UKRAINIAN CATHOLIC UNIVERSITY

MASTER THESIS

Neural architecture search: a probabilistic
approach

Author: Supervisor:
Volodymyr LUT Yuriy KHOMA
Vasilii GANISHEV

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science

in the

Department of Computer Sciences
Faculty of Applied Sciences

o '+ o,

S5z | AppLIED
l}K/‘] : | SCIENCES
IS | FACULTY

Lviv 2020

http://www.ucu.edu.ua
http://researchgroup.university.com
http://department.university.com

ii

Declaration of Authorship

I, Volodymyr LUT, declare that this thesis titled, “Neural architecture search: a prob-
abilistic approach” and the work presented in it are my own. I confirm that:

This work was done wholly or mainly while in candidature for a research de-
gree at this University.

Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

Where I have consulted the published work of others, this is always clearly
attributed.

Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

I'have acknowledged all main sources of help.

Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

iii

“It's inspiring to see how Al is starting to bear fruit that people can actually taste. There
is still a long way to go before we are truly an Al-first world, but the more we can work to
democratize access to the technology—mboth in terms of the tools people can use and the way
we apply it—the sooner everyone will benefit.”

Sundar Pichai, CEO Alphabet Inc., May 17, 2017

iv

UKRAINIAN CATHOLIC UNIVERSITY
Faculty of Applied Sciences
Master of Science

Neural architecture search: a probabilistic approach

by Volodymyr LUT
Abstract

In this project, we introduce the Bayesian Optimization (BO) implementation of
the NAS algorithm that is exploiting patterns found in most optimal unique ar-
chitectures sampled from the most popular NAS dataset and benchmarking tool
NASbench-101 (Dong and Yang, 2020a). The proposed solution leverages a novel
approach to path-encoding and is designed to perform reproducible search even on
a relatively small initial batch obtained from the random search. This implementa-
tion does not require any special hardware, it is publicly available.

HTTP://WWW.UCU.EDU.UA
http://department.university.com

Acknowledgements

First of all, I would like to thank my supervisor Mr. Yuriy Khoma and Mr. Vasilii
Ganishev for all their support, patience and knowledge shared with me during this
project.

I would also like to thank all my colleagues in UCU - those who already gradu-
ated, who were working on their masters during this year, and those who left UCU
- for being a bright lighthouse, which navigated me towards excellence, for showing
a good example and for being a strong and supportive community.

Many thanks to the UCU team - to all those people, who build and design the
educational system I am proud being a part of, to all those who inspired me, shared
their vision and made my time being a masters program student an unforgettable
experience. I thank everyone who works every day in the UCU - no matter whether
they are responsible for brilliant coffee or brilliant courses and workshops. Special
cheer outs to Mr. Artem Chernodub for interesting homework and deep learning
course at all. It helped me a lot during writing about ConvNets in this master’s
thesis.

Special thanks go to my friend and business partner Serhii Chepkyi for provid-
ing big support during my studies and also for providing a big help with visual
materials for this project.

Last but definitely not least - I would like to thank my closest people and my
family - without your eternal love, this would not be possible. This was the hardest
years in my life and I'm glad and thankful that every second I've felt that I'm not
alone.

Vi

Contents

Declaration of Authorship
Abstract
Acknowledgements

1 Introduction

2 Background overview

21 History
2.2 NASbench-101.
23 SOTA
24 One-shotmodels
2.5 Probabilistic Methods . .

3 Proposed approach
3.1 Clustering
3.2 Bayesian Optimization .

4 Experiments
4.1 Batch generation.
4.2 Environment and results
43 Results

44 Comparison with other NAS algorithms

4.5 Reproducibility of results
5 Conclusions

Bibliography

ii

iv

12
12
12
14
14
14

16

17

List of Figures

2.1
2.2
2.3

24
2.5

3.1

3.2

3.3
34

3.5
3.6

41

4.2

4.3

44
4.5

Controller RNN from Zophand Le,2016.
Training process in Zophand Le, 2016
The architecture for EfficientNet’s baseline network EfficientNet-B0
from Tanand Le, 2019
Training time vs mean accuracy from Dong and Yang, 2020a
(a) Operations on the edges are initially unknown. (b) Continuous
relaxation of the search space by placing a mixture of candidate op-
erations on each edge. (c) Joint optimization of the mixing probabili-
ties and the network weights. (d) Inducing the final architecture from
the learned mixing probabilities. Original image from Liu, Simonyan,
and Yang, 2018

Different adjacency matrices encode same computation - example from
Dong and Yang,2020a
Sampled batch (left) compared to full dataset (right) Dong and Yang,

2020 . .. e
Test accuracy (left) and validation accuracy (right) distributions
Number of elements in cluster(left); Similarity between elements in

cluster vs k number (right) 0L,
Most promising clusters o 0oL
Most promising architecture probability heatmap

Average abs. change in accuracy and average relative change in train-

ing time after change of one operation Dong and Yang, 2020a
Classes of CIFAR10 including 10 random images from each Krizhevsky,
2012. It is important to understand that this dataset is used in NAS

problems as a cheap alternative to ImageNet.
Optimized architecture vs elements of it’s parentclass
Convergence of BO foreachclass
Predicted value plotted together with initial batch

vii

10
10

13

viii

List of Tables

4.1 Hyperparameters

42 Comparison with other algorithms

4.3 Reproducibility information

List of Abbreviations

ML
AutoML
NAS

RL

GP

BO
CNN
ANN
LCB

Machine Learning

Automated Machine Learning
Neural Architecture Search
Reinforcement Learning
Gaussian Process

Bayesian Optimization
Convolutional Neural Network
Artificial Neural Network
Lower Confidence Bound

iX

For all the brave people who make it possible for millions of
young Ukrainians to hold books in their hands instead of rifles
and grenades.

Chapter 1

Introduction

As machine learning provides a huge variety of automation possibilities for differ-
ent industries the problem of automation of ML industry itself seems natural. For
decades ML engineers were pioneers in the new era of computer science research.
As a result, the new industry was shaped and this industry requires automation.

AutoML is a general name of automation in routine work of ML engineers in-
cluding but not limited to data preparation, feature engineering, feature extraction,
neural architecture search, hyperparameters selection, etc.

ML is reshaping businesses and other aspects of everyday life worldwide. We
believe that everyone would benefit from the democratization of these new tools.
Having the ability to run models on portable devices, IoT chips, and other mass-
market hardware we treat AutoML as a big move towards in terms of a variety of
different applications created.

Existing AutoML techniques require lots of computational resources and most of
the research in the field is covered by tech giants nowadays.

However, since 2016 when one of the most popular projects in the field (Zoph
and Le, 2016) was published a lot of new research occurred. The most popular tech-
niques are BO, Reinforcement Learning (RL), different gradient descent-based ap-
proaches, evolutionary algorithms - more details could be found in the next chapter.

In 2019 Google Research Team introduced a dataset and benchmarking tool for
NAS (Dong and Yang, 2020a). This dataset made a huge impact on the field

Good ANN architectures such as ResNet (He et al., 2015) and DenseNet (Huang
et al., 2016) required a lot of domain knowledge and top-level expertise to be devel-
oped. ResNet revolutionized architecture design by introducing skip connections;
This idea was elaborated even further in DenseNet. Those models obtained higher
accuracy with better performance - that’s why we are focusing on search of the most
optimal connection schemes between layers.

We do this in a probabilistic manner by sampling a random batch from the NAS-
bench dataset and trying to find repeating patterns in the models we treat as optimal.
This allows us to make a simplification over search space and effectively explore un-
seen models that have a similar pattern.

While focusing on higher accuracy, we are also accounting training time for each
model - in other words, we are trying to explore models as close to the Pareto frontier
as possible.

Chapter 2

Background overview

2.1 History

In 2015, ResNet (He et al., 2015) become a winner of ILSVRC 2015 in image clas-
sification, detection, and localization and winner of MS COCO 2015 detection and
segmentation. This enormous network contained 152 layers optimized by a lot of
professional engineers manually. To provide better generalization developers intro-
duced skip connections - extra connections between nodes in different layers of a
neural network that skip one or more layers of nonlinear processing. Skip connec-
tions introduced a way to train very deep neural networks - ResNet-152 has 152
layers (to compare: (AlexNet, 2012 - 8 layers, GoogleNet, 2014 - 22 layers). That’s
why image classification contests are constantly showing a growing amount of lay-
ers for best-performing networks. Each competition is turning researchers more and
more towards automation of this work - and this is a place where NAS becomes a
new trend.

Barret Zoph and Quoc Le from Google Brain team (Zoph and Le, 2016) used a re-
current network to generate the model descriptions of neural networks and trained
this RNN using RL agent to maximize the expected accuracy of the generated archi-
tectures on a validation set. This paper is one of the most cited in this field.

Even though Neural architectures may be complex, they could be described at
some abstraction level using strings (or another encoding). In this project those val-
ues were generated by Recurrent Neural Network (RNN) - this gave authors a lot of
flexibility since temporal dynamic behavior of RNNs makes them quite applicable
to the tasks where we need to generate correct sequences of output - in other words,
tasks where the output of previous layer matters (see 2.1)

Number Filter Filter Stride | Stride Number Filter
. |of Filters|. | Height [\ | Width |. [Height [.| Width [\ |of Filters[. | Height [
§ \ A A 5 y A § \ H 1\

: =
A A Y | T § A A K g
o » > > > > > —
b | '..‘ P | \ A i P | ‘.. 4) 4 0 | ‘.“ 4
Layer N-1 T Layer N o Layer N+1

FIGURE 2.1: Controller RNN from Zoph and Le, 2016

2.2. NASbench-101 3

Sample architecture A
with probability p

[!

Trains a child network

The controller (RNN) with architecture
A to get accuracy R

{ J

Compute gradient of p and
scale it by R to update
the controller

FIGURE 2.2: Training process in Zoph and Le, 2016

v EIED

14xtdxii2
Feraoz

MBConvE, 5x5

¥
MEConvh, 5x5

T 1axidx112

¥

3 Teininz
} reane
szl

'!2-‘».&22'“3

L2 112x32

i

¥ M2x112x16
§ Seesad
v SRxSExad
) 2ﬁx25h‘1!l3
v ?ﬁx?i!-:ﬁ:l'n
¥ 2B2EaED
v 20xF8xR0

Py

v TdxTaxi12
T Fainioz

MEConvE, 3x3
MBConvG, 5x5
MEBCanvhk, 5x5
MEConviE, 3x3
It MBConvE, 3x3
MEConvE, 313
MEBConvE, 5x5
MBConvi, 3x5
MBCO;‘NE. 5x5
L
MECanvh, 5x5
MEConvG, 5x5
. MBConvE, 3x3

Canvixd
T
Y
MBConvl, 3x3 |
MEConvi, 3x3

FIGURE 2.3: The architecture for EfficientNet's baseline network
EfficientNet-B0O from Tan and Le, 2019

Those sequences are then validated and used to generate a neural architecture
that will be evaluated in a distributed system. The reward received after training
those architectures is later used to compute gradients and update weights in con-
troller RNN - see 2.2.

That distributed system contained 800 GPU which were training 800 architec-
tures at the same time concurrently - and whole training process took a lot of time
- since good results could be obtained only after controller sampled 12,800 architec-
tures.

So even though this work is the most cited, it is also the least reproduced - and
this was a general weakness of a lot of modern NAS research. Then in 2019 two
things in Google happened.

In 2019, Google researchers developed a family of models, called EfficientNets,
which surpass state-of-the-art accuracy with up to 10x better efficiency (smaller and
faster) using AutoML - see Tan and Le, 2019.

2.2 NASbench-101

Also in 2019, another team of Google researchers released NASbench-101 Dong and
Yang, 2020a. This is a tabular dataset containing of evaluation results of CNNs
builded in ResNet-like (He et al., 2015) and Inception-like (Szegedy et al., 2015) man-
ner.

Google Brain used their resources to create a NAS benchmark by evaluating a
small cell search space. Those cells are easily scaled to bigger ones because of their
ResNet-like design. Architectures used in this dataset were trained on CIFAR-10

4 Chapter 2. Background overview

| 0.94 095
Bo -
092 _
i B T
;g &0 090§ g 0.90
c by |¥)
- -
Y 0.88 é g
=] el
= 40 =] w 0.85
) 086% =2
m
£ c =
g 084§ ® i
T} E g 080 A resnet
0.82 % inception
inception neighbors
0 . 0.80 0.75 T T
10° 107 0 20 40 80 80 100
of trainable parameters (log-scale) training time (minutes)

FIGURE 2.4: Training time vs mean accuracy from Dong and Yang,
2020a

because it is computationally cheap. Best performing models could then be scaled
similarly as in Zoph and Le, 2016 to be evaluated on bigger datasets such as Ima-
geNet or COCO.

This means that good neural architectures, at least for image classification tasks
could be obtained in seconds instead of being evaluated on GPU.

The dataset contains approximately 423k different architectures, with 3 repeti-
tions each. Most of the architectures score more than 90% validation accuracy on
CIFAR-10 (see 2.4).

Search space is defined by a set of all valid directed acyclic graphs with 9 edges
and all combinations of 3 operations (3X3 Max Pooling, 3X3 Convolution, 1X1 Con-
volution) in 5 available slots.

They’ve also published a great paper (Dong and Yang, 2020a) with a lot of ex-
planatory statistical analysis over the dataset and details about benchmarking of
SOTA algorithms.

2.3 SOTA

A variety of methods have been proposed to perform NAS, including reinforcement
learning, Bayesian optimization with a Gaussian process model, sequential model-
based optimization (SMAC), evolutionary search, and gradient descent over the past
few years. This is a short overview of the most popular approaches to solve the NAS
problem.

2.4 One-shot models

One-shot neural architecture search has played an important role in making NAS
methods computationally feasible in practice.

One of the most successful one-shot model implementations is ENAS (Pham et
al., 2018). This paper is an evolution of the Reinforcement Learning algorithm in-
troduced by Zoph and Le, 2016. It introduced parameter sharing between models
which made the algorithm 1000x less expensive than standard Neural Architecture

2.5. Probabilistic Methods 5

FIGURE 2.5: (a) Operations on the edges are initially unknown. (b)

Continuous relaxation of the search space by placing a mixture of can-

didate operations on each edge. (c) Joint optimization of the mixing

probabilities and the network weights. (d) Inducing the final archi-

tecture from the learned mixing probabilities. Original image from
Liu, Simonyan, and Yang, 2018

Search. This unexpected effect of parameter sharing made the technique really pop-
ular in the field.

There is also a brilliant evolutional algorithm Real et al., 2017 that is able to dis-
cover models for the CIFAR-10 and CIFAR-100 datasets with accuracies of 94.6%
(95.6% for ensemble) and 77.0%, respectively. But those solutions are usually hard to
reproduce without strong domain knowledge or they are extremely expensive. Since
benchmarking of different one-shot models using NASBench-101 could be tricky be-
cause weight-sharing algorithms have many factors that control their dynamics, two
concurrent solutions were proposed on top of original NASBench to provide a better
profiling and more diagnostic information - NASBench-201 (Dong and Yang, 2020b)
and NASBench1-shot-1 (Zela, Siems, and Hutter, 2020).

One of the best performing solutions in NAS is not actually searching in some
search space. In DARTS Liu, Simonyan, and Yang, 2018 architecture is fixed and
algorithm is performing continuous relaxation of the search space to find the most
optimal operations at the edges (see 2.5)

2.5 Probabilistic Methods

Project PARSEC (Casale, Gordon, and Fusi, 2019) is providing a probabilistic mod-
eling framework for sampling-based optimization methods to learn a probability
distribution over high-performing architectures for a specified supervised task.

In BANANAS (White, Neiswanger, and Savani, 2019), an ensemble of neural net-
works is trained to predict the mean and variance of validation error for candidate
neural architectures in order to obtain a good acquisition function.

This method is not new and a lot of other researchers are trying to build cheap
surrogate models in order to balance the high computational cost of obtaining real
samples.

6 Chapter 2. Background overview

We are nothing different - by clustering most promising network architectures,
we are trying to reduce search space to sample less real data from NASBench during
optimization iteration.

Chapter 3

Proposed approach

Our primary goal is searching the best accuracy vs training time tradeoff in the
search space available in NASbench-101 (Dong and Yang, 2020a).

We are applying a search space limitation by setting operations on the vertices of
the NASbench-101 adjacency matrix to 3X3 Convolutions (they are followed by batch
normalization and RELU). There are three available operations in search space and
approximately 423k unique models overall. Limitation to one operation would re-
duce this search space. This is also done to ensure the uniqueness of the architectures
sampled - see 3.1 where different adjacency matrices encode the same computation.

To query the batch data from NASbench, we randomly construct 7 x 7 upper-
triangular matrices and use build-in NASbench methods to validate if the constructed
matrix is a 7-vertex directed acyclic graph.

Even though we do not necessarily need the exact maximum amount of vertices
to obtain good accuracy, we want to obtain as big adjacency matrix as possible, be-
cause later we would calculate a probability of having an edge in the exact index of
adjacency matrix - to have a good probability measurement it is better to have all
graphs of same vertex size.

Obtained adjacency matrices are later hashed to ensure that we do not query the
same architecture again - we want to spend budget only on unique ones.

These limitations have an impact on the batch, however - we can clearly state
that some architectures are completely out of our search space (see 3.2)

Before we proceed, some things about Figure 3.2 should be explained:

e Points on the left chart is individual run values whereas points at the right
chart (full data) - means of individual values.

e Chart on the left was collected for one vertex number whereas chart on the
right (full data) contains vertex numbers from 3 to 7 (those are the boundaries
because we have maximum 7 vertices and also we cannot have less than 3
vertices because this number includes also required input and output layers).

e Omitted values would be similar non-depending on seed value - those are
architectures we are unable to query.

Also, it’s important to notice that almost all samples score more than 0.9 (see
3.3) of test accuracy. Since the maximum mean test accuracy value in NASBench is
94.32% we will need to carefully differentiate efficient and inefficient architectures.

3.1 Clustering

General idea is that good architecture should share a similar structure of the compu-
tational graph.

Chapter 3. Proposed approach

Observed validation accuracy

0,1,110 0,1.110
0,0,1,0,0 0,0,0,1,0
0,0,0,0,1 0,0,001
0,0,0,0.1 0,0.0,0,1
0,0,0,0,0 0,0.0,0,0

; [in, convix1, mp3x3,
conv3x3, out)

[in, convix1, conv3x3,
mp3x3, out]

FIGURE 3.1: Different adjacency matrices encode same computation
- example from Dong and Yang, 2020a

095
0.94 1
E 090
092 1 E
c
§ 085
0.90 4 b=
g
g 4 —
088 g o0s0 .+ | A resnet
% inception
- o inception neighbors
T T T T T T T T 075 - — -
0 3 4 0 & W 8 P 0 4@ €0 & 100
TFaining time training time (minutes)
FIGURE 3.2: Sampled batch (left) compared to full dataset (right)
Dong and Yang, 2020a
Distribution of test accuracy in batch (no. architectures 1000) Distribution of valiation accuracy in batch (no. architectures 1000)
100
1]
60

1
[F..] o090 L1 o8 090 092 oo
TBst accuracy Validation accuracy

FIGURE 3.3: Test accuracy (left) and validation accuracy (right) dis-
tributions

3.2. Bayesian Optimization 9

Distribution of items in kmeans class prediction (k = 50) Elbow Method For Optimal k

G B b 8 B &

v of squared distan
m of
o
=]
=
2

% 10 15 200 %0 300

ad
o

0 10 20 £ %
kmeans cluster id k

FIGURE 3.4: Number of elements in cluster(left); Similarity between
elements in cluster vs k number (right)

Since we do not have any labels, we would need to group architectures from a
sampled batch using some clustering algorithm.

This is done via KMeans in the current implementation of the project - however,
any other clustering algorithm could be used, such as DBSCAN or OPTICS; By de-
fault number of K is set to 50 to have bigger variance in each group - however, other
values of K are also allowed (as long as it makes sense - see Figure 3.4)

After KMeans evaluation we would have 50 clusters in the dataset.

To filter out the most promising ones we use the following algorithm:

1. Calculate percentage of cluster’s test accuracies that would be lower than test
accuracy mean of a given cluster

2. Calculate percentage of cluster’s training time means that would be lower than
training time mean of a given cluster

3. Floor percentages to the precision of 1 digit after the comma to obtain rank
RANK € (1,2---9,10)

4. Filter out models with training time RANK > 3 to throw out computationally
expensive models

5. Sort data descending by test accuracy rank and ascending by training time
rank so we wouldn’t have groups with big training time means

This algorithm leaves out the most promising groups which will be used for
further optimization (see 3.5)

3.2 Bayesian Optimization

Having adjacency matrices ready for groups, we can calculate the probability of ob-
taining 1 at each element of the matrix

1 n
P==Y Adj
ni3

Those probabilities form most common patterns for each group (see 3.6)

Unlike BANANAS (White, Neiswanger, and Savani, 2019) where mutations are
taken randomly from the perspective cell and ensemble of meta neural networks are
used to provide a prior distribution, we once again reduce the search space.

10

Chapter 3. Proposed approach

-
as3| ¥

092

nal

Mean

aso

oas

Test accuracy mean vs sd plot by class

2 4

4 ee Co .D -

0015 o020 0.025

Standard deviation

0.005 0010

Training time mean vs sd plot by class

Mean
g
g

500

2000

1500

R
Lt

. - v - - v
400 600 800 1000 1200 1400 1500
Standard deviation

Mean test accuracy

(=]
0
wa

=]
I
=1

=
w
=]

o
@
b

=
@
@

Training time mean vs Test accuracy mean by class

v" . .
= ‘-'t . . L]
® * 4o L
L] .. ™ ™ s
L] L]
se®] -
. s ® .
[]
L . L]
L]
.
1500 2000 2500 3000 3500 4000 4500 5000

Mean training time

FIGURE 3.5: Most promising clusters

FIGURE 3.6: Most promising architecture probability heatmap

3.2. Bayesian Optimization 11

We are exploiting the knowledge from the probabilities matrix given for the cur-
rent class. We do not want to lose strongest patterns - therefore we are converting all
probabilities bigger than 0.9 (this is a hyperparameter) to 1 and others to zeros.

Parameter is a subtraction of the amount of non-zero elements in transformed
probability matrix from a number of edges left (In NASbench this is equal to 9).
Depending on random cell and quality of clustering we are left with a number of 2
or 3 edges we will need to search for.

Parameters to optimize are row and column indices of matrix. We are optimizing
a function f(x1,y1, -, Xn, ¥») which returns NASbench evaluation of test accuracy
for given architecture.

Since

e f isablack box for which no closed-form is known

e In the real world it is expensive to evaluate f and we are minimizing NAS-
bench budget as much as possible

e Evaluations of f are noisy because querying NASbench API returns one of 3
evaluations of each architecture

BO seems to be a natural algorithm choice for this task.

The proposed BO implementation is based on Gaussian Process (GP) Regression.
We use Lower Confidence Bound (LCB) as acquisition function (and as exploration
vs exploitation control using x value).

LCB(X) = VGP(X) + K(TGp(x)

When all clusters were optimized, we pick the best fit value by discounting test
accuracy over training time.

12

Chapter 4

Experiments

4.1 Batch generation

During experiments, we were querying 500 - 1000 unique elements for the initial
batch.

We used only NASBench data for 108 epochs.

This results in an initial budget of at most 370 GPU hours.

Only 7-vertex directed acyclic graphs were queried. Initial budgeting could be
slightly decreased (see 4.1) if we would replace CONV3X3 operation with CONV1X1,
however, this was not performed because architectures with only CONV1X1 are
showing £10% lower validation and test accuracy. Because we are not optimizing
operations currently, this was left for future experiments.

All CNNs from NASbench are trained on the CIFAR-10 dataset. CIFAR datasets
are described in very deep detail in Chapter 3 of Krizhevsky, 2012, especially details
about its collection. CIFAR is a set of 32 x 32 color images depicting real-world
objects.

Classes in CIFAR are exclusive and do not assume instances overlapping - see
4.2.

4.2 Environment and results

All experiments were running on the CPU. The average run took =10 minutes.

To reproduce results, make sure to install Tensorflow [Abadi et al., 2015] and load
NASBench data for 108 epochs.

To ensure that the results are not depending on the batch, several experiments
were conducted with different seed values.

An algorithm was evaluated with two sets of hyperparameters.

OPTK BREED LEN SIMILARITY TOLERANCE BATCH SIZE
kin KMeans Num of perspective clusters Min probability to preserve
50 5 0.9 1000
50 5 0.9 500

TABLE 4.1: Hyperparameters

In fact with seed = 50 on smaller batch size algorithm calculated optimized ar-
chitecture with accuracy 0.9358 and number of trainable parameter 7857930 which
is comparable to values received on bigger batch size.

It lost accuracy because variance inside clusters increased, but reducing initial
random search may be a good tradeoff on other NAS problems.

4.2. Environment and results

conv3ix3

original op
convlxl conv3x3

maxpooli3x3

new op new op
convlixl maxpool3x3 convix3 convlxl maxpool3x3

conv3x3

00000 0100%

original op
convlxl

maxpool3x3

Average absolute change in validation accuracy Average relative change in training time

FIGURE 4.1: Average abs. change in accuracy and average relative
change in training time after change of one operation Dong and Yang,

airplane

automobile EEE EH ‘

bird
cat
deer
dog
frog
horse
ship

truck

2020a

EmB NS ¥ R
FEHEEEE - P
GO S RS
Sy e Sl
SEEREDDANE

=T PP

W MEES A

FIGURE 4.2: Classes of CIFAR10 including 10 random images from
each Krizhevsky, 2012. It is important to understand that this dataset
is used in NAS problems as a cheap alternative to ImageNet.

14 Chapter 4. Experiments

Prediction compared to other elements in class Prediction compared to other elements in class
o e L
09375 09375 oy
oe
s * ® : ’
5, 09350 bl ,, 09350 L] .
g s . g * - s
2 09325 .8 3 09325 1 L] . .
® L]
i % 09300 4 . L4
£ 09300 PR B . - .
§ 5 .
& 09275 LY £ 09275
. * .
09250 0.9250 o
092251 09225 .
S

1000 1250 1500 1750 2000 2250 2500 2750 3000 1000 1250 1500 1750 2000 2250 2500 2750 3000
Mean training time Mean training time

FIGURE 4.3: Optimized architecture vs elements of it’s parent class

Convergence plot

0.0725 A1

0.0700 A1

0.0675 1

0.0650 A

0.0625 1

minf(x) after n calls

0.0600 -

0.0575 1

0.0550 -

=4
-

1] L L L] L]

0 5 10 15 20 25 30 35 40
Number of calls n

FIGURE 4.4: Convergence of BO for each class

4.3 Results

In all experiments BO was successfully converging fast (see 4.5). Optimized archi-
tectures are more cost-efficient than their neighbors within class (see 4.3)

4.4 Comparison with other NAS algorithms

Unfortunately, most projects use NAS more like a dataset to train their surrogate
models than for actual benchmarking, therefore, most of the results reported are out
of NASBench search space.

4.5 Reproducibility of results

In all cases tested, the proposed algorithm was able to find results close to optimum
non-depending of seed value. We can state that it is pretty ignorant to the random

4.5. Reproducibility of results 15

Model Fit Plot

094 4 (o)
r i i
0.92 4
> ! ®
o @
m —
é 0.90 °
W
5 3 *
o 0.88 1
0.86 1)
L
084 1 L] L] LJ ¥ . L
1000 2000 3000 4000 5000
Taining time
FIGURE 4.5: Predicted value plotted together with initial batch
Algorithm Search Time Test Accuracy
RANDOM SEARCH (Nasbench-202) 0.01 93.70
REINFORCE (Nasbench-202) 0.012 93.85
BOHB (Nasbench-202) 3.59 93.61
Proposed solution - 93.91

TABLE 4.2: Comparison with other algorithms

sample structure. This is because we are using a probability map of all architectures
in the class, so the signal of the pattern is strong.

Seed Mean Test Accuracy Trainable Parameters

30 0.9391 8294794
42 0.9391 8294794
50 0.9391 8294794

TABLE 4.3: Reproducibility information

16

Chapter 5

Conclusions

In this work, we were using probabilistic approaches to build a pipeline for search-
ing neural architectures in artificially limited state space. We applied clustering al-
gorithm to show that the exploitation of similarities could make sampling-based
optimization methods converge much faster. Lastly, we introduced a framework to
apply other probabilistic methods to our search space.

The proposed method slightly outperformed other alternative solutions achiev-
ing mean test accuracy of 93.91, and mean training time of approximately 25 min-
utes. Found cells are outperforming other cells in their cluster and are situated at
the edge of Pareto frontier, providing great accuracy vs training time balance.

As a result of the research, we’ve come with a solution that exploits similarities
found in clusters of neural architectures to effectively search best architectures based
on prior knowledge using Bayesian Optimization (BO) on the Gaussian Process (GP)
regression. The proposed solution was validated on a set of different seed values to
showcase the reproducibility of the algorithm.

The solution is available on the GitHub [Lut, 2020].

17

Bibliography

Abadi, Martin et al. (2015). TensorFlow: Large-Scale Machine Learning on Heterogeneous
Systems. Software available from tensorflow.org. URL: http://tensorflow.org/.

Casale, Francesco Paolo, Jonathan Gordon, and Nicolo Fusi (2019). Probabilistic Neu-
ral Architecture Search. arXiv: 1902.05116 [stat.ML].

Dong, Xuanyi and Yi Yang (2020a). “NAS-Bench-102: Extending the Scope of Re-
producible Neural Architecture Search”. In: International Conference on Learning
Representations. URL: https://openreview.net/forum?id=HJxyZkBKDr.

— (2020b). NAS-Bench-201: Extending the Scope of Reproducible Neural Architecture
Search. arXiv: 2001.00326 [cs.CV].

He, Kaiming et al. (2015). Deep Residual Learning for Image Recognition. arXiv: 1512.
03385 [cs.CV].

Huang, Gao et al. (2016). Densely Connected Convolutional Networks. arXiv: 1608 .
06993 [cs.CV].

Krizhevsky, Alex (May 2012). “Learning Multiple Layers of Features from Tiny Im-
ages”. In: University of Toronto.

Liu, Hanxiao, Karen Simonyan, and Yiming Yang (2018). DARTS: Differentiable Ar-
chitecture Search. arXiv: 1806.09055 [cs.LG].

Lut, Volodymyr (2020). Neural Architecture Search: A Probabilistic Approach. https :
//github.com/volodymyrlut/masters-project.

Pham, Hieu et al. (2018). Efficient Neural Architecture Search via Parameter Sharing.
arXiv: 1802.03268 [cs.LG].

Real, Esteban et al. (2017). Large-Scale Evolution of Image Classifiers. arXiv: 1703.01041
[cs.NE].

Szegedy, Christian et al. (2015). Rethinking the Inception Architecture for Computer Vi-
sion. arXiv: 1512.00567 [cs.CV].

Tan, Mingxing and Quoc V. Le (2019). “EfficientNet: Rethinking Model Scaling for
Convolutional Neural Networks”. In: arXiv e-prints, arXiv:1905.11946, arXiv:1905.11946.
arXiv: 1905.11946 [cs.LG].

White, Colin, Willie Neiswanger, and Yash Savani (2019). BANANAS: Bayesian Opti-
mization with Neural Architectures for Neural Architecture Search. arXiv: 1910.11858
[cs.LG].

Zela, Arber, Julien Siems, and Frank Hutter (2020). NAS-Bench-1Shot1: Benchmarking
and Dissecting One-shot Neural Architecture Search. arXiv: 2001.10422 [cs.LG].
Zoph, Barret and Quoc V. Le (2016). “Neural Architecture Search with Reinforcement
Learning”. In: CoRR abs/1611.01578. arXiv: 1611 .01578. URL: http://arxiv.

org/abs/1611.01578.

http://tensorflow.org/
https://arxiv.org/abs/1902.05116
https://openreview.net/forum?id=HJxyZkBKDr
https://arxiv.org/abs/2001.00326
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1608.06993
https://arxiv.org/abs/1608.06993
https://arxiv.org/abs/1806.09055
https://github.com/volodymyrlut/masters-project
https://github.com/volodymyrlut/masters-project
https://arxiv.org/abs/1802.03268
https://arxiv.org/abs/1703.01041
https://arxiv.org/abs/1703.01041
https://arxiv.org/abs/1512.00567
https://arxiv.org/abs/1905.11946
https://arxiv.org/abs/1910.11858
https://arxiv.org/abs/1910.11858
https://arxiv.org/abs/2001.10422
https://arxiv.org/abs/1611.01578
http://arxiv.org/abs/1611.01578
http://arxiv.org/abs/1611.01578

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Background overview
	History
	NASbench-101
	SOTA
	One-shot models
	Probabilistic Methods

	Proposed approach
	Clustering
	Bayesian Optimization

	Experiments
	Batch generation
	Environment and results
	Results
	Comparison with other NAS algorithms
	Reproducibility of results

	Conclusions
	Bibliography

