither did supplying one constant particular label for both subsets nor adding ze-
ros to parameters, which implies labels are useless at inference time. The pixel-wise
scores for the test set were modest and much lower than SOTA scores in Tartu group
on respective cell line subsets (as well as scores of our best model from further ex-
periments). Our model scored 0.78 on HeLa subset while the SOTA results reached
0.9 and higher, the respective figures for MDCK are 0.73 and ≈0.83

Considering the unclear vision for developing the idea of dynamic neural net-
works in the frame of our research, and engineering challenges also mentioned in
Dynamic Neural Nets section 2.5 we ceased conducting experiments and further
planning in this direction and focused exclusively on SE blocks.

However, we also had a toy model accepting the meta-information in the form of
an image (similar to QR-code used in commerce) into the dedicated channel along
with the main microscopy image. This approach arguably failed: the model actually
performed better when the black image was supplied at the inference time, so addi-
tional bitmap information only served as a detractor during the learning process.

We started exercises with SE blocks. The Unet3 model equipped with SE blocks
on each level performed significantly better than “naked” Unet3 on the same dataset
and with the same hyperparameter settings. In pilot experiments, we used a “two-
bit” meta-input to denote the origin of the sample: [1, 0] for HeLa and [0, 1]
for MDCK. Few implementations with topological variants of how to add meta-
information to SE/CA blocks were tested, listed below and illustrated in Figure 4.1:
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1. option when meta-input ("two-bit") was concatenated to 64-length input of SE
block;

2. option when 20 additional duplicated meta-inputs were concatenated to the
input of SE block to assess if the meta-input size makes a difference in concate-
nation with original 64-input;

3. option with additional flat layer in SE block to allow more complex non-linear
patterns in channel selection (meta-input is concatenated to the conventional
input of SE block in this configuration);

4. option when meta-information was concatenated not to the main input of SE
block but to the middle layer where the number of neurons is reduced;

5. option with meta-information as an exclusive input to SE block without acti-
vated channels from the previous convolutional block. In this configuration,
meta-input replaces the conventional SE input, but the middle layer remains
as a legacy from SE topology;

6. option with exclusive meta-input and redundant middle layer removed. This
configuration was tested chronologically later on other dataset.
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FIGURE 4.1: Variants of introducing meta-information to Channel At-
tention blocks (the downscaled version of blocks which originally
have 64-length input). Red circles - meta-information, blue circles -
conventional SE input of channel descriptors, orange circles - hidden

layer(s), pink circles - output.

More experiments to determine the appropriate reduction ratio affecting the size
of the middle layer were performed on another dataset and will be mentioned later.
However, they did not change our approach, and in all models with combined
SE+meta blocks, we used reduction ratio 2. We should note now that for the majority
of models that were controlled exclusively by meta-information (without squeezing
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the channels from the previous layer) we still used three flat layers inherited from
SE block topology (variant 5 in Figure 4.1), though the middle layer between the
input and output layer in such configuration becomes meaningless, carrying no use-
ful functionality. The middle layer was discarded in final stages of the project, but
until then, we kept it as legacy and to maintain the similar structure and number of
parameters with model having a combined input SE+meta. For this concatenated
variant the configuration 1 from Figure 4.1 was used throughout the project.

All options performed well and comparable with the baseline model with SE
blocks (Table 4.1). It’s worth noting that these models are responsive to labels swap
- inverse labels cause the performance drop, and supplying only one label favors
only that subset which is associated with this particular label (Table 4.2). We can
assume that pathways from both domains have a lot of features in common - this
is reflected during the inverse mode of label supply - the score for the domain with
foreign meta-label doesn’t drop significantly.

Subset
metrics

Models
Master
model
naked

(reference1)

Master
model

with SE
(reference2)

Master
model

SE+meta
with
extra

middle
layer

Master
model

SE with
duplicated
meta-input

Master
model
with

combined
input

SE+meta

Master
model
with

exclusive
meta-input

Expert
model
trained

on
HeLa

Expert
model
trained

on
MDCK

Combined F1 0.74 0.796 0.797 0.77 0.795 0.806 0.652 0.661
Hela F1 0.779 0.823 0.822 0.8 0.82 0.833 0.771 0.634
MDCK F1 0.675 0.753 0.757 0.723 0.755 0.761 0.468 0.699

TABLE 4.1: F1 scores for models from pilot experiments

Subset
metrics

Models
&

mode
SE+meta
normal

SE+meta
inverse

Meta only
normal

Meta only
inverse

Combined F1 0.795 0.786 0.806 0.758
Hela F1 0.820 0.805 0.833 0.786
MDCK F1 0.755 0.758 0.761 0.720

TABLE 4.2: Example of F1 score response to test modes in two models
with meta-information from pilot experiments. Normal mode means
test images were paired with native meta-labels, in the inverse mode
they went with foreign meta-labels (images from HeLa domain were

paired with MDCK meta-labels and vice versa)
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FIGURE 4.2: F1 error rate on the entire set for models in pilot experi-
ments.

Another observation - a master model trained on both sets performs better on
these sets than an individual model trained on a single subset - even for the naked
model. This may be counterintuitive to our assumption that the model should be an
expert in a narrow domain but lose some accuracy with generalization on multiple
domains. But it turns out that both domains serve as good augmentation techniques
and contribute to each other’s scores in the master model. The pilot experiments
served as a warm-up for more profound experiments and helped us to establish
and tune the pipeline for the entire project. The ranking of the models from pilot
experiments are shown in Figure 4.2.

4.2 Experiments with Primary dataset

We have described the Primary dataset in the preceding chapter with experiment set-
tings details and the distribution across cell lines is provided in the Appendix A (Ta-
ble A.1). We started experiments with Unet3 and PPUnet models using 200 epochs
and SGD optimizer. Still, we could not reach SOTA records on this dataset that
comprised the F1 score of 0.8523. However, the models with SE blocks and incor-
porated metadata showed better results than our baseline models, and metadata-
driven models responded to label swap in test modes. After the scrutiny, we up-
graded the optimizer to Adam, employed a CyclicLR scheduler, and applied post-
processing of predicted masks: removing small stray holes and objects with an area
below a certain threshold. With such optimization, the model started to show better
results, and some of them exceeded the SOTA score for the Primary dataset, though
the margin was relatively small.

Below in the Table 4.3 are the results after debugging the process, with scores
for the entire dataset and specific subsets (rounded to the precision of the third digit
after the dot). Also, in the last column, there are results from the models trained only
on subset samples. These individual models had PPUnet topology with SE blocks.
(We should point out that Unet3 with concatenated metadata was discarded from
these results due to the discovered mistake during the training process)

The Figure 4.3 ranks the models by F1 error rate on the entire dataset.
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Domain
Model PPUnet

naked
PPUnet
with SE

PPUnet
meta

PPUnet
meta + SE

Unet3
naked

Unet3
with SE

Unet3
meta

Individual
models

Combined 0.850 0.854 0.855 0.855 0.849 0.854 0.854 -
HeLa 0.890 0.899 0.899 0.899 0.897 0.898 0.901 0.901
MDCK 0.858 0.864 0.864 0.867 0.856 0.865 0.866 0.830
A549 0.847 0.852 0.853 0.852 0.846 0.851 0.853 0.841
HT1080 0.864 0.867 0.868 0.869 0.862 0.868 0.866 0.857
HepG2 0.803 0.806 0.806 0.805 0.800 0.805 0.804 0.806
MCF7 0.836 0.839 0.840 0.839 0.834 0.839 0.839 0.825
NIH3T3 0.883 0.890 0.891 0.891 0.886 0.887 0.891 0.891

TABLE 4.3: Resulting scores of master models and individual mod-
els(last column) from experiments on Primary dataset
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FIGURE 4.3: F1 error rate on the entire set for models in Primary
dataset experiments and comparison with SOTA result.

Reference model results approached SOTA records, and configuration with SE
and SE+meta exceeded them by a small margin. The difference between the naked
model and SE model is noticeable, and the difference between SE and meta is subtle
but still statistically significant according to paired t-test using individual F1 scores
with 503 degrees of freedom and H1 hypothesis that the first set scores are greater
(Table 4.4).

Test p-value
SE results vs naked 3.5E-56
Meta results vs naked 4.3E-82
Meta results vs SE 0.00057

TABLE 4.4: Paired t-test on results from Primary dataset experiments

The advantage of metadata-driven models over reference SE model, however, is
not quite convincing. We can attribute this to the fact that domain-specific models
are not superior to the metadata-driven models. Only HeLa and NIH3T3 models can
be considered the better “experts” in the respective domains. For the rest of the cell
lines, the master model without meta control (SE model) demonstrates higher scores
on the specific subsets. In general, we may speculate that meta-information cannot
convey the expertise from the domain-specific configuration to master model. The
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master model becomes more proficient without meta-information by exchanging the
knowledge between domains in the superset.

4.3 Experiments with Exhaustive dataset

We prepared a new dataset of microscopy images from the large annotated pool
named Exhaustive dataset for the next set of experiments. The preprocessing con-
sisted of selecting the records with better masks and contrasty sources, converting
the source images from TIFF to bitmap format with values downscaled to the range
[0, 255], a total of 7776 images which is 2.5 times bigger than the Primary dataset
volume, extending the training time up to 40-50 hours. To expedite the process we
downsampled this set to 3888 images, splitting it into the train/validation/test sets
as 2577 : 642 : 669. Three sets from meta-annotations were selected representing mi-
croscope magnifications 10x, 20x, and 40x. The distributions of samples within this
preprocessed dataset across magnification values and cell lines are provided in the
Tables A.3 , A.4 of Appendix A. The encoding consisted of three "bits" for magnifi-
cation.

FIGURE 4.4: Examples of masks and metadata encoding
in Exhaustive dataset experiments.

The backbone model topology was PPUnet, and the duration of experiments
was 200 epochs each. From this point we started to use another reference model:
dummy+SE, which accepted meaningless information (zeros for all samples) instead
of encoded metadata. In later experiments, when the length of metadata encoded
vector increased, it might be a potential factor of inequality between bare SE models
and models with concatenated metadata because it implicitly affects the reduction
ratio for a meaningful part of SE input.

The first experiments didn’t show any advantage of metadata-driven models
over the reference SE models. We additionally adjusted the pipeline fixing all pos-
sible seeds for PyTorch non-deterministic components. Eventually, the results didn’t
improve significantly, and meta-information didn’t give an overall performance boost
in the current experiment despite showing signs of being absorbed in label swap
tests. The aggregated results for the experiments with encoded magnifications are
below in Table 4.5. They also show that models individually trained on magnifi-
cation subsets are surpassed by master models in some cases (for 40x subset, high-
lighted in maroon color). Also, the margin is small, which suggests that even this
advantage may be attributed to randomness. We can also speculate that these sub-
sets still share some features and may benefit from a diverse set of training images
despite being different in scale and representation.

The intersection of common features is small especially for the domains with a
magnification of 10x versus 40x. Such assumption is based on the drastic drop in
scores for this subset when labels swap in the respective model. Below in Table 4.6
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Subset
Model Model

10x
Model
20x

Model
40x

Naked SE Meta
Meta
+SE

Dummy
+SE

Combined 0.745 0.784 0.782 0.784 0.785
10x 0.754 0.705 0.744 0.746 0.737 0.746
20x 0.812 0.750 0.800 0.796 0.802 0.799
40x 0.807 0.780 0.807 0.803 0.809 0.808

TABLE 4.5: Results on subsets from the reference models and models
encoded with magnification data in Exhaustive dataset experiments.
The cases when master models exceed the scores of individual models

are highlighted in maroon color

is an example for the model with metadata input concatenated with SE input. "Nor-
mal" mode implies provision of native meta-labels with images from the respective
subset. In the "Zeros" mode only zeros are supplied throughout the full test (in such
mode the outputs of CA units expose internal biases), for "Ones" the meta-input
is populated with 1.0, in "Shuffle" mode (which is actually a shifted mode) images
from 10x domain were paired with "20x" meta-label, images from 20x domain were
paired with "40x" meta-label, images from 40x domain came with "10x" label. Also,
there are modes when the single label "10x", or "20x" or "40x" is supplied for the test
set, showing the highest score on the native subset expectedly.

For the metadata-driven model without concatenation, the picture is similar.
And for the model with dummy meta-input the deviation in different modes is also
present but to a small extent (no more than 0.005 of absolute F1 score value). That
means some residual weights and biases have been still learned from the training
though they are meaningless.

Subset
Mode

Normal Shuffle Zeros Ones 10x 20x 40x

Combined 0.784 0.553 0.701 0.626 0.564 0.661 0.611
10x 0.737 0.603 0.631 0.615 0.737 0.603 0.130
20x 0.802 0.695 0.783 0.758 0.633 0.802 0.695
40x 0.809 0.155 0.66 0.42 0.155 0.502 0.809

TABLE 4.6: Results of various test modes for the model with magnifi-
cation meta-information concatenated with SE input. "Normal" mode
implies provision of native meta-labels with images from the respec-
tive subset. In the "Zeros" mode only zeros are supplied as meta-
labels throughout the full test, for "Ones" the meta-inpu is populated
with 1.0, in "Shuffle" mode images were paired with non-native la-
bels. In modes "10x", "20x" and "40x" only one respective label is sup-

plied for the whole test set.

The meta-information for the Exhaustive dataset contains other parameters, in-
cluding the cell line name matching Primary dataset domains except for MDCK, so
the cell line parameter had six values. We conducted a set of experiments with a
double parameter grid, adding 3-component magnification data and 6-component
cell line data together into a 9-component vector. The total number of combinations
is 18, and that is the number of subsets on the cross-sections of magnification and cell
line domains. Below we present only a summary (Table 4.7) and a plot (Figure 4.5)
for all models (including previous from magnification domains experiments) in the
normal testing mode on the entire dataset. We also have scores for all 18 subsets, but
they don’t pose much interest and were used only for recording the results. Such
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details were considered redundant for the format of this thesis. The idea of training
18 reference models on each subset also was rejected as superfluous. Yet this exper-
iment demonstrated some relevance of meta-information compared to the dummy
model and compared to the experiments where only magnification was used. But
the margin is small and may be subject to randomness. Retraining the models sev-
eral times would have given us more confidence in results, but investing the time
and efforts in exploring such marginal effects was considered inappropriate.

Model Naked SE
Meta
3bit

Meta
3bit
+SE

Dummy
3bit
+SE

Meta
9bit

Meta
9bit
+SE

Dummy
9bit
+SE

F1 score
combined

0.745 0.784 0.782 0.784 0.785 0.778 0.795 0.785

TABLE 4.7: Performance summary of models with one-parameter
and two-parameter meta-information in Exhaustive dataset experi-

ments.
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FIGURE 4.5: Performance summary of master models in Exhaustive
dataset experiments.

The Exhaustive dataset served as a basis for one more lateral experiment inves-
tigating how the master model affects the performance on the specific subset when
this subset is under-represented in the training data. First, the 40x subset was cur-
tailed to 20% of the original size, overall comprising 10% of the entire training set.
Then, in the second experiment, the 40x subset was decreased even more, down to
2.5% from the whole dataset. In this last experiment, the subset contained around 60
samples.

In both experiments, the master models (especially with SE/CA blocks) demon-
strated a higher score on the 40x subset (Table 4.8), implying the enrichment of fea-
tures compared to the individual model. The model with SE blocks was more accu-
rate. However, the superiority of the models with meta-information is not convinc-
ing since the dummy model (fed with zeros instead of meta-labels) is not far from
the meta-model.
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Model
Setup

10% representation 2.5% representation

"Expert" model 40x 0.752 0.616
Naked master model 0.742 0.644
SE master model 0.757 0.722
Meta master model 0.758 0.735
SE+meta master model 0.763 0.732
SE + dummy master model 0.765 0.727

TABLE 4.8: Performance of models
on under-represented 40x domain.

Though this study was less relevant in the general context of our project, the
main takeaway from this experiment was that model performance for the under-
represented subset could benefit from training with other subsets even if they have
fewer features in common, as in the example with magnification domains.

4.4 Experiments with Extended dataset

The following experiment we designed with the inclusion of AstraZeneca (AZ) sam-
ples (628 training samples, as given in Table A.2 , nearly as an average number for
each cell line in the Primary dataset). We appended a new subset to the initial Pri-
mary dataset and named it the Extended dataset.

The intention was that AZ dataset would provide more insights as perceptually
it has greater domain distance from Primary dataset samples. So, first, the models
were trained in a “binary” mode, when only 7LINES or AZ label was specified in the
meta-label. Also, new metadata-driven models were trained with original labels for
each cell line, and the AZ subset was denoted as the 8th line. PPUnet was a single
topology choice for these experiments.

The summary Table 4.9 is presented below, where the “Combined” column de-
notes the F1 score for the whole dataset (and therefore weighed average score for all
constituent subsets) and two other columns show scores for complementing subsets.

Model
Subset Combined

score
AZ
score

7LINES
score

AZ individual mode 0.852
7LINES individual model 0.852
Naked master model 0.848 0.852 0.846
SE 0.850 0.851 0.849

“Binary” mode
Meta 0.847 0.848 0.846
Meta+SE 0.851 0.854 0.850
Dummy+SE 0.851 0.855 0.849

“8 lines” mode
Meta 0.850 0.850 0.850
Meta+SE 0.853 0.852 0.853
Dummy+SE 0.849 0.853 0.849

TABLE 4.9: Performance on Extended dataset.
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FIGURE 4.6: F1 error of models on Extended dataset experiments.

The resulting plot of F1 error on Figure 4.6 shows small unconvincing victory of
the model with detailed meta-input concatenated to SE input.

4.5 Experiments with Heterogeneous dataset

In the next experiment, we decided to combine not only different datasets but dif-
ferent tasks as well. We added the external set with crevices in the concrete walls
(Mendeley Data, 2019) to the two cell line sets (HeLa and HepG2), where the task
was to segment these cracks. A couple of samples from this subset, which we
marked with CRACK label, are shown below in Figure 4.7. We named this com-
bined collection of samples a Heterogeneous dataset. The detailed data distribution
within this dataset is given in Table A.5 of Appendix A. Meta-information vector
had three components.

FIGURE 4.7: Examples of external subset with crevice segmentation
from Heterogeneous dataset.

Surprisingly, all master models were able to recognize the tasks and performed
well on a respective subset - almost on the same level as individual models (Table 4.10
shows F1 scores for subsets and for the whole dataset). Again there were no drastic
performance boost for meta-models, but in general models with SE blocks worked
somewhat better. However, the model with combined meta- and SE inputs showed
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slightly better results on the weighted average F1 score for the Heterogeneous whole
dataset (Figure 4.8).

Model
Subset

Combined CRACK HeLa HepG2

CRACK individual model 0.885
HeLa individual model 0.901
HepG2 individual model 0.807
Naked master model 0.835 0.884 0.888 0.794
SE master model 0.835 0.877 0.890 0.795
Meta master model 0.837 0.883 0.891 0.796
Meta+SE master model 0.842 0.890 0.893 0.803
Dummy+SE master model 0.837 0.886 0.891 0.797

TABLE 4.10: Performance on Heterogeneous dataset.
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FIGURE 4.8: F1 error ranking of models from experiments on Hetero-
geneous dataset.

The models with meta-information demonstrate a solid response to meta-label
change. There is a significant drop in the F1 score between CRACK and cell line
subsets. It means the model has a strong separation in the prediction pathways for
different tasks. Since the CRACK and cell line subsets have little features in com-
mon, the drop in scores is noticeable. At the same time, the fall between HeLa and
HepG2 subsets is minor, implying these domains are alike. Thus test modes with
different labels can serve for approximate determining how many features domains
share. The example of test modes for the model Meta+SE is given in Table 4.11.
"Normal" mode means the samples went to the model with native meta-labels. In
“Shuffle” mode CRACK subset was paired with foreign label HeLa, HepG2 paired
with CRACK, HeLa was paired with HepG2. In “Zeros” mode, the meta-label con-
sisted of zeros permanently, in “Ones” mode consisted from ones, and during the
modes “HeLa”, “HepG2”, “CRACK” these respective labels were permanent dur-
ing the test run.
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Subset
Mode

Normal Shuffle Zeros Ones HeLa HepG2 CRACK

Combined 0.842 0.458 0.746 0.755 0.752 0.772 0.098
HeLa 0.893 0.808 0.831 0.854 0.893 0.808 0.011
HepG2 0.803 0.000 0.671 0.674 0.681 0.803 0.000
CRACK 0.890 0.542 0.863 0.848 0.542 0.393 0.890

TABLE 4.11: F1 score response to various testing modes for the
Meta+SE model from experiments on Heterogeneous dataset. "Nor-
mal"mode implies provision of native meta-labels with images from
the respective subset. In "Zeros" mode only zeros are supplied as
meta-labels throughout the full test, for "Ones" the meta-input is pop-
ulated with 1.0, in "Shuffle" mode images were paired with non-
native labels. In modes "HeLa", "HepG2", "CRACK" only one respec-

tive label is supplied for the whole test set.

Interesting observation: according to outcomes of the testing in different modes,
the inference pathways of the CRACK domain use some features from cell line do-
mains because prediction on CRACK subset with cell line label still produces some
results on the CRACK subset. On the contrary, cell line pathways don’t use CRACK
features, obviously due to the fact CRACK features contain a lot of straight lines,
which is uncommon in microscopy samples, while the concrete walls on the CRACK
subset resemble the background of cell line images.

On this dataset, we also attempted to check a suggestion that good results of
dummy models are caused by a lower reduction ratio in SE unit. In all experiments,
we concatenate metadata using a constant reduction ratio of 2 (that determines the
number of neurons in the hidden layer). In fact, this ratio appears to be slightly
lower for meaningful inputs in the dummy model comparing to the pure meta-input
in models without concatenation with SE. We retrained all models with ratios 1,
1.5, and 1.8 and eventually didn’t observe a conceivable improvement with a lower
ratio. There were cases of better scores, but the margin was small and inconclusive
in statistical terms.

The main takeaway from the experiments with Heterogeneous dataset is that
master models retain a capacity to perform well even for very different domains as
long as they can implicitly infer the kind of task from the appearance of the sample.
And they are capable of doing it without a significant drop in performance compar-
ing to the individually trained models.

4.6 Experiments with Synthetic dataset

We came to the conclusion that the only application where the model can demon-
strate its abilities is the case with similar domains but different tasks. An example
from practice could be a multi-class segmentation (nuclei + cytoplasm) or multi-
head topology. We had a small set of data for segmenting anomalies on microscopy
images: some unusual areas, lesions, inclusions, debris, bubbles, etc. While prepar-
ing the large anomalies dataset, we conducted experiments with synthetic data. In
this setup, meta-models were able to manifest their properties to the full extent.

We generated six classes: triangle, two types of a circle, two types of a square,
and cross. These objects were scattered over the each image, and the model should
predict only the required class based on the provided meta-label. We used a starter
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code available in open access (Usuyama, 2020) . The data distribution in the Syn-
thetic dataset is given in Table A.6 of Appendix A.

Model
Subset

Combined TRIANG CIRCLE FCIRCL MSQUAR SQUARE CROSS

TRIANG model 0.986
CIRCLE model 0.976
FCIRCL model 0.985
MSQUAR model 0.969
SQUARE model 0.975
CROSS model 0.956
Naked master model 0.001 0 0 0 0.002 0 0
SE master model 0 0 0 0 0 0 0
Meta master model 0.968 0.972 0.958 0.983 0.972 0.972 0.920
Meta+SE master model 0.965 0.978 0.955 0.974 0.973 0.965 0.914
Dummy+SE master model 0 0 0 0 0 0 0

TABLE 4.12: F1 scores of model from experiments on Synthetic
dataset.

The tasks are done relatively well. While master models without meta-information
are confused and fail to predict anything, the meta-models perform well in their re-
spective domain/task with just little deterioration of domain-specific accuracy com-
paring to the individual models (Table 4.12). That means such metadata-driven
model can be used as an alternative to multi-class or multi-head topology, effec-
tively separating prediction pathways within layer channels. We used PPUnet as
the backbone topology for this experiment.

The example of source images, predictions from metadata-driven models and
ground truth masks are given in Appendix B (Figure B.1). We don’t provide the F1
error plot for the models because it’s evident that two metadata-driven models are
absolute winners and perform on the same level on synthetic data.

The metadata-driven models also strongly respond on meta-label swap (Table
4.13 ), demonstrating the highest score only with native label and do not work with
foreign labels (with partial engagement modes “zeros” , “ones” neither).

Subset
Mode

Normal Shuffle Zeros Ones TRIANG CIRCLE FCIRCL MSQUAR SQUARE CROSS

Combined 0.968 0.029 0.069 0.007 0.167 0.209 0.205 0.221 0.190 0.083
TRIANG 0.972 0.019 0.134 0.000 0.972 0.019 0.054 0.029 0.032 0.003
CIRCLE 0.958 0.039 0.020 0.020 0.038 0.958 0.039 0.038 0.060 0.009
FCIRCL 0.983 0.036 0.205 0.000 0.032 0.025 0.983 0.036 0.044 0.005
MSQUAR 0.972 0.039 0.007 0.003 0.029 0.043 0.029 0.972 0.039 0.013
SQUARE 0.972 0.007 0.041 0.000 0.028 0.036 0.052 0.047 0.972 0.007
CROSS 0.920 0.012 0.005 0.034 0.012 0.021 0.012 0.020 0.038 0.920

TABLE 4.13: F1 score response to various testing modes for the Meta
model from experiments on Synthetic dataset. "Normal"mode im-
plies provision of native meta-labels with images from the respec-
tive subset. In "Zeros" mode only zeros are supplied as meta-labels
throughout the full test, for "Ones" the meta-input is populated with
1.0, in "Shuffle" mode images were paired with non-native labels.
In modes "TRIANG", "CIRCLE", "FCIRCL", "MSQUAR", "SQUARE",
"CROSS" only one respective label is supplied for the whole test set.
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4.7 Experiments with Combo dataset

The experiments with the Synthetic dataset highlighted the cases where metadata-
driven master models have advantages over the conventional ones. For example,
the meta-information is helpful when we need to inform the model which output
is required. This meta-input is even more beneficial when alternative outputs are
not compatible. We designed an experiment where the model should predict differ-
ent output from the same images based on the meta-label. The new Combo dataset
consists of 2016 training samples from the Primary dataset with regular nuclei seg-
mentation masks and 194 training samples from the same Primary pool but with
different segmentation masks, outlining the anomalies on source images: blobs, de-
bris, occlusions, non-cellular objects, optical defects, etc. In Appendix B there are
few examples from this Combo dataset: source image with two different output
masks (Figure B.2). The meta-information was encoded with two components, the
larger part with nuclei segmented masks obtained the meta-label 7LINES, and the
minor part with segmented anomalies was labeled as ANOM. The details of data
distribution in the Combo dataset are in Table A.7 of Appendix A.

The backbone topology for these experiments was PPUnet. The results of run-
ning experiments with Combo dataset are the following: metadata-driven master
models trained on both sets for different tasks can predict correct masks with high
scores. And the good thing is that the master metadata-driven model gives a higher
score on ANOM subset than the individual model trained exclusively on ANOM set.
Master model without meta-input is confused and unable to infer ANOM tasks, it’s
totally suppressed by the larger 7LINES set. We also stopped using naked master
model in this experiment as a redundant option. The Table 4.14 with results is given
below. Models also strongly react to test modes, totally failing to predict task-specific
masks during the meta-label swap.

Model
Subset

Combined ANOM 7LINES

ANOM individual model 0.736
7LINES individual model 0.854
Master model (SE) 0.768 0.091 0.841
Master model (Meta) 0.844 0.824 0.845
Master model(Meta+SE) 0.849 0.836 0.850
Master model (SE+dummy) 0.767 0.104 0.835

TABLE 4.14: F1 score of the models from experiments on Combo set.
The improvements are highlighted by maroon color.

In Appendix B in Figure B.3 there are few illustrated examples of how ANOM
predictions improved on the metadata-driven model. The discovered phenomenon
is similar to the effects observed during multi-task learning and is described in publi-
cations, with references in the chapter Related Work (Multi-task learning 2.7). Multi-
task learning usually implies training a big master model with many output heads
for different tasks. Such training usually has a synergic effect for each task com-
paring to the case when models are trained for each task separately. Our metadata-
driven model has a single head and produces segmentation masks of the same for-
mat but for different segmenting tasks and sequentially in time.

To check if the effect is similar to those in real multi-task configuration, we con-
structed models with two heads having Unet3 as a backbone. There were two vari-
ants: high bifurcation when only the last level was duplicated and low bifurcation
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when the full alternative decoder was recreated for a separate task (Figure 4.9).
However, these models cannot operate both heads in parallel since the two sets are
not equal - 7LINES is 10-fold larger, so the output for nuclei segmentation must oc-
cur ten times more often. So we still had to use a meta-label to redirect the source
images to the respective head and applied a custom sampler that formed homoge-
neous batches consisting of samples from the same dataset. We called the model in
this configuration “sequential” one.

a) b)

FIGURE 4.9: Multi-task learning model schema:
a) high bifurcation, b) low bifurcation.

The scores for dual-head models functioning in sequential mode showed the
trend of improving ANOM scores from such kind of learning. We also included
one dual-head model with low bifurcation trained on ANOM subset for reference to
ensure the increased number of parameters is irrelevant to the observed phenomena
of ANOM task improvement during the joint learning.

To make a genuine parallel model for multi-task learning, we curtailed the train-
ing dataset leaving only 194 source images that were common for both tasks (the
validation set was also reduced in 7LINES part). The details of data distribution
in such a modified dataset are given in Table A.8 of Appendix A. We kept the test
set intact for the convenience of testing and compatibility. The models were altered
for new processing, having two loss functions summed from each head. Again the
effect of improving ANOM score is present. The scores for the 7LINES subset are
lower because of a smaller number of samples from this domain. Led by curiosity,
we launched another training on this curtailed dataset for our previous models in se-
quential mode with similar results. Also, the initial “mono” metadata-driven model
was trained as well, giving the most remarkable boost for ANOM score among all
experiments.

Finally, we separated the source images for the tasks. Since they had been com-
mon, there could be an effect of contrasting, so we replaced the images and masks
for the nuclei segmentation task with the same number of images randomly picked
from the Primary dataset. The “mono” metadata-driven model trained with such
premise also demonstrated improvement for the ANOM subset. The results from all
these experiments are summarized in Table 4.15 and models ranked by their contri-
bution to ANOM score improvement are shown in Figure 4.10.
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Model
Subset(Task)

Combined ANOM 7LINES

Full Combo set
ANOM individual model (low bifurcation) 0.736
7LINES (SOTA result for reference) 0.852
High-bifurcation sequential model 0.848 0.823 0.848
Low-bifurcation sequential model 0.851 0.836 0.851

Curtailed Combo set
High-bifurcation parallel model 0.790 0.835 0.789
Low-bifurcation parallel model 0.793 0.833 0.792
High-bifurcation sequential model 0.793 0.829 0.792
Low-bifurcation sequential model 0.798 0.827 0.797
Mono meta-model 0.794 0.854 0.792
Mono meta-model (randomized 7LINES) 0.796 0.833 0.795

TABLE 4.15: F1 score for two-headed sequential, parallel and sin-
gle headed model from experiments on Combo dataset (full and cur-

tailed). The best improvement is highlighted by maroon color.
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FIGURE 4.10: F1 error rate improvement on ANOM subset with
multi-task models on Combo dataset. "Hi-bi" refers to double-headed
high-bifurcated models, "Low-bi" to double-headed model with low
bifurcation, "seq." means sequential mode and "par." - parallel mode,

"rand." - randomized samples from 7LINES

4.8 Concluding experiments

The concluding experiments were dedicated to an ablation study on the positioning
of Channel Attention blocks. We used the Synthetic dataset, Unet3 as a backbone
model, and 50 epochs that suffice for quick convergence on this type of data. The
tests on different modes reveal how models acquire and retain the ability to separate
tacks by various channels.
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FIGURE 4.11: Variants of Unet3 with CA units positions
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FIGURE 4.12: Training and validation loss curve typical for the suc-
cessful model (left) and for the model with single CA block in the

middle of decoder (right, variant j in ablation study).

The schema in Figure 4.11 contains the variants for placement of CA blocks,
which are the SE legacy modules controlled exclusively by meta-information. The
models retain task separation functionality even with a single block when placed at
the beginning or near the model’s output. The model with CA block in the mid-
dle (variant d) of Unet3 fails to perform inferences acting as master model without
meta-input signifying ineffectiveness of CA unit on that position.

Single CA block placed in the middle of the decoder (variant j) still makes the
model learn. However, the convergence is difficult, and the learning curve becomes
unstable, but still possible. For example, in Figure 4.12, we exposed the learning
curve for a successful training session typical for the rest of the models (left) and a
somewhat wild validation curve for variant j with far digressions from the smooth
descend.
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FIGURE 4.13: Channel activation (upper - absolute, lower - the differ-
ence modulus) for two tasks in the model with single CA unit.

The channel-wise activation vector from the CA unit provides the clue how tasks
are specialized channel-wise. In Figure 4.13 there is a plot from the CA output on
the model with a single CA block at the final stage of the decoder. This model is
trained on Combo set with two tasks: 7LINES and ANOM. The upper plot shows
the channel activation patterns for the same source image but for different tasks. The
lower plot shows the absolute difference (modulus) between two activation vectors.
We can infer that only several channels having a big difference in activation play
a crucial role in delivering the task-specific output. The output convolution block
reserves the last decision in channel selection, and it is plausible that only a few
from 64 channels are used in the finalization of the output. This can be seen from
the Figures B.4, B.5 of Appendix B where feature maps from different tasks still can
be highlighted simultaneously in the CA unit output. Also, in the Figure B.6 of
Appendix B we demonstrate the difference in channel activation vectors for all 11
CA units in the fully equipped Unet3 model (5 on the encoder + middle CA unit + 5
on the decoder).
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Chapter 5

Conclusions

Summarising the results of our endeavors towards using metadata for cell nuclei
segmentation by employing the Channel Attention Mechanism, we can group the
conclusions into several items touching the various aspects of this work.

• Metadata is digestible via Channel Attention Mechanism.
Adding metadata to Channel Attention units (which are the derivatives of
Squeeze and Exatition blocks), we can effectively control the separation of fea-
tures throughout the channels on each level on CNN. Even a single unit in a
particular position suffices for such functionality.

• Metadata-driven NN acts as an ensemble of individual models activated by respective
labels.
Oftentimes ensembles may be trained on the same volume of data and differ
in hyperparameter settings to express the various level of confidence in down-
stream meta-module for making the correct decision between predictions on
the specific subset of data. Our models, on the contrary, have the fixed hyper-
parameters settings for all subsets but use different subsets to train individual
expert submodels hidden in the internals of CNN channels, figuratively speak-
ing. It’s more accurate to describe it as a Mixture of Experts. The convenience
of having a single master model instead of an ensemble of individual expert
models should be obvious considering the reduction of training time and de-
creasing complexity of the system. It is unclear how many channel-dwelling
submodels a single CNN can contain, but we may assume the number of do-
mains can be pretty big for similar domains since many features are shared,
and the number of NN parameters is high enough. Even in the hypothetical
scenario, when the capacity of a single model might be depleted, the solution
is scalable by increasing the number of channels.

• The domain prediction pathways reside in separate channels.
Metadata literally highlights channels with features specific to an assigned do-
main and dims channels with foreign domain features (however, if domains
are close in appearance, this separation is minimal, and many features are
shared, expectedly). Thus the Channels Attention units functionally are a gat-
ing mechanism allowing the sharing of similar features and separation of in-
compatible features. Most useful this mechanism becomes for outputting the
masks representing different tasks, which are impossible to retrieve from a sin-
gle output in conventional models.

• There is some benefit from using metadata for cell line and magnification domains, yet
small.
The improvements around 1% in the F1 score do not look impressive, yet it is
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statistically significant considering the amount of test data. Also, various cell
lines show different responses to introducing metadata.

• The performance gain could be more evident when individual expert models would
outperform plain master models.
This claim is intuitive but yet remains speculation. We could not form the
dataset from the available data where domain-specific models outperform plain
master models with a significant margin on respective subsets. We hardly can
expect a drastic gain in the performance of the metadata-driven model over
the performance of the individual model when the plain master model also
demonstrates high scores on subsets, not losing the accuracy at the expense of
generalization. Instead, in many cases, we observed the converse effect of syn-
ergy in plain master models when their scores on subset exceeded the scores of
domain-specific models. We assume that models can implicitly recognize tasks
and domains, even when cross-domain distance is small, so supplementary
metadata brings little information to add. In heterogeneous domains, master
models could also recognize tasks and predict different masks with high accu-
racy comparable to individual models.

• Metadata-driven NN can effectively separate similar segmentation tasks.
In the experiments with the Combo dataset, we demonstrated that a metadata-
driven model could be trained to predict different masks that are otherwise
incompatible in the plain master model with a single output due to confusion
in the loss function. In a metadata-driven model, different outputs are possi-
ble because they reside in separate channels, and the final output layer only
renders channels appropriate for the supplementary metadata. It is possibly
the most obvious case where a metadata-driven model can outperform con-
ventional master models. CNN is basically a kernel machine. On brightfield
microscopy images, the nuclei outline is invisible in most cases, CNN infers
segmentation masks from the cell boundary outline, suggesting the nuclei is
located in the middle of the cell with more or less conventional shape. Sup-
pose we have a cell line that looks similar to other cell lines, but internally,
such cells have nuclei with different shapes or sizes. The plain master model
would be confused and would segment the area common for nuclei from other
domains. Only metadata can inform the NN model to output nuclei shape spe-
cific to the current cell line, and this specialization would result in a better total
score. Unfortunately, we did not have such data samples in our repository, but
we demonstrated the principle in the experiments with Synthetic and Combo
datasets. In the medical industry, similar cases are likely as well. Suppose MRT
scans or X-Ray shots of patients have similar organ shapes, but the interpreta-
tion of invisible parts may depend on external information, like the patient’s
age, treatment history, other metadata. In such cases, the segmentation of such
images with metadata-driven models would be more accurate.

• There are improvements for some tasks similar to effects in multi-task learning.
In the joint training of metadata-driven model with similar tasks, we could ob-
serve enhancement for the subset which was underrepresented in the dataset.
The individual model on such subset performed worse than the metadata-
driven master model. We hypothesized the beneficial influence of adjacent
tasks could explain this effect. In the experiments with the Combo dataset,
we proved this assumption by comparing the case with a genuine multi-task
pipeline.
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• The metadata-driven NN can be a convenient alternative to multi-task(multi-head)
models when tasks have the same format.
The benefit of it is a scalable pipeline, ready for accepting new datasets by
simply denoting them with a new meta-label. In contrast, the whole architec-
ture and pipeline should be refactored for the multi-headed models (or multi-
class models with non-complementary classes) . The other convenience of our
metadata-driven model is that the consecutive pipeline is agnostic to dispro-
portions in the dataset and does not require the same source images for dif-
ferent tasks. In contrast, the multi-head model in classic implementation must
have parallel output and shared source data. The metadata-driven model can
find applications for transfer learning with the same convenience when fine-
tuning is easily manageable by new meta-labels. One potential application for
our model can be found in the artistic area. The style transfer techniques re-
quire a single model for each style. Using Channel Attention Mechanism, we
can obtain as many models as possible using metadata to denote which style is
required and even coherently mix styles in different proportions thanks to the
floating-point format of metadata encoding. The restriction of our metadata-
driven models is that tasks should be similar (like in this project, we had se-
mantic segmentation with different output regions), because they share the
same output, the same number of classes, and the same loss function.

We consider the project successful despite the modest performance boost in the
experiments with Primary and Exhaustive datasets with conventional tasks. Never-
theless, the implications of how novel architecture works can be further investigated
to find the appropriate niche and applications in the industrial and research fields.



39

Appendix A

Data Distribution

Cell line Training set size Validation set size Test set size Total
A549 286 66 80 432
HT1080 284 78 70 432
HeLa 293 58 81 432
HepG2 283 82 67 432
MCF7 290 70 72 432
MDCK 292 79 61 432
NIH3T3 288 71 73 432
Summary 2016 504 504 3024

TABLE A.1: Seven Cell Lines distribution

Source Training set size Validation set size Test set size Total
7LINES 2016 504 504 3024
AZ 628 78 78 784
Summary 2644 582 582 3808

TABLE A.2: Cell Lines augmented with AstraZeneca dataset

Magnification Training set size Validation set size Test set size Total
10x 843 218 230 1291
20x 862 215 233 1310
40x 872 209 206 1287
Summary 2577 642 669 3888

TABLE A.3: Exhaustive dataset, distribution by magnification
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Cell line Training set size Validation set size Test set size Total
A549 435 97 114 646
NIH3T3 437 124 123 684
HELA 446 106 117 669
HepG2 409 116 107 632
HT1080 429 86 98 613
MCF7 421 113 110 644
Summary 2577 642 669 3888

TABLE A.4: Exhaustive dataset, distribution by cell lines

Source Training set size Validation set size Test set size Total
CRACK 333 56 56 445
HeLa 293 58 81 432
HepG2 283 82 67 432
Summary 909 196 204 1309

TABLE A.5: Data distribution in Heterogeneous dataset

Shape Training set size Validation set size Test set size Total
CIRCLE 100 20 20 140
CROSS 100 20 20 140
FCIRCL 100 20 20 140
MSQUAR 100 20 20 140
SQUARE 100 20 20 140
TRIANG 100 20 20 140
Summary 600 120 120 840

TABLE A.6: Data distribution in Synthetic dataset

Source Training set size Validation set size Test set size Total
7LINES 2016 504 504 3024
ANOM 194 70 101 365
Summary 2210 574 605 3389

TABLE A.7: Data distribution in Combo dataset

Source Training set size Validation set size Test set size Total
7LINES 194 70 504 768
ANOM 194 70 101 365
Summary 388 140 605 1133

TABLE A.8: Data distribution in curtailed Combo dataset
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Appendix B

Trial results

FIGURE B.1: Examples of Meta model predictions on Synthetic
dataset: source, prediction, GT mask
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FIGURE B.2: Samples from Combo dataset with sorce images (left),
nuclei segmented mask (center), anomaly segmented mask (right)

.
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FIGURE B.3: Examples of prediction improvement with meta model.
Leftmost - source image, second - prediction from individual ANOM
model, third - prediction from Meta model, rightmost - ground truth.
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FIGURE B.4: Feature map at the output of a single CA unit for nuclei
segmentation task.
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FIGURE B.5: Feature map at the output of a single CA unit for
anomaly segmentation task.
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