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Abstract

Currently, the active development of image processing methods requires large
amounts of correctly labeled data. The lack of quality data makes it impossible to
use various machine learning methods.

In case of limited possibilities for collecting real data, used methods for their
synthetic generation. In practice, we can formulate the task of the high-quality gen-
eration of synthetic images as an efficient generation of complex data distributions,
which is the object of study of this work.

Generating high-quality synthetic data is an expensive and complicated process
in terms of existing methods. We can distinguish two main approaches that are
used to generate synthetic data: image generation based on rendered 3-D scenes
and the use of GANs for simple images. These methods have some drawbacks,
such as a narrow range of applicability and insufficient distribution complexity of
the obtained data. When using GANs to generate complex distributions, in practice,
we face a visible increase in the complexity of the model architecture and training
procedure.

A deep understanding of the real data complex distributions can be used to im-
prove the quality of synthetic generation. Minimizing the differences in the real and
synthetic data distributions can improve not only the generation process but also
develop tools for solving the problem of data lack in the field of image processing.
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Chapter 1

Introduction

Expanding the capabilities of computer vision and deep learning opens up oppor-
tunities and approaches to solving many problems that previously remained unre-
solved. Many tasks that need to be solved remain beyond the reach of modern deep
learning technologies - even though there is a large amount of manually annotated
data.

Deep learning models do not have an understanding of the input, at least not in
the human sense. People understand images based on their experience. Machine
learning models do not have access to such experience, and therefore they cannot
“understand” the input data in this way. By annotating a large number of training
examples for models, we force them to learn a geometric transformation that brings
data to human concepts for a specific set of examples, but this transformation is just
a simplified outline of the original object model.

Deep learning models do not currently have a mechanism for learning abstrac-
tions through the direct definition of an object, but working with thousands, mil-
lions, or even billions of training examples solves this problem only partially (Mar-
cus, 2018).

Data collection for such tasks is essential, but sometimes very difficult, especially
in the case of rare classes of objects. We should note that for such amount of data,
manual annotation is not the best decision since it requires a lot of resources and
well-established markup strategies.

One way to solve this problem is to use artificially generated data. However,
when using synthetic data, we may face the problem of a big jump in the complexity
of choosing the architecture and methods for training the model. We can assume
that for the model, there is a fundamental difference between real and generated
data.

This study aims to compare the distributions of real and synthetic data, study
the reasons for the increase of work complexity when using synthetics and how to
eliminate it.

The main problem considered in this paper is the difficulty of generating high-
quality synthetic data for their further use in deep learning models for image pro-
cessing. So, the central objective is to identify the hidden differences between real
and synthetic data for their high-quality generation. We highlight related objectives:

– Hypothesis confirmation of the presence of a statistically significant difference
in the distributions of real and synthetic data

– Building a pipeline for image conversion

– Quality criterion selection for assessing the generated data
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The objects of the study are four primary datasets: real photos collected from auto-
recorders (Yu et al., 2018), generated pictures "SYNTHIA" transport routes (Hernandez-
Juarez et al., 2017), real photos of dogs (Parkhi et al., 2012) and generated images of
dogs using GANs (Goodfellow et al., 2014).

We assume that the identification of distinctive features in the distributions of
real and synthetic data will help to avoid the difficulty of transferring the machine
learning model between them.

The formal statement of the problem:

1. Conversion of images and their transformation into vector space using neural
network methods

2. Construction of space and two presentations: from images to hidden space and
vice versa

3. Analysis of distributions in a new hidden space and their investigation using
statistical methods

4. Conducting transformations on data in hidden space to minimize differences

5. Display modified synthetic data into the image space

6. Selection of a formal criterion for assessing the quality of artificially generated
data so that machine learning models in the field of computer vision contain-
ing synthetics in the training dataset show high quality working with test and
validation samples of real data.
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Chapter 2

Related Work

Since 2010, research has been conducted in the field of visual domain adaptation
(Saenko et al., 2010), where the first approach to the problem was statistical methods.
However, since 2014, neural network methods have gained considerable popularity
(Torralba and Efros, 2011). Soon the lack of data became a related problem, which
led to the growth of synthetics generation methods (Tzeng et al., 2014).

The need for synthetic data often arises in many tasks. An outstanding represen-
tative of such tasks is autonomous driving. In order to make high-precision classi-
fiers of road markings, signs, cars and other vast volumes of qualitatively marked
data are needed.

2.1 3D-based methods

To solve this problem, in 2016 was proposed the idea of generating a dataset based
on the gaming world. The article Playing for Data: Ground Truth from Computer
Games (Richter et al., 2016) used the GTA5 game world. The purpose of the work
was to get markup from screenshots of the game. The main idea is to use an existing
virtual 3-D world. However, the limitations of the game did not allow to obtain the
complete markup necessary to solve the problem of autonomous driving.

At the same time, in 2016, using the same idea of the virtual world, the SYN-
THIA dataset was generated in order to assist in semantic segmentation and the
problems of understanding related scenes in the context of driving scenarios (Ros
et al., 2016). The authors a bit changed the approach and created their virtual world
using the Unity development platform. They built their virtual cities based on real
city prototypes.

One of the main advantages was the ability to add natural events, such as time
of day, rain, snow, fog and other. These methods are automatic from generating
datasets point of view but challenging at the design stage of the virtual world.

Another remarkable example of using synthetic data is the task of the of a per-
son’s gaze direction recognition. In 2016, an article Learning an appearance-based
gaze estimator from one million synthesized images was published (Wood et al.,
2016). There was a method for generating eyes proposed taking into account the
eyeball biological features, as well as the skin around it. The work pays great atten-
tion to the light characteristics of the eye surface. This work uses the same idea of
generating 3-D models of objects, but taking into account their physical characteris-
tics for higher realism.
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2.2 NN-based methods

Often there are also problems in which the original dataset contains data of a differ-
ent nature. From here naturally, arise the tasks of Domain adaptation (Su et al., 2019)
and Style transfer. In 2018, an article A Literature Review of Neural Style Transfer
was published (Jing et al., 2017). It discusses methods of transferring style from
one image to another using neural network methods. Ideas based on the principle
that neural networks highlight features of style. The first articles on this topic used
features obtained using neural networks VGG (Simonyan and Zisserman, 2014), as
well as the principles of autoencoders (Kingma and Welling, 2013). Style transfers
are carried out due to tricks with intermediate outputs of neural networks, as well as
in various ways of constructing a loss function. In 2017, Judy Hoffman introduced
a domain adaptation method called CYCADA (Hoffman et al., 2017). Its essence
was the use of a complex architecture consisting of two generators, two discrimina-
tors and four auxiliary decision networks(Karacan et al., 2016). The method showed
good results; however, for training, it is necessary to have labelled semantic segmen-
tation data (Long, Shelhamer, and Darrell, 2015).

In July 2018, the team of Ming-Yu Liu, Thomas Breuel, Jan Kautz from NVIDIA
proposed a method called UNIT (Unsupervised image-to-image Translation) com-
bining the ideas of VAE and GANs (Liu, Breuel, and Kautz, 2017a). The idea of the
proposed method is to build neural networks based on GANs and VAEs for style
transferring tasks. The proposed method constructs the mapping of source images
into hidden space and makes transformations using neural networks in these spaces.
This approach transfers styles well and as a result, makes a good conversion of their
synthetics into real data. However, this method does not set the primary goal of
generating high-quality synthetics.

Recently, a large number of approaches, methods, and architectures have been
developed to solve this and similar problems. However, analyzing the work in this
area, we can say that insufficient attention was paid to the problem consideration of
generating synthetic data precisely from the statistical methods point of view.



5

Chapter 3

Proposed approach

3.1 Dataset collecting

For experiments, we were selecting data according to two criteria: the relevance of
the task for which they can be used and the simplicity of objects for human per-
ception. The principal requirement was the existence of a pair "real data - synthetic
data" since the generation of large amounts of synthetic data from scratch is a costly
and time-consuming process.

By the first criterion, we selected the SYNTHIA dataset. SYNTHIA is a dataset
that has been generated to aid semantic segmentation and related scene understand-
ing problems in the context of driving scenarios. SYNTHIA consists of a collection
of photo-realistic frames rendered from a virtual city and comes with precise pixel-
level semantic annotations for 13 classes: misc, sky, building, road, sidewalk, fence,
vegetation, pole, car, sign, pedestrian, cyclist, lane-marking (Hernandez-Juarez et
al., 2017).

Since the volume of SYNTHIA dataset is not large enough for the experiments,
it was decided to add a part of dataset extracted from the game Grand Theft Auto V
(Martinez et al., 2017). Dataset contains semantic annotations for 19 classes.

The self-driving task requires maximum accuracy in its solution, and therefore
large high-quality datasets, which is consistent with the relevance of our work. In
this case, we chose the Berkeley DeepDrive dataset as real data on which three com-
plex tasks for the CVPR 2018 Autonomous driving workshop were conducted: de-
tection of road objects, segmentation of the driving region and adaptation of seman-
tic segmentation domains (Yu et al., 2018) (fig. 3.1).

FIGURE 3.1: Examples of city datasets: (a) DeepDrive dataset, (b)
SYNTHIA dataset, (c) GTA V dataset

According to the second criterion, we took dogs images dataset because they are
easy for human perception, but challenging to formalize for a computer. It follows
that the distribution is complex, and this is a vital aspect to consider in our study.
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As a real dataset, we selected Stanford Dogs Dataset (Parkhi et al., 2012), which
contains images of 120 dog breeds from around the world. This dataset was created
using images and annotations from ImageNet for the task of detailed categorization
of images. As its synthetic analogue, we chose images of dogs generated using GAN
(Goodfellow et al., 2014) method from the Kaggle Generative Dog Images competi-
tion. It contains 10,000 examples of synthetically generated dogs without markup
(fig. 3.2).

FIGURE 3.2: Examples of dogs datasets: (a) dogs images generated
using GAN, (b) Stanford Dogs Dataset

3.2 Problem solution

Before the experiment starts, we converted our data to a single image of 224x224 size
and three colour channels format.

Our hypothesis assumes that the distributions of real and synthetic data have
statistically significant differences. For humans, the difference between synthetic
images and real data is intuitive, but like many similar processes, hard to formalize.
Based on this statement, our approach attempts to formalize these differences.

The approach we chose for the first iteration of the experiment involves using
trained neural networks to extract image information in vector form. The figure 3.3
shows the visualization of the first iteration of the experiment.

FIGURE 3.3: First iteration: hypothesis about the distributions of real
and synthetic data
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We will use several networks, such as AlexNet (Krizhevsky, Sutskever, and Hin-
ton, 2012), MobileNetV2 (Sandler et al., 2018), VGG13/16 with batch normaliza-
tion (Simonyan and Zisserman, 2014), MNASnet, MNASnet0.5 (Zoph et al., 2017),
ResNet152 (He et al., 2015), ResNeXt101 (Xie et al., 2016), pre-trained on Imagenet
(Deng et al., 2009), as feature extractors (Ioffe and Szegedy, 2015). Using a statistical
test, Student’s T-criterion (Press et al., 1992), we can test our assumption about the
distinguishability of synthetic and real data with a certain level of confidence. Using
the Kullback – Leibler divergence (relative entropy) (Kullback and Leibler, 1951),
we can verify our assumptions about the difference in the distributions of real and
synthetic data.

The next step is to train the variational autoencoder (Kingma and Welling, 2013)
on real and synthetic data, thereby constructing a hidden space and two mappings:
from pictures to hidden space and vice versa. We will analyze and compare the ba-
sic statistical characteristics of real and synthetic data in a hidden space. We will use
simple mathematical operations in order to approximate the statistical characteris-
tics of synthetic data to real ones.

Then we pass the converted hidden representations of the synthetic data through
the decoder. At the output, we expect to get images close to real. The figure 3.4
shows the visualization of the second iteration of the experiment.

FIGURE 3.4: Second iteration: hypothesis about the hidden space and
mappings

3.3 Hypothesis verification

Two experiments can serve as verification of our main hypothesis.
First, we can re-pass the generated data through the trained nets from the firs

iteration. Then, a measure of quality will be a statistically insignificant difference in
data distributions.

As a second experiment, let us pass the transformed synthetic and initial real data
through a simple neural network, which will solve the binary classification problem,
i.e., determine the nature of the image.

After that, we will use the validation dataset to predict the binary classification
label. If a neural network cannot accurately predict the correct label, then the con-
version quality of synthetic data can be considered high. We assume that a neural
network cannot distinguish class labels if the ROC-AUC (Davis and Goadrich, 2006)
value is about 0.5 on the validation dataset.
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Chapter 4

Experiments

4.1 Data dissimilarity hypothesis verification

The data presented in the form of colour images in the RGB format, the image sizes
with which we work are 224x224, 128x128, 64x64, 32x32 pixels.

Consequently, the dimension of the space we are working with is [0..1]NxNx3,
where the colour intensity is determined by the interval from zero to one. Vectors
have a very high dimension - this greatly complicates the work with images and
their analysis. It is also essential that the vectors are not random. In other words, the
intensity of a particular pixel is highly dependent on the pixel values that are next
to it. Therefore, the pixel intensity values strongly depend on the spatial position in
the picture, as the pixel values in the local area of the image.

These relationships and dependencies determine the statistical distribution of
images.

Real and synthetic images contain the same essence, and the person quickly de-
termines what represented in those and other images, however, he just as easily
distinguishes them. The pixel dependencies that generate our image distributions
are very complex. They are almost impossible to formalize.

However, we can say that part of the distribution is responsible for determining
the meaning shown in the picture. The other part determines whether the image is
real or synthetic. Most likely, most of the dependencies are inherent in the first and
second reasons.

4.1.1 Classifier construction

Neural networks can build maps from the space of inputs to spaces with specific
properties, for example, linear separability of classes.

Neural networks learn distributions based on the laws of pixel relationships and
find the correct mapping of spaces. Consider neural networks separating real and
synthetic data. Neural networks have poor interpretability.

However, for networks with a small number of neurons, it is possible to visualize
layers and understand on what basis the network decides whether the picture is real
or synthetic. The general network architecture presented in the figure 4.1.
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FIGURE 4.1: Network architecture for the 128x128 image

The network architecture described as follows:

[4 − Conv3x3]− [MaxPool2x2]− [8 − Conv3x3]−
−[MaxPool2x2]− [Dropout − 0.2]− [FC − 64]− [FC − 1]

ReLU used as a nonlinearity function. The last nonlinearity is the sigmoid func-
tion. The training was conducted by the Adam optimizer (Kingma and Ba, 2014),
with a learning rate of 0.0001. The ultimate optimization function is binary cross-
entropy. There were ten eras of training with a batch size of sixteen.

During the experiments, four models trained for different image sizes, particu-
larly 224x224, 128x128, 64x64, 32x32. ROC curves show the simulation results on the
test data. Descending image size from left to right (fig. 4.2).

FIGURE 4.2: ROC curves for test data

All networks differentiate real data from synthetic very well. It means that net-
works build proper spaces where there is a linear separability.

The table 4.1 shows the results of the Average precision-recall score quality met-
ric for trained networks with different image size.

TABLE 4.1: Average precision-recall score quality metric for trained
networks

Image size 224x224 128x128 64x64 32x32
Average precision-recall score 0.90 0.96 0.93 0.87
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Figure 4.3 shows the results of a trained network on test data.

FIGURE 4.3: Results of trained network on test data

4.1.2 Model interpretation

Based on the activation maps after the convolutional layers (fig. 4.4), we can con-
clude that the neural network looks at the picture as a whole, and not at its specific
sections. The neural network responds to the style of the picture, and not to specific
objects on it.

FIGURE 4.4: Transformation after the first and second convolutional
layers of real and synthetic images.
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The weights of the first fully-connected layer look comprehensively at the whole
picture (fig. 4.5), some at minor artifacts, such as a car torpedo.

FIGURE 4.5: Some activation maps of fully connected layer

Constructed neural networks entirely separate real and synthetic data focusing
on the style of the image, not the semantic meaning of facilities. A space with lin-
ear separability is essential for us in terms of understanding the formal differences
between real and synthetic data.

4.1.3 Style space analysis

Consider the penultimate layer of the constructed neural network. Its dimension
is 64. Further, on the network, we use one linear layer with a sigmoidal activation
function.

We can describe the prediction work of our neural network can as follows: con-
structing a map into the space R64 and logistic regression in this space.

High-quality metrics in test data indicate good linear separability in the inter-
mediate space. We visualize this space using the PCA (fig. 4.6) algorithm (Jolliffe,
1986).

The algorithm can help us to find such linear mapping from 64-dimensional vec-
tors to 2-dimensional - maximizing the percentage of explanations for a variance.
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FIGURE 4.6: Visualization of hidden space

Visualization of the two main components of PCA decomposition makes clear
that the points grouped in two clusters. At the same time, the second graph shows
that already for 2 components, almost all the variability of data in hidden space is
explained. Therefore visualization reflects reality.

A similar picture observed for all 4 neural networks. Thus, real and synthetic
data are separable in terms of style.

4.1.4 Content space analysis

The ImageNet (Deng et al., 2009) competition has contributed to the appearance of
such a direction as transfer leering (Zoph et al., 2017). The main idea is that having
trained a neural network on a large data set, in future, can be used as an extractor of
high-level features.

Further use means replacing the last layers of the network with new ones and
additional training for your data set. The concept creators of style transferring (Jing
et al., 2017) argue that the first layers of neural networks are responsible for the style
of the image, and the final ones for its content.

Images of real and synthetic data taken from the same domain, so they contain
the same content. The use of high-level features assumes that features store infor-
mation about objects in the image, but not about style.

As a feature of extractors, we use the following neural networks trained on Im-
ageNet (Deng et al., 2009): AlexNet (Krizhevsky, Sutskever, and Hinton, 2012),
MobileNetV2 (Sandler et al., 2018), VGG13 BN, VGG16 BN (Simonyan and Zisser-
man, 2014), MNasNet, MNasNet0.5 (Zoph et al., 2017), ResNet152 (He et al., 2015),
ResNeXt101 (Xie et al., 2016).

These networks were chosen because of their unspoken popularity during trans-
fer learning. So the MobileNetV2, MNasNet, MNasNet0.5 networks are small and
lightweight, AlexNet is the first of its kind. VGG13 BN, VGG16 BN, ResNet152,
ResNeXt101 - deep networks with good and proven in practice results.

All networks have cut off the last two classification layers. Passing real and syn-
thetic sets of images through the network, we get two point clouds for each network.

The statistical characteristics of point clouds should be the same within the syn-
thetic and real data for each group. For simplicity, compare the average values.

To compare the average of the two groups, we use the two-sided t-test (Press
et al., 1992). With the null hypothesis that two independent samples have identical
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mean values. Since vectors are multidimensional, we make a rough assumption that
the components are independent.

This assumption is not wholly valid at least because of the value of the compo-
nents generated from one hidden variable.

To obtain a measure of means equality, we consider the percentage of compo-
nents for which we reject the null hypothesis. The smaller the percentage, the more
features with the same average.

To check for equality of means within the real and synthetic data, for each group,
we take two random subsamples without intersections and conduct tests comparing
the means of these 2 subsamples.

Consequently, we get 2 numbers - the percentage of features with a different
expectation for real and for synthetic data. This experiment is carried out indepen-
dently for all neurons of networks. Results presented in Table 4.2

TABLE 4.2: Comparing expectations within single data group

Model Real data Synthetic data
AlexNet 7.59% 3.76%
MobileNetV2 1.47% 2.39%
VGG13_bn 0.24% 0.85%
VGG16_bn 0.24% 0.32%
MNasNet 1.54% 1.89%
MNasNet0.5 2.69% 3.57%
ResNet152 0.0% 0.0%
ResNeXt101 0.0% 0.0%

For almost all networks, the percentage of components with different mat ex-
pectations does not exceed three per cent. This experiment shows us that with high
probability, the data within the same group have the same nature.

Since high-level features collected from the last layers of the network, they con-
tain information about the content. Therefore, the statistical characteristics for the
cloud of synthetic data should match with the statistical characteristics of the real
cloud. In practice, this does not happen and we can observe it in table 4.3.

TABLE 4.3: Comparing expectations between real and synthetic data

Model Mean by components NOT equal
AlexNet 96.34%
MobileNetV2 88.57%
VGG13_bn 91.94%
VGG16_bn 86.18%
MNasNet 86.47%
MNasNet0.5 89.96 %
ResNet152 26.37%
ResNeXt101 32.76%
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For most networks, many features have a different mathematical expectation.
The ResNet152 and ResNext101 networks deserve special attention, in case of com-
paring equalities of the means within each of the groups for these 2 networks, all
features had the same means.

In case of comparisons of means for two different groups, these 2 networks have
the smallest percentages of various math expectations. As one of the interpretations,
there was an assumption that those features for which expectations matched were
content-rich, and those that did not match were stylistic, but looking at the types of
feature distribution, we can see that for all networks except these two, the distribu-
tions are normal, for ResNet152 and ResNext101 it exponential (fig. 4.7).

FIGURE 4.7: Features distribution

It is known that with large sample values, t-test also works for abnormal distri-
butions 1. Most likely, the difference in percentage order for these two networks is
explained accurately by the distribution family of their features.

Real and synthetic data are different if: the neural network divides these two
classes based on the style of the image, and not on its content. Distributions of high-
level representations have statistically significant differences.

We conducted similar experiments on the dataset with dogs. A small neural net-
work, could not distinguish the real dogs. We assumed that real and GAN-generated
images had a very similar style. The trained networks inefficiently allocate content
and as a consequence, contain more information about the style, which in this case,
matches.

Unfortunately, no statistical differences were revealed by the tests. The analy-
sis of formal differences for datasets with dogs no longer carried out, and further
experiments with it stopped.

4.2 Construction representative hidden space

It is quite challenging to work directly with images. It is much more convenient to
work with numerical vectors. Constructing a mapping function from image space

1https://stats.stackexchange.com/questions/9573/t-test-for-non-normal-when-n50

https://stats.stackexchange.com/questions/9573/t-test-for-non-normal-when-n50
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to a hidden space is quite simple; however, constructing a reconstruction function is
much more difficult. Hidden space must have the property of compactness. Com-
pactness implies that a small change in the image leads to a small change in the
hidden space and, on the converse, small changes in the hidden constancy should
not actively change the reverse presentation. Construction of space with such prop-
erties, and mapping functions as well, is carried out by constructing a variational
autoencoder (Kingma and Welling, 2013).

4.2.1 Building VAE

Variational autoencoder consists of two networks - encoder and decoder. The ar-
chitectures of these 2 networks determine the complexity of the mappings. In the
classic VAE (fig. 4.8), the encoder is a 3-layer neural network that narrows the data.
The encoder also represents a 3-layer neural network.

The peculiarity is that the encoder generates two vectors - the average and the
variance. Then the reparametrization trick (Kingma, Salimans, and Welling, 2015)
is applied. During reparameterization, a random value generated from the normal
distribution with the encoder output parameters and this vector transferred to the
decoder input. All layers are fully connected.

FIGURE 4.8: Variational autoencoder architecture

Still, it is not possible to apply this model in its pure form. The total size of the
weights of the neural network grows quadratically from the number of neurons. The
resulting network will be enormous.

VAE architecture is changing to reduce network size. The internal structure and
idea with reparametrization remain the same. To make it possible to apply VAE of
an acceptable size at the beginning of the encoder and the end of the decoder, we
add layers of convolutions that are classic for computer vision. Only those features
that display the contents of the image make sense to transmit to the encoder input.
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In our experiments, we used ResNet152 and VGG11 BN (Simonyan and Zisser-
man, 2014) networks trained on ImageNet. The choice focused on these 2 models
since it got out to choose the optimizer parameters and the learning speed for them.
After the decoder, three convolution layers added with batch normalization, the pa-
rameters of the layers selected in such a way that output would be the image.

To fit the size of the input image, it stretched using bilinear interpolation. Each
model trained in 200 eras with the Adam optimizer. Lr - changed according to Cicli-
cLR (Smith, 2015) with an interval of steps from 1e − 5 to 1e − 2. The full cycle of LR
changes - takes 1000 steps of the optimizer.

Internal VAE architecture described as follows (fig. 4.9):

[ f c − 4096]− [ f c − 2048]− [2x f c − 512]− [ f c − 2048]− f c − 4096]

FIGURE 4.9: Modified variational autoencoder

The training took place on a mixed dataset of real and synthetic data. The fol-
lowing results obtained for ResNet based network(fig. 4.10):
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FIGURE 4.10: ResNet based network results

And for VGG based architecture results presented on figure 4.11.

FIGURE 4.11: VGG11 based network results

The image quality is very blurry, and the network restores the colour range of the
image, but substantially does not restore the details. Due to the great depth of the
network, the gradients practically do not reach initial layers. As a result, the initial
filters almost do not change, and templates typical of our data cannot form.

4.2.2 Building VAE with residual connections

The problem of gradient attenuation in the network solved by changing the archi-
tecture, namely by adding residual connections (He et al., 2015). Changes to the
reparametrization scheme also contributed to results improvement.

In the standard reparametrization scheme, the following scheme used: zi N(µ, σ),
where zi is the decoder input, and µ, σ are generated by the encoder. Also, during the
optimization of a variational autoencoder, the loss function includes the Kullback-
Leibner distance (Kullback and Leibler, 1951) between the distributions N(µ, σ) and
N(0, I).

Using the trick with reparametrization is explained by the following idea. An en-
coder builds a mapping from image space to hidden space. After reparametrization
(fig. 4.12 (a)), a random point taken in the vicinity of the mathematical expecta-
tion generated by encoder, and then the decoder trains to restore the initial image
from the sampled point. The random vector multiplied by the sigma generated by
the encoder and added to the expectation. Such change in hidden space leads to a
slight distortion of the initial image. This idea ensures that space has the property of
compactness.
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FIGURE 4.12: Reparametrization schemes: (a) - classic, (b) - modified

An alternative is to get rid of the sigma vector generation from the encoder and
to sample a new point immediately from the distribution N( mu1, I)(fig. 4.12 (b)) It
reduces the number of network parameters and also improves convergence. Such a
scheme proposed in the work of UNIT (Liu, Breuel, and Kautz, 2017b), but there it
was used without much motivation.

The following formulas describe the architecture of the encoder and decoder for
VAE with residual connections:

Encoder:

[32Conv7x7]− [64Conv4x4]− [128Conv4x4]− 4x[64 − ResBlock]

Decoder:

4x[64 − ResBlock]− [Upsample]− [128Conv5x5]−
−[Upsample]− [64Conv5x5]− [Upsample]− [3Conv7x7]

ResBlock - represents two layers of convolutions, as well as residual connection.
We trained a total of 3 networks, and the training took place for networks with dif-
ferent residual block sizes: 16, 32, and 64 (fig. 4.13).

Reconstructions for these networks are presented in the image below, from top
to bottom in increasing residual block sizes. The last network better displays the
colour characteristics of the image, most likely this effect occurred due to an increase
in the weight of the network, and the last network studied taking into account more
stringent colour augmentations.

All networks learned how to identify the features of the relief and the interior
of the city. The training lasted for 100 eras with the Adam optimizer. Lr - changed
according to CiclicLR with an interval of steps from 1e − 7 to 1e − 4. Full LR change
cycle - takes 2000 optimizer steps. The hidden space of all 3 networks is much larger
than that of previous models.
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FIGURE 4.13: Results for networks with different residual block sizes:
(a) - 16, (b) - 32, (c) - 64

4.2.3 The problem of data multimodality

All reconstructed images show a significant decrease in quality. Such an effect is
inherent in almost all variational autoencoders. However, this feature of the recon-
structed images also explained by another fact.

During optimization, the distribution of features in a hidden space tends to ap-
proximate normal, and the encoder can quite well approach the initial distribution
if it is initially close to normal.

The task posed to the encoder is to perform coding from a high-dimensional
space to a lower one while preserving the family of distributions.

The dataset with which we work has at least two modes: the first corresponds to
real data, the second to synthetic. Also, in the group of synthetic data, modes can
be formed according to the conditions under which the generation took place, for
example, it can be a time of the day, weather or season. In the part of the dataset
with real data, we can also find other modes. For simplicity, we restrict ourselves
to two - the mode of real data and synthetic. Thus, the initial data has a bimodal
distribution.

The minimized functional of a variational autoencoder includes a measure of
proximity between the generated distribution and the normal distribution N(0, I).
The optimal solution would be to reduce both modes to a normal distribution -
N(0, I). In practice, the distribution generated by the encoder is bimodal, and we
can’t reach the optimum for the measure of proximity.
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4.2.4 VAE hidden space tests

Let’s conduct tests for the equality of the mean within the hidden space generated
by VAE. The table 4.4 presents the percentage of features with unequal expectation
within one data type.

TABLE 4.4: Comparing expectations within single data group

Model Real Synthetic
VGG11VAE 2.54% 18.75%
ResNet152 VAE 1.77% 18.13%
Residual VAE Hidden-4096 3.45% 2.61%
Residual VAE Hidden-8192 2.71% 2.66%
Residual VAE Hidden-16384 3.85% 2.5%

The table 4.5 shows the percentage of unequal math expectations when compar-
ing clouds of real and synthetic data.

TABLE 4.5: Comparing expectations between real and synthetic data

Model Real vs Synthetic
VGG11VAE 72.85%
ResNet152 VAE 73.91%
Residual VAE Hidden-4096 75.82%
Residual VAE Hidden-8192 76.28%
Residual VAE Hidden-16384 74.64%

Based on the results obtained, we can say that the variable autoencoders have
managed to build a hidden space in which real and synthetic data form clusters.

4.3 Proof of decoders weakness

When converting the average value of synthetic data to the real average and further
feeding these points to the input of the decoder, at the output, we got noise presented
on figure 4.14, not images that are very similar to the real ones.

FIGURE 4.14: Generated data

Looking more closely at the points in the hidden space, it turns out that it is quite
sparse. The bulk of the points from which the images recovered are in a multidimen-
sional cube with value limits from −1.5 to 1.5.



4.4. Implementation details 21

The number of points concentrated in this area is about eighty thousand. The
total density is about twenty-six thousand images per one conventional unit of space
measure.

With a sufficient density of points in the hidden space, it would have content-
containing images in each of the points (fig. 4.15 (a)). However, the real situation
corresponds to a sparse image (fig. 4.15 (b)), and a randomly taken point is unlikely
to belong to an area with a proper reconstruction.

In order to generate quality synthetics, it is at least necessary the space be dense.
There is no point in comparing real data and sampled data because even without
tests, you can see that they do not show the essence. Consequently, having a varia-
tional autoencoder fitted building dense hidden spaces, the subsequent equating of
the average value of synthetic representations to the required average of real data
can lead to the generation of useful synthetic data.

FIGURE 4.15: VAE hidden space: (a) - dense space, (b) - sparsed space

4.4 Implementation details

For the realization of experiments, we used the framework of deep learning - Py-
Torch (Paszke et al., 2017) with the integration of python 3.7. PyTorch provides the
ability to operate with internal neurons of the network, which allowed to carry out
a detailed analysis of networks, as well as effective training. The training models
were taken from the torchvision library.

All networks were trained on a GeForce GTX 1080 TI GPU with 11.264 MB GDDR5X
memory. Training of variation auto-encoder for one epoch lasted about 50 minutes.
General training of networks in total took from 4 to 8 days. Training of classification
network for 20 epochs lasted about one hour.
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Chapter 5

Conclusion

In this paper, we considered the actual problem of efficient generation of synthetic
data. After the analysis of existing approaches, which were surrounding its solu-
tion, the method, which combined classical statistics with modern neural network
methods, was applied.

Initially, we set a goal to prove that there is a statistically significant difference
in the distributions of real and artificially generated data and during the first itera-
tion of experiments we successfully confirmed this hypothesis by proving it based
on content-containing features obtained from pre-trained neural networks. Stylistic
differences were also confirmed using the classifier.

At this stage, we also had to correct the direction of our experiments by excluding
from consideration not quite successfully selected data about dogs, as it turned out
that the style of synthetic images is too close to the style of real ones.

The second task was to work with autoencoders in order to obtain a hidden
space, and we also found out stylistic differences there. After analyzing all the ob-
tained results based on two iterations of experiments, we tried to generate synthetic
data according to the justification in the pipeline of experiments. But the result was
unsatisfactory, after which the reason of such generation explained.

The described problems interfering generation are mostly of technical nature and
do not prove the inoperability of the idea. The given work might have proceeded,
and it is necessary to develop it deepening in feature of used network architectures,
increasing in volumes of the training data and approaches of the training algorithms.
From the statistical side it would be rational to consider other statistical characteris-
tics in addition.
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