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Abstract

Generative adversarial networks (GANs) are one of the most popular models capa-
ble of producing high-quality images. However, most of the works generate images
from the vector of random values, without explicit control of desired output prop-
erties. We study the ways of introducing such control for the user-selected region
of interest (RoI). First, we overview and analyze the existing works in areas of im-
age completion (inpainting) and controllable generation. Second, we propose our
model based on GANs, which united approaches from the two mentioned areas, for
the controllable local content generation. Third, we evaluate the controllability of
our model on three accessible datasets – Celeba, Cats, and Cars – and give numeri-
cal and visual results of our method.
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Chapter 1

Introduction

In this chapter we define prior definitions, thesis goals, and deep learning theoretical
basics.

1.1 Thesis objective

1.1.1 Image generation

Image generation is the process of creating artificial examples of images by spec-
ified algorithm – sampling from a generative model. Generative model before an
inference is optimized on the existed real data (trainable model) or configured by
expert knowledge for concrete tasks without optimization (non-trainable model). It
has many variations depending on the context and goal, for example, popular ones
(Figure 1.1):

1. Dataset augmentation: expanding the current finite data with non-existed
ones. For example, the most simple and widely used image augmentation:
rotations with randomly selected angles, a saturation of the images with a ran-
dom level, cropping in a random position, adding noise. Augmentation works
without optimizable parameters and creates probabilistic distribution from a
small amount of data. It allows training models with a high level of data di-
versity.

2. Image-to-image translation: translation of key elements from a source image,
like style on structure, to a destination image. For example, draw clothes tex-
tures from sketches [1] or change the skin of horse to zebra [2], transfer style
from one face image to another [3].

3. Image editing and inpainting: filling gaps in the images, videos, or merely
changing existed content inside the specified mask. The key feature is that im-
age inpainting uses spatial properties of the input data, so generation depends
on the input Region of Interest (RoI).

4. Deepfakes generation: high-quality transfer of one face to another person in
image or video sequence [4]. This technology causes intense debate in soci-
ety and more often rejection, as it helps to spread fake news and fake non-
appropriate content with celebrities or other persons. However, it stimulates
the research community to create new tools for face anonymization and more
sophisticated methods for fake detection.

Through demonstrated examples, only the one type allows controlling genera-
tion in the sense of spatial control: image inpainting. Other methods sample data in
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(a) Image Augmentations (b) Image-to-image translation

(c) Image inpainting (d) Deepfake generation

FIGURE 1.1: (a) Image augmentation process1: it randomly rotates and crops input image.
The empty zones of the image (in case of rotations) are filled with mirrored values at the
edges. (b) Image-to-image translation: e.g, color skin and texture from horses to zebras
[2] (c) Image inpainting2: task: holes filling and generating new content inside empty
parts. (d) Deepfake generation3: transferring one face to another person, preserving style,

lighting conditions, and mouse position.

a non-control manner, i.e., the user can only take new images without changing the
output properties by somehow changing the random input vector.

Formally, a generative model is a procedure of sampling from generated distri-
bution Pg:

Artificial sample x ∼ pg(·|c), (1.1)

where c – vector for control, i.e., features that controls generation process. It can
be some predefined class that corresponds to the internal structure of the data (e.g.,
human pose for a dataset with humans, the emotion of faces), or class can be mixed
with corresponding data. The general idea is that the vector for control can be differ-
ent or even empty – non-conditional distribution, so the controlling over generation
process will have different properties.

1Image source: https://rock-it.pl/images-augmentation-for-deep-learning-with-keras/
2Image source: https://www.eteknix.com/nvidia-shows-off-impressive-ai-photo-reconstruction-

abilities/
3Image source: https://medium.com/@jsoverson/from-zero-to-deepfake-310551e59aa3

https://rock-it.pl/images-augmentation-for-deep-learning-with-keras/
https://www.eteknix.com/nvidia-shows-off-impressive-ai-photo-reconstruction-abilities/
https://www.eteknix.com/nvidia-shows-off-impressive-ai-photo-reconstruction-abilities/
https://medium.com/@jsoverson/from-zero-to-deepfake-310551e59aa3
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Within examples above, it can be a range of angles for dataset augmentation,
different sketches for image translation, or part of the image for image inpainting
task. Working with images, very important to properly use spatial information and
introduce them to the model.

Generative model has several types depend on how we can obtain their density
function pg(·|c): via direct finding of the density function in explicit form or in the
implicit form. Implicit models do not have standard density function, i.e., we can-
not write its density function in a theoretical way, and we can only obtain samples
from distribution without understanding which distribution has generated this pro-
cess. Explicit distributions allow us to obtain distribution theoretically or at least
approximately. The taxonomy of deep generative models explained in Figure 1.2.

Generative models

Explicit Implicit

Tractable Approximate

Normalizing
Flows

VAE

GAN

FIGURE 1.2: General taxonomy of deep generative models: depend on the task, generative
models can be with implicit density (in the cases, if we need only samples from complex
distribution) or with explicit density (we know theoretical or approximate density func-
tion); leaves demonstrate the members of each subtype: GAN is an implicit model, VAE –
model with approximate density, and Normalizing Flows [5] compute density directly via

log-likelihood estimation

In this work, we will consider and build only deep generative models, consists
of neural networks. They have proven high-quality results in different tasks on arbi-
trary (image) data. Also, they have a simple training algorithm (backpropagation),
and a transparent minimization objective procedure.

Nowadays, the dominant family of generative models for many tasks is Genera-
tive Adversarial Networks (GANs). We describe in detail this class in section 1.4 and
will focus mainly on it.

1.1.2 Controllable generation

Typical deep generative models create new images via non-linear transformation of
the prior random vector, e.g., multivariate standard normal or uniform distribution.
Models forward one variable to another, but without the possibility of explicit con-
trol because the relationship between inputs of the generator and features for control
is not apparent. For example, if the model generates human faces, we want to con-
trol the key features of a human face like eyes, nose, or lips. They have a particular
location on the face, and therefore, we can assume that inside a specific region of the
face, we can manipulate only with specific facial features. Historically, many types
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of generative models appeared, but there are several significant ways of how to add
control to the generation process:

• Conditional models: generating images using prior conditional information
about real data. In this class, we mean that the model has as additional in-
put information about the class and generates entire content from scratch us-
ing this information. For example, depending on an emotion type, the model
generates different faces. Nevertheless, during generation, the model does not
use the spatial properties of the data and only transforms the class into a fake
image.

• Representation manipulation models: changing in some way compressed latent
vectors inside the generator network. Generative models often following au-
toencoder structure or use its ideas. So manipulation with internal represen-
tation significantly changes the output of the network and allows to control of
some key elements in the taken images. For example, it can be averaging or
subparts mixing of two internal representations, and their reconstructed im-
ages mush share properties of both originals.

• Region-selected manipulation models: manipulation with semantic masks for
changing the desired content inside masks – inside RoI . Region-selected ma-
nipulation models similar to conditional models, but they introduce spatial
properties in the generation process, so we separated it from each other.

The first two classes are models with global content manipulation, i.e., they create
an entire picture from scratch. The last class is our topic of interest. We want to
introduce a controllable generation inside the selected region of interest. Thus, we
see our possible solution as an intersection between conditional, region-selected, and
representations manipulation models.

1.1.3 Thesis problem statement

The goal of thesis work is the building of the deep generative architecture, which
allows controlling content generation inside the defined region of interest (RoI) of
the image. We see our research as two dependent stages:

1. Development of the model allows the generation of desired content in the spec-
ified RoI for the chosen image. For example, we expect that the model gener-
ates eyes inside the RoI defined around the eyes (Figure 1.3). This is image in-
painting task, and there are a lot of research works and models trying to solve
it. We analyze existing works in the area and define which ones appropriate
for injecting controllability.

2. Find the way how to extract unsupervised features for controllable generation
in the arbitrary specified region and check the quality of control. For example,
extract features to control the color of eyes, size, or shape. We want to localize
generation only inside RoI and add the possibility of control only inside this
zone. Hence, at this stage, our model should perform image inpainting and
controllable generation tasks simultaneously.

We will use GANs to solve this task. In Chapter 2, we will consider a lot of
generative adversarial network types and provide cogent arguments, why we chose
this type of network.
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G(z|x, RoI)

FIGURE 1.3: Region-selected generation: GAN receives the image, prior random variable
z ∼ pz(z) and the region, after that generates G(z|x, RoI) with new content within RoI. The
generator becomes conditional random model and allows controllable generation inside

the RoI using random values from pz(z)

1.1.4 Thesis structure

This work has following structure:

1. Chapter 1. We define prior definitions and goals of our work.

2. Chapter 2. We research the related work in the image inpainting and control-
lable generation fields, and at the end of the section, present our vision of how
to inject controllable generation in the image inpainting process.

3. Chapter 3. We describe our solution: method concept, architectures, and loss
functions.

4. Chapters 4 and 5. We present our results and discuss what we achieved, the
advantages and limitations of our method, and possible applications.

1.2 Neural networks

We recall the basics of deep learning – neural networks. In 2020, they are default
choice for solving complex tasks in image processing, natural language processing,
reinforcement learning, and healthcare domains. These functions work on some
ideas on how the brain works: a neuron accumulates the responses from all sur-
rounding neurons al depend on the power of signal wl from each neuron. On the
mathematical language, it can be reformulated through the weighted summation of
values from other L neurons to the concrete one:

n = σ
( L

∑
l=1

wl · al+b
)

, (1.2)

where σ – threshold function, which modeled the size of the output signal depends
on accumulated one and limited the input signal (the threshold passes only if the
input signal is significant). b – bias in the neuron (analog of a constant signal).

If destination neuron is not alone, the same procedure can be repeated for all
output neurons. Moreover, the entire formulas can be written in matrix notation:

nj = σ
( L

∑
i=1

wil · al+bj), j = 1...M ∼ ~n = σ
(
W~a +~b

)
(1.3)

where σ – point-wise applying function, and neurons, weights, and biases are in
vector notations.
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The simplest neural networks work using only fully-connected layers (affine
transformation of the input vector, i.e., linear transformation with adding bias) with
non-linear functions fi. We can write neural network as a recurrent equation:

xi+1 = fi+1(Wi+1 · xi + bi+1), i = 0...n, (1.4)

where Wi+1 – matrix with consistent dimensions for multiplying of the vector xi, and
x0 – input vector

However, such class of neural networks is theoretically argumented in the case
of n = 2 [6], but is not appropriate for fast processing of the images with a big reso-
lution, and it suffers on gradient vanishing, slow convergence and an overwhelming
number of parameters. Instead, the convolutional neural networks invented for im-
age processing. They perform similar to the vision of living things: sliding view over
high-dimensional spatial input. It consists of parametrized convolutions, that extracts
spatial information from input. As a human, it iteratively processes spatial infor-
mation and tries to capture simple patterns like lines or angles and then construct
a more complex pattern using previous ones. The parameters of the convolution –
kernels K – slices over input X and collects weighted response for all slice depends
on the size of the kernel. Simultaneously, there can be few kernels, and the overall
procedure can be formalized in complex summation (with bias B):

Y[Cout, i, j] =
Cin

∑
c=1

Kh

∑
k=1

Kw

∑
l=1

X[c, i + k− 1, j + l − 1] · K[Cout, c, i, j] + b[Cout] (1.5)

This is affine operator, hence W – matrix, b – vector: Y = WX + b. So, this
is almost the same as the fully-connected layer, but with strong spatial integrated
properties, and many elements of matrix W will be zero. In modern programming,
software computer convolution very quickly and in a parallel way, using few graph-
ical processing units simultaneously. So they are prevalent in image processing and
evolved a lot since the new dawn of the neural networks in 2012 [7].

Important to say that, using convolutions and fully-connected layers, we can
perform the continuous differentiable transformation from one image or vector with
one resolution to another image or vector with arbitary resolution. Furthermore,
this fact opened the door for neural networks to solve almost all possible tasks, like
image reconstruction, super-resolution tasks, or classification. We should only take
many blocks with different non-linear functions between them and apply them to
our data to obtain the result.

1.3 Autoencoders

Autoencoder is neural network (can be fully-connected or fully-convolutional) with
two different subnetworks: an encoder and a decoder. Autoencoders operates on the
hypothesis that real data lies on low-dimensional manifolds, and we can find func-
tional mappings onto and from this manifold. Hence, the encoder compresses input
into underlying representation – the hidden state of the data. Depends on the ar-
chitecture, convolutional, or entirely fully-connected, it can be tensor or vector cor-
respondingly. The decoder performs the inverse operation: decompresses data into
real representation (with the same size as input).

Exist generative version of autoencoders – Variational Autoencoders (VAEs). It
interprets outputs of the encoder as parameters of some distribution: in the most
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pz(z)

DEx x̂

z
Compressed

(a) Autoencoder

pz(z)

DEx x̂

z

σz + µ

(b) Variational Autoencoder

FIGURE 1.4: (a) Autoencoder forward propagation: encoder E receives input vector x and
compresses it into new representation. Decoder restores x̂ from the internal representa-
tion. (b) Variational autoencoder forward propagation: almost the same as (a), but encoder
scales and biases input random vector with mean and variances, obtained from encoder

straightforward cases, mean and variance of gaussian distribution with independent
components, and samples compressed vectors from distribution Q(z|x) ≈ P{z|x}.
The log-likelihood principle for VAE’s is very complex numerical task (integral op-
timization), so used evidence lower bound (ELBO):

log P{x|θE, θD} ≥ Ez∼Q(z|x) log P{x|z} −DKL{Q(z|x)||P{z}} −→
θE, θD

max (1.6)

If we maximize the lower bound of the log-likelihood function, we approxi-
mately will maximize the log-likelihood itself. This is the main principle of varia-
tional autoencoders. It used in many formulations in other research works on similar
thematics. The detailed theory behind VAEs lighted in the paper [8].

1.4 Generative adversarial networks

The generative adversarial networks become a popular research topic in deep learn-
ing since their initial appearance in [9]. It is a new type of deep learning model
consists of two networks: a discriminator and a generator. The working abilities of
GANs is provided by competition between discriminator and generator. This com-
petition has been demonstrating a perfect visual effect on the generated content, and
these networks are recommended as one of the best methods for image generation.
For example, GANs can generate high-quality human faces that are almost indistin-
guishable from real faces4.

In the original definition, the goal of the discriminator with parameters θD is to
determine if an input image is fake or not, and give the probability D(·) = Preal(·)
that image is real. The discriminator should give high probability on the real sam-
ples and give low probability on the artificial samples. The goal of the generator with
parameters θG is to create images as realistic as possible, i.e., generate images G(z)
from prior z ∼ pz(z) that fool discriminator, and network makes a mistake in its pre-
dictions. This intuitive description of loss functions for generator and discriminator
can be formalized using the maximum log-likelihood principle:

LG = Ez∼pz(z) log(1− D(G(z))) −→
θG

min (1.7)

4This person is not exist: https://thispersondoesnotexist.com

https://thispersondoesnotexist.com
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LD = Ex∼pd(x) log D(x) + Ez∼pz(z) log(1− D(G(z)) −→
θD

max (1.8)

Formally, networks play in the non-cooperative game, so the one loss function
united two separate objectives for generator and discriminator:

L(D, G) = Ex∼pd(x) log D(x) + Ez∼pz(z) log(1− D(G(z)) (1.9)

The optimal discriminator and generator is solution to minimax game:

D∗, G∗ ←− min
θG

max
θD

L(D, G) (1.10)

The representation of generative adversarial networks from the game theory
point of view gives critical differences between the training of standard deep learn-
ing models with the only one loss function and training GANs. The success of the
only one agent does not define the overall success for the entire GAN because their
optimization depends on each other, and their quality must increase slowly together.
The generator’s gradient flows via the discriminator network. Hence, the genera-
tor’s updates strongly depend on the information from the discriminator. The dis-
criminator’s gradient depends on real and fake data and hence depends on the gen-
erator’s outputs (Figure 1.5).

For example, if the discriminator converges in a few iterations, then the generator
will not have enough information to generate realistic outputs. Hence the discrim-
inator’s "knowledge" is not based on real information. So the generator does not
have appropriate output from the discriminator as well. In the same situation, if the
generator converges very fast, the discriminator will not be able to classify correctly
between real and non-real samples, and this information will ruin the generator’s
outputs in long-term training. Thus, the failure of one of the models will lead to the
failure of both agents, so GAN training should be a careful and gradual process.

Nevertheless, researchers developed a lot of different losses for GAN to over-
come existed problems. Losses differ from the classic interpretation and do not sup-
port clear minimax game formulation (Table 1.1). But, the GAN with other losses
than original saves the competition properties, and their training is sophisticated as
well.

Hovewer, Goodfellow et al in [9] admit that classic loss for generator (1.7) has
convergence problems, so they recommended to use non-saturating version of stan-
dard generator’s loss:

LG = Ez∼pz(z) log D(G(z)) −→
θG

max (1.11)

The key difference between (1.7) and (1.11) is that their gradients w.r.t D(G(z))
have different behaviours during optimization: non-saturating loss has bigger norm
of gradients on the domain (0, 1) than classic one. Hence, optimization will be faster.

The next major steps in adversarial loss construction are Least Squares GAN [10],
or LSGAN, and Wasserstein GAN, or WGAN [11]. Least Squares GAN changes clas-
sic loss with logarithm on the more smooth function – f (x) = x2.

Wasserstein GAN derives a new vision on the adversarial loss function. Re-
searches discovered that classic loss function, which based on the Kullback–Leibler
divergence DKL, does not demonstrate continuous behavior in some specific cases.
When the distribution of images Pg, produced by a generator, has different support
or lies on the other low-dimensional manifold than real distribution Pr, the final
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Preal(x)

Preal(G(z))

(a) Forward pass
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Dpd(x)

pz(z)
z
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L(D, G)

∂L
∂θG

∂L
∂θD

(b) Backward pass

FIGURE 1.5: (a) GAN forward propagation: generator G receives prior random value
z ∼ pz(z) and transforms it to new distribution G(z). Discriminator D receives a sample x
from real distribution pd(x), fake sample G(z) and determines if inputs are real with prob-
abilities Preal(x) and Preal(G(z)). Finally, loss function L(D, G) receives the discriminator
outputs. (b) GAN backward propagation: green and red dashed arrows show gradients
flow w.r.t the generator’s and the discriminator’s parameters correspondingly. Gradient
of the D accumulates from two directions; gradient of the G passes through the D in the

one direction, and D serves as bottleneck for G

Loss type Discriminator Generator
Standard −Ex log D(x)−Ez log(1− D(G(z)) Ez log(1− D(G(z)))

Non-saturating −Ex log D(x)−Ez log(1− D(G(z)) −Ez log D(G(z))
Hinge Ex max(0, 1− D(x)) + Ez max(0, 1 + D(G(z)) −EzD(G(z))

LSGAN Ex(D(x)− 1)2 + EzD(G(z))2 Ez(D(G(z))− 1)2

WGAN −ExD(x) + EzD(G(z)) −EzD(G(z))
WGAN-GP −ExD(x) + EzD(G(z)) + λEt(||∇tD(t)|| − 1)2 −EzD(G(z))

TABLE 1.1: The several popular GAN loss functions, based on different outputs of dis-
criminator. The first two – Standard and Non-saturating – used discriminator’s and genera-
tor’s outputs limited to probabilistic range (0, 1); other losses used outputs in real range
(−∞, +∞); the WGAN-GP loss used additional gradient penalty limited the discrimina-

tor’s class function; loss functions are written in terms of minimization objective

properties of the DKL(Pr||Pg) has undefined behavior, and infinite value of DKL is
possible. The solution which authors proposed – change the basis of measuring the
distances between distributions, and set as primary measure Earth-Mover distance
(EM):

W(Pr, Pg) = inf
γ∈∏(Pr , Pg)

E(x, y)∼γ

{
||x− y||

}
, (1.12)

where ∏(Pr, Pg) – the set of all joint distributions between marginal Pr and Pg
Intuitively, it measures the mean distance between distributions for specific joint

distribution for which this measure will be minimal. It also has physical interpre-
tation: γ realizes transportation plan from mass Pr to Pg, and EM-distance helps
to find the optimal transportation plan with the lowest cost in the sense of distance
|| · ||.

However, the (1.12) has two significant problems. First, intractable Pr distribu-
tion – we do not know the explicit form of this value. Second, the equation depends
on the γ in a non-differentiable way, and we know nothing about γ ∈ ∏(Pr, Pg).



10 Chapter 1. Introduction

So, authors proposed transform equation (1.12) in more simple way. They used
Kantorovich-Rubinstein duality [12] and simplified equation:

W(Pr, Pg) = sup
|| f ||L≤1

{
Ex∼Pr f (x)−Ex∼Pg f (x)

}
, (1.13)

where || f ||L ≤ 1 defines the class of 1-Lipschitz (or K-Lipschitz) functions:

∀x, y ∈ D( f ) : || f (x)− f (y)|| ≤ 1 · ||x− y|| (or K · ||x− y||) (1.14)

The new equation (1.13) supports direct optimization if the supremum is reachable.
Authors proposed to clip the domain of the function’s weights – hence, it automat-
ically will have maximum within the domain as a continuous function has maxi-
mum value on the compact set and function will be K-Lipschitz as well. During
optimization, arguments clipping must be after every iteration (to ensure theoretical
consistency).

Important to say, using this loss function, the discriminator does not give proba-
bility Preal(·). It gives the continuous score D(x) ∈ R, and discriminator sometimes
recalled as critic. In this work, we call discriminator or critic only as discriminator –
for simplification of terminology.

However, weight clipping slowed training process, so [13] proposed additional
Gradient penalty to WGAN loss called WGAN-GP:

LD = −ExD(x) + EzD(G(z)) + λEt(||∇tD(t)|| − 1)2 −→
θD

min (1.15)

The gradient penalty limited the norm of the gradient to 1 and hence limited the
functions to K-Lipschitz, because:

∀x ∈ D( f ) : || f ′(x)|| < A =⇒ || f (x)− f (y)|| < A · ||x− y|| (1.16)

During optimization, ∇tD(t) calculated for t = α · xr + (1− α)xg, where xr ∈
Pr and xg ∈ Pg. Non-trainable parameter α is sampled from uniform distribution
U(0, 1), and hence during optimization gradient is computed on the line between
real and fake sample. In case of success training, i.e Pr ≈ Pg, the t = α · xr + (1−
α) · xg will cover all domain of discriminator and limit its gradient on all D( f ).

Also, researchers often used Hinge loss for image inpainting task and loss is
demonstrated good visual results on restored image parts [14]:

LD = Ex max(0, 1− D(x)) + Ez max(0, 1 + D(G(z)) −→
θD

min

LG = −EzD(G(z)) −→
θG

min
(1.17)

It updates only discriminator’s part of the loss and still the same, as in WGAN,
the loss for generator.
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Chapter 2

Related work

In this chapter, we describe research works in the image inpainting and controllable
generation tasks domains.

2.1 Classic models

Classic computer vision image inpainting algorithms were built around the idea of
iterative filling of empty pixels using non-masked parts of an image. Image in-
painting technique based on the Fast Marching Method [15] and PatchMatch [16]
researched in 2000th and used in the OpenCV library for fast image inpainting. The
core idea of algorithms to fill RoI from the boundaries to the center of the region
of interest, based on the values from neighbors pixels. Thus, in these approaches,
subsequent pixels become dependent on the predicted ones, and a large error (in
comparison with the real image) accumulates towards the center of the region, and
the quality of filling significantly drops with increasing mask size. While the first al-
gorithm used deterministic filling using the closest neighbors, the PatchMatch used
specifically chosen patches of images to fill the desired region and enable quick pro-
cessing of the image (in online or in the graphical-used interface of editing tools).
PatchMatch allows us to generate new content inside RoI, but do not allow to con-
trol generation over image: the unambiguous mapping between input and output
makes it impossible to control this generation using other variables than RoI.

Moreover, classic computer vision algorithms filled the empty zones based only
on the statistics of the rest of the image. As a result, the filled zone is blurred and
does not demonstrate real properties. They cannot create new smart content de-
pending on the internal properties of underlying data.

2.2 Conditional generative models

Conditional GAN [17] has the same structure as classic GAN, but instead of distri-
butions pz(z) and pd(x) used pz(z|c) and pd(x|c), where c – discrete label of data
sample x. The entire process of training and inference remains the same, but along
with random noise, the generator receives new information about the condition, con-
catenated with z. The conditional labels c define the prior information about data.
Conditional distribution allows to control of the generation of predefined classes
separately, and the generator creates new content much better because it has infor-
mation that separates classes.

For example, image class "smiling face" introduced additional information in the
generator, and it generates only smiling faces during the sampling procedure. How-
ever, the model strongly depends on the labeled data (images with different classes)
and cannot control generation without labels, so it is the main disadvantage of the
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method.

Controllable Generative Adversarial Network [18] - ControlGAN - also manipulates
with conditional deterministic variables, but introduces the additional classifier net-
work to compress semantic information and use it in the generator as well. Hence,
the entire GAN architecture consists of three blocks: generator competes with dis-
criminator and classifier (Figure 2.1). The updated goal of the generator is to cre-
ate samples fool discriminator and on which classifier will make a correct predic-
tion. For example, for class "smiling faces" the generator must create not only smil-
ing faces, but also classifier must predict "smiling" faces for artificial images from
G(·|"smiling faces"). Additional labels in the input for generator forced the network
to make image instances as more similar to condition distribution Pr{·|c} for all
classes c, because the generator produces images with different, per-class features.
The model also controls the trade-off between training of the classifier and training
of the generator, using the smoothed ratio between classifier’s losses on the real and
generated data. In these settings, authors followed BEGAN [19], which used ideas
from control theory to add a balance between discriminator and generator within
the training process. As a result, ControlGAN has better quality than Conditional
GAN, but the model also uses the human-labeled dataset with different conditions.

G

Dpd(x)

pz(z)
z, c

x

G(z)

L(D, G, C)

Preal(x)

Preal(G(z))

C
x, c

G(z), c

P(c|·)

FIGURE 2.1: The forward propagation of ControlGAN: a generator G receives additional
class label c and generates content concerning this condition; a discriminator D has con-
nection only with G; a classifier C makes predictions on the real and generated data, which

used in the loss L(D, G, C)

InfoGAN by [20] upgraded conditional model with features for control in an
unsupervised way. The key idea is to use additional probabilistic distribution pc(c)
for control together with initial pz(z) and create dependency between generated data
and distribution for control via mutual information maximization:

I(G(z, c), c) = DKL(pG(z, c), c − pG(z, c) · pc) = H(c)−H(c|G(z, c)) −→ max (2.1)

The objective increases the divergence between the product of marginals and mu-
tual distribution, hence "increases" the level of dependency between random vari-
ables. This setting allows disentangled learning of the real data, i.e., features for con-
trol with high probability will correspond to specific visual aspects of the data (e.g.,
faces structures, size of the eyes or nose position). However, the direct optimiza-
tion of I(·, ·) is not possible, because it depends on the distribution P(c|x), which
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is intractable. Authors tried to approximate P(c|x) via auxiliary distribution Q(c|x)
with parameters θQ, so they used Variational Lower Bound LI(·, ·) instead:

I(G(z, c), c) ≥ Ec∼pc(c), x∼G(z, c) log Q(c|x) + H(c) = LI(·, ·) (2.2)

The new objective is added together with standard GAN loss objective:

D∗, G∗ ←− min
θG , θQ

max
θD

{
L(D, G)− αLI(G(z, c), c)

}
(2.3)

Distribution for control pc(c) can be continuous vector, like multivariate gaussian
distribution or few independently distributed uniform values, and can be discrete
vector with finite number of values with probabilities pi for every ci, i = 1...S. In
practice, discrete and continuous distributions perform different control functions:
while continuous random variable corresponds to the continuous changing of the
images (rotations or lighting), discrete variables significantly switches the data (a
type of digits, smiling or not smiling face). Control with pc(c) is simple: after train-
ing, we can understand distribution as sliders with a defined minimum and maxi-
mum values for continuous variables (e.g., minimum and maximum values for uni-
form distribution), and set of discrete variables as a drop-down list.

Elastic-InfoGAN [21] extends InfoGAN with differentiable discrete pc(c) w.r.t gen-
erator’s weights. InfoGAN has a limitation in case of training data that has imbal-
anced distribution, so the authors proposed directly estimate probabilities of dis-
crete distribution for control using Gumbel-Softmax distribution. Also, authors con-
strained entropy of a posterior distribution Q(c|x) ≈ P{c|x}: it should be low, be-
cause created dependency between Pg and Pc creates an intractable mapping be-
tween real samples and conditional variables, reduces the level of uncertainty be-
tween random values:

LH(Q) = H(Q(c|x)) + H(Q(c|δ(x))) −→
θG

min (2.4)

Authors used this loss both for original input x ∼ pd(x) and also for augmented
datasamples δ(x), δ ∼ Pδ(δ) - augmentation distribution. In this way, they want to
force neural networks create representations invariant for specific class of augmen-
tations (e.g rotations and scales), which can transfer control from this augmentations
to internal properties of the data.

2.3 Representation manipulation models

StyleGAN [3] brings the idea of style transfer into generation process for better con-
trol of the output images. The style transfer is possible by Adaptive Instance Nor-
malization layer [22], special version of Batch Normalization [23]. The Adaptive
Instance Normalization adds direct scaling and biasing of the internal pictures rep-
resentations – style modulation – and allows to control transfer style from one image
to another:

x̂(x, w) = γ(w) · x−E(x)√
D(x) + ε

+ β(w), (2.5)

where w - vector for control, γ(w) and β(w) - scale and bias modulation factors.
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Normalization allows us to control the output properties of the images only with
scaling and biasing of the internal representations – it is an empirical fact, obtained
in [24], and used for fast style transfer. The same convolution filters used with differ-
ent coefficients in the normalization layer – and it allows us to generate completely
different outputs.

Additional non-linear transform W : z → w of the input random variable z ∼
pz(z) before generator stabilizes the style transfer process and allows to direct con-
trol of the generated images via complex random value. The authors suggest this
technique helps to approximate Pr by the distribution of generator Pg. The Style-
GAN uses Progressive GAN [25] idea with image size increasing. Hence, the model
tends to learn from small blurred images to high-quality pictures.

HoloGAN introduced by [26] is a novel GAN architecture that adds information
about the volume in the model (Figure 2.2). HoloGAN shares architecture a lot with
StyleGAN, but add two additional layers inside of the generator: 3D-Transformation
with parameters θ and 2D-Projector. These layers perform a 3D-rotation of the in-
ternal representation and project it on some plane. The key idea is to introduce
bias about 3D-world into the model, then manipulate with 3D-view of the data and
finally perform volume-to-surface projection. Manipulation is possible by the 3D-
Transformation layer, which has parameters θ defined outside the model, i.e., they
were not used during optimization. Instead, parameters are randomly sampled, and
the model learns to generate data in all possible 3D configurations, like to see the
same object in 3D-space from different points of view. We consider this architecture
very interesting for our research, so we use the idea about the 3D-Transformation
layer and change it for our purposes.

Dpd(x)

pz(z)
z

x

G(z)

L(D, G)

Preal(x)

Preal(G(z))

3D 2D

pθ(θ)

G

FIGURE 2.2: The forward propagation of HoloGAN: a generator G receives additional class
label c and generates content concerning this condition; a discriminator D has connection
only with G; a classifier C makes predictions on the real and generated data, which used

in the loss L(D, G)

Research work β-VAE: Learning Basic Visual Concepts With A Constrained Varia-
tional Framework [27] introduces β-VAE. It allows to disentangle images represen-
tations inside autoencoder, using simple β-scaling of the DKL term in the variational
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loss:

log P{x|θE, θD} ≥ Ez∼Q(z|x) log P{x|z} − βDKL{Q(z|x)||P(z)} −→
θE, θD

max (2.6)

However, the authors report model has a trade-off between the accuracy of the re-
construction and the possibility of explicit control. In their next work Understand-
ing disentangling in β-VAE [28] they tried to reduce this problem. They also argued
(from a theoretical perspective) why controllability is possible only by changing β
coefficient.

2.4 Region-selected manipulation models

The goal of GAN Dissection: Visualizing and understanding generative adver-
sarial networks [29] work is to determine and control the internal representations
for generating desired content in the chosen RoI. Authors developed an interactive
online tool1 based on this paper. They manipulated with generator’s latent repre-
sentations that correspond to specified RoI and semantic class (e.g., grass, door, or
sky). They found the dependency between convolutional activation maps of dif-
ferent channels in the intermediate layer of the generator and the RoI. For these
purposes, the authors used a two-stage approach:

1. Dissection: finding the best overlap with RoIr and zone with highest activa-
tions RoIg, c for each class c via Intersection over Union (IoU) measuring:

IoU(RoIr, RoIg, c) =
µ(RoIr ∩RoIg, c)

µ(RoIr ∪RoIg, c)
(2.7)

where µ - square of the RoI on the image.

2. Intervention: manipulate with the best match to maximize the square of chosen
class in the RoI. It is achieved by direct changing features within RoIg, c to
obtain highest scores for chosen class k.

The authors used custom loss function in the Intervention step to formalize the
changes in the feature maps. They maximized the class appearance in the chosen
region of interest with respect to activation. Though, their work strongly depends
on the dataset with labeled classes and the segmentation mask of each class. As
the result, they can control generation inside RoI using discrete classes (e.g sky →
grass).

Model’s two-stage manipulation procedure highly depends on the labeled data
(both classes and segmentation mask), which limited application of this model to
non-labeled datasets.

Patch-Based Image Inpainting with GANs [30] brings new ideas for adversarial
convolutional models: authors extended discriminator from single-score to multi-
score model. It has called PatchGAN. The discriminator now operates on the local
and global levels and gives the probability that input is real not only for the entire
image but for different parts of the image as well. The structure of discriminator
allows reducing image resolution to some middle size between original and single-
scalar output. It can be interpreted as scores for some part of the original image

1GAN Dissection painter: http://gandissect.res.ibm.com/ganpaint.html

http://gandissect.res.ibm.com/ganpaint.html
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(depends on the accumulated receptive field from the first convolution to the last
one). The scores for different patches share information via a fully-connected layer,
so it increases the quality of the discriminator. They also discussed the use of strided
convolutions for image inpainting task – it covers the bigger receptive field, has a
smaller number of parameters (if compare with non-strided convolution with the
same receptive field). Model used L1-loss for reconstruction:

L1(G) = E(z, x)∼ (Pz, Pr)

∣∣∣∣x− G(z|RoI)
∣∣∣∣

1 −→θG
min (2.8)

Image Inpainting for Irregular Holes Using Partial Convolutions [31] tries to ex-
pand convolution operation on the case where part of the image is erased. They
researched that typical convolution is not appropriate for this task, because it de-
pends on the empty regions and can produce visual non-correct artifacts, so were
proposed to modify convolution than it depends only on the non-empty part of the
image – partial convolution. From first to the last layer, partial convolutions filled the
empty parts of RoI, and changes mask as well. The model with such layer is not
generative, i.e., model is not random, and it changes if mask changes. Authors de-
signed specific loss functions for style and perceptual performance of the generated
images, taken from style transfer literature by Gatys et al [32]:

Let xg = G(z), – generated image from noise and xc = RoI · xg + (1−RoI) · xr –
completed image with non-erased part. Then, perceptual loss defined as:

Lper = Ex, z∼Pr , Pg

L

∑
i=1

∣∣∣∣Qi(xc)−Qi(xr)
∣∣∣∣

1 +
∣∣∣∣Qi(xg)−Qi(xr)

∣∣∣∣
1 (2.9)

where Q – pretrained network on the ImageNet dataset [33]. The main sense is Q has
seen a lot of real data samples, so it can help transfer "real" style to generated images
and concentrate generator to create a realistic filling of the chosen RoI. Authors also
included Total-Variation loss LTV , which is a penalty for increasing of the completed
outputs continuity:

LTV = ∑
(i, j)∈RoI

|xi, j+1
c − xi, j

c |+ |x
i, j
c − xi+1, j

c | (2.10)

Free-Form Image Inpainting with Gated Convolution [34] paper introduces a new
type of convolution with the gating mechanism depends on the input mask. It is
a modification of partial convolution and allows the differentiable flow of masked
image through a network: 

Yf = Conv2d(X, K f )

Ym = Conv2d(X, Km)

Y = f (Ym)� σ(Ym)

(2.11)

where f (·) and σ(·) – non-linear functions. Multiplication between two tensors re-
alizes gating mechanism (authors used sigmoid for this purpose).

They also used PatchGAN discriminator with Spectral Normalization [35] for
convolutional layers: it stabilizes training process and doesn’t allow to win com-
petition in few epochs. Paper SC-FEGAN [36] used almost all improvements from
the previous two works, but they added for control also color and shape into the
mask. Both works use coarse-to-refine architecture type for neural networks, i.e., they
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defined generator as networks with two significantly different subparts: one gener-
ates possible corrupted by visual artifact images, and the last one refines generated
image to a realistic one. EdgeConnect [37] works similarly to the coarse-and-refine
network. However, it generates sketch and borders of the object inside RoI and then
generates the entire object using the guidance of the previous output (like refine
stage). Globally and Locally Consistent Image Completion [38] work builds local
discriminator around RoI for better discrimination only the RoI part of an image,
and generator structure also similar to the coarse-to-refine network.

Image-to-Image Translation with Conditional Adversarial Networks [1] is image
translation method, which allows to generate content from defined multi-class mask.
Authors used PatchGAN discriminator, updated generator with U-Net [39] based ar-
chitecture and added to adversarial loss L1 conditional reconstruction loss for gen-
erator:

D∗, G∗ ←− min
θG

max
θD

{
LGAN(D, G) + αL1(G)

}
(2.12)

However, their model is not appropriate for high-resolution image generation be-
cause it produces blurry images and artifacts on it. So, Pix2PixHD was introduced
in the High-Resolution Image Synthesis and Semantic Manipulation with Condi-
tional GANs [40] work. Authors defined the multi-scale structure of the generator
and the discriminator, which operate on different scales and with different levels of
details on the image. Discriminators work with few resolutions. Hence they spe-
cialized in different features depend on the image quality. Generators work together
with discriminators and produce images with different resolutions, which united at
the end of the architecture. Authors experimented with Feature matching loss: it helps
to transfer properties of the real images onto generates ones using information from
the intermediate layers of the discriminator:

LFM(G) =
NL

∑
j=1

Ex, z ∼ Px , Pz

∣∣∣∣Dj(x)− Dj(G(z))
∣∣∣∣

1 (2.13)

where NL – number of layers in the discriminator (summation iterates over outputs
of the discriminator’s layers). Entire adversarial loss consists of three discriminators
and one generator (few generators minimize the same part of the loss, to it can be
formalized in the one model):

D∗1 , D∗2 , D∗3 , G∗ ←− min
θG

max
θD1 , θD2 , θD3

{ 3

∑
i=1

LGAN(Di, G) + αLFM(G)
}

(2.14)

Semantic Image Synthesis with Spatially-Adaptive Normalization [41] work used
only semantic information to generate photo-realistic pictures. Authors created de-
normalization layer – Spatially-adaptive denormalization (SPADE). It converts the
semantic map into a continuous tensor and hence allows the differentiable transfor-
mation of the discrete RoI-tensor (Figure 2.3). It possible with direct style changing
of the normalized row tensor of data with RoI as the source of style. For increasing
the diversity of the generated samples, authors used sampling inside the architecture
with VAE-loss 1.6. The architecture with the SPADE block demonstrated excellent
visual results in region-selected content generation, so we find this approach inter-
esting for our purposes and uses some key elements of the work in our research.
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BatchNorm2d

Conv2D

Conv2D

Conv2D

RoIX

ReLU

FIGURE 2.3: The schema of SPADE [41] layer. Block processes X input, normalizes it and
modulates with scale and bias computed using RoI information.

2.5 Conclusion

The research works in the image inpainting, and controllable generation fields have
a lot of great solutions. They mostly GAN-based, but have a lack of unsupervised
control of the local generation inside defined RoI. Typical works on the image com-
pletion or inpainting mostly concentrate on the restoration process, ignores the gen-
erative properties of the obtained model, and also ignore adding a procedure to
control the generation of the main visual aspects of the processed data. There are
few works on the controllable generation, but they performed the global generation
and ignores spatial dimensions to create new content. We see these facts as the bot-
tleneck to the entire generation process. We hypothesize that, if a generator creates
realistic filling of the RoI, it can be customized to control generation of the content
within the region of interest.

We examined the best practices and decided to unite a few ideas in our solution:
modified denormalization layers and RoI-block for masks sampling. We think that
adding style control inside the denormalization layer for mask should allow to local-
ize and control generation inside the defined area, and sampling random masks dur-
ing training will cover almost all possible variations of filled and non-filled zones.
It should force the generator to make good visual inpainting, and discriminator – to
concentrate on the RoIs. At the same time, we want to tie random variables with lo-
cal features. We plan to achieve it using mutual information maximization principle
between random variable for control and prior random variable, like in [20].
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Chapter 3

Proposed method

In this chapter, we describe proposed architecture of generative adversarial network
for image inpainting with control within region of interest – RoI-GAN.

3.1 Method concept

We define our architecture concept in Figure 3.1. The generator output is condi-
tioned on input image from real distribution pd(x) and selected RoI. During train-
ing, a RoI-block with non-trainable parameters θ samples the regions of interest. The
generator receives the RoI into denormalization layers, which accumulates informa-
tion abouts masks in the architecture and allows control of the generation inside
RoI. The discriminator gets the true image x and changed image G(z|x, RoI). Ini-
tial random vector z ∼ pz0, c(z) consists of incompressible noise z0 and distribution
pc(c) for control. They concatenated and fitted into network, and then, using op-
timization, distributions pG(z0, c) and pc(c) have became entangled. For definitions
simplification, we will call vector (z0, c) as vector z.

Gpz0, c(z)
z

x

RoI

RoI θ

x

pd(x)

D
G(z|x, RoI)

L(D, G)

pz0(z0) pc(c)

FIGURE 3.1: Own solution concept: the generator receives RoI mask, a sample from real
data x ∼ pd(x), a sample from random prior z ∼ pz(z) and outputs G(z|x, RoI). The
discriminator gets the x and generated G(z|x, RoI) and gives the probabilities that inputs
are real, which used in the L(D, G). The RoI is generated using parameters θ in the RoI-
block. Prior distribution consists of incompressible noise pz0(z0) and distribution pc(c),

which will be used for control after optimization process.
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1. The RoI-block is the non-trainable layer. It generates random RoIs during
training (elliptic, square, or complex areas of the interest). During the inference
stage, the RoI-block is off and can be used a custom-defined region of interest.

2. Then the denormalization layer inside the generator receives and transforms
RoI. It transforms the binary mask RoI into continuous tensor, modulates the
input tensor with scale and bias, obtained from the mask. We designed two op-
tions: generative block with style modulation of mask features with a random
variable, or without it. We used the first option for image generation inside
RoI and the second for generation outside RoI.

3. The generator G is conditional generative model which receives additional real
image x ∼ pd(x) and RoI before creating synthetic images as prior informa-
tion, and generates outputs depends on these values. It consists of encoder
and decoder part. They were built in U-Net manner. The G consists of blocks
with denormalization layers.

4. The discriminator D is a standard convolutional neural network, receives the
input real/fake image, and its output Preal(·) is proportional to the probability
that samples are real. It consists of global and local parts, whose give score
for the entire image or its parts correspondingly. Also, D outputs auxiliary
network Q(c|x) ≈ P(c|x). The Q network used to optimize LI(·, ·) objective,
which helps to entangle distribution for control pc(c) with prior noise pz0(z0)

5. After training, we will use G as conditional generative model xg ∼ G(z|xr, RoI)
and generate new content inside RoI for defined RoI. We also will use the
pc(c) distribution to control generation inside RoI: changing one coordinate of
the random vector with high probability will change one of the major visual
elements.

3.2 RoI-block

The RoI-block is a non-trainable generative part of the proposed GAN architecture.
It samples different masks and used them inside the generator to create conditions
in which generation occurs within RoI. The purpose of RoI-block to force gener-
ator creating content following the real distribution of training images. As well,
we wanted to add like unsupervised feature extraction from autogenerated masks
– during training, generator will learn to fill the RoI and control content, while dis-
criminator will learn to discriminate more RoI, instead of other zones of AN image.
There are three types of RoI (visual represenation in Figure 3.2):

1. Squares RoIs: using uniform two-dimensional distribution over image size,
generate rectangles. We generate the positions of diagonal points within coor-
dinates of the image, and delete part of the image in this rectangle:

PRoI ∼
{

x1, x2 ∼ U(0, Iw)

y1, y2 ∼ U(0, Ih)
(3.1)

where PRoI – rectangles with coordinates of opposite diagonal points (x1, y1)
and (x2, y2). We dropped cases when square measure of rectangle is zero (it
happens when x1 = x2 or y1 = y2)
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(a) Rectangular RoI (b) Elliptic RoI (c) Mixed RoI

FIGURE 3.2: Different generated RoI: (a) Masks with rectangular form (b) Masks with
elliptic form, with different orientation and center location (c) Masks, obtained from the

level curve of gaussian mixture density function

2. Elliptic RoIs: using level curves of two-dimensional gaussian distribution,
generate ellipses with different orientations. We generated density functions
with different parameters, and then thresholded them with a predefined con-
stant. The construction process begins with mean µ generation of gaussian
distribution:

µ ∼ N

((
0.5Iw
0.5Ih

)
,
(

Iw 0
0 Ih

))
(3.2)

Next generate covariance matrix Σ of gaussian distribution:


ρ ∼ U(−0.8, 0.8)
σx ∼ U( Iw

5 , Iw
3 )

σy ∼ U( Ih
5 , Ih

3 )

=⇒ Σ−1 =

(
σ2

x ρσxσy
ρσxσy σ2

y

)
(3.3)

Finally, generate probability density function with µ and Σ:

f (~x|µ, Σ) =
1

2π
√
|det Σ|

e−
1
2 (~x−µ)TΣ−1(~x−µ) (3.4)

The distribution of ellipses will be:

PRoI = {~x| f (~x|µ, Σ) >
max f (~x|µ, Σ)

2
} (3.5)
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3. Mixed RoIs: using gaussian RoIs procedure, generate the level curves of gaus-
sian mixture. Generate sequence of functions with different µ and Σ, and gen-
erate convex weighted sequence of real numbers w1, w2 ... wn, i.e ∑n

i=1 wi = 1.
The mixture probability density function will be:

fn(~x) =
n

∑
j=1

wj f (~x|µi, Σi) (3.6)

The distribution of non-trivial region of interest will be:

PRoI = {~x| fn(~x) >
max f (~x|µ, Σ)

2
} (3.7)

RoI-block is defined as block only theoretically, while in implementation, it be-
haves like a random variable, and we sampled from it during the training procedure.

3.3 Denormalization layer

The main functional part of architecture is block called denormalization layer (Figure
3.3). It normalizes input of block and denormalizes it, using scale and bias, com-
puted using information from RoI:

z∗ = (z1, z2) = Az + b
RoI∗ = Activation(Conv2d(RoI, Kinternal))

RoI∗ = RoI∗ · z1 + z2

γ(RoI∗) = Activation(Conv2d(RoI∗, Kγ))

β(RoI∗) = Activation(Conv2d(RoI∗, Kβ))

x̂ = γ(RoI∗) · x−E(x)√
D(x)+ε

+ β(RoI∗)

(3.8)

where z – random vector, it used as vector for style control, A, b, Kinternal, Kγ, Kβ -
trainable parameters of the layer.

The first three equations defined control over style and content (using trans-
formed z∗) inside RoI, the three last ones – defined how to incorporate this style
in the features x.

The denormalization block inspired a lot by SPADE [41], but we added a block
for explicit control with random value. The block convolves input RoI (we increased
resolution of RoI before convolution applying to remain the same dimensions be-
tween X, scale, and bias factors). We transformed input random variable Z with
affine transform, and interpret new values as weights for channels of convolved
mask’s features. Then we obtained γ(RoI∗) and β(RoI∗) via additional convolu-
tions.

Generally speaking, we performed two-stage style modulation of the normalized
tensor. First, introducing mask in the network as the style modulation allows to
generate new content only inside RoI. Second, and the style modulation of RoI with
a random variable in the intermediate layers – allows to control generation process.
As a result, the layer allows us to generate and control a part of the image within
RoI.
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BatchNorm2d

Conv2D

Conv2D

Conv2D
Activation

Z

RoIX

Affine

FIGURE 3.3: The denormalization layer. Block processes X input, normalizes it, and modu-
lates normalized data with scale and bias computed with RoI information. Random vector

Z performs the affine transformation of intermediate features

3.4 Upsample block

The generator mainly consists of blocks with possibility to control generation inside
RoI or in 1− RoI (Figure 3.4). The block has two branches: left branch specializes
on the generating content inside RoI, and for developing generative properties style
modulation with random vector Z is used (Figure 3.3); the right branch does not use
Z. Hence the denormalization layers of the right branch do not have affine layer and
style modulation with random variable – output depends only on the mask 1−RoI
and input tensor X. Both branches have convolutional layer with non-linearity after
it. After merging, the block has another denormalization layer with style modula-
tion, followed convolution.

Overall, the generation process exists only in the left branch and at the end of the
block, while the right branch restores 1− RoI part of the image. All convolutions
in the block have optimal padding to prevent image size decreasing and only up-
sample layer twice input resolution. We used the nearest mode for an upsampling
algorithm. Leaky ReLU function was used with negative slope 0.2.

3.5 Generator

The generator is U-Net based (Figure 3.5): transforms images at different scales,
and concatenate this information in the upscaling process (encoder’s intermediate
output saves and then used as additional decoder’s inputs).

The encoder part used gated convolution layers: they help to transform and in-
tegrate mask information along with images. For simplification of the diagram, we
do not plot activations (LeakyReLU with negative slope 0.2) and normalization (In-
stanceNormalization) layers in the encoder part. However, we used it in all gated
convolution (gated convolution→ normalization→ activation). All convolutions in
the encoder reduced input resolution by half. The last layers of encoder generated
mean and variance vectors – they must be "global style" vectors.

Prior random variable Z goes through dense layers with activations and then
modulates the global style of an image using extracted mean and variances from
the image. Then, vector σZ + µ reshaped using pixel shuffle [42] layer – it helps to
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X
DenormBlock

LeakyReLU

Conv2D

LeakyReLU

UpSample×2

LeakyReLU

Conv2D

DenormBlock

Z

RoI
X

RoI

Z

RoI
X

DenormBlock

LeakyReLU

Conv2D

LeakyReLU

UpSample×2

FIGURE 3.4: The upsample block: left branch specializes on the generating new content
inside RoI (used information from random variable Z), while right branch restores content
outside RoI (didn’t use Z). Branches merged at the end, and final denormalization layer

applyied to united branch.

increase the resolution of features and distribute channels information over spatial
dimension in an optimal way. Then, it used in the generation process inside RoI and
restoration process inside 1−RoI.

All upsample blocks in the generator double the spatial size of the input tensor.
The last layer also has a convolutional layer that performs the mapping from input
channels to an RGB-type image. We also perform InstanceNormalization after this
convolution, but does not plot it, and then limited output with Tanh(·).

3.6 Discriminator

The discriminator is based on the DCGAN [43] architecture type, and entirely used
convolutional layers (expect the final one). It has three parts: intermidiate part Dmain,
local discriminator Dlocal and global discriminator Dglobal . The local discriminator
outputs scores for different parts of images that correspond to accumulated recep-
tive field from convolution parts. The global discriminator scores entire image as
fake or real. Then, their scores concatenated along feature dimension and released
as multi-dimensional output. Other part of network, Q(c|x), is part of discriminator
by parameters, but optimized together with generator’s parameters. The Q network
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Z

RoI

X
GatedConv2D

GatedConv2D

GatedConv2D

GatedConv2D

GatedConv2D

Linear

Linear

Dense Dense Dense

UpsampleBlock

UpsampleBlock

UpsampleBlock

UpsampleBlock

PixelShuffle

Conv2D

σz + µ

RoI

Tanh(·)

Enc Dec

FIGURE 3.5: The generator network: image X and mask RoI goes through encoder part,
consists of gated convolutions. Then encoder modulates mean µ and variance σ – the
encoded global style of the image; random vector Z, sampled from prior distribution, pre-
processed in the fully-connected layers with activations and then modulates with mean
and variance from encoder part; decoder uses σZ + µ and RoI to generate new content
inside RoI and restore image in the 1− RoI. Attention! Encoder part used instance nor-
malization and LeakyReLU activations between blocks, Dense layers have LeakyReLU ac-
tivations between blocks and decoder part have LeakyReLU activations between blocks.
Input to Tanh(·) also goes through instance normalization layer. They aren’t demonstrated

on the scheme for simplification of the diagram.

approximates distribution P(c|x), which used in the lower bound of mutual infor-
mation – LI(·, ·) objective. For simplification, we interpret, as in original paper [20],
distribution P(c|x) = N(µ, diag(σ)).

The only two first convolutions in the Dmain decreases the size of the input in half
(64→ 32→ 16).

3.7 Adversarial loss

We used Hinge adversarial loss, because it showed efficiency in the image inpaint-
ing domain [34] and in our experiments as well, with few additional penalties for
discriminator and generator networks. Our goal is to enhance Hinge loss with ad-
ditional properties, which help with training stabilization, help to generate proper
content inside RoI – transfer style from original image to generated one (for good
quality of the resulted image), and also to increase model generative abilities of the
distribution G(z|x, RoI) – conditional distribution should have high entropy inside
RoI.

Using the generated samples xg and real samples xr we constructed completed
samples:

xc = RoI · xg + (1−RoI) · xr (3.9)
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RoI

X
Conv2D

Conv2D

Conv2D

Conv2D

Conv2D

Conv2D Conv2D

Conv2D

Conv2D

Conv2D

Linear Linear

Concatenate

µ σ

Preal(·)

Q(c|x)
Dmain

Dglobal

Dlocal

FIGURE 3.6: The discriminator network: Dmain part computes intermidiate features, while
Dglobal gives one score if image real or fake, and Dlocal gives vector of scores (one score
per image part). They concatenated in the one vector scores Preal(·); additional part of
discriminator Q(c|x) depends on Dmain outputs and modulates a posterior distribution
P(c|x). It used for optimization of mutual maximization information between variables for
control pc(c) and distribution of generator pG(x, c)(·); Attention! Instance normalizations
and LeakyReLU activations used between all convolution layers (except the input and

output), and we don’t plot it for simplification of the diagrams.

This term defines edited image inside RoI.

1. Gradient penalty. During experiments, we obtained stable training only with
this term: L∇ = Et(||(1−RoI) · ∇tD(t)||2 − 1)2 −→

θD
min

t = α · xr + (1− α)xc, α ∈ U(0, 1)
(3.10)

We limited norm of discriminator’s gradient inside RoI. Motivation: our model
is conditioned on the xr and RoI; in this way, only part of the gradient that is
inside RoI is important. Also it helps to stabilize discriminator’s Wasserstein
loss part.

2. Feature Matching. We forces generator to create artificial content with similar
statistics to the real samples:

LFM =
M

∑
i=1

Exr , xc ||Dli(xr)− Dli(xc)||1 −→
θG

min (3.11)

where l1, ... lM – layers with LeakyReLU activations inside the main part of
discriminato. It helps to prevent mode collapse and makes distribution of ar-
tificial images more similar to the real data.
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3. Perceptual VGG-loss. We used pretrained VGG16 [44] network for content
style transfer from original to generated image and completed image:

Lper1
= ∑M

i=1 Exr , xc ||Vli(xr)−Vli(xg)||1 −→
θG

min

Lper2
= ∑M

i=1 Exr , xc ||Vli(xr)−Vli(xc)||1 −→
θG

min

Lper = Lper1
+ Lper2

(3.12)

where l1, ... , lM – layers with ReLU activations inside pretrained network. The
first one helps to restore the image in the 1− RoI part and give information
about differences (in the sense of features) between two disjoint areas, the sec-
ond one – updates weights that are relevant to the RoI.

4. Zero-concentrator loss. We used ideas from Progressive GAN [25] and force
discriminator’s outputs on the real samples to be close to the zero:

L0 = Exr∼Pr , RoI
1

Nout

Nout

∑
i=1

Di(xr, RoI)2 −→
θD

min (3.13)

It should boost discriminator to learn realistic statistics from real samples quickly
and hence give sufficient feedback to the generator.

5. Info loss. We used mutual information maximization part for creating a de-
pendency between distribution for control and implicit distribution of the gen-
erator:

LI = Ec∼pc(c), xg∼G(z0, c|xg, RoI) log Q(c|xg) + H(c) −→
θQ

max (3.14)

Network Q(c|xg) modulates a posterior distribution P(c|xg), where c – ran-
dom variable for control, dimension of the variable is Lc. It consists of con-
tinuous variable c0 and discrete variable c1. For simplification, we limit class
of a posteriory distribution to multivariate gaussian with independent compo-
nents, and network Q predicts µ and σ of gaussian density for continious vari-
able. Also, it predicts log-probabilities for discrete variable log pj = log Q(c1

j|xg)
with dimension equal to Ld. Using this settings, loss function can be simplified
and decomposed:

Lcon = −1
2

Ec0∼pc0 (c0), xg∼G(z0, c0|xg, RoI)

Lc

∑
i=1

( c0 − µi

σi
2 − log 2πσi

)
−→

θQ
max

(3.15)

Ldis =
1
Ld

Ld

∑
j=1

Exg∼G(z0, c1
j|xg, RoI) log pj −→

θQ
max (3.16)

Total mutual information maximization loss:

LI = Lcon + Ldis −→
θQ

max (3.17)

6. VAE-loss. We used VAE-loss 1.6 to manipulate with global style within RoI.
We interpreted outputs of encoder as scaling factors µ and σ for input random
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value (reparametrization trick). This loss also helps to increase diversity of the
generated samples.

7. Total variation loss. We used 2.10 to enhance continuity inside region of inter-
est.

Total generator’s loss:
Lstyle(θG) = 0.5LTV(θG) + 5Lper(θG) + LFM(θG)

Ladd(θG, θQ) = −0.5LVAE(θG)− 0.5LI(θQ)

LG(θG, θQ) = LHinge(θG) + Ladd(θG, θQ) + Lstyle(θG) −→
θG , θQ

min
(3.18)

Total discriminator’s loss:

LD(θD) = LHinge(θD) + 5L∇(θD) + 10−4L0(θD) −→
θD

min (3.19)

We used style transfer loss, like in the [32], but we didn’t achieved improve-
ments and refused to use it. We also used L1-reconstruction loss, however, in the
last experiments we disabled it and had more diverse results. All constants in the
loss functions we took from the experiments via hyperparameter search: we run ex-
periments and check if we have good generated quality. Concrete hyperparameters
achieved the best visual result among all experiments.

3.8 Training details

For training stabilization, we used recommendations from [43] and [45]: feature
matching loss, different learning rates for discriminator and generator – LD = 10−4

and LG = 3 · 10−4 with Adam [46] optimizer, minimum number of dense layers,
Leaky ReLU in the discriminator, etc. We also used the equalized learning rate, in-
troduced in Progressive GAN [25]. It helps to create balanced competition between
generator and discriminator, and it works by multiplication weights on the He et al
initialization [47] constant before forward pass:

Kw with shape [Cout, Cin, Kh, Kw] =⇒ K̂w = Kw ·

√
2

Cin · Kh · Kw
(3.20)

Using this technique, we defined initial weights for our model as from standard
normal distribution N(0, 1). We set z0 ∼ N(0, 1) and sampled continuous part
of vector for control from c ∼ U(−1, 1). The discrete part sampled from uniform
discrete (categorical) distribution.

The discriminator has 6.04M parameters, and the generator has 6.52M parame-
ters. We trained models together typically 100-400 epochs (depends on the dataset),
and we do not provide loss plots or training details, because we provided enormous
amounts of experiments for increasing quality of our model.

Implementation of our model, using PyTorch framework, locates in the GitHub1.

1GitHub of the thesis: https://github.com/vaden4d/roi-gan

https://github.com/vaden4d/roi-gan
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Chapter 4

Experiments

In this Chapter, we describe datasets and demonstrate conducted experiments, give
visual and numerical results of our method.

4.1 Datasets

In experiments we used CelebA [48], Cats [49] and Cars [50, 51] datasets. The
datasets details locate in Table 4.1 and Figure 4.2.

The first dataset is the celebrities’ faces source. The faces are preprocessed and
aligned in the one position – in the middle of the images. There are different types
of faces (frontal, profile, faces with glasses, or other). We used dataset in the pictures
64 × 64 resolution. The second is dataset with 64 × 64 cats faces, which also are
preprocessed and aligned in the middle of the image.

(a) CelebA (b) Cats (c) Cars

FIGURE 4.1

FIGURE 4.2: The fours samples from each used image sources: (a) CelebA: dataset with
human faces; (b) Cats: dataset with cats faces; (c) Cars: dataset with cars from different

3D-view points

Name Train images N Test images N Total size Resolution
CelebA 64 162 770 39 829 ≈ 2.0GB 64 × 64

Cats 15 748 — ≈ 0.5GB 64 × 64
Cars 8 145 8 042 ≈ 2.1GB 64 × 64

TABLE 4.1: The characteristics of used datasets. We used CelebA, Cats and Cars datasets
with resolutions 64× 64. The resolution columns are not real resolution of the data, but

what we used in experiments.
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Method FID (elliptic RoIs) FID (rectangular RoIs) FID (mixed RoIs)
Our 0.323 0.074 0.106

FMM [15] 0.539 0.111 0.197
GLCIC [38] 0.485 0.638 0.618

TABLE 4.2: The Fréchet Inception Distance (FID) [52] between generated samples from
three models (rows) with different RoIs (columns) and test CelebA part. We used 1000
randomly sampled images from generated and real distributions to estimate FID in all

cases.

The third one is Cars dataset with different vehicle orientations, used mostly in
3D-object manipulation and representations tasks. We used this dataset to study
whether our model can control 3D-manipulation within RoI.

We tested our model mainly on the CelebA dataset, because it is the optimal
dataset among size, the number of samples, images quality, and visually under-
standable data. We thought that control over human faces would be more comfort-
able than control over cars or cats, because we, as humans, can easily understand
and perform an additional visual evaluation during training.

Other datasets – Cats and Cars – have a small amount of data, so we conducted
experiments only to check generation properties. The results on the Cats and Cars
should confirm or deny that our model can learn to fill RoIs: we thought our model
could manipulate with facial features of cats face (e.g., type of wool) and 3D-view of
the objects.

4.2 Models comparison

We compared our model with pretrained GLCIC [38] generative adversarial model
on the CelebA using open-source implementation [53] on the PyTorch and with non-
trainable Fast Marching Method (FMM) [15]. We compared models only by image
inpainting quality task, because only our model allows to control generation inside
RoI. We trained our model with elliptic RoIs, and validated the quality of the im-
age inpainting on the other region types. We compared generation results on the
standard test split of the CelebA dataset.

Both GANs used different loss functions and different image resolutions, so we
compared Fréchet Inception Distance (FID) [52] between generated and real test
dataset, using open implementation [54]. The FID measures the mean distance be-
tween the features of real and generated images. It computes means and covariances
for generated and real distributions, and computes distance using the formula:

FID(X, Y) = ||µX − µY||2 + Trace(ΣX + ΣY − 2(ΣXΣY)
1
2 ) (4.1)

where X, Y – two datasets, and µX, µY, ΣX, ΣY – their mean vectors and covariances
matrices of taken features.

Features are obtained from pretrained model, e.g., a popular choice is Inception-
v3 [55] network. The lower value of the metric talks that generated images closer to
the real distribution.

Intuitively, features inside the pretrained model absorbate many properties of
real data, so it can measure differences between generated and real images. Further-
more, it valid for numerical evaluation of generative models regardless of models
used and loss functions.
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We computed FID on the reshaped to 64× 64 generated and real images. The
numerical results of the evaluation located in Table 4.2. The lowest results are in
our model – hence, by this metric, distribution of generated images is more similar
to the distribution of real data. Surprisingly, the results obtained by GLCIC model
have higher results than the classic FMM algorithm.

The visual results of the evaluation located in Figure 4.3. We compare three mod-
els visually. Our results seem to be more diverse, in the sense of different faces per
the same location of the mask. However, we can see many artifacts at the edges
of the masks – GLCIC and FMM models behave in this sense more naturally and
produced less noise.

The samples from Cars and Cars are demonstrated in Figure 4.4. As we obtained
in the experiments, the model more robust on the CelebA, rather than other datasets.
Our model produces visual inconsistency at the borders of the selected zone in some
cases (e.g, generated cats faces). This is due to the fact that human faces are simpler
in terms of texture, so for Cats or Cars we need to use other hyperparameters for
part of the loss function, which can take this into account.

Ours

FMM

GLCIC

Ell. Rec. Mix.

RoIs

xr

(a) Example one

Ours

FMM

GLCIC

Ell. Rec. Mix.

RoIs

xr

(b) Example two

Ours

FMM

GLCIC

Ell. Rec. Mix.

RoIs

xr

(c) Example three

Ours

FMM

GLCIC

Ell. Rec. Mix.

RoIs

xr

(d) Example four

FIGURE 4.3: Visual comparing of the three models: ours, FMM [15] and GLCIC [38]. (a)-
(d) Examples of generation for different RoIs types and models. Our model demonstrates
more robust generative properties and creates almost realistic content. However, it strug-
gles with visual artifacts. Other models are not generated proper content inside RoI: FMM

blurred it, and GLCIC creates non-appropriate filling.
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CelebA Cats Cars

FIGURE 4.4: The examples of generation, using our model on the different datasets (but
trained separately on each datasets). For each dataset we visualized three columns: the
left images are taken from real data; middle images demonstrate which parts of the image
must be filled; the right pictures are outputs of the generator w.r.t correspond RoIs and real
images. It’s easy to notice that the top results model demonstrates on the CelebA dataset.

4.3 Controllability inspection

During the inference stage, we used part c ∼ pc(c) of the random noise to control
the generation process. From this moment, we are interpreting this vector not as a
random variable, but as a set of sliders: we can vary each coordinate from −1 to 1,
and in an unsupervised way change some main aspect of the image inside . After
training, mutual information between pc(c) and pG(z0,c) is high, so changing one
coordinate of the c will change something real on the image. This process is shown
in the Figure 4.5. Using a few coordinates of the control vector, we can manipulate
with main facial features: change nose form, the form of eyes, create a mustache,
manipulate with shadows, or other aspects.

Important to say that this is unsupervised control, i.e., we do not know in ad-
vance what slider corresponds to eyes size, and we should find it via experiment.
We must investigate by experiment what each coordinate is responsible for. Nev-
ertheless, even now, the generation process has become more clear: changing the
control vector changes the outputs more intuitive than a fully random generation.
Moreover, using vector for control narrows the scope of the random variable, so we
can cover most of the possible generation by using a small part of the random input
(vector for control is part of the random noise).

However, the same values of control vector lead to almost the same output re-
gardless of the face we used: changes the only style of the inserted mask, depending
on the face style, color, face type. This proves the connection between vector for
control, limitations w.r.t conditional arguments – RoI and image, and generated dis-
tribution.

We also can see that few variables for control edited a few key elements of the
faces together, like the size of the nose and size of the eyes. We attribute this to our
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FIGURE 4.5: Controllable generation example with test CelebA faces. Upper left image
with red border – real samples. We used c ∼ pc(c) vector as set of sliders, and fitted this
value together with incompressible noise part z0 ∼ pz0(z0) to create new samples. Chang-
ing vector c per coordinate gives desired control properties: the upper images demon-
strated changing of the nose form and size eyes; the middle images correspond to the
direction of a person’s gaze; the down images demonstrated changing shadows and the
presence of a mustache. However, these pictures show the cumulative effect of controlla-

bility (when we gradually add new effects to each other using per-coordinate control).

limitation about a posterior distribution P(c|x) to diagonal multivariate distribution.
The quality of control for human faces are much diverse than for cats and cars.

We can control local generation, but at the same time this is not so obvious as in the
case of human faces. Perhaps this is due to the fact that CelebA is the biggest dataset
among chosen, so model highlighted more spatial information in order to create
realistic outputs. And for smaller dataset this effect didn’t become so significant.

We added controllability results on Cats and Cars datasets to the appendix in
Figure A.1 and Figure A.3.

We additionally demonstrated per slider controllability in Figure A.2 on the one
sample from CelebA, and also checked properties of our model at the border of the
image (like hair zone for faces images), and give example (for CelebA) in Figure A.4.
At the borders of the image our model shows lower quality than at the center, but
we still can manipulate with content inside RoI.
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Chapter 5

Conclusions

5.1 Conclusion

In this thesis work, we proposed, implemented, and validated the approach for con-
trollable image generation inside the region of interest and with minimal influence
over the rest of the image, using the generative adversarial network.

In Chapter 1, we defined prior definitions about the domain and objectives of
our work, deep learning basics, and theory introduction in the GANs. We defined
goals – create an image completion tool allows to control generation inside defined
zone in the image.

In Chapter 2, we overviewed research works in the two areas – controllable gen-
eration and image inpainting. We discovered the absence or lack of popularity of
methods that can combine two approaches.

We united image inpainting with controllable generation tasks, using existed top
pipelines and our ideas, and created a model that allows localizing generation inside
specified RoI. We described in detail our architecture in Chapter 3.

We gave an evaluation of our model on the three datasets – Celeba, Cars, and
Cats in Chapter 4. We described the controllability properties of the resulted model
depends on data type and describe properties of generated distribution.

5.2 Limitations and further work

During experiments and model validation, we observed few limitations:

1. The appearance of visual artifacts. Generated images produce artifacts near
the border of the RoI. We tried to overcome this problem with content style
transfer, as recommended in the literature [32], but it did not help.

2. Inefficiency of discrete variables for control. On the inference stage, we had
found out discrete variables almost didn’t change the output of the genera-
tion and hence didn’t allow to control generation process. Currently, we don’t
know why this happened, but [20] used it for significantly changing the out-
put. We think that information from these variables is lost somewhere in the
middle of the generator. However, continuous variables took on the controlla-
bility abilities, so we don’t loose in the quality.

3. Size of the architecture. We experimented a lot with one big architecture for
different datasets. But we want to squeeze architecture and create for in mech-
anism like in MobileNet [56] family: control the width, depth, and a number of
channels, and find the optimal size of the network depend on the dataset (hy-
perparameter search). It wasn’t our goal of the research, so we did not focus
on this task.
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4. 3D-inconsistency. We observed that in complex cases, like the different po-
sitions of cars or faces in profile, our model doesn’t generate well. It creates
content without 3D-understanding of the data, e.g., inserts frontal face in the
profile position.

FIGURE 5.1: The process of deepfake anonymization: generate per frame new face and
maximaly save facial expressions.

We would also like to test our model on the Celeba-HQ (1024 × 1024) dataset
[57]. During writing the thesis, we didn’t train our model on this dataset due to
hardware and time limitations – state-of-the-art GAN [25] was trained on Celeba-
HQ more than 10 days.

5.3 Possible applications

We see few possible applications of our work:

1. Clever image edition tools. The main purpose of the created model is smart
image editing within the selected area. The user draws the desired area, and
using predefined sliders changes the output inside the selected region.

2. Deepfake anonymization and detection. The goal is to retain the person
anonymous in the photo or video, but at the same time, keep his emotions and
facial expressions. Thus, the model creates a new, artificial face with the same
facial expressions instead of the original. As our model cam generate diverse
faces in the RoI of the face, we think we can perform additional procedures to
tie the control vector with the facial features of the concrete person. Using the
zone inside facial keypoints, our model could change the face per frame and
create new content only inside the desired part of the face (Figure 5.1). Our
example isn’t follow defined setting (isn’t prevent smile), but we think it has
potential and should take our idea as proof of concept.

Also, we see the possible application in the deep fakes detection: if we can
use the generative model to create content, we can use the discriminator for
frame-by-frame scoring – whether a face is real or not.
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Appendix A

Additional visualizations

FIGURE A.1: Controllable generation example with cats dataset. Upper left image with
red border – real samples. We used c ∼ pc(c) vector as set of sliders, and fitted this value
together with incompressible noise part z0 ∼ pz0(z0) to create new samples. Changing
vector c per coordinate gives control properties: the controllability properties have shown
themselves in the control over, e.g., type of wool or glare of the eyes. But, the control

turned out not so explicit as in the case of CelebA faces.
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FIGURE A.2: Controllable generation example with test cars. Upper left image with red
border – real samples. We used c ∼ pc(c) vector as set of sliders, and fitted this value
together with incompressible noise part z0 ∼ pz0(z0) to create new samples. Changing
vector c per coordinate gives control properties: the controllability properties have not
shown themselves as clearly as on other data – but we were able to bring the generation to

the most realistic look among possible, using control (upper right images).
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c = −0.9 c = −0.9c = 0.0Real

c1

c2

c3

c4

FIGURE A.3: Per slider content changing: we changed the slider’s values while other slid-
ers were fixed in the default (c = 0.0) position. We took four continuous sliders randomly
and demonstrate behaviour of controllability. Our method removed hair within the RoI
and replaced it with other content. Slider c1 corresponds to the direction of view, slider c2

– makeup and ear appearance, c3 and c4 – eyes shape.

Real

FIGURE A.4: An example of control in the hair area. Our model can manipulate with
shadows and shade of hair, but at the same time, controllability is worse than in the area

of the face and generates artifacts at the border of the RoI.
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